1 /*- 2 * Copyright (c) 2004 Doug Rabson 3 * Copyright (c) 1982, 1989, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 4. Neither the name of the University nor the names of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $FreeBSD$ 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_mac.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/mac.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/module.h> 44 #include <sys/socket.h> 45 #include <sys/sockio.h> 46 47 #include <net/if.h> 48 #include <net/netisr.h> 49 #include <net/route.h> 50 #include <net/if_llc.h> 51 #include <net/if_dl.h> 52 #include <net/if_types.h> 53 #include <net/bpf.h> 54 #include <net/firewire.h> 55 56 #if defined(INET) || defined(INET6) 57 #include <netinet/in.h> 58 #include <netinet/in_var.h> 59 #include <netinet/if_ether.h> 60 #endif 61 #ifdef INET6 62 #include <netinet6/nd6.h> 63 #endif 64 65 #define IFP2FC(IFP) ((struct fw_com *)IFP) 66 67 MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals"); 68 69 struct fw_hwaddr firewire_broadcastaddr = { 70 0xffffffff, 71 0xffffffff, 72 0xff, 73 0xff, 74 0xffff, 75 0xffffffff 76 }; 77 78 static int 79 firewire_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, 80 struct rtentry *rt0) 81 { 82 struct fw_com *fc = IFP2FC(ifp); 83 int error, type; 84 struct rtentry *rt = NULL; 85 struct m_tag *mtag; 86 union fw_encap *enc; 87 struct fw_hwaddr *destfw; 88 uint8_t speed; 89 uint16_t psize, fsize, dsize; 90 struct mbuf *mtail; 91 int unicast, dgl, foff; 92 static int next_dgl; 93 94 #ifdef MAC 95 error = mac_check_ifnet_transmit(ifp, m); 96 if (error) 97 goto bad; 98 #endif 99 100 if (!((ifp->if_flags & IFF_UP) && 101 (ifp->if_drv_flags & IFF_DRV_RUNNING))) { 102 error = ENETDOWN; 103 goto bad; 104 } 105 106 if (rt0 != NULL) { 107 error = rt_check(&rt, &rt0, dst); 108 if (error) 109 goto bad; 110 RT_UNLOCK(rt); 111 } 112 113 /* 114 * For unicast, we make a tag to store the lladdr of the 115 * destination. This might not be the first time we have seen 116 * the packet (for instance, the arp code might be trying to 117 * re-send it after receiving an arp reply) so we only 118 * allocate a tag if there isn't one there already. For 119 * multicast, we will eventually use a different tag to store 120 * the channel number. 121 */ 122 unicast = !(m->m_flags & (M_BCAST | M_MCAST)); 123 if (unicast) { 124 mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL); 125 if (!mtag) { 126 mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, 127 sizeof (struct fw_hwaddr), M_NOWAIT); 128 if (!mtag) { 129 error = ENOMEM; 130 goto bad; 131 } 132 m_tag_prepend(m, mtag); 133 } 134 destfw = (struct fw_hwaddr *)(mtag + 1); 135 } else { 136 destfw = 0; 137 } 138 139 switch (dst->sa_family) { 140 #ifdef AF_INET 141 case AF_INET: 142 /* 143 * Only bother with arp for unicast. Allocation of 144 * channels etc. for firewire is quite different and 145 * doesn't fit into the arp model. 146 */ 147 if (unicast) { 148 error = arpresolve(ifp, rt, m, dst, (u_char *) destfw); 149 if (error) 150 return (error == EWOULDBLOCK ? 