xref: /freebsd/sys/net/if_fwsubr.c (revision 5dae51da3da0cc94d17bd67b308fad304ebec7e0)
1 /*-
2  * Copyright (c) 2004 Doug Rabson
3  * Copyright (c) 1982, 1989, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/netisr.h>
48 #include <net/route.h>
49 #include <net/if_llc.h>
50 #include <net/if_dl.h>
51 #include <net/if_types.h>
52 #include <net/bpf.h>
53 #include <net/firewire.h>
54 #include <net/if_llatbl.h>
55 
56 #if defined(INET) || defined(INET6)
57 #include <netinet/in.h>
58 #include <netinet/in_var.h>
59 #include <netinet/if_ether.h>
60 #endif
61 #ifdef INET6
62 #include <netinet6/nd6.h>
63 #endif
64 
65 #include <security/mac/mac_framework.h>
66 
67 static MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
68 
69 struct fw_hwaddr firewire_broadcastaddr = {
70 	0xffffffff,
71 	0xffffffff,
72 	0xff,
73 	0xff,
74 	0xffff,
75 	0xffffffff
76 };
77 
78 static int
79 firewire_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
80     struct route *ro)
81 {
82 	struct fw_com *fc = IFP2FWC(ifp);
83 	int error, type;
84 	struct m_tag *mtag;
85 	union fw_encap *enc;
86 	struct fw_hwaddr *destfw;
87 	uint8_t speed;
88 	uint16_t psize, fsize, dsize;
89 	struct mbuf *mtail;
90 	int unicast, dgl, foff;
91 	static int next_dgl;
92 #if defined(INET) || defined(INET6)
93 	int is_gw = 0;
94 #endif
95 
96 #ifdef MAC
97 	error = mac_ifnet_check_transmit(ifp, m);
98 	if (error)
99 		goto bad;
100 #endif
101 
102 	if (!((ifp->if_flags & IFF_UP) &&
103 	   (ifp->if_drv_flags & IFF_DRV_RUNNING))) {
104 		error = ENETDOWN;
105 		goto bad;
106 	}
107 
108 #if defined(INET) || defined(INET6)
109 	if (ro != NULL)
110 		is_gw = (ro->ro_flags & RT_HAS_GW) != 0;
111 #endif
112 	/*
113 	 * For unicast, we make a tag to store the lladdr of the
114 	 * destination. This might not be the first time we have seen
115 	 * the packet (for instance, the arp code might be trying to
116 	 * re-send it after receiving an arp reply) so we only
117 	 * allocate a tag if there isn't one there already. For
118 	 * multicast, we will eventually use a different tag to store
119 	 * the channel number.
120 	 */
121 	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
122 	if (unicast) {
123 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
124 		if (!mtag) {
125 			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
126 			    sizeof (struct fw_hwaddr), M_NOWAIT);
127 			if (!mtag) {
128 				error = ENOMEM;
129 				goto bad;
130 			}
131 			m_tag_prepend(m, mtag);
132 		}
133 		destfw = (struct fw_hwaddr *)(mtag + 1);
134 	} else {
135 		destfw = NULL;
136 	}
137 
138 	switch (dst->sa_family) {
139 #ifdef INET
140 	case AF_INET:
141 		/*
142 		 * Only bother with arp for unicast. Allocation of
143 		 * channels etc. for firewire is quite different and
144 		 * doesn't fit into the arp model.
145 		 */
146 		if (unicast) {
147 			error = arpresolve(ifp, is_gw, m, dst,
148 			    (u_char *) destfw, NULL, NULL);
149 			if (error)
150 				return (error == EWOULDBLOCK ? 0 : error);
151 		}
152 		type = ETHERTYPE_IP;
153 		break;
154 
155 	case AF_ARP:
156 	{
157 		struct arphdr *ah;
158 		ah = mtod(m, struct arphdr *);
159 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
160 		type = ETHERTYPE_ARP;
161 		if (unicast)
162 			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
163 
164 		/*
165 		 * The standard arp code leaves a hole for the target
166 		 * hardware address which we need to close up.
