xref: /freebsd/sys/net/if_fwsubr.c (revision 3642298923e528d795e3a30ec165d2b469e28b40)
1 /*-
2  * Copyright (c) 2004 Doug Rabson
3  * Copyright (c) 1982, 1989, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/mac.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 
47 #include <net/if.h>
48 #include <net/netisr.h>
49 #include <net/route.h>
50 #include <net/if_llc.h>
51 #include <net/if_dl.h>
52 #include <net/if_types.h>
53 #include <net/bpf.h>
54 #include <net/firewire.h>
55 
56 #if defined(INET) || defined(INET6)
57 #include <netinet/in.h>
58 #include <netinet/in_var.h>
59 #include <netinet/if_ether.h>
60 #endif
61 #ifdef INET6
62 #include <netinet6/nd6.h>
63 #endif
64 
65 #define IFP2FC(IFP) ((struct fw_com *)IFP)
66 
67 MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
68 
69 struct fw_hwaddr firewire_broadcastaddr = {
70 	0xffffffff,
71 	0xffffffff,
72 	0xff,
73 	0xff,
74 	0xffff,
75 	0xffffffff
76 };
77 
78 static int
79 firewire_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
80     struct rtentry *rt0)
81 {
82 	struct fw_com *fc = IFP2FC(ifp);
83 	int error, type;
84 	struct rtentry *rt = NULL;
85 	struct m_tag *mtag;
86 	union fw_encap *enc;
87 	struct fw_hwaddr *destfw;
88 	uint8_t speed;
89 	uint16_t psize, fsize, dsize;
90 	struct mbuf *mtail;
91 	int unicast, dgl, foff;
92 	static int next_dgl;
93 
94 #ifdef MAC
95 	error = mac_check_ifnet_transmit(ifp, m);
96 	if (error)
97 		goto bad;
98 #endif
99 
100 	if (!((ifp->if_flags & IFF_UP) &&
101 	   (ifp->if_drv_flags & IFF_DRV_RUNNING))) {
102 		error = ENETDOWN;
103 		goto bad;
104 	}
105 
106 	if (rt0 != NULL) {
107 		error = rt_check(&rt, &rt0, dst);
108 		if (error)
109 			goto bad;
110 		RT_UNLOCK(rt);
111 	}
112 
113 	/*
114 	 * For unicast, we make a tag to store the lladdr of the
115 	 * destination. This might not be the first time we have seen
116 	 * the packet (for instance, the arp code might be trying to
117 	 * re-send it after receiving an arp reply) so we only
118 	 * allocate a tag if there isn't one there already. For
119 	 * multicast, we will eventually use a different tag to store
120 	 * the channel number.
121 	 */
122 	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
123 	if (unicast) {
124 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
125 		if (!mtag) {
126 			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
127 			    sizeof (struct fw_hwaddr), M_NOWAIT);
128 			if (!mtag) {
129 				error = ENOMEM;
130 				goto bad;
131 			}
132 			m_tag_prepend(m, mtag);
133 		}
134 		destfw = (struct fw_hwaddr *)(mtag + 1);
135 	} else {
136 		destfw = 0;
137 	}
138 
139 	switch (dst->sa_family) {
140 #ifdef AF_INET
141 	case AF_INET:
142 		/*
143 		 * Only bother with arp for unicast. Allocation of
144 		 * channels etc. for firewire is quite different and
145 		 * doesn't fit into the arp model.
146 		 */
147 		if (unicast) {
148 			error = arpresolve(ifp, rt, m, dst, (u_char *) destfw);
149 			if (error)
150 				return (error == EWOULDBLOCK ? 0 : error);
151 		}
152 		type = ETHERTYPE_IP;
153 		break;
154 
155 	case AF_ARP:
156 	{
157 		struct arphdr *ah;
158 		ah = mtod(m, struct arphdr *);
159 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
160 		type = ETHERTYPE_ARP;
161 		if (unicast)
162 			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
163 
164 		/*
165 		 * The standard arp code leaves a hole for the target
166 		 * hardware address which we need to close up.