0 : error); 151 } 152 type = ETHERTYPE_IP; 153 break; 154 155 case AF_ARP: 156 { 157 struct arphdr *ah; 158 ah = mtod(m, struct arphdr *); 159 ah->ar_hrd = htons(ARPHRD_IEEE1394); 160 type = ETHERTYPE_ARP; 161 if (unicast) 162 *destfw = *(struct fw_hwaddr *) ar_tha(ah); 163 164 /* 165 * The standard arp code leaves a hole for the target 166 * hardware address which we need to close up. 167 */ 168 bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln); 169 m_adj(m, -ah->ar_hln); 170 break; 171 } 172 #endif 173 174 #ifdef INET6 175 case AF_INET6: 176 if (unicast) { 177 error = nd6_storelladdr(fc->fc_ifp, rt, m, dst, 178 (u_char *) destfw); 179 if (error) 180 return (error); 181 } 182 type = ETHERTYPE_IPV6; 183 break; 184 #endif 185 186 default: 187 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 188 error = EAFNOSUPPORT; 189 goto bad; 190 } 191 192 /* 193 * Let BPF tap off a copy before we encapsulate. 194 */ 195 if (ifp->if_bpf) { 196 struct fw_bpfhdr h; 197 if (unicast) 198 bcopy(destfw, h.firewire_dhost, 8); 199 else 200 bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8); 201 bcopy(&fc->fc_hwaddr, h.firewire_shost, 8); 202 h.firewire_type = htons(type); 203 bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m); 204 } 205 206 /* 207 * Punt on MCAP for now and send all multicast packets on the 208 * broadcast channel. 209 */ 210 if (m->m_flags & M_MCAST) 211 m->m_flags |= M_BCAST; 212 213 /* 214 * Figure out what speed to use and what the largest supported 215 * packet size is. For unicast, this is the minimum of what we 216 * can speak and what they can hear. For broadcast, lets be 217 * conservative and use S100. We could possibly improve that 218 * by examining the bus manager's speed map or similar. We 219 * also reduce the packet size for broadcast to account for 220 * the GASP header. 221 */ 222 if (unicast) { 223 speed = min(fc->fc_speed, destfw->sspd); 224 psize = min(512 << speed, 2 << destfw->sender_max_rec); 225 } else { 226 speed = 0; 227 psize = 512 - 2*sizeof(uint32_t); 228 } 229 230 /* 231 * Next, we encapsulate, possibly fragmenting the original 232 * datagram if it won't fit into a single packet. 233 */ 234 if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) { 235 /* 236 * No fragmentation is necessary. 237 */ 238 M_PREPEND(m, sizeof(uint32_t), M_DONTWAIT); 239 if (!m) { 240 error = ENOBUFS; 241 goto bad; 242 } 243 enc = mtod(m, union fw_encap *); 244 enc->unfrag.ether_type = type; 245 enc->unfrag.lf = FW_ENCAP_UNFRAG; 246 enc->unfrag.reserved = 0; 247 248 /* 249 * Byte swap the encapsulation header manually. 250 */ 251 enc->ul[0] = htonl(enc->ul[0]); 252 253 IFQ_HANDOFF(ifp, m, error); 254 return (error); 255 } else { 256 /* 257 * Fragment the datagram, making sure to leave enough 258 * space for the encapsulation header in each packet. 259 */ 260 fsize = psize - 2*sizeof(uint32_t); 261 dgl = next_dgl++; 262 dsize = m->m_pkthdr.len; 263 foff = 0; 264 while (m) { 265 if (m->m_pkthdr.len > fsize) { 266 /* 267 * Split off the tail segment from the 268 * datagram, copying our tags over. 269 */ 270 mtail = m_split(m, fsize, M_DONTWAIT); 271 m_tag_copy_chain(mtail, m, M_NOWAIT); 272 } else { 273 mtail = 0; 274 } 275 276 /* 277 * Add our encapsulation header to this 278 * fragment and hand it off to the link. 279 */ 280 M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT); 281 if (!m) { 282 error = ENOBUFS; 283 goto bad; 284 } 285 enc = mtod(m, union fw_encap *); 286 if (foff == 0) { 287 enc->firstfrag.lf = FW_ENCAP_FIRST; 288 enc->firstfrag.reserved1 = 0; 289 