xref: /freebsd/sys/net/if_fwsubr.c (revision 4f29da19bd44f0e99f021510460a81bf754c21d2)
1 /*-
2  * Copyright (c) 2004 Doug Rabson
3  * Copyright (c) 1982, 1989, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/mac.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 
47 #include <net/if.h>
48 #include <net/netisr.h>
49 #include <net/route.h>
50 #include <net/if_llc.h>
51 #include <net/if_dl.h>
52 #include <net/if_types.h>
53 #include <net/bpf.h>
54 #include <net/firewire.h>
55 
56 #if defined(INET) || defined(INET6)
57 #include <netinet/in.h>
58 #include <netinet/in_var.h>
59 #include <netinet/if_ether.h>
60 #endif
61 #ifdef INET6
62 #include <netinet6/nd6.h>
63 #endif
64 
65 MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
66 
67 struct fw_hwaddr firewire_broadcastaddr = {
68 	0xffffffff,
69 	0xffffffff,
70 	0xff,
71 	0xff,
72 	0xffff,
73 	0xffffffff
74 };
75 
76 static int
77 firewire_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
78     struct rtentry *rt0)
79 {
80 	struct fw_com *fc = IFP2FWC(ifp);
81 	int error, type;
82 	struct rtentry *rt = NULL;
83 	struct m_tag *mtag;
84 	union fw_encap *enc;
85 	struct fw_hwaddr *destfw;
86 	uint8_t speed;
87 	uint16_t psize, fsize, dsize;
88 	struct mbuf *mtail;
89 	int unicast, dgl, foff;
90 	static int next_dgl;
91 
92 #ifdef MAC
93 	error = mac_check_ifnet_transmit(ifp, m);
94 	if (error)
95 		goto bad;
96 #endif
97 
98 	if (!((ifp->if_flags & IFF_UP) &&
99 	   (ifp->if_drv_flags & IFF_DRV_RUNNING))) {
100 		error = ENETDOWN;
101 		goto bad;
102 	}
103 
104 	if (rt0 != NULL) {
105 		error = rt_check(&rt, &rt0, dst);
106 		if (error)
107 			goto bad;
108 		RT_UNLOCK(rt);
109 	}
110 
111 	/*
112 	 * For unicast, we make a tag to store the lladdr of the
113 	 * destination. This might not be the first time we have seen
114 	 * the packet (for instance, the arp code might be trying to
115 	 * re-send it after receiving an arp reply) so we only
116 	 * allocate a tag if there isn't one there already. For
117 	 * multicast, we will eventually use a different tag to store
118 	 * the channel number.
119 	 */
120 	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
121 	if (unicast) {
122 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
123 		if (!mtag) {
124 			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
125 			    sizeof (struct fw_hwaddr), M_NOWAIT);
126 			if (!mtag) {
127 				error = ENOMEM;
128 				goto bad;
129 			}
130 			m_tag_prepend(m, mtag);
131 		}
132 		destfw = (struct fw_hwaddr *)(mtag + 1);
133 	} else {
134 		destfw = 0;
135 	}
136 
137 	switch (dst->sa_family) {
138 #ifdef AF_INET
139 	case AF_INET:
140 		/*
141 		 * Only bother with arp for unicast. Allocation of
142 		 * channels etc. for firewire is quite different and
143 		 * doesn't fit into the arp model.
144 		 */
145 		if (unicast) {
146 			error = arpresolve(ifp, rt, m, dst, (u_char *) destfw);
147 			if (error)
148 				return (error == EWOULDBLOCK ? 0 : error);
149 		}
150 		type = ETHERTYPE_IP;
151 		break;
152 
153 	case AF_ARP:
154 	{
155 		struct arphdr *ah;
156 		ah = mtod(m, struct arphdr *);
157 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
158 		type = ETHERTYPE_ARP;
159 		if (unicast)
160 			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
161 
162 		/*
163 		 * The standard arp code leaves a hole for the target
164 		 * hardware address which we need to close up.
