xref: /freebsd/sys/net/if_fwsubr.c (revision 42ff34c310e47ea7c34758a8818a15ad3871919e)
1 /*-
2  * Copyright (c) 2004 Doug Rabson
3  * Copyright (c) 1982, 1989, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/netisr.h>
48 #include <net/route.h>
49 #include <net/if_llc.h>
50 #include <net/if_dl.h>
51 #include <net/if_types.h>
52 #include <net/bpf.h>
53 #include <net/firewire.h>
54 #include <net/if_llatbl.h>
55 
56 #if defined(INET) || defined(INET6)
57 #include <netinet/in.h>
58 #include <netinet/in_var.h>
59 #include <netinet/if_ether.h>
60 #endif
61 #ifdef INET6
62 #include <netinet6/nd6.h>
63 #endif
64 
65 #include <security/mac/mac_framework.h>
66 
67 static MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
68 
69 struct fw_hwaddr firewire_broadcastaddr = {
70 	0xffffffff,
71 	0xffffffff,
72 	0xff,
73 	0xff,
74 	0xffff,
75 	0xffffffff
76 };
77 
78 static int
79 firewire_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
80     struct route *ro)
81 {
82 	struct fw_com *fc = IFP2FWC(ifp);
83 	int error, type;
84 	struct m_tag *mtag;
85 	union fw_encap *enc;
86 	struct fw_hwaddr *destfw;
87 	uint8_t speed;
88 	uint16_t psize, fsize, dsize;
89 	struct mbuf *mtail;
90 	int unicast, dgl, foff;
91 	static int next_dgl;
92 #if defined(INET) || defined(INET6)
93 	int is_gw = 0;
94 #endif
95 
96 #ifdef MAC
97 	error = mac_ifnet_check_transmit(ifp, m);
98 	if (error)
99 		goto bad;
100 #endif
101 
102 	if (!((ifp->if_flags & IFF_UP) &&
103 	   (ifp->if_drv_flags & IFF_DRV_RUNNING))) {
104 		error = ENETDOWN;
105 		goto bad;
106 	}
107 
108 #if defined(INET) || defined(INET6)
109 	if (ro != NULL)
110 		is_gw = (ro->ro_flags & RT_HAS_GW) != 0;
111 #endif
112 	/*
113 	 * For unicast, we make a tag to store the lladdr of the
114 	 * destination. This might not be the first time we have seen
115 	 * the packet (for instance, the arp code might be trying to
116 	 * re-send it after receiving an arp reply) so we only
117 	 * allocate a tag if there isn't one there already. For
118 	 * multicast, we will eventually use a different tag to store
119 	 * the channel number.
120 	 */
121 	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
122 	if (unicast) {
123 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
124 		if (!mtag) {
125 			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
126 			    sizeof (struct fw_hwaddr), M_NOWAIT);
127 			if (!mtag) {
128 				error = ENOMEM;
129 				goto bad;
130 			}
131 			m_tag_prepend(m, mtag);
132 		}
133 		destfw = (struct fw_hwaddr *)(mtag + 1);
134 	} else {
135 		destfw = NULL;
136 	}
137 
138 	switch (dst->sa_family) {
139 #ifdef INET
140 	case AF_INET:
141 		/*
142 		 * Only bother with arp for unicast. Allocation of
143 		 * channels etc. for firewire is quite different and
144 		 * doesn't fit into the arp model.
145 		 */
146 		if (unicast) {
147 			error = arpresolve(ifp, is_gw, m, dst, (u_char *) destfw, NULL);
148 			if (error)
149 				return (error == EWOULDBLOCK ? 0 : error);
150 		}
151 		type = ETHERTYPE_IP;
152 		break;
153 
154 	case AF_ARP:
155 	{
156 		struct arphdr *ah;
157 		ah = mtod(m, struct arphdr *);
158 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
159 		type = ETHERTYPE_ARP;
160 		if (unicast)
161 			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
162 
163 		/*
164 		 * The standard arp code leaves a hole for the target
165 		 * hardware address which we need to close up.