enc->firstfrag.reserved2 = 0; 290 enc->firstfrag.datagram_size = dsize - 1; 291 enc->firstfrag.ether_type = type; 292 enc->firstfrag.dgl = dgl; 293 } else { 294 if (mtail) 295 enc->nextfrag.lf = FW_ENCAP_NEXT; 296 else 297 enc->nextfrag.lf = FW_ENCAP_LAST; 298 enc->nextfrag.reserved1 = 0; 299 enc->nextfrag.reserved2 = 0; 300 enc->nextfrag.reserved3 = 0; 301 enc->nextfrag.datagram_size = dsize - 1; 302 enc->nextfrag.fragment_offset = foff; 303 enc->nextfrag.dgl = dgl; 304 } 305 foff += m->m_pkthdr.len - 2*sizeof(uint32_t); 306 307 /* 308 * Byte swap the encapsulation header manually. 309 */ 310 enc->ul[0] = htonl(enc->ul[0]); 311 enc->ul[1] = htonl(enc->ul[1]); 312 313 IFQ_HANDOFF(ifp, m, error); 314 if (error) { 315 if (mtail) 316 m_freem(mtail); 317 return (ENOBUFS); 318 } 319 320 m = mtail; 321 } 322 323 return (0); 324 } 325 326 bad: 327 if (m) 328 m_freem(m); 329 return (error); 330 } 331 332 static struct mbuf * 333 firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src) 334 { 335 union fw_encap *enc; 336 struct fw_reass *r; 337 struct mbuf *mf, *mprev; 338 int dsize; 339 int fstart, fend, start, end, islast; 340 uint32_t id; 341 342 GIANT_REQUIRED; 343 344 /* 345 * Find an existing reassembly buffer or create a new one. 346 */ 347 enc = mtod(m, union fw_encap *); 348 id = enc->firstfrag.dgl | (src << 16); 349 STAILQ_FOREACH(r, &fc->fc_frags, fr_link) 350 if (r->fr_id == id) 351 break; 352 if (!r) { 353 r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT); 354 if (!r) { 355 m_freem(m); 356 return 0; 357 } 358 r->fr_id = id; 359 r->fr_frags = 0; 360 STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link); 361 } 362 363 /* 364 * If this fragment overlaps any other fragment, we must discard 365 * the partial reassembly and start again. 366 */ 367 if (enc->firstfrag.lf == FW_ENCAP_FIRST) 368 fstart = 0; 369 else 370 fstart = enc->nextfrag.fragment_offset; 371 fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t); 372 dsize = enc->nextfrag.datagram_size; 373 islast = (enc->nextfrag.lf == FW_ENCAP_LAST); 374 375 for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) { 376 enc = mtod(mf, union fw_encap *); 377 if (enc->nextfrag.datagram_size != dsize) { 378 /* 379 * This fragment must be from a different 380 * packet. 381 */ 382 goto bad; 383 } 384 if (enc->firstfrag.lf == FW_ENCAP_FIRST) 385 start = 0; 386 else 387 start = enc->nextfrag.fragment_offset; 388 end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t); 389 if ((fstart < end && fend > start) || 390 (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) { 391 /* 392 * Overlap - discard reassembly buffer and start 393 * again with this fragment. 394 */ 395 goto bad; 396 } 397 } 398 399 /* 400 * Find where to put this fragment in the list. 401 */ 402 for (mf = r->fr_frags, mprev = NULL; mf; 403 mprev = mf, mf = mf->m_nextpkt) { 404 enc = mtod(mf, union fw_encap *); 405 if (enc->firstfrag.lf == FW_ENCAP_FIRST) 406 start = 0; 407 else 408 start = enc->nextfrag.fragment_offset; 409 if (start >= fend) 410 break; 411 } 412 413 /* 414 * If this is a last fragment and we are not adding at the end 415 * of the list, discard the buffer. 416 */ 417 if (islast && mprev && mprev->m_nextpkt) 418 goto bad; 419 420 if (mprev) { 421 m->m_nextpkt = mprev->m_nextpkt; 422 mprev->m_nextpkt = m; 423 424 /* 425 * Coalesce forwards and see if we can make a whole 426 * datagram. 