165 		 */
166 		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
167 		m_adj(m, -ah->ar_hln);
168 		break;
169 	}
170 #endif
171 
172 #ifdef INET6
173 	case AF_INET6:
174 		if (unicast) {
175 			error = nd6_storelladdr(fc->fc_ifp, rt, m, dst,
176 			    (u_char *) destfw);
177 			if (error)
178 				return (error);
179 		}
180 		type = ETHERTYPE_IPV6;
181 		break;
182 #endif
183 
184 	default:
185 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
186 		error = EAFNOSUPPORT;
187 		goto bad;
188 	}
189 
190 	/*
191 	 * Let BPF tap off a copy before we encapsulate.
192 	 */
193 	if (ifp->if_bpf) {
194 		struct fw_bpfhdr h;
195 		if (unicast)
196 			bcopy(destfw, h.firewire_dhost, 8);
197 		else
198 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
199 		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
200 		h.firewire_type = htons(type);
201 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
202 	}
203 
204 	/*
205 	 * Punt on MCAP for now and send all multicast packets on the
206 	 * broadcast channel.
207 	 */
208 	if (m->m_flags & M_MCAST)
209 		m->m_flags |= M_BCAST;
210 
211 	/*
212 	 * Figure out what speed to use and what the largest supported
213 	 * packet size is. For unicast, this is the minimum of what we
214 	 * can speak and what they can hear. For broadcast, lets be
215 	 * conservative and use S100. We could possibly improve that
216 	 * by examining the bus manager's speed map or similar. We
217 	 * also reduce the packet size for broadcast to account for
218 	 * the GASP header.
219 	 */
220 	if (unicast) {
221 		speed = min(fc->fc_speed, destfw->sspd);
222 		psize = min(512 << speed, 2 << destfw->sender_max_rec);
223 	} else {
224 		speed = 0;
225 		psize = 512 - 2*sizeof(uint32_t);
226 	}
227 
228 	/*
229 	 * Next, we encapsulate, possibly fragmenting the original
230 	 * datagram if it won't fit into a single packet.
231 	 */
232 	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
233 		/*
234 		 * No fragmentation is necessary.
235 		 */
236 		M_PREPEND(m, sizeof(uint32_t), M_DONTWAIT);
237 		if (!m) {
238 			error = ENOBUFS;
239 			goto bad;
240 		}
241 		enc = mtod(m, union fw_encap *);
242 		enc->unfrag.ether_type = type;
243 		enc->unfrag.lf = FW_ENCAP_UNFRAG;
244 		enc->unfrag.reserved = 0;
245 
246 		/*
247 		 * Byte swap the encapsulation header manually.
248 		 */
249 		enc->ul[0] = htonl(enc->ul[0]);
250 
251 		IFQ_HANDOFF(ifp, m, error);
252 		return (error);
253 	} else {
254 		/*
255 		 * Fragment the datagram, making sure to leave enough
256 		 * space for the encapsulation header in each packet.
257 		 */
258 		fsize = psize - 2*sizeof(uint32_t);
259 		dgl = next_dgl++;
260 		dsize = m->m_pkthdr.len;
261 		foff = 0;
262 		while (m) {
263 			if (m->m_pkthdr.len > fsize) {
264 				/*
265 				 * Split off the tail segment from the
266 				 * datagram, copying our tags over.
267 				 */
268 				mtail = m_split(m, fsize, M_DONTWAIT);
269 				m_tag_copy_chain(mtail, m, M_NOWAIT);
270 			} else {
271 				mtail = 0;
272 			}
273 
274 			/*
275 			 * Add our encapsulation header to this
276 			 * fragment and hand it off to the link.
277 			 */
278 			M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
279 			if (!m) {
280 				error = ENOBUFS;
281 				goto bad;
282 			}
283 			enc = mtod(m, union fw_encap *);
284 			if (foff == 0) {
285 				enc->firstfrag.lf = FW_ENCAP_FIRST;
286 				enc->firstfrag.reserved1 = 0;
287 				enc->firstfrag.reserved2 = 0;
288 				enc->firstfrag.datagram_size = dsize - 1;
289 				enc->firstfrag.ether_type = type;
290 				enc->firstfrag.dgl = dgl;
291 			} else {
292 				if (mtail)
293 					enc->nextfrag.lf = FW_ENCAP_NEXT;
294 				else
295 					enc->nextfrag.lf = FW_ENCAP_LAST;
296 				enc->nextfrag.reserved1 = 0;
297 				enc->nextfrag.reserved2 = 0;
298 				enc->nextfrag.reserved3 = 0;
299 				enc->nextfrag.datagram_size = dsize - 1;
300 				enc->nextfrag.fragment_offset = foff;
301 				enc->nextfrag.dgl = dgl;
302 			}
303 			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
304 
305 			/*
306 			 * Byte swap the encapsulation header manually.