167 		 */
168 		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
169 		m_adj(m, -ah->ar_hln);
170 		break;
171 	}
172 #endif
173 
174 #ifdef INET6
175 	case AF_INET6:
176 		if (unicast) {
177 			error = nd6_resolve(fc->fc_ifp, is_gw, m, dst,
178 			    (u_char *) destfw, NULL, NULL);
179 			if (error)
180 				return (error == EWOULDBLOCK ? 0 : error);
181 		}
182 		type = ETHERTYPE_IPV6;
183 		break;
184 #endif
185 
186 	default:
187 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
188 		error = EAFNOSUPPORT;
189 		goto bad;
190 	}
191 
192 	/*
193 	 * Let BPF tap off a copy before we encapsulate.
194 	 */
195 	if (bpf_peers_present(ifp->if_bpf)) {
196 		struct fw_bpfhdr h;
197 		if (unicast)
198 			bcopy(destfw, h.firewire_dhost, 8);
199 		else
200 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
201 		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
202 		h.firewire_type = htons(type);
203 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
204 	}
205 
206 	/*
207 	 * Punt on MCAP for now and send all multicast packets on the
208 	 * broadcast channel.
209 	 */
210 	if (m->m_flags & M_MCAST)
211 		m->m_flags |= M_BCAST;
212 
213 	/*
214 	 * Figure out what speed to use and what the largest supported
215 	 * packet size is. For unicast, this is the minimum of what we
216 	 * can speak and what they can hear. For broadcast, lets be
217 	 * conservative and use S100. We could possibly improve that
218 	 * by examining the bus manager's speed map or similar. We
219 	 * also reduce the packet size for broadcast to account for
220 	 * the GASP header.
221 	 */
222 	if (unicast) {
223 		speed = min(fc->fc_speed, destfw->sspd);
224 		psize = min(512 << speed, 2 << destfw->sender_max_rec);
225 	} else {
226 		speed = 0;
227 		psize = 512 - 2*sizeof(uint32_t);
228 	}
229 
230 	/*
231 	 * Next, we encapsulate, possibly fragmenting the original
232 	 * datagram if it won't fit into a single packet.
233 	 */
234 	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
235 		/*
236 		 * No fragmentation is necessary.
237 		 */
238 		M_PREPEND(m, sizeof(uint32_t), M_NOWAIT);
239 		if (!m) {
240 			error = ENOBUFS;
241 			goto bad;
242 		}
243 		enc = mtod(m, union fw_encap *);
244 		enc->unfrag.ether_type = type;
245 		enc->unfrag.lf = FW_ENCAP_UNFRAG;
246 		enc->unfrag.reserved = 0;
247 
248 		/*
249 		 * Byte swap the encapsulation header manually.
250 		 */
251 		enc->ul[0] = htonl(enc->ul[0]);
252 
253 		error = (ifp->if_transmit)(ifp, m);
254 		return (error);
255 	} else {
256 		/*
257 		 * Fragment the datagram, making sure to leave enough
258 		 * space for the encapsulation header in each packet.
259 		 */
260 		fsize = psize - 2*sizeof(uint32_t);
261 		dgl = next_dgl++;
262 		dsize = m->m_pkthdr.len;
263 		foff = 0;
264 		while (m) {
265 			if (m->m_pkthdr.len > fsize) {
266 				/*
267 				 * Split off the tail segment from the
268 				 * datagram, copying our tags over.
269 				 */
270 				mtail = m_split(m, fsize, M_NOWAIT);
271 				m_tag_copy_chain(mtail, m, M_NOWAIT);
272 			} else {
273 				mtail = NULL;
274 			}
275 
276 			/*
277 			 * Add our encapsulation header to this
278 			 * fragment and hand it off to the link.