166 		 */
167 		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
168 		m_adj(m, -ah->ar_hln);
169 		break;
170 	}
171 #endif
172 
173 #ifdef INET6
174 	case AF_INET6:
175 		if (unicast) {
176 			error = nd6_resolve(fc->fc_ifp, is_gw, m, dst,
177 			    (u_char *) destfw, NULL);
178 			if (error)
179 				return (error == EWOULDBLOCK ? 0 : error);
180 		}
181 		type = ETHERTYPE_IPV6;
182 		break;
183 #endif
184 
185 	default:
186 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
187 		error = EAFNOSUPPORT;
188 		goto bad;
189 	}
190 
191 	/*
192 	 * Let BPF tap off a copy before we encapsulate.
193 	 */
194 	if (bpf_peers_present(ifp->if_bpf)) {
195 		struct fw_bpfhdr h;
196 		if (unicast)
197 			bcopy(destfw, h.firewire_dhost, 8);
198 		else
199 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
200 		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
201 		h.firewire_type = htons(type);
202 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
203 	}
204 
205 	/*
206 	 * Punt on MCAP for now and send all multicast packets on the
207 	 * broadcast channel.
208 	 */
209 	if (m->m_flags & M_MCAST)
210 		m->m_flags |= M_BCAST;
211 
212 	/*
213 	 * Figure out what speed to use and what the largest supported
214 	 * packet size is. For unicast, this is the minimum of what we
215 	 * can speak and what they can hear. For broadcast, lets be
216 	 * conservative and use S100. We could possibly improve that
217 	 * by examining the bus manager's speed map or similar. We
218 	 * also reduce the packet size for broadcast to account for
219 	 * the GASP header.
220 	 */
221 	if (unicast) {
222 		speed = min(fc->fc_speed, destfw->sspd);
223 		psize = min(512 << speed, 2 << destfw->sender_max_rec);
224 	} else {
225 		speed = 0;
226 		psize = 512 - 2*sizeof(uint32_t);
227 	}
228 
229 	/*
230 	 * Next, we encapsulate, possibly fragmenting the original
231 	 * datagram if it won't fit into a single packet.
232 	 */
233 	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
234 		/*
235 		 * No fragmentation is necessary.
236 		 */
237 		M_PREPEND(m, sizeof(uint32_t), M_NOWAIT);
238 		if (!m) {
239 			error = ENOBUFS;
240 			goto bad;
241 		}
242 		enc = mtod(m, union fw_encap *);
243 		enc->unfrag.ether_type = type;
244 		enc->unfrag.lf = FW_ENCAP_UNFRAG;
245 		enc->unfrag.reserved = 0;
246 
247 		/*
248 		 * Byte swap the encapsulation header manually.
249 		 */
250 		enc->ul[0] = htonl(enc->ul[0]);
251 
252 		error = (ifp->if_transmit)(ifp, m);
253 		return (error);
254 	} else {
255 		/*
256 		 * Fragment the datagram, making sure to leave enough
257 		 * space for the encapsulation header in each packet.
258 		 */
259 		fsize = psize - 2*sizeof(uint32_t);
260 		dgl = next_dgl++;
261 		dsize = m->m_pkthdr.len;
262 		foff = 0;
263 		while (m) {
264 			if (m->m_pkthdr.len > fsize) {
265 				/*
266 				 * Split off the tail segment from the
267 				 * datagram, copying our tags over.
268 				 */
269 				mtail = m_split(m, fsize, M_NOWAIT);
270 				m_tag_copy_chain(mtail, m, M_NOWAIT);
271 			} else {
272 				mtail = NULL;
273 			}
274 
275 			/*
276 			 * Add our encapsulation header to this
277 			 * fragment and hand it off to the link.