427 */ 428 enc = mtod(mprev, union fw_encap *); 429 if (enc->firstfrag.lf == FW_ENCAP_FIRST) 430 start = 0; 431 else 432 start = enc->nextfrag.fragment_offset; 433 end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t); 434 while (end == fstart) { 435 /* 436 * Strip off the encap header from m and 437 * append it to mprev, freeing m. 438 */ 439 m_adj(m, 2*sizeof(uint32_t)); 440 mprev->m_nextpkt = m->m_nextpkt; 441 mprev->m_pkthdr.len += m->m_pkthdr.len; 442 m_cat(mprev, m); 443 444 if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) { 445 /* 446 * We have assembled a complete packet 447 * we must be finished. Make sure we have 448 * merged the whole chain. 449 */ 450 STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link); 451 free(r, M_TEMP); 452 m = mprev->m_nextpkt; 453 while (m) { 454 mf = m->m_nextpkt; 455 m_freem(m); 456 m = mf; 457 } 458 mprev->m_nextpkt = NULL; 459 460 return (mprev); 461 } 462 463 /* 464 * See if we can continue merging forwards. 465 */ 466 end = fend; 467 m = mprev->m_nextpkt; 468 if (m) { 469 enc = mtod(m, union fw_encap *); 470 if (enc->firstfrag.lf == FW_ENCAP_FIRST) 471 fstart = 0; 472 else 473 fstart = enc->nextfrag.fragment_offset; 474 fend = fstart + m->m_pkthdr.len 475 - 2*sizeof(uint32_t); 476 } else { 477 break; 478 } 479 } 480 } else { 481 m->m_nextpkt = 0; 482 r->fr_frags = m; 483 } 484 485 return (0); 486 487 bad: 488 while (r->fr_frags) { 489 mf = r->fr_frags; 490 r->fr_frags = mf->m_nextpkt; 491 m_freem(mf); 492 } 493 m->m_nextpkt = 0; 494 r->fr_frags = m; 495 496 return (0); 497 } 498 499 void 500 firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src) 501 { 502 struct fw_com *fc = IFP2FC(ifp); 503 union fw_encap *enc; 504 int type, isr; 505 506 GIANT_REQUIRED; 507 508 /* 509 * The caller has already stripped off the packet header 510 * (stream or wreqb) and marked the mbuf's M_BCAST flag 511 * appropriately. We de-encapsulate the IP packet and pass it 512 * up the line after handling link-level fragmentation. 513 */ 514 if (m->m_pkthdr.len < sizeof(uint32_t)) { 515 if_printf(ifp, "discarding frame without " 516 "encapsulation header (len %u pkt len %u)\n", 517 m->m_len, m->m_pkthdr.len); 518 } 519 520 m = m_pullup(m, sizeof(uint32_t)); 521 enc = mtod(m, union fw_encap *); 522 523 /* 524 * Byte swap the encapsulation header manually. 525 */ 526 enc->ul[0] = htonl(enc->ul[0]); 527 528 if (enc->unfrag.lf != 0) { 529 m = m_pullup(m, 2*sizeof(uint32_t)); 530 if (!m) 531 return; 532 enc = mtod(m, union fw_encap *); 533 enc->ul[1] = htonl(enc->ul[1]); 534 m = firewire_input_fragment(fc, m, src); 535 if (!m) 536 return; 537 enc = mtod(m, union fw_encap *); 538 type = enc->firstfrag.ether_type; 539 m_adj(m, 2*sizeof(uint32_t)); 540 } else { 541 type = enc->unfrag.ether_type; 542 m_adj(m, sizeof(uint32_t)); 543 } 544 545 if (m->m_pkthdr.rcvif == NULL) { 546 if_printf(ifp, "discard frame w/o interface pointer\n"); 547 ifp->if_ierrors++; 548 m_freem(m); 549 return; 550 } 551 #ifdef DIAGNOSTIC 552 if (m->m_pkthdr.rcvif != ifp) { 553 if_printf(ifp, "Warning, frame marked as received on %s\n", 554 m->m_pkthdr.rcvif->if_xname); 555 } 556 #endif 557 558 #ifdef MAC 559 /* 560 * Tag the mbuf with an appropriate MAC label before any other 561 * consumers can get to it. 562 */ 563 mac_create_mbuf_from_ifnet(ifp, m); 564 #endif 565 566 /* 567 * Give bpf a chance at the packet. The link-level driver 568 * should have left us a tag with the EUID of the sender. 