279 			 */
280 			M_PREPEND(m, 2*sizeof(uint32_t), M_NOWAIT);
281 			if (!m) {
282 				error = ENOBUFS;
283 				goto bad;
284 			}
285 			enc = mtod(m, union fw_encap *);
286 			if (foff == 0) {
287 				enc->firstfrag.lf = FW_ENCAP_FIRST;
288 				enc->firstfrag.reserved1 = 0;
289 				enc->firstfrag.reserved2 = 0;
290 				enc->firstfrag.datagram_size = dsize - 1;
291 				enc->firstfrag.ether_type = type;
292 				enc->firstfrag.dgl = dgl;
293 			} else {
294 				if (mtail)
295 					enc->nextfrag.lf = FW_ENCAP_NEXT;
296 				else
297 					enc->nextfrag.lf = FW_ENCAP_LAST;
298 				enc->nextfrag.reserved1 = 0;
299 				enc->nextfrag.reserved2 = 0;
300 				enc->nextfrag.reserved3 = 0;
301 				enc->nextfrag.datagram_size = dsize - 1;
302 				enc->nextfrag.fragment_offset = foff;
303 				enc->nextfrag.dgl = dgl;
304 			}
305 			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
306 
307 			/*
308 			 * Byte swap the encapsulation header manually.
309 			 */
310 			enc->ul[0] = htonl(enc->ul[0]);
311 			enc->ul[1] = htonl(enc->ul[1]);
312 
313 			error = (ifp->if_transmit)(ifp, m);
314 			if (error) {
315 				if (mtail)
316 					m_freem(mtail);
317 				return (ENOBUFS);
318 			}
319 
320 			m = mtail;
321 		}
322 
323 		return (0);
324 	}
325 
326 bad:
327 	if (m)
328 		m_freem(m);
329 	return (error);
330 }
331 
332 static struct mbuf *
333 firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
334 {
335 	union fw_encap *enc;
336 	struct fw_reass *r;
337 	struct mbuf *mf, *mprev;
338 	int dsize;
339 	int fstart, fend, start, end, islast;
340 	uint32_t id;
341 
342 	/*
343 	 * Find an existing reassembly buffer or create a new one.
344 	 */
345 	enc = mtod(m, union fw_encap *);
346 	id = enc->firstfrag.dgl | (src << 16);
347 	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
348 		if (r->fr_id == id)
349 			break;
350 	if (!r) {
351 		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
352 		if (!r) {
353 			m_freem(m);
354 			return 0;
355 		}
356 		r->fr_id = id;
357 		r->fr_frags = 0;
358 		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
359 	}
360 
361 	/*
362 	 * If this fragment overlaps any other fragment, we must discard
363 	 * the partial reassembly and start again.
364 	 */
365 	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
366 		fstart = 0;
367 	else
368 		fstart = enc->nextfrag.fragment_offset;
369 	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
370 	dsize = enc->nextfrag.datagram_size;
371 	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
372 
373 	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
374 		enc = mtod(mf, union fw_encap *);
375 		if (enc->nextfrag.datagram_size != dsize) {
376 			/*
377 			 * This fragment must be from a different
378 			 * packet.
379 			 */
380 			goto bad;
381 		}
382 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
383 			start = 0;
384 		else
385 			start = enc->nextfrag.fragment_offset;
386 		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
387 		if ((fstart < end && fend > start) ||
388 		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
389 			/*
390 			 * Overlap - discard reassembly buffer and start
391 			 * again with this fragment.
392 			 */
393 			goto bad;
394 		}
395 	}
396 
397 	/*
398 	 * Find where to put this fragment in the list.
399 	 */
400 	for (mf = r->fr_frags, mprev = NULL; mf;
401 	    mprev = mf, mf = mf->m_nextpkt) {
402 		enc = mtod(mf, union fw_encap *);
403 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
404 			start = 0;
405 		else
406 			start = enc->nextfrag.fragment_offset;
407 		if (start >= fend)
408 			break;
409 	}
410 
411 	/*
412 	 * If this is a last fragment and we are not adding at the end
413 	 * of the list, discard the buffer.
414 	 */
415 	if (islast && mprev && mprev->m_nextpkt)
416 		goto bad;
417 
418 	if (mprev) {
419 		m->m_nextpkt = mprev->m_nextpkt;
420 		mprev->m_nextpkt = m;
421 
422 		/*
423 		 * Coalesce forwards and see if we can make a whole
424 		 * datagram.
