1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 32 * $FreeBSD$ 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_netgraph.h" 38 #include "opt_mbuf_profiling.h" 39 #include "opt_rss.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/devctl.h> 44 #include <sys/eventhandler.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #include <sys/module.h> 51 #include <sys/msan.h> 52 #include <sys/proc.h> 53 #include <sys/priv.h> 54 #include <sys/random.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <sys/uuid.h> 59 60 #include <net/ieee_oui.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/if_private.h> 64 #include <net/if_arp.h> 65 #include <net/netisr.h> 66 #include <net/route.h> 67 #include <net/if_llc.h> 68 #include <net/if_dl.h> 69 #include <net/if_types.h> 70 #include <net/bpf.h> 71 #include <net/ethernet.h> 72 #include <net/if_bridgevar.h> 73 #include <net/if_vlan_var.h> 74 #include <net/if_llatbl.h> 75 #include <net/pfil.h> 76 #include <net/rss_config.h> 77 #include <net/vnet.h> 78 79 #include <netpfil/pf/pf_mtag.h> 80 81 #if defined(INET) || defined(INET6) 82 #include <netinet/in.h> 83 #include <netinet/in_var.h> 84 #include <netinet/if_ether.h> 85 #include <netinet/ip_carp.h> 86 #include <netinet/ip_var.h> 87 #endif 88 #ifdef INET6 89 #include <netinet6/nd6.h> 90 #endif 91 #include <security/mac/mac_framework.h> 92 93 #include <crypto/sha1.h> 94 95 #ifdef CTASSERT 96 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 97 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 98 #endif 99 100 VNET_DEFINE(pfil_head_t, link_pfil_head); /* Packet filter hooks */ 101 102 /* netgraph node hooks for ng_ether(4) */ 103 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 104 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 105 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 106 void (*ng_ether_attach_p)(struct ifnet *ifp); 107 void (*ng_ether_detach_p)(struct ifnet *ifp); 108 109 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 110 111 /* if_bridge(4) support */ 112 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 113 114 /* if_lagg(4) support */ 115 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *); 116 117 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 118 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 119 120 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 121 struct sockaddr *); 122 static int ether_requestencap(struct ifnet *, struct if_encap_req *); 123 124 #define senderr(e) do { error = (e); goto bad;} while (0) 125 126 static void 127 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 128 { 129 int csum_flags = 0; 130 131 if (src->m_pkthdr.csum_flags & CSUM_IP) 132 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 133 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 134 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 135 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 136 csum_flags |= CSUM_SCTP_VALID; 137 dst->m_pkthdr.csum_flags |= csum_flags; 138 if (csum_flags & CSUM_DATA_VALID) 139 dst->m_pkthdr.csum_data = 0xffff; 140 } 141 142 /* 143 * Handle link-layer encapsulation requests. 144 */ 145 static int 146 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) 147 { 148 struct ether_header *eh; 149 struct arphdr *ah; 150 uint16_t etype; 151 const u_char *lladdr; 152 153 if (req->rtype != IFENCAP_LL) 154 return (EOPNOTSUPP); 155 156 if (req->bufsize < ETHER_HDR_LEN) 157 return (ENOMEM); 158 159 eh = (struct ether_header *)req->buf; 160 lladdr = req->lladdr; 161 req->lladdr_off = 0; 162 163 switch (req->family) { 164 case AF_INET: 165 etype = htons(ETHERTYPE_IP); 166 break; 167 case AF_INET6: 168 etype = htons(ETHERTYPE_IPV6); 169 break; 170 case AF_ARP: 171 ah = (struct arphdr *)req->hdata; 172 ah->ar_hrd = htons(ARPHRD_ETHER); 173 174 switch(ntohs(ah->ar_op)) { 175 case ARPOP_REVREQUEST: 176 case ARPOP_REVREPLY: 177 etype = htons(ETHERTYPE_REVARP); 178 break; 179 case ARPOP_REQUEST: 180 case ARPOP_REPLY: 181 default: 182 etype = htons(ETHERTYPE_ARP); 183 break; 184 } 185 186 if (req->flags & IFENCAP_FLAG_BROADCAST) 187 lladdr = ifp->if_broadcastaddr; 188 break; 189 default: 190 return (EAFNOSUPPORT); 191 } 192 193 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 194 memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); 195 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 196 req->bufsize = sizeof(struct ether_header); 197 198 return (0); 199 } 200 201 static int 202 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, 203 const struct sockaddr *dst, struct route *ro, u_char *phdr, 204 uint32_t *pflags, struct llentry **plle) 205 { 206 uint32_t lleflags = 0; 207 int error = 0; 208 #if defined(INET) || defined(INET6) 209 struct ether_header *eh = (struct ether_header *)phdr; 210 uint16_t etype; 211 #endif 212 213 if (plle) 214 *plle = NULL; 215 216 switch (dst->sa_family) { 217 #ifdef INET 218 case AF_INET: 219 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) 220 error = arpresolve(ifp, 0, m, dst, phdr, &lleflags, 221 plle); 222 else { 223 if (m->m_flags & M_BCAST) 224 memcpy(eh->ether_dhost, ifp->if_broadcastaddr, 