307 			 */
308 			enc->ul[0] = htonl(enc->ul[0]);
309 			enc->ul[1] = htonl(enc->ul[1]);
310 
311 			IFQ_HANDOFF(ifp, m, error);
312 			if (error) {
313 				if (mtail)
314 					m_freem(mtail);
315 				return (ENOBUFS);
316 			}
317 
318 			m = mtail;
319 		}
320 
321 		return (0);
322 	}
323 
324 bad:
325 	if (m)
326 		m_freem(m);
327 	return (error);
328 }
329 
330 static struct mbuf *
331 firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
332 {
333 	union fw_encap *enc;
334 	struct fw_reass *r;
335 	struct mbuf *mf, *mprev;
336 	int dsize;
337 	int fstart, fend, start, end, islast;
338 	uint32_t id;
339 
340 	GIANT_REQUIRED;
341 
342 	/*
343 	 * Find an existing reassembly buffer or create a new one.
344 	 */
345 	enc = mtod(m, union fw_encap *);
346 	id = enc->firstfrag.dgl | (src << 16);
347 	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
348 		if (r->fr_id == id)
349 			break;
350 	if (!r) {
351 		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
352 		if (!r) {
353 			m_freem(m);
354 			return 0;
355 		}
356 		r->fr_id = id;
357 		r->fr_frags = 0;
358 		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
359 	}
360 
361 	/*
362 	 * If this fragment overlaps any other fragment, we must discard
363 	 * the partial reassembly and start again.
364 	 */
365 	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
366 		fstart = 0;
367 	else
368 		fstart = enc->nextfrag.fragment_offset;
369 	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
370 	dsize = enc->nextfrag.datagram_size;
371 	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
372 
373 	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
374 		enc = mtod(mf, union fw_encap *);
375 		if (enc->nextfrag.datagram_size != dsize) {
376 			/*
377 			 * This fragment must be from a different
378 			 * packet.
379 			 */
380 			goto bad;
381 		}
382 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
383 			start = 0;
384 		else
385 			start = enc->nextfrag.fragment_offset;
386 		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
387 		if ((fstart < end && fend > start) ||
388 		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
389 			/*
390 			 * Overlap - discard reassembly buffer and start
391 			 * again with this fragment.
392 			 */
393 			goto bad;
394 		}
395 	}
396 
397 	/*
398 	 * Find where to put this fragment in the list.
399 	 */
400 	for (mf = r->fr_frags, mprev = NULL; mf;
401 	    mprev = mf, mf = mf->m_nextpkt) {
402 		enc = mtod(mf, union fw_encap *);
403 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
404 			start = 0;
405 		else
406 			start = enc->nextfrag.fragment_offset;
407 		if (start >= fend)
408 			break;
409 	}
410 
411 	/*
412 	 * If this is a last fragment and we are not adding at the end
413 	 * of the list, discard the buffer.
414 	 */
415 	if (islast && mprev && mprev->m_nextpkt)
416 		goto bad;
417 
418 	if (mprev) {
419 		m->m_nextpkt = mprev->m_nextpkt;
420 		mprev->m_nextpkt = m;
421 
422 		/*
423 		 * Coalesce forwards and see if we can make a whole
424 		 * datagram.
425 		 */
426 		enc = mtod(mprev, union fw_encap *);
427 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
428 			start = 0;
429 		else
430 			start = enc->nextfrag.fragment_offset;
431 		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
432 		while (end == fstart) {
433 			/*
434 			 * Strip off the encap header from m and
435 			 * append it to mprev, freeing m.