425 		 */
426 		enc = mtod(mprev, union fw_encap *);
427 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
428 			start = 0;
429 		else
430 			start = enc->nextfrag.fragment_offset;
431 		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
432 		while (end == fstart) {
433 			/*
434 			 * Strip off the encap header from m and
435 			 * append it to mprev, freeing m.
436 			 */
437 			m_adj(m, 2*sizeof(uint32_t));
438 			mprev->m_nextpkt = m->m_nextpkt;
439 			mprev->m_pkthdr.len += m->m_pkthdr.len;
440 			m_cat(mprev, m);
441 
442 			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
443 				/*
444 				 * We have assembled a complete packet
445 				 * we must be finished. Make sure we have
446 				 * merged the whole chain.
447 				 */
448 				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
449 				free(r, M_TEMP);
450 				m = mprev->m_nextpkt;
451 				while (m) {
452 					mf = m->m_nextpkt;
453 					m_freem(m);
454 					m = mf;
455 				}
456 				mprev->m_nextpkt = NULL;
457 
458 				return (mprev);
459 			}
460 
461 			/*
462 			 * See if we can continue merging forwards.
463 			 */
464 			end = fend;
465 			m = mprev->m_nextpkt;
466 			if (m) {
467 				enc = mtod(m, union fw_encap *);
468 				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
469 					fstart = 0;
470 				else
471 					fstart = enc->nextfrag.fragment_offset;
472 				fend = fstart + m->m_pkthdr.len
473 				    - 2*sizeof(uint32_t);
474 			} else {
475 				break;
476 			}
477 		}
478 	} else {
479 		m->m_nextpkt = 0;
480 		r->fr_frags = m;
481 	}
482 
483 	return (0);
484 
485 bad:
486 	while (r->fr_frags) {
487 		mf = r->fr_frags;
488 		r->fr_frags = mf->m_nextpkt;
489 		m_freem(mf);
490 	}
491 	m->m_nextpkt = 0;
492 	r->fr_frags = m;
493 
494 	return (0);
495 }
496 
497 void
498 firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
499 {
500 	struct fw_com *fc = IFP2FWC(ifp);
501 	union fw_encap *enc;
502 	int type, isr;
503 
504 	/*
505 	 * The caller has already stripped off the packet header
506 	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
507 	 * appropriately. We de-encapsulate the IP packet and pass it
508 	 * up the line after handling link-level fragmentation.
509 	 */
510 	if (m->m_pkthdr.len < sizeof(uint32_t)) {
511 		if_printf(ifp, "discarding frame without "
512 		    "encapsulation header (len %u pkt len %u)\n",
513 		    m->m_len, m->m_pkthdr.len);
514 	}
515 
516 	m = m_pullup(m, sizeof(uint32_t));
517 	if (m == NULL)
518 		return;
519 	enc = mtod(m, union fw_encap *);
520 
521 	/*
522 	 * Byte swap the encapsulation header manually.
523 	 */
524 	enc->ul[0] = ntohl(enc->ul[0]);
525 
526 	if (enc->unfrag.lf != 0) {
527 		m = m_pullup(m, 2*sizeof(uint32_t));
528 		if (!m)
529 			return;
530 		enc = mtod(m, union fw_encap *);
531 		enc->ul[1] = ntohl(enc->ul[1]);
532 		m = firewire_input_fragment(fc, m, src);
533 		if (!m)
534 			return;
535 		enc = mtod(m, union fw_encap *);
536 		type = enc->firstfrag.ether_type;
537 		m_adj(m, 2*sizeof(uint32_t));
538 	} else {
539 		type = enc->unfrag.ether_type;
540 		m_adj(m, sizeof(uint32_t));
541 	}
542 
543 	if (m->m_pkthdr.rcvif == NULL) {
544 		if_printf(ifp, "discard frame w/o interface pointer\n");
545 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
546 		m_freem(m);
547 		return;
548 	}
549 #ifdef DIAGNOSTIC
550 	if (m->m_pkthdr.rcvif != ifp) {
551 		if_printf(ifp, "Warning, frame marked as received on %s\n",
552 			m->m_pkthdr.rcvif->if_xname);
553 	}
554 #endif
555 
556 #ifdef MAC
557 	/*
558 	 * Tag the mbuf with an appropriate MAC label before any other
559 	 * consumers can get to it.