225 ETHER_ADDR_LEN); 226 else { 227 const struct in_addr *a; 228 a = &(((const struct sockaddr_in *)dst)->sin_addr); 229 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); 230 } 231 etype = htons(ETHERTYPE_IP); 232 memcpy(&eh->ether_type, &etype, sizeof(etype)); 233 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 234 } 235 break; 236 #endif 237 #ifdef INET6 238 case AF_INET6: 239 if ((m->m_flags & M_MCAST) == 0) { 240 int af = RO_GET_FAMILY(ro, dst); 241 error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr, 242 &lleflags, plle); 243 } else { 244 const struct in6_addr *a6; 245 a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); 246 ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); 247 etype = htons(ETHERTYPE_IPV6); 248 memcpy(&eh->ether_type, &etype, sizeof(etype)); 249 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 250 } 251 break; 252 #endif 253 default: 254 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 255 if (m != NULL) 256 m_freem(m); 257 return (EAFNOSUPPORT); 258 } 259 260 if (error == EHOSTDOWN) { 261 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) 262 error = EHOSTUNREACH; 263 } 264 265 if (error != 0) 266 return (error); 267 268 *pflags = RT_MAY_LOOP; 269 if (lleflags & LLE_IFADDR) 270 *pflags |= RT_L2_ME; 271 272 return (0); 273 } 274 275 /* 276 * Ethernet output routine. 277 * Encapsulate a packet of type family for the local net. 278 * Use trailer local net encapsulation if enough data in first 279 * packet leaves a multiple of 512 bytes of data in remainder. 280 */ 281 int 282 ether_output(struct ifnet *ifp, struct mbuf *m, 283 const struct sockaddr *dst, struct route *ro) 284 { 285 int error = 0; 286 char linkhdr[ETHER_HDR_LEN], *phdr; 287 struct ether_header *eh; 288 struct pf_mtag *t; 289 bool loop_copy; 290 int hlen; /* link layer header length */ 291 uint32_t pflags; 292 struct llentry *lle = NULL; 293 int addref = 0; 294 295 phdr = NULL; 296 pflags = 0; 297 if (ro != NULL) { 298 /* XXX BPF uses ro_prepend */ 299 if (ro->ro_prepend != NULL) { 300 phdr = ro->ro_prepend; 301 hlen = ro->ro_plen; 302 } else if (!(m->m_flags & (M_BCAST | M_MCAST))) { 303 if ((ro->ro_flags & RT_LLE_CACHE) != 0) { 304 lle = ro->ro_lle; 305 if (lle != NULL && 306 (lle->la_flags & LLE_VALID) == 0) { 307 LLE_FREE(lle); 308 lle = NULL; /* redundant */ 309 ro->ro_lle = NULL; 310 } 311 if (lle == NULL) { 312 /* if we lookup, keep cache */ 313 addref = 1; 314 } else 315 /* 316 * Notify LLE code that 317 * the entry was used 318 * by datapath. 319 */ 320 llentry_provide_feedback(lle); 321 } 322 if (lle != NULL) { 323 phdr = lle->r_linkdata; 324 hlen = lle->r_hdrlen; 325 pflags = lle->r_flags; 326 } 327 } 328 } 329 330 #ifdef MAC 331 error = mac_ifnet_check_transmit(ifp, m); 332 if (error) 333 senderr(error); 334 #endif 335 336 M_PROFILE(m); 337 if (ifp->if_flags & IFF_MONITOR) 338 senderr(ENETDOWN); 339 if (!((ifp->if_flags & IFF_UP) && 340 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 341 senderr(ENETDOWN); 342 343 if (phdr == NULL) { 344 /* No prepend data supplied. Try to calculate ourselves. */ 345 phdr = linkhdr; 346 hlen = ETHER_HDR_LEN; 347 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags, 348 addref ? &lle : NULL); 349 if (addref && lle != NULL) 350 ro->ro_lle = lle; 351 if (error != 0) 352 return (error == EWOULDBLOCK ? 0 : error); 353 } 354 355 if ((pflags & RT_L2_ME) != 0) { 356 update_mbuf_csumflags(m, m); 357 return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0)); 358 } 359 loop_copy = (pflags & RT_MAY_LOOP) != 0; 360 361 /* 362 * Add local net header. If no space in first mbuf, 363 * allocate another. 364 * 365 * Note that we do prepend regardless of RT_HAS_HEADER flag. 366 * This is done because BPF code shifts m_data pointer 367 * to the end of ethernet header prior to calling if_output(). 368 */ 369 M_PREPEND(m, hlen, M_NOWAIT); 370 if (m == NULL) 371 senderr(ENOBUFS); 372 if ((pflags & RT_HAS_HEADER) == 0) { 373 eh = mtod(m, struct ether_header *); 374 memcpy(eh, phdr, hlen); 375 } 376 377 /* 378 * If a simplex interface, and the packet is being sent to our 379 * Ethernet address or a broadcast address, loopback a copy. 380 * XXX To make a simplex device behave exactly like a duplex 381 * device, we should copy in the case of sending to our own 382 * ethernet address (thus letting the original actually appear 383 * on the wire). However, we don't do that here for security 384 * reasons and compatibility with the original behavior. 385 */ 386 if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && 387 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 388 struct mbuf *n; 389 390 /* 391 * Because if_simloop() modifies the packet, we need a 392 * writable copy through m_dup() instead of a readonly 393 * one as m_copy[m] would give us. The alternative would 394 * be to modify if_simloop() to handle the readonly mbuf, 395 * but performancewise it is mostly equivalent (trading 396 * extra data copying vs. extra locking). 397 * 398 * XXX This is a local workaround. A number of less 399 * often used kernel parts suffer from the same bug. 400 * See PR kern/105943 for a proposed general solution. 