167 		 */
168 		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
169 		m_adj(m, -ah->ar_hln);
170 		break;
171 	}
172 #endif
173 
174 #ifdef INET6
175 	case AF_INET6:
176 		if (unicast) {
177 			error = nd6_storelladdr(fc->fc_ifp, rt, m, dst,
178 			    (u_char *) destfw);
179 			if (error)
180 				return (error);
181 		}
182 		type = ETHERTYPE_IPV6;
183 		break;
184 #endif
185 
186 	default:
187 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
188 		error = EAFNOSUPPORT;
189 		goto bad;
190 	}
191 
192 	/*
193 	 * Let BPF tap off a copy before we encapsulate.
194 	 */
195 	if (ifp->if_bpf) {
196 		struct fw_bpfhdr h;
197 		if (unicast)
198 			bcopy(destfw, h.firewire_dhost, 8);
199 		else
200 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
201 		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
202 		h.firewire_type = htons(type);
203 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
204 	}
205 
206 	/*
207 	 * Punt on MCAP for now and send all multicast packets on the
208 	 * broadcast channel.
209 	 */
210 	if (m->m_flags & M_MCAST)
211 		m->m_flags |= M_BCAST;
212 
213 	/*
214 	 * Figure out what speed to use and what the largest supported
215 	 * packet size is. For unicast, this is the minimum of what we
216 	 * can speak and what they can hear. For broadcast, lets be
217 	 * conservative and use S100. We could possibly improve that
218 	 * by examining the bus manager's speed map or similar. We
219 	 * also reduce the packet size for broadcast to account for
220 	 * the GASP header.
221 	 */
222 	if (unicast) {
223 		speed = min(fc->fc_speed, destfw->sspd);
224 		psize = min(512 << speed, 2 << destfw->sender_max_rec);
225 	} else {
226 		speed = 0;
227 		psize = 512 - 2*sizeof(uint32_t);
228 	}
229 
230 	/*
231 	 * Next, we encapsulate, possibly fragmenting the original
232 	 * datagram if it won't fit into a single packet.
233 	 */
234 	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
235 		/*
236 		 * No fragmentation is necessary.
237 		 */
238 		M_PREPEND(m, sizeof(uint32_t), M_DONTWAIT);
239 		if (!m) {
240 			error = ENOBUFS;
241 			goto bad;
242 		}
243 		enc = mtod(m, union fw_encap *);
244 		enc->unfrag.ether_type = type;
245 		enc->unfrag.lf = FW_ENCAP_UNFRAG;
246 		enc->unfrag.reserved = 0;
247 
248 		/*
249 		 * Byte swap the encapsulation header manually.
250 		 */
251 		enc->ul[0] = htonl(enc->ul[0]);
252 
253 		IFQ_HANDOFF(ifp, m, error);
254 		return (error);
255 	} else {
256 		/*
257 		 * Fragment the datagram, making sure to leave enough
258 		 * space for the encapsulation header in each packet.
259 		 */
260 		fsize = psize - 2*sizeof(uint32_t);
261 		dgl = next_dgl++;
262 		dsize = m->m_pkthdr.len;
263 		foff = 0;
264 		while (m) {
265 			if (m->m_pkthdr.len > fsize) {
266 				/*
267 				 * Split off the tail segment from the
268 				 * datagram, copying our tags over.
269 				 */
270 				mtail = m_split(m, fsize, M_DONTWAIT);
271 				m_tag_copy_chain(mtail, m, M_NOWAIT);
272 			} else {
273 				mtail = 0;
274 			}
275 
276 			/*
277 			 * Add our encapsulation header to this
278 			 * fragment and hand it off to the link.
