xref: /freebsd/sys/net/if_fwsubr.c (revision 0e33efe4e4b5d24e2d416938af8bc6e6e4160ec8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2004 Doug Rabson
5  * Copyright (c) 1982, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/netisr.h>
50 #include <net/route.h>
51 #include <net/if_llc.h>
52 #include <net/if_dl.h>
53 #include <net/if_types.h>
54 #include <net/bpf.h>
55 #include <net/firewire.h>
56 #include <net/if_llatbl.h>
57 
58 #if defined(INET) || defined(INET6)
59 #include <netinet/in.h>
60 #include <netinet/in_var.h>
61 #include <netinet/if_ether.h>
62 #endif
63 #ifdef INET6
64 #include <netinet6/nd6.h>
65 #endif
66 
67 #include <security/mac/mac_framework.h>
68 
69 static MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
70 
71 struct fw_hwaddr firewire_broadcastaddr = {
72 	0xffffffff,
73 	0xffffffff,
74 	0xff,
75 	0xff,
76 	0xffff,
77 	0xffffffff
78 };
79 
80 static int
81 firewire_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
82     struct route *ro)
83 {
84 	struct fw_com *fc = IFP2FWC(ifp);
85 	int error, type;
86 	struct m_tag *mtag;
87 	union fw_encap *enc;
88 	struct fw_hwaddr *destfw;
89 	uint8_t speed;
90 	uint16_t psize, fsize, dsize;
91 	struct mbuf *mtail;
92 	int unicast, dgl, foff;
93 	static int next_dgl;
94 #if defined(INET) || defined(INET6)
95 	int is_gw = 0;
96 #endif
97 
98 #ifdef MAC
99 	error = mac_ifnet_check_transmit(ifp, m);
100 	if (error)
101 		goto bad;
102 #endif
103 
104 	if (!((ifp->if_flags & IFF_UP) &&
105 	   (ifp->if_drv_flags & IFF_DRV_RUNNING))) {
106 		error = ENETDOWN;
107 		goto bad;
108 	}
109 
110 #if defined(INET) || defined(INET6)
111 	if (ro != NULL)
112 		is_gw = (ro->ro_flags & RT_HAS_GW) != 0;
113 #endif
114 	/*
115 	 * For unicast, we make a tag to store the lladdr of the
116 	 * destination. This might not be the first time we have seen
117 	 * the packet (for instance, the arp code might be trying to
118 	 * re-send it after receiving an arp reply) so we only
119 	 * allocate a tag if there isn't one there already. For
120 	 * multicast, we will eventually use a different tag to store
121 	 * the channel number.
122 	 */
123 	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
124 	if (unicast) {
125 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
126 		if (!mtag) {
127 			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
128 			    sizeof (struct fw_hwaddr), M_NOWAIT);
129 			if (!mtag) {
130 				error = ENOMEM;
131 				goto bad;
132 			}
133 			m_tag_prepend(m, mtag);
134 		}
135 		destfw = (struct fw_hwaddr *)(mtag + 1);
136 	} else {
137 		destfw = NULL;
138 	}
139 
140 	switch (dst->sa_family) {
141 #ifdef INET
142 	case AF_INET:
143 		/*
144 		 * Only bother with arp for unicast. Allocation of
145 		 * channels etc. for firewire is quite different and
146 		 * doesn't fit into the arp model.
147 		 */
148 		if (unicast) {
149 			error = arpresolve(ifp, is_gw, m, dst,
150 			    (u_char *) destfw, NULL, NULL);
151 			if (error)
152 				return (error == EWOULDBLOCK ? 0 : error);
153 		}
154 		type = ETHERTYPE_IP;
155 		break;
156 
157 	case AF_ARP:
158 	{
159 		struct arphdr *ah;
160 		ah = mtod(m, struct arphdr *);
161 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
162 		type = ETHERTYPE_ARP;
163 		if (unicast)
164 			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
165 
166 		/*
167 		 * The standard arp code leaves a hole for the target
168 		 * hardware address which we need to close up.