401 */ 402 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 403 update_mbuf_csumflags(m, n); 404 (void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen); 405 } else 406 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 407 } 408 409 /* 410 * Bridges require special output handling. 411 */ 412 if (ifp->if_bridge) { 413 BRIDGE_OUTPUT(ifp, m, error); 414 return (error); 415 } 416 417 #if defined(INET) || defined(INET6) 418 if (ifp->if_carp && 419 (error = (*carp_output_p)(ifp, m, dst))) 420 goto bad; 421 #endif 422 423 /* Handle ng_ether(4) processing, if any */ 424 if (ifp->if_l2com != NULL) { 425 KASSERT(ng_ether_output_p != NULL, 426 ("ng_ether_output_p is NULL")); 427 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 428 bad: if (m != NULL) 429 m_freem(m); 430 return (error); 431 } 432 if (m == NULL) 433 return (0); 434 } 435 436 /* Continue with link-layer output */ 437 return ether_output_frame(ifp, m); 438 } 439 440 static bool 441 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp) 442 { 443 struct ether_8021q_tag qtag; 444 struct ether_header *eh; 445 446 eh = mtod(*mp, struct ether_header *); 447 if (ntohs(eh->ether_type) == ETHERTYPE_VLAN || 448 ntohs(eh->ether_type) == ETHERTYPE_QINQ) 449 return (true); 450 451 qtag.vid = 0; 452 qtag.pcp = pcp; 453 qtag.proto = ETHERTYPE_VLAN; 454 if (ether_8021q_frame(mp, ifp, ifp, &qtag)) 455 return (true); 456 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 457 return (false); 458 } 459 460 /* 461 * Ethernet link layer output routine to send a raw frame to the device. 462 * 463 * This assumes that the 14 byte Ethernet header is present and contiguous 464 * in the first mbuf (if BRIDGE'ing). 465 */ 466 int 467 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 468 { 469 uint8_t pcp; 470 471 pcp = ifp->if_pcp; 472 if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN && 473 !ether_set_pcp(&m, ifp, pcp)) 474 return (0); 475 476 if (PFIL_HOOKED_OUT(V_link_pfil_head)) 477 switch (pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_OUT, 478 NULL)) { 479 case PFIL_DROPPED: 480 return (EACCES); 481 case PFIL_CONSUMED: 482 return (0); 483 } 484 485 #ifdef EXPERIMENTAL 486 #if defined(INET6) && defined(INET) 487 /* draft-ietf-6man-ipv6only-flag */ 488 /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ 489 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { 490 struct ether_header *eh; 491 492 eh = mtod(m, struct ether_header *); 493 switch (ntohs(eh->ether_type)) { 494 case ETHERTYPE_IP: 495 case ETHERTYPE_ARP: 496 case ETHERTYPE_REVARP: 497 m_freem(m); 498 return (EAFNOSUPPORT); 499 /* NOTREACHED */ 500 break; 501 }; 502 } 503 #endif 504 #endif 505 506 /* 507 * Queue message on interface, update output statistics if successful, 508 * and start output if interface not yet active. 509 * 510 * If KMSAN is enabled, use it to verify that the data does not contain 511 * any uninitialized bytes. 512 */ 513 kmsan_check_mbuf(m, "ether_output"); 514 return ((ifp->if_transmit)(ifp, m)); 515 } 516 517 /* 518 * Process a received Ethernet packet; the packet is in the 519 * mbuf chain m with the ethernet header at the front. 520 */ 521 static void 522 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 523 { 524 struct ether_header *eh; 525 u_short etype; 526 527 if ((ifp->if_flags & IFF_UP) == 0) { 528 m_freem(m); 529 return; 530 } 531 #ifdef DIAGNOSTIC 532 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 533 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 534 m_freem(m); 535 return; 536 } 537 #endif 538 if (m->m_len < ETHER_HDR_LEN) { 539 /* XXX maybe should pullup? */ 540 if_printf(ifp, "discard frame w/o leading ethernet " 541 "header (len %u pkt len %u)\n", 542 m->m_len, m->m_pkthdr.len); 543 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 544 m_freem(m); 545 return; 546 } 547 eh = mtod(m, struct ether_header *); 548 etype = ntohs(eh->ether_type); 549 random_harvest_queue_ether(m, sizeof(*m)); 550 551 #ifdef EXPERIMENTAL 552 #if defined(INET6) && defined(INET) 553 /* draft-ietf-6man-ipv6only-flag */ 554 /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ 555 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { 556 switch (etype) { 557 case ETHERTYPE_IP: 558 case ETHERTYPE_ARP: 559 case ETHERTYPE_REVARP: 560 m_freem(m); 561 return; 562 /* NOTREACHED */ 563 break; 564 }; 565 } 566 #endif 567 #endif 568 569 CURVNET_SET_QUIET(ifp->if_vnet); 570 571 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 572 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 573 m->m_flags |= M_BCAST; 574 else 575 m->m_flags |= M_MCAST; 576 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 577 } 578 579 #ifdef MAC 580 /* 581 * Tag the mbuf with an appropriate MAC label before any other 582 * consumers can get to it. 583 */ 584 mac_ifnet_create_mbuf(ifp, m); 585 #endif 586 587 /* 588 * Give bpf a chance at the packet. 