278 			 */
279 			M_PREPEND(m, 2*sizeof(uint32_t), M_NOWAIT);
280 			if (!m) {
281 				error = ENOBUFS;
282 				goto bad;
283 			}
284 			enc = mtod(m, union fw_encap *);
285 			if (foff == 0) {
286 				enc->firstfrag.lf = FW_ENCAP_FIRST;
287 				enc->firstfrag.reserved1 = 0;
288 				enc->firstfrag.reserved2 = 0;
289 				enc->firstfrag.datagram_size = dsize - 1;
290 				enc->firstfrag.ether_type = type;
291 				enc->firstfrag.dgl = dgl;
292 			} else {
293 				if (mtail)
294 					enc->nextfrag.lf = FW_ENCAP_NEXT;
295 				else
296 					enc->nextfrag.lf = FW_ENCAP_LAST;
297 				enc->nextfrag.reserved1 = 0;
298 				enc->nextfrag.reserved2 = 0;
299 				enc->nextfrag.reserved3 = 0;
300 				enc->nextfrag.datagram_size = dsize - 1;
301 				enc->nextfrag.fragment_offset = foff;
302 				enc->nextfrag.dgl = dgl;
303 			}
304 			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
305 
306 			/*
307 			 * Byte swap the encapsulation header manually.
308 			 */
309 			enc->ul[0] = htonl(enc->ul[0]);
310 			enc->ul[1] = htonl(enc->ul[1]);
311 
312 			error = (ifp->if_transmit)(ifp, m);
313 			if (error) {
314 				if (mtail)
315 					m_freem(mtail);
316 				return (ENOBUFS);
317 			}
318 
319 			m = mtail;
320 		}
321 
322 		return (0);
323 	}
324 
325 bad:
326 	if (m)
327 		m_freem(m);
328 	return (error);
329 }
330 
331 static struct mbuf *
332 firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
333 {
334 	union fw_encap *enc;
335 	struct fw_reass *r;
336 	struct mbuf *mf, *mprev;
337 	int dsize;
338 	int fstart, fend, start, end, islast;
339 	uint32_t id;
340 
341 	/*
342 	 * Find an existing reassembly buffer or create a new one.
343 	 */
344 	enc = mtod(m, union fw_encap *);
345 	id = enc->firstfrag.dgl | (src << 16);
346 	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
347 		if (r->fr_id == id)
348 			break;
349 	if (!r) {
350 		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
351 		if (!r) {
352 			m_freem(m);
353 			return 0;
354 		}
355 		r->fr_id = id;
356 		r->fr_frags = 0;
357 		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
358 	}
359 
360 	/*
361 	 * If this fragment overlaps any other fragment, we must discard
362 	 * the partial reassembly and start again.
363 	 */
364 	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
365 		fstart = 0;
366 	else
367 		fstart = enc->nextfrag.fragment_offset;
368 	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
369 	dsize = enc->nextfrag.datagram_size;
370 	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
371 
372 	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
373 		enc = mtod(mf, union fw_encap *);
374 		if (enc->nextfrag.datagram_size != dsize) {
375 			/*
376 			 * This fragment must be from a different
377 			 * packet.
378 			 */
379 			goto bad;
380 		}
381 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
382 			start = 0;
383 		else
384 			start = enc->nextfrag.fragment_offset;
385 		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
386 		if ((fstart < end && fend > start) ||
387 		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
388 			/*
389 			 * Overlap - discard reassembly buffer and start
390 			 * again with this fragment.
391 			 */
392 			goto bad;
393 		}
394 	}
395 
396 	/*
397 	 * Find where to put this fragment in the list.
398 	 */
399 	for (mf = r->fr_frags, mprev = NULL; mf;
400 	    mprev = mf, mf = mf->m_nextpkt) {
401 		enc = mtod(mf, union fw_encap *);
402 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
403 			start = 0;
404 		else
405 			start = enc->nextfrag.fragment_offset;
406 		if (start >= fend)
407 			break;
408 	}
409 
410 	/*
411 	 * If this is a last fragment and we are not adding at the end
412 	 * of the list, discard the buffer.
413 	 */
414 	if (islast && mprev && mprev->m_nextpkt)
415 		goto bad;
416 
417 	if (mprev) {
418 		m->m_nextpkt = mprev->m_nextpkt;
419 		mprev->m_nextpkt = m;
420 
421 		/*
422 		 * Coalesce forwards and see if we can make a whole
423 		 * datagram.