169 		 */
170 		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
171 		m_adj(m, -ah->ar_hln);
172 		break;
173 	}
174 #endif
175 
176 #ifdef INET6
177 	case AF_INET6:
178 		if (unicast) {
179 			error = nd6_resolve(fc->fc_ifp, is_gw, m, dst,
180 			    (u_char *) destfw, NULL, NULL);
181 			if (error)
182 				return (error == EWOULDBLOCK ? 0 : error);
183 		}
184 		type = ETHERTYPE_IPV6;
185 		break;
186 #endif
187 
188 	default:
189 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
190 		error = EAFNOSUPPORT;
191 		goto bad;
192 	}
193 
194 	/*
195 	 * Let BPF tap off a copy before we encapsulate.
196 	 */
197 	if (bpf_peers_present(ifp->if_bpf)) {
198 		struct fw_bpfhdr h;
199 		if (unicast)
200 			bcopy(destfw, h.firewire_dhost, 8);
201 		else
202 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
203 		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
204 		h.firewire_type = htons(type);
205 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
206 	}
207 
208 	/*
209 	 * Punt on MCAP for now and send all multicast packets on the
210 	 * broadcast channel.
211 	 */
212 	if (m->m_flags & M_MCAST)
213 		m->m_flags |= M_BCAST;
214 
215 	/*
216 	 * Figure out what speed to use and what the largest supported
217 	 * packet size is. For unicast, this is the minimum of what we
218 	 * can speak and what they can hear. For broadcast, lets be
219 	 * conservative and use S100. We could possibly improve that
220 	 * by examining the bus manager's speed map or similar. We
221 	 * also reduce the packet size for broadcast to account for
222 	 * the GASP header.
223 	 */
224 	if (unicast) {
225 		speed = min(fc->fc_speed, destfw->sspd);
226 		psize = min(512 << speed, 2 << destfw->sender_max_rec);
227 	} else {
228 		speed = 0;
229 		psize = 512 - 2*sizeof(uint32_t);
230 	}
231 
232 	/*
233 	 * Next, we encapsulate, possibly fragmenting the original
234 	 * datagram if it won't fit into a single packet.
235 	 */
236 	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
237 		/*
238 		 * No fragmentation is necessary.
239 		 */
240 		M_PREPEND(m, sizeof(uint32_t), M_NOWAIT);
241 		if (!m) {
242 			error = ENOBUFS;
243 			goto bad;
244 		}
245 		enc = mtod(m, union fw_encap *);
246 		enc->unfrag.ether_type = type;
247 		enc->unfrag.lf = FW_ENCAP_UNFRAG;
248 		enc->unfrag.reserved = 0;
249 
250 		/*
251 		 * Byte swap the encapsulation header manually.
252 		 */
253 		enc->ul[0] = htonl(enc->ul[0]);
254 
255 		error = (ifp->if_transmit)(ifp, m);
256 		return (error);
257 	} else {
258 		/*
259 		 * Fragment the datagram, making sure to leave enough
260 		 * space for the encapsulation header in each packet.
261 		 */
262 		fsize = psize - 2*sizeof(uint32_t);
263 		dgl = next_dgl++;
264 		dsize = m->m_pkthdr.len;
265 		foff = 0;
266 		while (m) {
267 			if (m->m_pkthdr.len > fsize) {
268 				/*
269 				 * Split off the tail segment from the
270 				 * datagram, copying our tags over.
271 				 */
272 				mtail = m_split(m, fsize, M_NOWAIT);
273 				m_tag_copy_chain(mtail, m, M_NOWAIT);
274 			} else {
275 				mtail = NULL;
276 			}
277 
278 			/*
279 			 * Add our encapsulation header to this
280 			 * fragment and hand it off to the link.