560 	 */
561 	mac_ifnet_create_mbuf(ifp, m);
562 #endif
563 
564 	/*
565 	 * Give bpf a chance at the packet. The link-level driver
566 	 * should have left us a tag with the EUID of the sender.
567 	 */
568 	if (bpf_peers_present(ifp->if_bpf)) {
569 		struct fw_bpfhdr h;
570 		struct m_tag *mtag;
571 
572 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
573 		if (mtag)
574 			bcopy(mtag + 1, h.firewire_shost, 8);
575 		else
576 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
577 		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
578 		h.firewire_type = htons(type);
579 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
580 	}
581 
582 	if (ifp->if_flags & IFF_MONITOR) {
583 		/*
584 		 * Interface marked for monitoring; discard packet.
585 		 */
586 		m_freem(m);
587 		return;
588 	}
589 
590 	if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
591 
592 	/* Discard packet if interface is not up */
593 	if ((ifp->if_flags & IFF_UP) == 0) {
594 		m_freem(m);
595 		return;
596 	}
597 
598 	if (m->m_flags & (M_BCAST|M_MCAST))
599 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
600 
601 	switch (type) {
602 #ifdef INET
603 	case ETHERTYPE_IP:
604 		isr = NETISR_IP;
605 		break;
606 
607 	case ETHERTYPE_ARP:
608 	{
609 		struct arphdr *ah;
610 		ah = mtod(m, struct arphdr *);
611 
612 		/*
613 		 * Adjust the arp packet to insert an empty tha slot.
614 		 */
615 		m->m_len += ah->ar_hln;
616 		m->m_pkthdr.len += ah->ar_hln;
617 		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
618 		isr = NETISR_ARP;
619 		break;
620 	}
621 #endif
622 
623 #ifdef INET6
624 	case ETHERTYPE_IPV6:
625 		isr = NETISR_IPV6;
626 		break;
627 #endif
628 
629 	default:
630 		m_freem(m);
631 		return;
632 	}
633 
634 	M_SETFIB(m, ifp->if_fib);
635 	netisr_dispatch(isr, m);
636 }
637 
638 int
639 firewire_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
640 {
641 	struct ifaddr *ifa = (struct ifaddr *) data;
642 	struct ifreq *ifr = (struct ifreq *) data;
643 	int error = 0;
644 
645 	switch (command) {
646 	case SIOCSIFADDR:
647 		ifp->if_flags |= IFF_UP;
648 
649 		switch (ifa->ifa_addr->sa_family) {
650 #ifdef INET
651 		case AF_INET:
652 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
653 			arp_ifinit(ifp, ifa);
654 			break;
655 #endif
656 		default:
657 			ifp->if_init(ifp->if_softc);
658 			break;
659 		}
660 		break;
661 
662 	case SIOCGIFADDR:
663 		{
664 			struct sockaddr *sa;
665 
666 			sa = (struct sockaddr *) & ifr->ifr_data;
667 			bcopy(&IFP2FWC(ifp)->fc_hwaddr,
668 			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
669 		}
670 		break;
671 
672 	case SIOCSIFMTU:
673 		/*
674 		 * Set the interface MTU.
675 		 */
676 		if (ifr->ifr_mtu > 1500) {
677 			error = EINVAL;
678 		} else {
679 			ifp->if_mtu = ifr->ifr_mtu;
680 		}
681 		break;
682 	default:
683 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
684 		break;
685 	}
686 	return (error);
687 }
688 
689 static int
690 firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
691     struct sockaddr *sa)
692 {
693 #ifdef INET
694 	struct sockaddr_in *sin;
695 #endif
696 #ifdef INET6
697 	struct sockaddr_in6 *sin6;
698 #endif
699 
700 	switch(sa->sa_family) {
701 	case AF_LINK:
702 		/*
703 		 * No mapping needed.