279 			 */
280 			M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
281 			if (!m) {
282 				error = ENOBUFS;
283 				goto bad;
284 			}
285 			enc = mtod(m, union fw_encap *);
286 			if (foff == 0) {
287 				enc->firstfrag.lf = FW_ENCAP_FIRST;
288 				enc->firstfrag.reserved1 = 0;
289 				enc->firstfrag.reserved2 = 0;
290 				enc->firstfrag.datagram_size = dsize - 1;
291 				enc->firstfrag.ether_type = type;
292 				enc->firstfrag.dgl = dgl;
293 			} else {
294 				if (mtail)
295 					enc->nextfrag.lf = FW_ENCAP_NEXT;
296 				else
297 					enc->nextfrag.lf = FW_ENCAP_LAST;
298 				enc->nextfrag.reserved1 = 0;
299 				enc->nextfrag.reserved2 = 0;
300 				enc->nextfrag.reserved3 = 0;
301 				enc->nextfrag.datagram_size = dsize - 1;
302 				enc->nextfrag.fragment_offset = foff;
303 				enc->nextfrag.dgl = dgl;
304 			}
305 			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
306 
307 			/*
308 			 * Byte swap the encapsulation header manually.
309 			 */
310 			enc->ul[0] = htonl(enc->ul[0]);
311 			enc->ul[1] = htonl(enc->ul[1]);
312 
313 			IFQ_HANDOFF(ifp, m, error);
314 			if (error) {
315 				if (mtail)
316 					m_freem(mtail);
317 				return (ENOBUFS);
318 			}
319 
320 			m = mtail;
321 		}
322 
323 		return (0);
324 	}
325 
326 bad:
327 	if (m)
328 		m_freem(m);
329 	return (error);
330 }
331 
332 static struct mbuf *
333 firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
334 {
335 	union fw_encap *enc;
336 	struct fw_reass *r;
337 	struct mbuf *mf, *mprev;
338 	int dsize;
339 	int fstart, fend, start, end, islast;
340 	uint32_t id;
341 
342 	GIANT_REQUIRED;
343 
344 	/*
345 	 * Find an existing reassembly buffer or create a new one.
346 	 */
347 	enc = mtod(m, union fw_encap *);
348 	id = enc->firstfrag.dgl | (src << 16);
349 	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
350 		if (r->fr_id == id)
351 			break;
352 	if (!r) {
353 		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
354 		if (!r) {
355 			m_freem(m);
356 			return 0;
357 		}
358 		r->fr_id = id;
359 		r->fr_frags = 0;
360 		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
361 	}
362 
363 	/*
364 	 * If this fragment overlaps any other fragment, we must discard
365 	 * the partial reassembly and start again.
366 	 */
367 	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
368 		fstart = 0;
369 	else
370 		fstart = enc->nextfrag.fragment_offset;
371 	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
372 	dsize = enc->nextfrag.datagram_size;
373 	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
374 
375 	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
376 		enc = mtod(mf, union fw_encap *);
377 		if (enc->nextfrag.datagram_size != dsize) {
378 			/*
379 			 * This fragment must be from a different
380 			 * packet.
381 			 */
382 			goto bad;
383 		}
384 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
385 			start = 0;
386 		else
387 			start = enc->nextfrag.fragment_offset;
388 		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
389 		if ((fstart < end && fend > start) ||
390 		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
391 			/*
392 			 * Overlap - discard reassembly buffer and start
393 			 * again with this fragment.
394 			 */
395 			goto bad;
396 		}
397 	}
398 
399 	/*
400 	 * Find where to put this fragment in the list.
401 	 */
402 	for (mf = r->fr_frags, mprev = NULL; mf;
403 	    mprev = mf, mf = mf->m_nextpkt) {
404 		enc = mtod(mf, union fw_encap *);
405 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
406 			start = 0;
407 		else
408 			start = enc->nextfrag.fragment_offset;
409 		if (start >= fend)
410 			break;
411 	}
412 
413 	/*
414 	 * If this is a last fragment and we are not adding at the end
415 	 * of the list, discard the buffer.
416 	 */
417 	if (islast && mprev && mprev->m_nextpkt)
418 		goto bad;
419 
420 	if (mprev) {
421 		m->m_nextpkt = mprev->m_nextpkt;
422 		mprev->m_nextpkt = m;
423 
424 		/*
425 		 * Coalesce forwards and see if we can make a whole
426 		 * datagram.
427 		 */
428 		enc = mtod(mprev, union fw_encap *);
429 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
430 			start = 0;
431 		else
432 			start = enc->nextfrag.fragment_offset;
433 		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
434 		while (end == fstart) {
435 			/*
436 			 * Strip off the encap header from m and
437 			 * append it to mprev, freeing m.