281 			 */
282 			M_PREPEND(m, 2*sizeof(uint32_t), M_NOWAIT);
283 			if (!m) {
284 				error = ENOBUFS;
285 				goto bad;
286 			}
287 			enc = mtod(m, union fw_encap *);
288 			if (foff == 0) {
289 				enc->firstfrag.lf = FW_ENCAP_FIRST;
290 				enc->firstfrag.reserved1 = 0;
291 				enc->firstfrag.reserved2 = 0;
292 				enc->firstfrag.datagram_size = dsize - 1;
293 				enc->firstfrag.ether_type = type;
294 				enc->firstfrag.dgl = dgl;
295 			} else {
296 				if (mtail)
297 					enc->nextfrag.lf = FW_ENCAP_NEXT;
298 				else
299 					enc->nextfrag.lf = FW_ENCAP_LAST;
300 				enc->nextfrag.reserved1 = 0;
301 				enc->nextfrag.reserved2 = 0;
302 				enc->nextfrag.reserved3 = 0;
303 				enc->nextfrag.datagram_size = dsize - 1;
304 				enc->nextfrag.fragment_offset = foff;
305 				enc->nextfrag.dgl = dgl;
306 			}
307 			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
308 
309 			/*
310 			 * Byte swap the encapsulation header manually.
311 			 */
312 			enc->ul[0] = htonl(enc->ul[0]);
313 			enc->ul[1] = htonl(enc->ul[1]);
314 
315 			error = (ifp->if_transmit)(ifp, m);
316 			if (error) {
317 				if (mtail)
318 					m_freem(mtail);
319 				return (ENOBUFS);
320 			}
321 
322 			m = mtail;
323 		}
324 
325 		return (0);
326 	}
327 
328 bad:
329 	if (m)
330 		m_freem(m);
331 	return (error);
332 }
333 
334 static struct mbuf *
335 firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
336 {
337 	union fw_encap *enc;
338 	struct fw_reass *r;
339 	struct mbuf *mf, *mprev;
340 	int dsize;
341 	int fstart, fend, start, end, islast;
342 	uint32_t id;
343 
344 	/*
345 	 * Find an existing reassembly buffer or create a new one.
346 	 */
347 	enc = mtod(m, union fw_encap *);
348 	id = enc->firstfrag.dgl | (src << 16);
349 	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
350 		if (r->fr_id == id)
351 			break;
352 	if (!r) {
353 		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
354 		if (!r) {
355 			m_freem(m);
356 			return 0;
357 		}
358 		r->fr_id = id;
359 		r->fr_frags = 0;
360 		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
361 	}
362 
363 	/*
364 	 * If this fragment overlaps any other fragment, we must discard
365 	 * the partial reassembly and start again.
366 	 */
367 	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
368 		fstart = 0;
369 	else
370 		fstart = enc->nextfrag.fragment_offset;
371 	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
372 	dsize = enc->nextfrag.datagram_size;
373 	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
374 
375 	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
376 		enc = mtod(mf, union fw_encap *);
377 		if (enc->nextfrag.datagram_size != dsize) {
378 			/*
379 			 * This fragment must be from a different
380 			 * packet.
381 			 */
382 			goto bad;
383 		}
384 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
385 			start = 0;
386 		else
387 			start = enc->nextfrag.fragment_offset;
388 		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
389 		if ((fstart < end && fend > start) ||
390 		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
391 			/*
392 			 * Overlap - discard reassembly buffer and start
393 			 * again with this fragment.
394 			 */
395 			goto bad;
396 		}
397 	}
398 
399 	/*
400 	 * Find where to put this fragment in the list.
401 	 */
402 	for (mf = r->fr_frags, mprev = NULL; mf;
403 	    mprev = mf, mf = mf->m_nextpkt) {
404 		enc = mtod(mf, union fw_encap *);
405 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
406 			start = 0;
407 		else
408 			start = enc->nextfrag.fragment_offset;
409 		if (start >= fend)
410 			break;
411 	}
412 
413 	/*
414 	 * If this is a last fragment and we are not adding at the end
415 	 * of the list, discard the buffer.
416 	 */
417 	if (islast && mprev && mprev->m_nextpkt)
418 		goto bad;
419 
420 	if (mprev) {
421 		m->m_nextpkt = mprev->m_nextpkt;
422 		mprev->m_nextpkt = m;
423 
424 		/*
425 		 * Coalesce forwards and see if we can make a whole
426 		 * datagram.