589 */ 590 ETHER_BPF_MTAP(ifp, m); 591 592 /* 593 * If the CRC is still on the packet, trim it off. We do this once 594 * and once only in case we are re-entered. Nothing else on the 595 * Ethernet receive path expects to see the FCS. 596 */ 597 if (m->m_flags & M_HASFCS) { 598 m_adj(m, -ETHER_CRC_LEN); 599 m->m_flags &= ~M_HASFCS; 600 } 601 602 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 603 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 604 605 /* Allow monitor mode to claim this frame, after stats are updated. */ 606 if (ifp->if_flags & IFF_MONITOR) { 607 m_freem(m); 608 CURVNET_RESTORE(); 609 return; 610 } 611 612 /* Handle input from a lagg(4) port */ 613 if (ifp->if_type == IFT_IEEE8023ADLAG) { 614 KASSERT(lagg_input_ethernet_p != NULL, 615 ("%s: if_lagg not loaded!", __func__)); 616 m = (*lagg_input_ethernet_p)(ifp, m); 617 if (m != NULL) 618 ifp = m->m_pkthdr.rcvif; 619 else { 620 CURVNET_RESTORE(); 621 return; 622 } 623 } 624 625 /* 626 * If the hardware did not process an 802.1Q tag, do this now, 627 * to allow 802.1P priority frames to be passed to the main input 628 * path correctly. 629 */ 630 if ((m->m_flags & M_VLANTAG) == 0 && 631 ((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) { 632 struct ether_vlan_header *evl; 633 634 if (m->m_len < sizeof(*evl) && 635 (m = m_pullup(m, sizeof(*evl))) == NULL) { 636 #ifdef DIAGNOSTIC 637 if_printf(ifp, "cannot pullup VLAN header\n"); 638 #endif 639 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 640 CURVNET_RESTORE(); 641 return; 642 } 643 644 evl = mtod(m, struct ether_vlan_header *); 645 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 646 m->m_flags |= M_VLANTAG; 647 648 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 649 ETHER_HDR_LEN - ETHER_TYPE_LEN); 650 m_adj(m, ETHER_VLAN_ENCAP_LEN); 651 eh = mtod(m, struct ether_header *); 652 } 653 654 M_SETFIB(m, ifp->if_fib); 655 656 /* Allow ng_ether(4) to claim this frame. */ 657 if (ifp->if_l2com != NULL) { 658 KASSERT(ng_ether_input_p != NULL, 659 ("%s: ng_ether_input_p is NULL", __func__)); 660 m->m_flags &= ~M_PROMISC; 661 (*ng_ether_input_p)(ifp, &m); 662 if (m == NULL) { 663 CURVNET_RESTORE(); 664 return; 665 } 666 eh = mtod(m, struct ether_header *); 667 } 668 669 /* 670 * Allow if_bridge(4) to claim this frame. 671 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 672 * and the frame should be delivered locally. 673 */ 674 if (ifp->if_bridge != NULL) { 675 m->m_flags &= ~M_PROMISC; 676 BRIDGE_INPUT(ifp, m); 677 if (m == NULL) { 678 CURVNET_RESTORE(); 679 return; 680 } 681 eh = mtod(m, struct ether_header *); 682 } 683 684 #if defined(INET) || defined(INET6) 685 /* 686 * Clear M_PROMISC on frame so that carp(4) will see it when the 687 * mbuf flows up to Layer 3. 688 * FreeBSD's implementation of carp(4) uses the inprotosw 689 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 690 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 691 * is outside the scope of the M_PROMISC test below. 692 * TODO: Maintain a hash table of ethernet addresses other than 693 * ether_dhost which may be active on this ifp. 694 */ 695 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 696 m->m_flags &= ~M_PROMISC; 697 } else 698 #endif 699 { 700 /* 701 * If the frame received was not for our MAC address, set the 702 * M_PROMISC flag on the mbuf chain. The frame may need to 703 * be seen by the rest of the Ethernet input path in case of 704 * re-entry (e.g. bridge, vlan, netgraph) but should not be 705 * seen by upper protocol layers. 706 */ 707 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 708 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 709 m->m_flags |= M_PROMISC; 710 } 711 712 ether_demux(ifp, m); 713 CURVNET_RESTORE(); 714 } 715 716 /* 717 * Ethernet input dispatch; by default, direct dispatch here regardless of 718 * global configuration. However, if RSS is enabled, hook up RSS affinity 719 * so that when deferred or hybrid dispatch is enabled, we can redistribute 720 * load based on RSS. 721 * 722 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 723 * not it had already done work distribution via multi-queue. Then we could 724 * direct dispatch in the event load balancing was already complete and 725 * handle the case of interfaces with different capabilities better. 726 * 727 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 728 * at multiple layers? 729 * 730 * XXXRW: For now, enable all this only if RSS is compiled in, although it 731 * works fine without RSS. Need to characterise the performance overhead 732 * of the detour through the netisr code in the event the result is always 733 * direct dispatch. 