438 			 */
439 			m_adj(m, 2*sizeof(uint32_t));
440 			mprev->m_nextpkt = m->m_nextpkt;
441 			mprev->m_pkthdr.len += m->m_pkthdr.len;
442 			m_cat(mprev, m);
443 
444 			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
445 				/*
446 				 * We have assembled a complete packet
447 				 * we must be finished. Make sure we have
448 				 * merged the whole chain.
449 				 */
450 				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
451 				free(r, M_TEMP);
452 				m = mprev->m_nextpkt;
453 				while (m) {
454 					mf = m->m_nextpkt;
455 					m_freem(m);
456 					m = mf;
457 				}
458 				mprev->m_nextpkt = NULL;
459 
460 				return (mprev);
461 			}
462 
463 			/*
464 			 * See if we can continue merging forwards.
465 			 */
466 			end = fend;
467 			m = mprev->m_nextpkt;
468 			if (m) {
469 				enc = mtod(m, union fw_encap *);
470 				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
471 					fstart = 0;
472 				else
473 					fstart = enc->nextfrag.fragment_offset;
474 				fend = fstart + m->m_pkthdr.len
475 				    - 2*sizeof(uint32_t);
476 			} else {
477 				break;
478 			}
479 		}
480 	} else {
481 		m->m_nextpkt = 0;
482 		r->fr_frags = m;
483 	}
484 
485 	return (0);
486 
487 bad:
488 	while (r->fr_frags) {
489 		mf = r->fr_frags;
490 		r->fr_frags = mf->m_nextpkt;
491 		m_freem(mf);
492 	}
493 	m->m_nextpkt = 0;
494 	r->fr_frags = m;
495 
496 	return (0);
497 }
498 
499 void
500 firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
501 {
502 	struct fw_com *fc = IFP2FC(ifp);
503 	union fw_encap *enc;
504 	int type, isr;
505 
506 	GIANT_REQUIRED;
507 
508 	/*
509 	 * The caller has already stripped off the packet header
510 	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
511 	 * appropriately. We de-encapsulate the IP packet and pass it
512 	 * up the line after handling link-level fragmentation.
513 	 */
514 	if (m->m_pkthdr.len < sizeof(uint32_t)) {
515 		if_printf(ifp, "discarding frame without "
516 		    "encapsulation header (len %u pkt len %u)\n",
517 		    m->m_len, m->m_pkthdr.len);
518 	}
519 
520 	m = m_pullup(m, sizeof(uint32_t));
521 	enc = mtod(m, union fw_encap *);
522 
523 	/*
524 	 * Byte swap the encapsulation header manually.
525 	 */
526 	enc->ul[0] = htonl(enc->ul[0]);
527 
528 	if (enc->unfrag.lf != 0) {
529 		m = m_pullup(m, 2*sizeof(uint32_t));
530 		if (!m)
531 			return;
532 		enc = mtod(m, union fw_encap *);
533 		enc->ul[1] = htonl(enc->ul[1]);
534 		m = firewire_input_fragment(fc, m, src);
535 		if (!m)
536 			return;
537 		enc = mtod(m, union fw_encap *);
538 		type = enc->firstfrag.ether_type;
539 		m_adj(m, 2*sizeof(uint32_t));
540 	} else {
541 		type = enc->unfrag.ether_type;
542 		m_adj(m, sizeof(uint32_t));
543 	}
544 
545 	if (m->m_pkthdr.rcvif == NULL) {
546 		if_printf(ifp, "discard frame w/o interface pointer\n");
547 		ifp->if_ierrors++;
548 		m_freem(m);
549 		return;
550 	}
551 #ifdef DIAGNOSTIC
552 	if (m->m_pkthdr.rcvif != ifp) {
553 		if_printf(ifp, "Warning, frame marked as received on %s\n",
554 			m->m_pkthdr.rcvif->if_xname);
555 	}
556 #endif
557 
558 #ifdef MAC
559 	/*
560 	 * Tag the mbuf with an appropriate MAC label before any other
561 	 * consumers can get to it.