424 		 */
425 		enc = mtod(mprev, union fw_encap *);
426 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
427 			start = 0;
428 		else
429 			start = enc->nextfrag.fragment_offset;
430 		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
431 		while (end == fstart) {
432 			/*
433 			 * Strip off the encap header from m and
434 			 * append it to mprev, freeing m.
435 			 */
436 			m_adj(m, 2*sizeof(uint32_t));
437 			mprev->m_nextpkt = m->m_nextpkt;
438 			mprev->m_pkthdr.len += m->m_pkthdr.len;
439 			m_cat(mprev, m);
440 
441 			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
442 				/*
443 				 * We have assembled a complete packet
444 				 * we must be finished. Make sure we have
445 				 * merged the whole chain.
446 				 */
447 				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
448 				free(r, M_TEMP);
449 				m = mprev->m_nextpkt;
450 				while (m) {
451 					mf = m->m_nextpkt;
452 					m_freem(m);
453 					m = mf;
454 				}
455 				mprev->m_nextpkt = NULL;
456 
457 				return (mprev);
458 			}
459 
460 			/*
461 			 * See if we can continue merging forwards.
462 			 */
463 			end = fend;
464 			m = mprev->m_nextpkt;
465 			if (m) {
466 				enc = mtod(m, union fw_encap *);
467 				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
468 					fstart = 0;
469 				else
470 					fstart = enc->nextfrag.fragment_offset;
471 				fend = fstart + m->m_pkthdr.len
472 				    - 2*sizeof(uint32_t);
473 			} else {
474 				break;
475 			}
476 		}
477 	} else {
478 		m->m_nextpkt = 0;
479 		r->fr_frags = m;
480 	}
481 
482 	return (0);
483 
484 bad:
485 	while (r->fr_frags) {
486 		mf = r->fr_frags;
487 		r->fr_frags = mf->m_nextpkt;
488 		m_freem(mf);
489 	}
490 	m->m_nextpkt = 0;
491 	r->fr_frags = m;
492 
493 	return (0);
494 }
495 
496 void
497 firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
498 {
499 	struct fw_com *fc = IFP2FWC(ifp);
500 	union fw_encap *enc;
501 	int type, isr;
502 
503 	/*
504 	 * The caller has already stripped off the packet header
505 	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
506 	 * appropriately. We de-encapsulate the IP packet and pass it
507 	 * up the line after handling link-level fragmentation.
508 	 */
509 	if (m->m_pkthdr.len < sizeof(uint32_t)) {
510 		if_printf(ifp, "discarding frame without "
511 		    "encapsulation header (len %u pkt len %u)\n",
512 		    m->m_len, m->m_pkthdr.len);
513 	}
514 
515 	m = m_pullup(m, sizeof(uint32_t));
516 	if (m == NULL)
517 		return;
518 	enc = mtod(m, union fw_encap *);
519 
520 	/*
521 	 * Byte swap the encapsulation header manually.
522 	 */
523 	enc->ul[0] = ntohl(enc->ul[0]);
524 
525 	if (enc->unfrag.lf != 0) {
526 		m = m_pullup(m, 2*sizeof(uint32_t));
527 		if (!m)
528 			return;
529 		enc = mtod(m, union fw_encap *);
530 		enc->ul[1] = ntohl(enc->ul[1]);
531 		m = firewire_input_fragment(fc, m, src);
532 		if (!m)
533 			return;
534 		enc = mtod(m, union fw_encap *);
535 		type = enc->firstfrag.ether_type;
536 		m_adj(m, 2*sizeof(uint32_t));
537 	} else {
538 		type = enc->unfrag.ether_type;
539 		m_adj(m, sizeof(uint32_t));
540 	}
541 
542 	if (m->m_pkthdr.rcvif == NULL) {
543 		if_printf(ifp, "discard frame w/o interface pointer\n");
544 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
545 		m_freem(m);
546 		return;
547 	}
548 #ifdef DIAGNOSTIC
549 	if (m->m_pkthdr.rcvif != ifp) {
550 		if_printf(ifp, "Warning, frame marked as received on %s\n",
551 			m->m_pkthdr.rcvif->if_xname);
552 	}
553 #endif
554 
555 #ifdef MAC
556 	/*
557 	 * Tag the mbuf with an appropriate MAC label before any other
558 	 * consumers can get to it.