436 			 */
437 			m_adj(m, 2*sizeof(uint32_t));
438 			mprev->m_nextpkt = m->m_nextpkt;
439 			mprev->m_pkthdr.len += m->m_pkthdr.len;
440 			m_cat(mprev, m);
441 
442 			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
443 				/*
444 				 * We have assembled a complete packet
445 				 * we must be finished. Make sure we have
446 				 * merged the whole chain.
447 				 */
448 				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
449 				free(r, M_TEMP);
450 				m = mprev->m_nextpkt;
451 				while (m) {
452 					mf = m->m_nextpkt;
453 					m_freem(m);
454 					m = mf;
455 				}
456 				mprev->m_nextpkt = NULL;
457 
458 				return (mprev);
459 			}
460 
461 			/*
462 			 * See if we can continue merging forwards.
463 			 */
464 			end = fend;
465 			m = mprev->m_nextpkt;
466 			if (m) {
467 				enc = mtod(m, union fw_encap *);
468 				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
469 					fstart = 0;
470 				else
471 					fstart = enc->nextfrag.fragment_offset;
472 				fend = fstart + m->m_pkthdr.len
473 				    - 2*sizeof(uint32_t);
474 			} else {
475 				break;
476 			}
477 		}
478 	} else {
479 		m->m_nextpkt = 0;
480 		r->fr_frags = m;
481 	}
482 
483 	return (0);
484 
485 bad:
486 	while (r->fr_frags) {
487 		mf = r->fr_frags;
488 		r->fr_frags = mf->m_nextpkt;
489 		m_freem(mf);
490 	}
491 	m->m_nextpkt = 0;
492 	r->fr_frags = m;
493 
494 	return (0);
495 }
496 
497 void
498 firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
499 {
500 	struct fw_com *fc = IFP2FWC(ifp);
501 	union fw_encap *enc;
502 	int type, isr;
503 
504 	GIANT_REQUIRED;
505 
506 	/*
507 	 * The caller has already stripped off the packet header
508 	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
509 	 * appropriately. We de-encapsulate the IP packet and pass it
510 	 * up the line after handling link-level fragmentation.
511 	 */
512 	if (m->m_pkthdr.len < sizeof(uint32_t)) {
513 		if_printf(ifp, "discarding frame without "
514 		    "encapsulation header (len %u pkt len %u)\n",
515 		    m->m_len, m->m_pkthdr.len);
516 	}
517 
518 	m = m_pullup(m, sizeof(uint32_t));
519 	enc = mtod(m, union fw_encap *);
520 
521 	/*
522 	 * Byte swap the encapsulation header manually.
523 	 */
524 	enc->ul[0] = ntohl(enc->ul[0]);
525 
526 	if (enc->unfrag.lf != 0) {
527 		m = m_pullup(m, 2*sizeof(uint32_t));
528 		if (!m)
529 			return;
530 		enc = mtod(m, union fw_encap *);
531 		enc->ul[1] = ntohl(enc->ul[1]);
532 		m = firewire_input_fragment(fc, m, src);
533 		if (!m)
534 			return;
535 		enc = mtod(m, union fw_encap *);
536 		type = enc->firstfrag.ether_type;
537 		m_adj(m, 2*sizeof(uint32_t));
538 	} else {
539 		type = enc->unfrag.ether_type;
540 		m_adj(m, sizeof(uint32_t));
541 	}
542 
543 	if (m->m_pkthdr.rcvif == NULL) {
544 		if_printf(ifp, "discard frame w/o interface pointer\n");
545 		ifp->if_ierrors++;
546 		m_freem(m);
547 		return;
548 	}
549 #ifdef DIAGNOSTIC
550 	if (m->m_pkthdr.rcvif != ifp) {
551 		if_printf(ifp, "Warning, frame marked as received on %s\n",
552 			m->m_pkthdr.rcvif->if_xname);
553 	}
554 #endif
555 
556 #ifdef MAC
557 	/*
558 	 * Tag the mbuf with an appropriate MAC label before any other
559 	 * consumers can get to it.