569 */ 570 if (ifp->if_bpf) { 571 struct fw_bpfhdr h; 572 struct m_tag *mtag; 573 574 mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0); 575 if (mtag) 576 bcopy(mtag + 1, h.firewire_shost, 8); 577 else 578 bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8); 579 bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8); 580 h.firewire_type = htons(type); 581 bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m); 582 } 583 584 if (ifp->if_flags & IFF_MONITOR) { 585 /* 586 * Interface marked for monitoring; discard packet. 587 */ 588 m_freem(m); 589 return; 590 } 591 592 ifp->if_ibytes += m->m_pkthdr.len; 593 594 /* Discard packet if interface is not up */ 595 if ((ifp->if_flags & IFF_UP) == 0) { 596 m_freem(m); 597 return; 598 } 599 600 if (m->m_flags & (M_BCAST|M_MCAST)) 601 ifp->if_imcasts++; 602 603 switch (type) { 604 #ifdef INET 605 case ETHERTYPE_IP: 606 if (ip_fastforward(m)) 607 return; 608 isr = NETISR_IP; 609 break; 610 611 case ETHERTYPE_ARP: 612 { 613 struct arphdr *ah; 614 ah = mtod(m, struct arphdr *); 615 616 /* 617 * Adjust the arp packet to insert an empty tha slot. 618 */ 619 m->m_len += ah->ar_hln; 620 m->m_pkthdr.len += ah->ar_hln; 621 bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln); 622 isr = NETISR_ARP; 623 break; 624 } 625 #endif 626 627 #ifdef INET6 628 case ETHERTYPE_IPV6: 629 isr = NETISR_IPV6; 630 break; 631 #endif 632 633 default: 634 m_freem(m); 635 return; 636 } 637 638 netisr_dispatch(isr, m); 639 } 640 641 int 642 firewire_ioctl(struct ifnet *ifp, int command, caddr_t data) 643 { 644 struct ifaddr *ifa = (struct ifaddr *) data; 645 struct ifreq *ifr = (struct ifreq *) data; 646 int error = 0; 647 648 switch (command) { 649 case SIOCSIFADDR: 650 ifp->if_flags |= IFF_UP; 651 652 switch (ifa->ifa_addr->sa_family) { 653 #ifdef INET 654 case AF_INET: 655 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 656 arp_ifinit(ifp, ifa); 657 break; 658 #endif 659 default: 660 ifp->if_init(ifp->if_softc); 661 break; 662 } 663 break; 664 665 case SIOCGIFADDR: 666 { 667 struct sockaddr *sa; 668 669 sa = (struct sockaddr *) & ifr->ifr_data; 670 bcopy(&IFP2FC(ifp)->fc_hwaddr, 671 (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr)); 672 } 673 break; 674 675 case SIOCSIFMTU: 676 /* 677 * Set the interface MTU. 678 */ 679 if (ifr->ifr_mtu > 1500) { 680 error = EINVAL; 681 } else { 682 ifp->if_mtu = ifr->ifr_mtu; 683 } 684 break; 685 default: 686 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 687 break; 688 } 689 return (error); 690 } 691 692 static int 693 firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 694 struct sockaddr *sa) 695 { 696 #ifdef INET 697 struct sockaddr_in *sin; 698 #endif 699 #ifdef INET6 700 struct sockaddr_in6 *sin6; 701 #endif 702 703 switch(sa->sa_family) { 704 case AF_LINK: 705 /* 706 * No mapping needed. 707 */ 708 *llsa = 0; 709 return 0; 710 711 #ifdef INET 712 case AF_INET: 713 sin = (struct sockaddr_in *)sa; 714 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 715 return EADDRNOTAVAIL; 716 *llsa = 0; 717 return 0; 718 #endif 719 #ifdef INET6 720 case AF_INET6: 721 sin6 = (struct sockaddr_in6 *)sa; 722 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 723 /* 724 * An IP6 address of 0 means listen to all 725 * of the Ethernet multicast address used for IP6. 