734 */ 735 static void 736 ether_nh_input(struct mbuf *m) 737 { 738 739 M_ASSERTPKTHDR(m); 740 KASSERT(m->m_pkthdr.rcvif != NULL, 741 ("%s: NULL interface pointer", __func__)); 742 ether_input_internal(m->m_pkthdr.rcvif, m); 743 } 744 745 static struct netisr_handler ether_nh = { 746 .nh_name = "ether", 747 .nh_handler = ether_nh_input, 748 .nh_proto = NETISR_ETHER, 749 #ifdef RSS 750 .nh_policy = NETISR_POLICY_CPU, 751 .nh_dispatch = NETISR_DISPATCH_DIRECT, 752 .nh_m2cpuid = rss_m2cpuid, 753 #else 754 .nh_policy = NETISR_POLICY_SOURCE, 755 .nh_dispatch = NETISR_DISPATCH_DIRECT, 756 #endif 757 }; 758 759 static void 760 ether_init(__unused void *arg) 761 { 762 763 netisr_register(ðer_nh); 764 } 765 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 766 767 static void 768 vnet_ether_init(__unused void *arg) 769 { 770 struct pfil_head_args args; 771 772 args.pa_version = PFIL_VERSION; 773 args.pa_flags = PFIL_IN | PFIL_OUT; 774 args.pa_type = PFIL_TYPE_ETHERNET; 775 args.pa_headname = PFIL_ETHER_NAME; 776 V_link_pfil_head = pfil_head_register(&args); 777 778 #ifdef VIMAGE 779 netisr_register_vnet(ðer_nh); 780 #endif 781 } 782 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 783 vnet_ether_init, NULL); 784 785 #ifdef VIMAGE 786 static void 787 vnet_ether_pfil_destroy(__unused void *arg) 788 { 789 790 pfil_head_unregister(V_link_pfil_head); 791 } 792 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY, 793 vnet_ether_pfil_destroy, NULL); 794 795 static void 796 vnet_ether_destroy(__unused void *arg) 797 { 798 799 netisr_unregister_vnet(ðer_nh); 800 } 801 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 802 vnet_ether_destroy, NULL); 803 #endif 804 805 static void 806 ether_input(struct ifnet *ifp, struct mbuf *m) 807 { 808 struct epoch_tracker et; 809 struct mbuf *mn; 810 bool needs_epoch; 811 812 needs_epoch = !(ifp->if_flags & IFF_KNOWSEPOCH); 813 814 /* 815 * The drivers are allowed to pass in a chain of packets linked with 816 * m_nextpkt. We split them up into separate packets here and pass 817 * them up. This allows the drivers to amortize the receive lock. 818 */ 819 CURVNET_SET_QUIET(ifp->if_vnet); 820 if (__predict_false(needs_epoch)) 821 NET_EPOCH_ENTER(et); 822 while (m) { 823 mn = m->m_nextpkt; 824 m->m_nextpkt = NULL; 825 826 /* 827 * We will rely on rcvif being set properly in the deferred 828 * context, so assert it is correct here. 829 */ 830 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 831 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p " 832 "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp)); 833 netisr_dispatch(NETISR_ETHER, m); 834 m = mn; 835 } 836 if (__predict_false(needs_epoch)) 837 NET_EPOCH_EXIT(et); 838 CURVNET_RESTORE(); 839 } 840 841 /* 842 * Upper layer processing for a received Ethernet packet. 843 */ 844 void 845 ether_demux(struct ifnet *ifp, struct mbuf *m) 846 { 847 struct ether_header *eh; 848 int i, isr; 849 u_short ether_type; 850 851 NET_EPOCH_ASSERT(); 852 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 853 854 /* Do not grab PROMISC frames in case we are re-entered. */ 855 if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) { 856 i = pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_IN, NULL); 857 if (i != 0 || m == NULL) 858 return; 859 } 860 861 eh = mtod(m, struct ether_header *); 862 ether_type = ntohs(eh->ether_type); 863 864 /* 865 * If this frame has a VLAN tag other than 0, call vlan_input() 866 * if its module is loaded. Otherwise, drop. 867 */ 868 if ((m->m_flags & M_VLANTAG) && 869 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 870 if (ifp->if_vlantrunk == NULL) { 871 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 872 m_freem(m); 873 return; 874 } 875 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 876 __func__)); 877 /* Clear before possibly re-entering ether_input(). */ 878 m->m_flags &= ~M_PROMISC; 879 (*vlan_input_p)(ifp, m); 880 return; 881 } 882 883 /* 884 * Pass promiscuously received frames to the upper layer if the user 885 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 886 */ 887 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 888 m_freem(m); 889 return; 890 } 891 892 /* 893 * Reset layer specific mbuf flags to avoid confusing upper layers. 894 */ 895 m->m_flags &= ~M_VLANTAG; 896 m_clrprotoflags(m); 897 898 /* 899 * Dispatch frame to upper layer. 900 */ 901 switch (ether_type) { 902 #ifdef INET 903 case ETHERTYPE_IP: 904 isr = NETISR_IP; 905 break; 906 907 case ETHERTYPE_ARP: 908 if (ifp->if_flags & IFF_NOARP) { 909 /* Discard packet if ARP is disabled on interface */ 910 m_freem(m); 911 return; 912 } 913 isr = NETISR_ARP; 914 break; 915 #endif 916 #ifdef INET6 917 case ETHERTYPE_IPV6: 918 isr = NETISR_IPV6; 919 break; 920 #endif 921 default: 922 goto discard; 923 } 924 925 /* Strip off Ethernet header. */ 926 m_adj(m, ETHER_HDR_LEN); 927 928 netisr_dispatch(isr, m); 929 return; 930 931 discard: 932 /* 933 * Packet is to be discarded. If netgraph is present, 934 * hand the packet to it for last chance processing; 935 * otherwise dispose of it. 936 */ 937 if (ifp->if_l2com != NULL) { 938 KASSERT(ng_ether_input_orphan_p != NULL, 939 ("ng_ether_input_orphan_p is NULL")); 940 (*ng_ether_input_orphan_p)(ifp, m); 941 return; 942 } 943 m_freem(m); 944 } 945 946 /* 947 * Convert Ethernet address to printable (loggable) representation. 948 * This routine is for compatibility; it's better to just use 949 * 950 * printf("%6D", <pointer to address>, ":"); 951 * 952 * since there's no static buffer involved. 