427 		 */
428 		enc = mtod(mprev, union fw_encap *);
429 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
430 			start = 0;
431 		else
432 			start = enc->nextfrag.fragment_offset;
433 		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
434 		while (end == fstart) {
435 			/*
436 			 * Strip off the encap header from m and
437 			 * append it to mprev, freeing m.
438 			 */
439 			m_adj(m, 2*sizeof(uint32_t));
440 			mprev->m_nextpkt = m->m_nextpkt;
441 			mprev->m_pkthdr.len += m->m_pkthdr.len;
442 			m_cat(mprev, m);
443 
444 			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
445 				/*
446 				 * We have assembled a complete packet
447 				 * we must be finished. Make sure we have
448 				 * merged the whole chain.
449 				 */
450 				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
451 				free(r, M_TEMP);
452 				m = mprev->m_nextpkt;
453 				while (m) {
454 					mf = m->m_nextpkt;
455 					m_freem(m);
456 					m = mf;
457 				}
458 				mprev->m_nextpkt = NULL;
459 
460 				return (mprev);
461 			}
462 
463 			/*
464 			 * See if we can continue merging forwards.
465 			 */
466 			end = fend;
467 			m = mprev->m_nextpkt;
468 			if (m) {
469 				enc = mtod(m, union fw_encap *);
470 				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
471 					fstart = 0;
472 				else
473 					fstart = enc->nextfrag.fragment_offset;
474 				fend = fstart + m->m_pkthdr.len
475 				    - 2*sizeof(uint32_t);
476 			} else {
477 				break;
478 			}
479 		}
480 	} else {
481 		m->m_nextpkt = 0;
482 		r->fr_frags = m;
483 	}
484 
485 	return (0);
486 
487 bad:
488 	while (r->fr_frags) {
489 		mf = r->fr_frags;
490 		r->fr_frags = mf->m_nextpkt;
491 		m_freem(mf);
492 	}
493 	m->m_nextpkt = 0;
494 	r->fr_frags = m;
495 
496 	return (0);
497 }
498 
499 void
500 firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
501 {
502 	struct fw_com *fc = IFP2FWC(ifp);
503 	union fw_encap *enc;
504 	int type, isr;
505 
506 	/*
507 	 * The caller has already stripped off the packet header
508 	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
509 	 * appropriately. We de-encapsulate the IP packet and pass it
510 	 * up the line after handling link-level fragmentation.
511 	 */
512 	if (m->m_pkthdr.len < sizeof(uint32_t)) {
513 		if_printf(ifp, "discarding frame without "
514 		    "encapsulation header (len %u pkt len %u)\n",
515 		    m->m_len, m->m_pkthdr.len);
516 	}
517 
518 	m = m_pullup(m, sizeof(uint32_t));
519 	if (m == NULL)
520 		return;
521 	enc = mtod(m, union fw_encap *);
522 
523 	/*
524 	 * Byte swap the encapsulation header manually.
525 	 */
526 	enc->ul[0] = ntohl(enc->ul[0]);
527 
528 	if (enc->unfrag.lf != 0) {
529 		m = m_pullup(m, 2*sizeof(uint32_t));
530 		if (!m)
531 			return;
532 		enc = mtod(m, union fw_encap *);
533 		enc->ul[1] = ntohl(enc->ul[1]);
534 		m = firewire_input_fragment(fc, m, src);
535 		if (!m)
536 			return;
537 		enc = mtod(m, union fw_encap *);
538 		type = enc->firstfrag.ether_type;
539 		m_adj(m, 2*sizeof(uint32_t));
540 	} else {
541 		type = enc->unfrag.ether_type;
542 		m_adj(m, sizeof(uint32_t));
543 	}
544 
545 	if (m->m_pkthdr.rcvif == NULL) {
546 		if_printf(ifp, "discard frame w/o interface pointer\n");
547 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
548 		m_freem(m);
549 		return;
550 	}
551 #ifdef DIAGNOSTIC
552 	if (m->m_pkthdr.rcvif != ifp) {
553 		if_printf(ifp, "Warning, frame marked as received on %s\n",
554 			m->m_pkthdr.rcvif->if_xname);
555 	}
556 #endif
557 
558 #ifdef MAC
559 	/*
560 	 * Tag the mbuf with an appropriate MAC label before any other
561 	 * consumers can get to it.