562 	 */
563 	mac_create_mbuf_from_ifnet(ifp, m);
564 #endif
565 
566 	/*
567 	 * Give bpf a chance at the packet. The link-level driver
568 	 * should have left us a tag with the EUID of the sender.
569 	 */
570 	if (ifp->if_bpf) {
571 		struct fw_bpfhdr h;
572 		struct m_tag *mtag;
573 
574 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
575 		if (mtag)
576 			bcopy(mtag + 1, h.firewire_shost, 8);
577 		else
578 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
579 		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
580 		h.firewire_type = htons(type);
581 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
582 	}
583 
584 	if (ifp->if_flags & IFF_MONITOR) {
585 		/*
586 		 * Interface marked for monitoring; discard packet.
587 		 */
588 		m_freem(m);
589 		return;
590 	}
591 
592 	ifp->if_ibytes += m->m_pkthdr.len;
593 
594 	/* Discard packet if interface is not up */
595 	if ((ifp->if_flags & IFF_UP) == 0) {
596 		m_freem(m);
597 		return;
598 	}
599 
600 	if (m->m_flags & (M_BCAST|M_MCAST))
601 		ifp->if_imcasts++;
602 
603 	switch (type) {
604 #ifdef INET
605 	case ETHERTYPE_IP:
606 		if (ip_fastforward(m))
607 			return;
608 		isr = NETISR_IP;
609 		break;
610 
611 	case ETHERTYPE_ARP:
612 	{
613 		struct arphdr *ah;
614 		ah = mtod(m, struct arphdr *);
615 
616 		/*
617 		 * Adjust the arp packet to insert an empty tha slot.
618 		 */
619 		m->m_len += ah->ar_hln;
620 		m->m_pkthdr.len += ah->ar_hln;
621 		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
622 		isr = NETISR_ARP;
623 		break;
624 	}
625 #endif
626 
627 #ifdef INET6
628 	case ETHERTYPE_IPV6:
629 		isr = NETISR_IPV6;
630 		break;
631 #endif
632 
633 	default:
634 		m_freem(m);
635 		return;
636 	}
637 
638 	netisr_dispatch(isr, m);
639 }
640 
641 int
642 firewire_ioctl(struct ifnet *ifp, int command, caddr_t data)
643 {
644 	struct ifaddr *ifa = (struct ifaddr *) data;
645 	struct ifreq *ifr = (struct ifreq *) data;
646 	int error = 0;
647 
648 	switch (command) {
649 	case SIOCSIFADDR:
650 		ifp->if_flags |= IFF_UP;
651 
652 		switch (ifa->ifa_addr->sa_family) {
653 #ifdef INET
654 		case AF_INET:
655 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
656 			arp_ifinit(ifp, ifa);
657 			break;
658 #endif
659 		default:
660 			ifp->if_init(ifp->if_softc);
661 			break;
662 		}
663 		break;
664 
665 	case SIOCGIFADDR:
666 		{
667 			struct sockaddr *sa;
668 
669 			sa = (struct sockaddr *) & ifr->ifr_data;
670 			bcopy(&IFP2FC(ifp)->fc_hwaddr,
671 			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
672 		}
673 		break;
674 
675 	case SIOCSIFMTU:
676 		/*
677 		 * Set the interface MTU.
678 		 */
679 		if (ifr->ifr_mtu > 1500) {
680 			error = EINVAL;
681 		} else {
682 			ifp->if_mtu = ifr->ifr_mtu;
683 		}
684 		break;
685 	default:
686 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
687 		break;
688 	}
689 	return (error);
690 }
691 
692 static int
693 firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
694     struct sockaddr *sa)
695 {
696 #ifdef INET
697 	struct sockaddr_in *sin;
698 #endif
699 #ifdef INET6
700 	struct sockaddr_in6 *sin6;
701 #endif
702 
703 	switch(sa->sa_family) {
704 	case AF_LINK:
705 		/*
706 		 * No mapping needed.