953 */ 954 char * 955 ether_sprintf(const u_char *ap) 956 { 957 static char etherbuf[18]; 958 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 959 return (etherbuf); 960 } 961 962 /* 963 * Perform common duties while attaching to interface list 964 */ 965 void 966 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 967 { 968 int i; 969 struct ifaddr *ifa; 970 struct sockaddr_dl *sdl; 971 972 ifp->if_addrlen = ETHER_ADDR_LEN; 973 ifp->if_hdrlen = ETHER_HDR_LEN; 974 ifp->if_mtu = ETHERMTU; 975 if_attach(ifp); 976 ifp->if_output = ether_output; 977 ifp->if_input = ether_input; 978 ifp->if_resolvemulti = ether_resolvemulti; 979 ifp->if_requestencap = ether_requestencap; 980 #ifdef VIMAGE 981 ifp->if_reassign = ether_reassign; 982 #endif 983 if (ifp->if_baudrate == 0) 984 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 985 ifp->if_broadcastaddr = etherbroadcastaddr; 986 987 ifa = ifp->if_addr; 988 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 989 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 990 sdl->sdl_type = IFT_ETHER; 991 sdl->sdl_alen = ifp->if_addrlen; 992 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 993 994 if (ifp->if_hw_addr != NULL) 995 bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen); 996 997 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 998 if (ng_ether_attach_p != NULL) 999 (*ng_ether_attach_p)(ifp); 1000 1001 /* Announce Ethernet MAC address if non-zero. */ 1002 for (i = 0; i < ifp->if_addrlen; i++) 1003 if (lla[i] != 0) 1004 break; 1005 if (i != ifp->if_addrlen) 1006 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 1007 1008 uuid_ether_add(LLADDR(sdl)); 1009 1010 /* Add necessary bits are setup; announce it now. */ 1011 EVENTHANDLER_INVOKE(ether_ifattach_event, ifp); 1012 if (IS_DEFAULT_VNET(curvnet)) 1013 devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL); 1014 } 1015 1016 /* 1017 * Perform common duties while detaching an Ethernet interface 1018 */ 1019 void 1020 ether_ifdetach(struct ifnet *ifp) 1021 { 1022 struct sockaddr_dl *sdl; 1023 1024 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 1025 uuid_ether_del(LLADDR(sdl)); 1026 1027 if (ifp->if_l2com != NULL) { 1028 KASSERT(ng_ether_detach_p != NULL, 1029 ("ng_ether_detach_p is NULL")); 1030 (*ng_ether_detach_p)(ifp); 1031 } 1032 1033 bpfdetach(ifp); 1034 if_detach(ifp); 1035 } 1036 1037 #ifdef VIMAGE 1038 void 1039 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 1040 { 1041 1042 if (ifp->if_l2com != NULL) { 1043 KASSERT(ng_ether_detach_p != NULL, 1044 ("ng_ether_detach_p is NULL")); 1045 (*ng_ether_detach_p)(ifp); 1046 } 1047 1048 if (ng_ether_attach_p != NULL) { 1049 CURVNET_SET_QUIET(new_vnet); 1050 (*ng_ether_attach_p)(ifp); 1051 CURVNET_RESTORE(); 1052 } 1053 } 1054 #endif 1055 1056 SYSCTL_DECL(_net_link); 1057 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1058 "Ethernet"); 1059 1060 #if 0 1061 /* 1062 * This is for reference. We have a table-driven version 1063 * of the little-endian crc32 generator, which is faster 1064 * than the double-loop. 1065 */ 1066 uint32_t 1067 ether_crc32_le(const uint8_t *buf, size_t len) 1068 { 1069 size_t i; 1070 uint32_t crc; 1071 int bit; 1072 uint8_t data; 1073 1074 crc = 0xffffffff; /* initial value */ 1075 1076 for (i = 0; i < len; i++) { 1077 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1078 carry = (crc ^ data) & 1; 1079 crc >>= 1; 1080 if (carry) 1081 crc = (crc ^ ETHER_CRC_POLY_LE); 1082 } 1083 } 1084 1085 return (crc); 1086 } 1087 #else 1088 uint32_t 1089 ether_crc32_le(const uint8_t *buf, size_t len) 1090 { 1091 static const uint32_t crctab[] = { 1092 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1093 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1094 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1095 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1096 }; 1097 size_t i; 1098 uint32_t crc; 1099 1100 crc = 0xffffffff; /* initial value */ 1101 1102 for (i = 0; i < len; i++) { 1103 crc ^= buf[i]; 1104 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1105 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1106 } 1107 1108 return (crc); 1109 } 1110 #endif 1111 1112 uint32_t 1113 ether_crc32_be(const uint8_t *buf, size_t len) 1114 { 1115 size_t i; 1116 uint32_t crc, carry; 1117 int bit; 1118 uint8_t data; 1119 1120 crc = 0xffffffff; /* initial value */ 1121 1122 for (i = 0; i < len; i++) { 1123 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1124 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 1125 crc <<= 1; 1126 if (carry) 1127 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1128 } 1129 } 1130 1131 return (crc); 1132 } 1133 1134 int 1135 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1136 { 1137 struct ifaddr *ifa = (struct ifaddr *) data; 1138 struct ifreq *ifr = (struct ifreq *) data; 1139 int error = 0; 1140 1141 switch (command) { 1142 case SIOCSIFADDR: 1143 ifp->if_flags |= IFF_UP; 1144 1145 switch (ifa->ifa_addr->sa_family) { 1146 #ifdef INET 1147 case AF_INET: 1148 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1149 arp_ifinit(ifp, ifa); 1150 break; 1151 #endif 1152 default: 1153 ifp->if_init(ifp->if_softc); 1154 break; 1155 } 1156 break; 1157 1158 case SIOCGIFADDR: 1159 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 1160 ETHER_ADDR_LEN); 1161 break; 1162 1163 case SIOCSIFMTU: 1164 /* 1165 * Set