560 	 */
561 	mac_create_mbuf_from_ifnet(ifp, m);
562 #endif
563 
564 	/*
565 	 * Give bpf a chance at the packet. The link-level driver
566 	 * should have left us a tag with the EUID of the sender.
567 	 */
568 	if (ifp->if_bpf) {
569 		struct fw_bpfhdr h;
570 		struct m_tag *mtag;
571 
572 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
573 		if (mtag)
574 			bcopy(mtag + 1, h.firewire_shost, 8);
575 		else
576 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
577 		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
578 		h.firewire_type = htons(type);
579 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
580 	}
581 
582 	if (ifp->if_flags & IFF_MONITOR) {
583 		/*
584 		 * Interface marked for monitoring; discard packet.
585 		 */
586 		m_freem(m);
587 		return;
588 	}
589 
590 	ifp->if_ibytes += m->m_pkthdr.len;
591 
592 	/* Discard packet if interface is not up */
593 	if ((ifp->if_flags & IFF_UP) == 0) {
594 		m_freem(m);
595 		return;
596 	}
597 
598 	if (m->m_flags & (M_BCAST|M_MCAST))
599 		ifp->if_imcasts++;
600 
601 	switch (type) {
602 #ifdef INET
603 	case ETHERTYPE_IP:
604 		if ((m = ip_fastforward(m)) == NULL)
605 			return;
606 		isr = NETISR_IP;
607 		break;
608 
609 	case ETHERTYPE_ARP:
610 	{
611 		struct arphdr *ah;
612 		ah = mtod(m, struct arphdr *);
613 
614 		/*
615 		 * Adjust the arp packet to insert an empty tha slot.
616 		 */
617 		m->m_len += ah->ar_hln;
618 		m->m_pkthdr.len += ah->ar_hln;
619 		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
620 		isr = NETISR_ARP;
621 		break;
622 	}
623 #endif
624 
625 #ifdef INET6
626 	case ETHERTYPE_IPV6:
627 		isr = NETISR_IPV6;
628 		break;
629 #endif
630 
631 	default:
632 		m_freem(m);
633 		return;
634 	}
635 
636 	netisr_dispatch(isr, m);
637 }
638 
639 int
640 firewire_ioctl(struct ifnet *ifp, int command, caddr_t data)
641 {
642 	struct ifaddr *ifa = (struct ifaddr *) data;
643 	struct ifreq *ifr = (struct ifreq *) data;
644 	int error = 0;
645 
646 	switch (command) {
647 	case SIOCSIFADDR:
648 		ifp->if_flags |= IFF_UP;
649 
650 		switch (ifa->ifa_addr->sa_family) {
651 #ifdef INET
652 		case AF_INET:
653 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
654 			arp_ifinit(ifp, ifa);
655 			break;
656 #endif
657 		default:
658 			ifp->if_init(ifp->if_softc);
659 			break;
660 		}
661 		break;
662 
663 	case SIOCGIFADDR:
664 		{
665 			struct sockaddr *sa;
666 
667 			sa = (struct sockaddr *) & ifr->ifr_data;
668 			bcopy(&IFP2FWC(ifp)->fc_hwaddr,
669 			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
670 		}
671 		break;
672 
673 	case SIOCSIFMTU:
674 		/*
675 		 * Set the interface MTU.
676 		 */
677 		if (ifr->ifr_mtu > 1500) {
678 			error = EINVAL;
679 		} else {
680 			ifp->if_mtu = ifr->ifr_mtu;
681 		}
682 		break;
683 	default:
684 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
685 		break;
686 	}
687 	return (error);
688 }
689 
690 static int
691 firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
692     struct sockaddr *sa)
693 {
694 #ifdef INET
695 	struct sockaddr_in *sin;
696 #endif
697 #ifdef INET6
698 	struct sockaddr_in6 *sin6;
699 #endif
700 
701 	switch(sa->sa_family) {
702 	case AF_LINK:
703 		/*
704 		 * No mapping needed.