559 	 */
560 	mac_ifnet_create_mbuf(ifp, m);
561 #endif
562 
563 	/*
564 	 * Give bpf a chance at the packet. The link-level driver
565 	 * should have left us a tag with the EUID of the sender.
566 	 */
567 	if (bpf_peers_present(ifp->if_bpf)) {
568 		struct fw_bpfhdr h;
569 		struct m_tag *mtag;
570 
571 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
572 		if (mtag)
573 			bcopy(mtag + 1, h.firewire_shost, 8);
574 		else
575 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
576 		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
577 		h.firewire_type = htons(type);
578 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
579 	}
580 
581 	if (ifp->if_flags & IFF_MONITOR) {
582 		/*
583 		 * Interface marked for monitoring; discard packet.
584 		 */
585 		m_freem(m);
586 		return;
587 	}
588 
589 	if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
590 
591 	/* Discard packet if interface is not up */
592 	if ((ifp->if_flags & IFF_UP) == 0) {
593 		m_freem(m);
594 		return;
595 	}
596 
597 	if (m->m_flags & (M_BCAST|M_MCAST))
598 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
599 
600 	switch (type) {
601 #ifdef INET
602 	case ETHERTYPE_IP:
603 		isr = NETISR_IP;
604 		break;
605 
606 	case ETHERTYPE_ARP:
607 	{
608 		struct arphdr *ah;
609 		ah = mtod(m, struct arphdr *);
610 
611 		/*
612 		 * Adjust the arp packet to insert an empty tha slot.
613 		 */
614 		m->m_len += ah->ar_hln;
615 		m->m_pkthdr.len += ah->ar_hln;
616 		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
617 		isr = NETISR_ARP;
618 		break;
619 	}
620 #endif
621 
622 #ifdef INET6
623 	case ETHERTYPE_IPV6:
624 		isr = NETISR_IPV6;
625 		break;
626 #endif
627 
628 	default:
629 		m_freem(m);
630 		return;
631 	}
632 
633 	M_SETFIB(m, ifp->if_fib);
634 	netisr_dispatch(isr, m);
635 }
636 
637 int
638 firewire_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
639 {
640 	struct ifaddr *ifa = (struct ifaddr *) data;
641 	struct ifreq *ifr = (struct ifreq *) data;
642 	int error = 0;
643 
644 	switch (command) {
645 	case SIOCSIFADDR:
646 		ifp->if_flags |= IFF_UP;
647 
648 		switch (ifa->ifa_addr->sa_family) {
649 #ifdef INET
650 		case AF_INET:
651 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
652 			arp_ifinit(ifp, ifa);
653 			break;
654 #endif
655 		default:
656 			ifp->if_init(ifp->if_softc);
657 			break;
658 		}
659 		break;
660 
661 	case SIOCGIFADDR:
662 		{
663 			struct sockaddr *sa;
664 
665 			sa = (struct sockaddr *) & ifr->ifr_data;
666 			bcopy(&IFP2FWC(ifp)->fc_hwaddr,
667 			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
668 		}
669 		break;
670 
671 	case SIOCSIFMTU:
672 		/*
673 		 * Set the interface MTU.
674 		 */
675 		if (ifr->ifr_mtu > 1500) {
676 			error = EINVAL;
677 		} else {
678 			ifp->if_mtu = ifr->ifr_mtu;
679 		}
680 		break;
681 	default:
682 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
683 		break;
684 	}
685 	return (error);
686 }
687 
688 static int
689 firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
690     struct sockaddr *sa)
691 {
692 #ifdef INET
693 	struct sockaddr_in *sin;
694 #endif
695 #ifdef INET6
696 	struct sockaddr_in6 *sin6;
697 #endif
698 
699 	switch(sa->sa_family) {
700 	case AF_LINK:
701 		/*
702 		 * No mapping needed.