the interface MTU. 1166 */ 1167 if (ifr->ifr_mtu > ETHERMTU) { 1168 error = EINVAL; 1169 } else { 1170 ifp->if_mtu = ifr->ifr_mtu; 1171 } 1172 break; 1173 1174 case SIOCSLANPCP: 1175 error = priv_check(curthread, PRIV_NET_SETLANPCP); 1176 if (error != 0) 1177 break; 1178 if (ifr->ifr_lan_pcp > 7 && 1179 ifr->ifr_lan_pcp != IFNET_PCP_NONE) { 1180 error = EINVAL; 1181 } else { 1182 ifp->if_pcp = ifr->ifr_lan_pcp; 1183 /* broadcast event about PCP change */ 1184 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 1185 } 1186 break; 1187 1188 case SIOCGLANPCP: 1189 ifr->ifr_lan_pcp = ifp->if_pcp; 1190 break; 1191 1192 default: 1193 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1194 break; 1195 } 1196 return (error); 1197 } 1198 1199 static int 1200 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1201 struct sockaddr *sa) 1202 { 1203 struct sockaddr_dl *sdl; 1204 #ifdef INET 1205 struct sockaddr_in *sin; 1206 #endif 1207 #ifdef INET6 1208 struct sockaddr_in6 *sin6; 1209 #endif 1210 u_char *e_addr; 1211 1212 switch(sa->sa_family) { 1213 case AF_LINK: 1214 /* 1215 * No mapping needed. Just check that it's a valid MC address. 1216 */ 1217 sdl = (struct sockaddr_dl *)sa; 1218 e_addr = LLADDR(sdl); 1219 if (!ETHER_IS_MULTICAST(e_addr)) 1220 return EADDRNOTAVAIL; 1221 *llsa = NULL; 1222 return 0; 1223 1224 #ifdef INET 1225 case AF_INET: 1226 sin = (struct sockaddr_in *)sa; 1227 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1228 return EADDRNOTAVAIL; 1229 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1230 sdl->sdl_alen = ETHER_ADDR_LEN; 1231 e_addr = LLADDR(sdl); 1232 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1233 *llsa = (struct sockaddr *)sdl; 1234 return 0; 1235 #endif 1236 #ifdef INET6 1237 case AF_INET6: 1238 sin6 = (struct sockaddr_in6 *)sa; 1239 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1240 /* 1241 * An IP6 address of 0 means listen to all 1242 * of the Ethernet multicast address used for IP6. 1243 * (This is used for multicast routers.) 1244 */ 1245 ifp->if_flags |= IFF_ALLMULTI; 1246 *llsa = NULL; 1247 return 0; 1248 } 1249 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1250 return EADDRNOTAVAIL; 1251 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1252 sdl->sdl_alen = ETHER_ADDR_LEN; 1253 e_addr = LLADDR(sdl); 1254 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1255 *llsa = (struct sockaddr *)sdl; 1256 return 0; 1257 #endif 1258 1259 default: 1260 /* 1261 * Well, the text isn't quite right, but it's the name 1262 * that counts... 1263 */ 1264 return EAFNOSUPPORT; 1265 } 1266 } 1267 1268 static moduledata_t ether_mod = { 1269 .name = "ether", 1270 }; 1271 1272 void 1273 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1274 { 1275 struct ether_vlan_header vlan; 1276 struct mbuf mv, mb; 1277 1278 KASSERT((m->m_flags & M_VLANTAG) != 0, 1279 ("%s: vlan information not present", __func__)); 1280 KASSERT(m->m_len >= sizeof(struct ether_header), 1281 ("%s: mbuf not large enough for header", __func__)); 1282 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1283 vlan.evl_proto = vlan.evl_encap_proto; 1284 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1285 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1286 m->m_len -= sizeof(struct ether_header); 1287 m->m_data += sizeof(struct ether_header); 1288 /* 1289 * If a data link has been supplied by the caller, then we will need to 1290 * re-create a stack allocated mbuf chain with the following structure: 1291 * 1292 * (1) mbuf #1 will contain the supplied data link 1293 * (2) mbuf #2 will contain the vlan header 1294 * (3) mbuf #3 will contain the original mbuf's packet data 1295 * 1296 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1297 */ 1298 if (data != NULL) { 1299 mv.m_next = m; 1300 mv.m_data = (caddr_t)&vlan; 1301 mv.m_len = sizeof(vlan); 1302 mb.m_next = &mv; 1303 mb.m_data = data; 1304 mb.m_len = dlen; 1305 bpf_mtap(bp, &mb); 1306 } else 1307 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1308 m->m_len += sizeof(struct ether_header); 1309 m->m_data -= sizeof(struct ether_header); 1310 } 1311 1312 struct mbuf * 1313 ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto) 1314 { 1315 struct ether_vlan_header *evl; 1316 1317 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1318 if (m == NULL) 1319 return (NULL); 1320 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1321 1322 if (m->m_len < sizeof(*evl)) { 1323 m = m_pullup(m, sizeof(*evl)); 1324 if (m == NULL) 1325 return (NULL); 1326 } 1327 1328 /* 1329 * Transform the Ethernet header into an Ethernet header 1330 * with 802.1Q encapsulation. 