705 		 */
706 		*llsa = 0;
707 		return 0;
708 
709 #ifdef INET
710 	case AF_INET:
711 		sin = (struct sockaddr_in *)sa;
712 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
713 			return EADDRNOTAVAIL;
714 		*llsa = 0;
715 		return 0;
716 #endif
717 #ifdef INET6
718 	case AF_INET6:
719 		sin6 = (struct sockaddr_in6 *)sa;
720 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
721 			/*
722 			 * An IP6 address of 0 means listen to all
723 			 * of the Ethernet multicast address used for IP6.
724 			 * (This is used for multicast routers.)
725 			 */
726 			ifp->if_flags |= IFF_ALLMULTI;
727 			*llsa = 0;
728 			return 0;
729 		}
730 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
731 			return EADDRNOTAVAIL;
732 		*llsa = 0;
733 		return 0;
734 #endif
735 
736 	default:
737 		/*
738 		 * Well, the text isn't quite right, but it's the name
739 		 * that counts...
740 		 */
741 		return EAFNOSUPPORT;
742 	}
743 }
744 
745 void
746 firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
747 {
748 	struct fw_com *fc = IFP2FWC(ifp);
749 	struct ifaddr *ifa;
750 	struct sockaddr_dl *sdl;
751 	static const char* speeds[] = {
752 		"S100", "S200", "S400", "S800",
753 		"S1600", "S3200"
754 	};
755 
756 	fc->fc_speed = llc->sspd;
757 	STAILQ_INIT(&fc->fc_frags);
758 
759 	ifp->if_addrlen = sizeof(struct fw_hwaddr);
760 	ifp->if_hdrlen = 0;
761 	if_attach(ifp);
762 	ifp->if_mtu = 1500;	/* XXX */
763 	ifp->if_output = firewire_output;
764 	ifp->if_resolvemulti = firewire_resolvemulti;
765 	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
766 
767 	ifa = ifp->if_addr;
768 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
769 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
770 	sdl->sdl_type = IFT_IEEE1394;
771 	sdl->sdl_alen = ifp->if_addrlen;
772 	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
773 
774 	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
775 	    sizeof(struct fw_hwaddr));
776 
777 	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
778 	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
779 	    ntohs(llc->sender_unicast_FIFO_hi),
780 	    ntohl(llc->sender_unicast_FIFO_lo),
781 	    speeds[llc->sspd],
782 	    (2 << llc->sender_max_rec));
783 }
784 
785 void
786 firewire_ifdetach(struct ifnet *ifp)
787 {
788 	bpfdetach(ifp);
789 	if_detach(ifp);
790 }
791 
792 void
793 firewire_busreset(struct ifnet *ifp)
794 {
795 	struct fw_com *fc = IFP2FWC(ifp);
796 	struct fw_reass *r;
797 	struct mbuf *m;
798 
799 	/*
800 	 * Discard any partial datagrams since the host ids may have changed.
801 	 */
802 	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
803 		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
804 		while (r->fr_frags) {
805 			m = r->fr_frags;
806 			r->fr_frags = m->m_nextpkt;
807 			m_freem(m);
808 		}
809 		free(r, M_TEMP);
810 	}
811 }
812 
813 static void *
814 firewire_alloc(u_char type, struct ifnet *ifp)
815 {
816 	struct fw_com	*fc;
817 
818 	fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
819 	fc->fc_ifp = ifp;
820 
821 	return (fc);
822 }
823 
824 static void
825 firewire_free(void *com, u_char type)
826 {
827 
828 	free(com, M_FWCOM);
829 }
830 
831 static int
832 firewire_modevent(module_t mod, int type, void *data)
833 {
834 
835 	switch (type) {
836 	case MOD_LOAD:
837 		if_register_com_alloc(IFT_IEEE1394,
838 		    firewire_alloc, firewire_free);
839 		break;
840 	case MOD_UNLOAD:
841 		if_deregister_com_alloc(IFT_IEEE1394);
842 		break;
843 	default:
844 		return (EOPNOTSUPP);
845 	}
846 
847 	return (0);
848 }
849 
850 static moduledata_t firewire_mod = {
851 	"if_firewire",
852 	firewire_modevent,
853 	0
854 };
855 
856 DECLARE_MODULE(if_firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
857 MODULE_VERSION(if_firewire, 1);
858