726 * (This is used for multicast routers.) 727 */ 728 ifp->if_flags |= IFF_ALLMULTI; 729 *llsa = 0; 730 return 0; 731 } 732 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 733 return EADDRNOTAVAIL; 734 *llsa = 0; 735 return 0; 736 #endif 737 738 default: 739 /* 740 * Well, the text isn't quite right, but it's the name 741 * that counts... 742 */ 743 return EAFNOSUPPORT; 744 } 745 } 746 747 void 748 firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc) 749 { 750 struct fw_com *fc = IFP2FC(ifp); 751 struct ifaddr *ifa; 752 struct sockaddr_dl *sdl; 753 static const char* speeds[] = { 754 "S100", "S200", "S400", "S800", 755 "S1600", "S3200" 756 }; 757 758 fc->fc_speed = llc->sspd; 759 STAILQ_INIT(&fc->fc_frags); 760 761 ifp->if_addrlen = sizeof(struct fw_hwaddr); 762 ifp->if_hdrlen = 0; 763 if_attach(ifp); 764 ifp->if_mtu = 1500; /* XXX */ 765 ifp->if_output = firewire_output; 766 ifp->if_resolvemulti = firewire_resolvemulti; 767 ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr; 768 769 ifa = ifaddr_byindex(ifp->if_index); 770 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 771 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 772 sdl->sdl_type = IFT_IEEE1394; 773 sdl->sdl_alen = ifp->if_addrlen; 774 bcopy(llc, LLADDR(sdl), ifp->if_addrlen); 775 776 bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394, 777 sizeof(struct fw_hwaddr)); 778 779 if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n", 780 (uint8_t *) &llc->sender_unique_ID_hi, ":", 781 ntohs(llc->sender_unicast_FIFO_hi), 782 ntohl(llc->sender_unicast_FIFO_lo), 783 speeds[llc->sspd], 784 (2 << llc->sender_max_rec)); 785 } 786 787 void 788 firewire_ifdetach(struct ifnet *ifp) 789 { 790 bpfdetach(ifp); 791 if_detach(ifp); 792 } 793 794 void 795 firewire_busreset(struct ifnet *ifp) 796 { 797 struct fw_com *fc = IFP2FC(ifp); 798 struct fw_reass *r; 799 struct mbuf *m; 800 801 /* 802 * Discard any partial datagrams since the host ids may have changed. 803 */ 804 while ((r = STAILQ_FIRST(&fc->fc_frags))) { 805 STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link); 806 while (r->fr_frags) { 807 m = r->fr_frags; 808 r->fr_frags = m->m_nextpkt; 809 m_freem(m); 810 } 811 free(r, M_TEMP); 812 } 813 } 814 815 static void * 816 firewire_alloc(u_char type, struct ifnet *ifp) 817 { 818 struct fw_com *fc; 819 820 fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO); 821 fc->fc_ifp = ifp; 822 823 return (fc); 824 } 825 826 static void 827 firewire_free(void *com, u_char type) 828 { 829 830 free(com, M_FWCOM); 831 } 832 833 static int 834 firewire_modevent(module_t mod, int type, void *data) 835 { 836 837 switch (type) { 838 case MOD_LOAD: 839 if_register_com_alloc(IFT_IEEE1394, 840 firewire_alloc, firewire_free); 841 break; 842 case MOD_UNLOAD: 843 if_deregister_com_alloc(IFT_IEEE1394); 844 break; 845 default: 846 return (EOPNOTSUPP); 847 } 848 849 return (0); 850 } 851 852 static moduledata_t firewire_mod = { 853 "firewire", 854 firewire_modevent, 855 0 856 }; 857 858 DECLARE_MODULE(firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 859 MODULE_VERSION(firewire, 1); 860