1331 */ 1332 evl = mtod(m, struct ether_vlan_header *); 1333 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1334 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1335 evl->evl_encap_proto = htons(proto); 1336 evl->evl_tag = htons(tag); 1337 return (m); 1338 } 1339 1340 void 1341 ether_bpf_mtap_if(struct ifnet *ifp, struct mbuf *m) 1342 { 1343 if (bpf_peers_present(ifp->if_bpf)) { 1344 M_ASSERTVALID(m); 1345 if ((m->m_flags & M_VLANTAG) != 0) 1346 ether_vlan_mtap(ifp->if_bpf, m, NULL, 0); 1347 else 1348 bpf_mtap(ifp->if_bpf, m); 1349 } 1350 } 1351 1352 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1353 "IEEE 802.1Q VLAN"); 1354 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, 1355 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1356 "for consistency"); 1357 1358 VNET_DEFINE_STATIC(int, soft_pad); 1359 #define V_soft_pad VNET(soft_pad) 1360 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET, 1361 &VNET_NAME(soft_pad), 0, 1362 "pad short frames before tagging"); 1363 1364 /* 1365 * For now, make preserving PCP via an mbuf tag optional, as it increases 1366 * per-packet memory allocations and frees. In the future, it would be 1367 * preferable to reuse ether_vtag for this, or similar. 1368 */ 1369 VNET_DEFINE(int, vlan_mtag_pcp) = 0; 1370 #define V_vlan_mtag_pcp VNET(vlan_mtag_pcp) 1371 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET, 1372 &VNET_NAME(vlan_mtag_pcp), 0, 1373 "Retain VLAN PCP information as packets are passed up the stack"); 1374 1375 bool 1376 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p, 1377 struct ether_8021q_tag *qtag) 1378 { 1379 struct m_tag *mtag; 1380 int n; 1381 uint16_t tag; 1382 static const char pad[8]; /* just zeros */ 1383 1384 /* 1385 * Pad the frame to the minimum size allowed if told to. 1386 * This option is in accord with IEEE Std 802.1Q, 2003 Ed., 1387 * paragraph C.4.4.3.b. It can help to work around buggy 1388 * bridges that violate paragraph C.4.4.3.a from the same 1389 * document, i.e., fail to pad short frames after untagging. 1390 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but 1391 * untagging it will produce a 62-byte frame, which is a runt 1392 * and requires padding. There are VLAN-enabled network 1393 * devices that just discard such runts instead or mishandle 1394 * them somehow. 1395 */ 1396 if (V_soft_pad && p->if_type == IFT_ETHER) { 1397 for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len; 1398 n > 0; n -= sizeof(pad)) { 1399 if (!m_append(*mp, min(n, sizeof(pad)), pad)) 1400 break; 1401 } 1402 if (n > 0) { 1403 m_freem(*mp); 1404 *mp = NULL; 1405 if_printf(ife, "cannot pad short frame"); 1406 return (false); 1407 } 1408 } 1409 1410 /* 1411 * If PCP is set in mbuf, use it 1412 */ 1413 if ((*mp)->m_flags & M_VLANTAG) { 1414 qtag->pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag); 1415 } 1416 1417 /* 1418 * If underlying interface can do VLAN tag insertion itself, 1419 * just pass the packet along. However, we need some way to 1420 * tell the interface where the packet came from so that it 1421 * knows how to find the VLAN tag to use, so we attach a 1422 * packet tag that holds it. 1423 */ 1424 if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q, 1425 MTAG_8021Q_PCP_OUT, NULL)) != NULL) 1426 tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0); 1427 else 1428 tag = EVL_MAKETAG(qtag->vid, qtag->pcp, 0); 1429 if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) && 1430 (qtag->proto == ETHERTYPE_VLAN)) { 1431 (*mp)->m_pkthdr.ether_vtag = tag; 1432 (*mp)->m_flags |= M_VLANTAG; 1433 } else { 1434 *mp = ether_vlanencap_proto(*mp, tag, qtag->proto); 1435 if (*mp == NULL) { 1436 if_printf(ife, "unable to prepend 802.1Q header"); 1437 return (false); 1438 } 1439 } 1440 return (true); 1441 } 1442 1443 /* 1444 * Allocate an address from the FreeBSD Foundation OUI. This uses a 1445 * cryptographic hash function on the containing jail's name, UUID and the 1446 * interface name to attempt to provide a unique but stable address. 1447 * Pseudo-interfaces which require a MAC address should use this function to 1448 * allocate non-locally-administered addresses. 1449 */ 1450 void 1451 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr) 1452 { 1453 SHA1_CTX ctx; 1454 char *buf; 1455 char uuid[HOSTUUIDLEN + 1]; 1456 uint64_t addr; 1457 int i, sz; 1458 char digest[SHA1_RESULTLEN]; 1459 char jailname[MAXHOSTNAMELEN]; 1460 1461 getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid)); 1462 if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) { 1463 /* Fall back to a random mac address. */ 1464 goto rando; 1465 } 1466 1467 /* If each (vnet) jail would also have a unique hostuuid this would not 1468 * be necessary. */ 1469 getjailname(curthread->td_ucred, jailname, sizeof(jailname)); 1470 sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp), 1471 jailname); 1472 if (sz < 0) { 1473 /* Fall back to a random mac address. */ 1474 goto rando; 1475 } 1476 1477 SHA1Init(&ctx); 1478 SHA1Update(&ctx, buf, sz); 1479 SHA1Final(digest, &ctx); 1480 free(buf, M_TEMP); 1481 1482 addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) & 1483 OUI_FREEBSD_GENERATED_MASK; 1484 addr = OUI_FREEBSD(addr); 1485 for (i = 0; i < ETHER_ADDR_LEN; ++i) { 1486 hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) & 1487 0xFF; 1488 } 1489 1490 return; 1491 rando: 1492 arc4rand(hwaddr, sizeof(*hwaddr), 0); 1493 /* Unicast */ 1494 hwaddr->octet[0] &= 0xFE; 1495 /* Locally administered. */ 1496 hwaddr->octet[0] |= 0x02; 1497 } 1498 1499 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1500 MODULE_VERSION(ether, 1); 1501