562 	 */
563 	mac_ifnet_create_mbuf(ifp, m);
564 #endif
565 
566 	/*
567 	 * Give bpf a chance at the packet. The link-level driver
568 	 * should have left us a tag with the EUID of the sender.
569 	 */
570 	if (bpf_peers_present(ifp->if_bpf)) {
571 		struct fw_bpfhdr h;
572 		struct m_tag *mtag;
573 
574 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
575 		if (mtag)
576 			bcopy(mtag + 1, h.firewire_shost, 8);
577 		else
578 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
579 		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
580 		h.firewire_type = htons(type);
581 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
582 	}
583 
584 	if (ifp->if_flags & IFF_MONITOR) {
585 		/*
586 		 * Interface marked for monitoring; discard packet.
587 		 */
588 		m_freem(m);
589 		return;
590 	}
591 
592 	if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
593 
594 	/* Discard packet if interface is not up */
595 	if ((ifp->if_flags & IFF_UP) == 0) {
596 		m_freem(m);
597 		return;
598 	}
599 
600 	if (m->m_flags & (M_BCAST|M_MCAST))
601 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
602 
603 	switch (type) {
604 #ifdef INET
605 	case ETHERTYPE_IP:
606 		isr = NETISR_IP;
607 		break;
608 
609 	case ETHERTYPE_ARP:
610 	{
611 		struct arphdr *ah;
612 		ah = mtod(m, struct arphdr *);
613 
614 		/*
615 		 * Adjust the arp packet to insert an empty tha slot.
616 		 */
617 		m->m_len += ah->ar_hln;
618 		m->m_pkthdr.len += ah->ar_hln;
619 		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
620 		isr = NETISR_ARP;
621 		break;
622 	}
623 #endif
624 
625 #ifdef INET6
626 	case ETHERTYPE_IPV6:
627 		isr = NETISR_IPV6;
628 		break;
629 #endif
630 
631 	default:
632 		m_freem(m);
633 		return;
634 	}
635 
636 	M_SETFIB(m, ifp->if_fib);
637 	netisr_dispatch(isr, m);
638 }
639 
640 int
641 firewire_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
642 {
643 	struct ifaddr *ifa = (struct ifaddr *) data;
644 	struct ifreq *ifr = (struct ifreq *) data;
645 	int error = 0;
646 
647 	switch (command) {
648 	case SIOCSIFADDR:
649 		ifp->if_flags |= IFF_UP;
650 
651 		switch (ifa->ifa_addr->sa_family) {
652 #ifdef INET
653 		case AF_INET:
654 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
655 			arp_ifinit(ifp, ifa);
656 			break;
657 #endif
658 		default:
659 			ifp->if_init(ifp->if_softc);
660 			break;
661 		}
662 		break;
663 
664 	case SIOCGIFADDR:
665 		{
666 			struct sockaddr *sa;
667 
668 			sa = (struct sockaddr *) & ifr->ifr_data;
669 			bcopy(&IFP2FWC(ifp)->fc_hwaddr,
670 			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
671 		}
672 		break;
673 
674 	case SIOCSIFMTU:
675 		/*
676 		 * Set the interface MTU.
677 		 */
678 		if (ifr->ifr_mtu > 1500) {
679 			error = EINVAL;
680 		} else {
681 			ifp->if_mtu = ifr->ifr_mtu;
682 		}
683 		break;
684 	default:
685 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
686 		break;
687 	}
688 	return (error);
689 }
690 
691 static int
692 firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
693     struct sockaddr *sa)
694 {
695 #ifdef INET
696 	struct sockaddr_in *sin;
697 #endif
698 #ifdef INET6
699 	struct sockaddr_in6 *sin6;
700 #endif
701 
702 	switch(sa->sa_family) {
703 	case AF_LINK:
704 		/*
705 		 * No mapping needed.