704 		 */
705 		*llsa = NULL;
706 		return 0;
707 
708 #ifdef INET
709 	case AF_INET:
710 		sin = (struct sockaddr_in *)sa;
711 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
712 			return EADDRNOTAVAIL;
713 		*llsa = NULL;
714 		return 0;
715 #endif
716 #ifdef INET6
717 	case AF_INET6:
718 		sin6 = (struct sockaddr_in6 *)sa;
719 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
720 			/*
721 			 * An IP6 address of 0 means listen to all
722 			 * of the Ethernet multicast address used for IP6.
723 			 * (This is used for multicast routers.)
724 			 */
725 			ifp->if_flags |= IFF_ALLMULTI;
726 			*llsa = NULL;
727 			return 0;
728 		}
729 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
730 			return EADDRNOTAVAIL;
731 		*llsa = NULL;
732 		return 0;
733 #endif
734 
735 	default:
736 		/*
737 		 * Well, the text isn't quite right, but it's the name
738 		 * that counts...
739 		 */
740 		return EAFNOSUPPORT;
741 	}
742 }
743 
744 void
745 firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
746 {
747 	struct fw_com *fc = IFP2FWC(ifp);
748 	struct ifaddr *ifa;
749 	struct sockaddr_dl *sdl;
750 	static const char* speeds[] = {
751 		"S100", "S200", "S400", "S800",
752 		"S1600", "S3200"
753 	};
754 
755 	fc->fc_speed = llc->sspd;
756 	STAILQ_INIT(&fc->fc_frags);
757 
758 	ifp->if_addrlen = sizeof(struct fw_hwaddr);
759 	ifp->if_hdrlen = 0;
760 	if_attach(ifp);
761 	ifp->if_mtu = 1500;	/* XXX */
762 	ifp->if_output = firewire_output;
763 	ifp->if_resolvemulti = firewire_resolvemulti;
764 	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
765 
766 	ifa = ifp->if_addr;
767 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
768 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
769 	sdl->sdl_type = IFT_IEEE1394;
770 	sdl->sdl_alen = ifp->if_addrlen;
771 	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
772 
773 	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
774 	    sizeof(struct fw_hwaddr));
775 
776 	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
777 	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
778 	    ntohs(llc->sender_unicast_FIFO_hi),
779 	    ntohl(llc->sender_unicast_FIFO_lo),
780 	    speeds[llc->sspd],
781 	    (2 << llc->sender_max_rec));
782 }
783 
784 void
785 firewire_ifdetach(struct ifnet *ifp)
786 {
787 	bpfdetach(ifp);
788 	if_detach(ifp);
789 }
790 
791 void
792 firewire_busreset(struct ifnet *ifp)
793 {
794 	struct fw_com *fc = IFP2FWC(ifp);
795 	struct fw_reass *r;
796 	struct mbuf *m;
797 
798 	/*
799 	 * Discard any partial datagrams since the host ids may have changed.
800 	 */
801 	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
802 		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
803 		while (r->fr_frags) {
804 			m = r->fr_frags;
805 			r->fr_frags = m->m_nextpkt;
806 			m_freem(m);
807 		}
808 		free(r, M_TEMP);
809 	}
810 }
811 
812 static void *
813 firewire_alloc(u_char type, struct ifnet *ifp)
814 {
815 	struct fw_com	*fc;
816 
817 	fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
818 	fc->fc_ifp = ifp;
819 
820 	return (fc);
821 }
822 
823 static void
824 firewire_free(void *com, u_char type)
825 {
826 
827 	free(com, M_FWCOM);
828 }
829 
830 static int
831 firewire_modevent(module_t mod, int type, void *data)
832 {
833 
834 	switch (type) {
835 	case MOD_LOAD:
836 		if_register_com_alloc(IFT_IEEE1394,
837 		    firewire_alloc, firewire_free);
838 		break;
839 	case MOD_UNLOAD:
840 		if_deregister_com_alloc(IFT_IEEE1394);
841 		break;
842 	default:
843 		return (EOPNOTSUPP);
844 	}
845 
846 	return (0);
847 }
848 
849 static moduledata_t firewire_mod = {
850 	"if_firewire",
851 	firewire_modevent,
852 	0
853 };
854 
855 DECLARE_MODULE(if_firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
856 MODULE_VERSION(if_firewire, 1);
857