707 		 */
708 		*llsa = 0;
709 		return 0;
710 
711 #ifdef INET
712 	case AF_INET:
713 		sin = (struct sockaddr_in *)sa;
714 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
715 			return EADDRNOTAVAIL;
716 		*llsa = 0;
717 		return 0;
718 #endif
719 #ifdef INET6
720 	case AF_INET6:
721 		sin6 = (struct sockaddr_in6 *)sa;
722 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
723 			/*
724 			 * An IP6 address of 0 means listen to all
725 			 * of the Ethernet multicast address used for IP6.
726 			 * (This is used for multicast routers.)
727 			 */
728 			ifp->if_flags |= IFF_ALLMULTI;
729 			*llsa = 0;
730 			return 0;
731 		}
732 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
733 			return EADDRNOTAVAIL;
734 		*llsa = 0;
735 		return 0;
736 #endif
737 
738 	default:
739 		/*
740 		 * Well, the text isn't quite right, but it's the name
741 		 * that counts...
742 		 */
743 		return EAFNOSUPPORT;
744 	}
745 }
746 
747 void
748 firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
749 {
750 	struct fw_com *fc = IFP2FC(ifp);
751 	struct ifaddr *ifa;
752 	struct sockaddr_dl *sdl;
753 	static const char* speeds[] = {
754 		"S100", "S200", "S400", "S800",
755 		"S1600", "S3200"
756 	};
757 
758 	fc->fc_speed = llc->sspd;
759 	STAILQ_INIT(&fc->fc_frags);
760 
761 	ifp->if_addrlen = sizeof(struct fw_hwaddr);
762 	ifp->if_hdrlen = 0;
763 	if_attach(ifp);
764 	ifp->if_mtu = 1500;	/* XXX */
765 	ifp->if_output = firewire_output;
766 	ifp->if_resolvemulti = firewire_resolvemulti;
767 	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
768 
769 	ifa = ifaddr_byindex(ifp->if_index);
770 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
771 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
772 	sdl->sdl_type = IFT_IEEE1394;
773 	sdl->sdl_alen = ifp->if_addrlen;
774 	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
775 
776 	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
777 	    sizeof(struct fw_hwaddr));
778 
779 	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
780 	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
781 	    ntohs(llc->sender_unicast_FIFO_hi),
782 	    ntohl(llc->sender_unicast_FIFO_lo),
783 	    speeds[llc->sspd],
784 	    (2 << llc->sender_max_rec));
785 }
786 
787 void
788 firewire_ifdetach(struct ifnet *ifp)
789 {
790 	bpfdetach(ifp);
791 	if_detach(ifp);
792 }
793 
794 void
795 firewire_busreset(struct ifnet *ifp)
796 {
797 	struct fw_com *fc = IFP2FC(ifp);
798 	struct fw_reass *r;
799 	struct mbuf *m;
800 
801 	/*
802 	 * Discard any partial datagrams since the host ids may have changed.
803 	 */
804 	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
805 		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
806 		while (r->fr_frags) {
807 			m = r->fr_frags;
808 			r->fr_frags = m->m_nextpkt;
809 			m_freem(m);
810 		}
811 		free(r, M_TEMP);
812 	}
813 }
814 
815 static void *
816 firewire_alloc(u_char type, struct ifnet *ifp)
817 {
818 	struct fw_com	*fc;
819 
820 	fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
821 	fc->fc_ifp = ifp;
822 
823 	return (fc);
824 }
825 
826 static void
827 firewire_free(void *com, u_char type)
828 {
829 
830 	free(com, M_FWCOM);
831 }
832 
833 static int
834 firewire_modevent(module_t mod, int type, void *data)
835 {
836 
837 	switch (type) {
838 	case MOD_LOAD:
839 		if_register_com_alloc(IFT_IEEE1394,
840 		    firewire_alloc, firewire_free);
841 		break;
842 	case MOD_UNLOAD:
843 		if_deregister_com_alloc(IFT_IEEE1394);
844 		break;
845 	default:
846 		return (EOPNOTSUPP);
847 	}
848 
849 	return (0);
850 }
851 
852 static moduledata_t firewire_mod = {
853 	"firewire",
854 	firewire_modevent,
855 	0
856 };
857 
858 DECLARE_MODULE(firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
859 MODULE_VERSION(firewire, 1);
860