703 		 */
704 		*llsa = NULL;
705 		return 0;
706 
707 #ifdef INET
708 	case AF_INET:
709 		sin = (struct sockaddr_in *)sa;
710 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
711 			return EADDRNOTAVAIL;
712 		*llsa = NULL;
713 		return 0;
714 #endif
715 #ifdef INET6
716 	case AF_INET6:
717 		sin6 = (struct sockaddr_in6 *)sa;
718 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
719 			/*
720 			 * An IP6 address of 0 means listen to all
721 			 * of the Ethernet multicast address used for IP6.
722 			 * (This is used for multicast routers.)
723 			 */
724 			ifp->if_flags |= IFF_ALLMULTI;
725 			*llsa = NULL;
726 			return 0;
727 		}
728 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
729 			return EADDRNOTAVAIL;
730 		*llsa = NULL;
731 		return 0;
732 #endif
733 
734 	default:
735 		/*
736 		 * Well, the text isn't quite right, but it's the name
737 		 * that counts...
738 		 */
739 		return EAFNOSUPPORT;
740 	}
741 }
742 
743 void
744 firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
745 {
746 	struct fw_com *fc = IFP2FWC(ifp);
747 	struct ifaddr *ifa;
748 	struct sockaddr_dl *sdl;
749 	static const char* speeds[] = {
750 		"S100", "S200", "S400", "S800",
751 		"S1600", "S3200"
752 	};
753 
754 	fc->fc_speed = llc->sspd;
755 	STAILQ_INIT(&fc->fc_frags);
756 
757 	ifp->if_addrlen = sizeof(struct fw_hwaddr);
758 	ifp->if_hdrlen = 0;
759 	if_attach(ifp);
760 	ifp->if_mtu = 1500;	/* XXX */
761 	ifp->if_output = firewire_output;
762 	ifp->if_resolvemulti = firewire_resolvemulti;
763 	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
764 
765 	ifa = ifp->if_addr;
766 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
767 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
768 	sdl->sdl_type = IFT_IEEE1394;
769 	sdl->sdl_alen = ifp->if_addrlen;
770 	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
771 
772 	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
773 	    sizeof(struct fw_hwaddr));
774 
775 	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
776 	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
777 	    ntohs(llc->sender_unicast_FIFO_hi),
778 	    ntohl(llc->sender_unicast_FIFO_lo),
779 	    speeds[llc->sspd],
780 	    (2 << llc->sender_max_rec));
781 }
782 
783 void
784 firewire_ifdetach(struct ifnet *ifp)
785 {
786 	bpfdetach(ifp);
787 	if_detach(ifp);
788 }
789 
790 void
791 firewire_busreset(struct ifnet *ifp)
792 {
793 	struct fw_com *fc = IFP2FWC(ifp);
794 	struct fw_reass *r;
795 	struct mbuf *m;
796 
797 	/*
798 	 * Discard any partial datagrams since the host ids may have changed.
799 	 */
800 	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
801 		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
802 		while (r->fr_frags) {
803 			m = r->fr_frags;
804 			r->fr_frags = m->m_nextpkt;
805 			m_freem(m);
806 		}
807 		free(r, M_TEMP);
808 	}
809 }
810 
811 static void *
812 firewire_alloc(u_char type, struct ifnet *ifp)
813 {
814 	struct fw_com	*fc;
815 
816 	fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
817 	fc->fc_ifp = ifp;
818 
819 	return (fc);
820 }
821 
822 static void
823 firewire_free(void *com, u_char type)
824 {
825 
826 	free(com, M_FWCOM);
827 }
828 
829 static int
830 firewire_modevent(module_t mod, int type, void *data)
831 {
832 
833 	switch (type) {
834 	case MOD_LOAD:
835 		if_register_com_alloc(IFT_IEEE1394,
836 		    firewire_alloc, firewire_free);
837 		break;
838 	case MOD_UNLOAD:
839 		if_deregister_com_alloc(IFT_IEEE1394);
840 		break;
841 	default:
842 		return (EOPNOTSUPP);
843 	}
844 
845 	return (0);
846 }
847 
848 static moduledata_t firewire_mod = {
849 	"if_firewire",
850 	firewire_modevent,
851 	0
852 };
853 
854 DECLARE_MODULE(if_firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
855 MODULE_VERSION(if_firewire, 1);
856