706 		 */
707 		*llsa = NULL;
708 		return 0;
709 
710 #ifdef INET
711 	case AF_INET:
712 		sin = (struct sockaddr_in *)sa;
713 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
714 			return EADDRNOTAVAIL;
715 		*llsa = NULL;
716 		return 0;
717 #endif
718 #ifdef INET6
719 	case AF_INET6:
720 		sin6 = (struct sockaddr_in6 *)sa;
721 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
722 			/*
723 			 * An IP6 address of 0 means listen to all
724 			 * of the Ethernet multicast address used for IP6.
725 			 * (This is used for multicast routers.)
726 			 */
727 			ifp->if_flags |= IFF_ALLMULTI;
728 			*llsa = NULL;
729 			return 0;
730 		}
731 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
732 			return EADDRNOTAVAIL;
733 		*llsa = NULL;
734 		return 0;
735 #endif
736 
737 	default:
738 		/*
739 		 * Well, the text isn't quite right, but it's the name
740 		 * that counts...
741 		 */
742 		return EAFNOSUPPORT;
743 	}
744 }
745 
746 void
747 firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
748 {
749 	struct fw_com *fc = IFP2FWC(ifp);
750 	struct ifaddr *ifa;
751 	struct sockaddr_dl *sdl;
752 	static const char* speeds[] = {
753 		"S100", "S200", "S400", "S800",
754 		"S1600", "S3200"
755 	};
756 
757 	fc->fc_speed = llc->sspd;
758 	STAILQ_INIT(&fc->fc_frags);
759 
760 	ifp->if_addrlen = sizeof(struct fw_hwaddr);
761 	ifp->if_hdrlen = 0;
762 	if_attach(ifp);
763 	ifp->if_mtu = 1500;	/* XXX */
764 	ifp->if_output = firewire_output;
765 	ifp->if_resolvemulti = firewire_resolvemulti;
766 	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
767 
768 	ifa = ifp->if_addr;
769 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
770 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
771 	sdl->sdl_type = IFT_IEEE1394;
772 	sdl->sdl_alen = ifp->if_addrlen;
773 	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
774 
775 	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
776 	    sizeof(struct fw_hwaddr));
777 
778 	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
779 	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
780 	    ntohs(llc->sender_unicast_FIFO_hi),
781 	    ntohl(llc->sender_unicast_FIFO_lo),
782 	    speeds[llc->sspd],
783 	    (2 << llc->sender_max_rec));
784 }
785 
786 void
787 firewire_ifdetach(struct ifnet *ifp)
788 {
789 	bpfdetach(ifp);
790 	if_detach(ifp);
791 }
792 
793 void
794 firewire_busreset(struct ifnet *ifp)
795 {
796 	struct fw_com *fc = IFP2FWC(ifp);
797 	struct fw_reass *r;
798 	struct mbuf *m;
799 
800 	/*
801 	 * Discard any partial datagrams since the host ids may have changed.
802 	 */
803 	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
804 		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
805 		while (r->fr_frags) {
806 			m = r->fr_frags;
807 			r->fr_frags = m->m_nextpkt;
808 			m_freem(m);
809 		}
810 		free(r, M_TEMP);
811 	}
812 }
813 
814 static void *
815 firewire_alloc(u_char type, struct ifnet *ifp)
816 {
817 	struct fw_com	*fc;
818 
819 	fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
820 	fc->fc_ifp = ifp;
821 
822 	return (fc);
823 }
824 
825 static void
826 firewire_free(void *com, u_char type)
827 {
828 
829 	free(com, M_FWCOM);
830 }
831 
832 static int
833 firewire_modevent(module_t mod, int type, void *data)
834 {
835 
836 	switch (type) {
837 	case MOD_LOAD:
838 		if_register_com_alloc(IFT_IEEE1394,
839 		    firewire_alloc, firewire_free);
840 		break;
841 	case MOD_UNLOAD:
842 		if_deregister_com_alloc(IFT_IEEE1394);
843 		break;
844 	default:
845 		return (EOPNOTSUPP);
846 	}
847 
848 	return (0);
849 }
850 
851 static moduledata_t firewire_mod = {
852 	"if_firewire",
853 	firewire_modevent,
854 	0
855 };
856 
857 DECLARE_MODULE(if_firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
858 MODULE_VERSION(if_firewire, 1);
859