xref: /freebsd/sys/net/if_ethersubr.c (revision e27abb6689c5733dd08ce240d5402a0de3a42254)
1 /*-
2  * Copyright (c) 1982, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
30  * $FreeBSD$
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_netgraph.h"
36 #include "opt_mbuf_profiling.h"
37 #include "opt_rss.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mbuf.h>
46 #include <sys/random.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/sysctl.h>
50 #include <sys/uuid.h>
51 
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_arp.h>
55 #include <net/netisr.h>
56 #include <net/route.h>
57 #include <net/if_llc.h>
58 #include <net/if_dl.h>
59 #include <net/if_types.h>
60 #include <net/bpf.h>
61 #include <net/ethernet.h>
62 #include <net/if_bridgevar.h>
63 #include <net/if_vlan_var.h>
64 #include <net/if_llatbl.h>
65 #include <net/pfil.h>
66 #include <net/rss_config.h>
67 #include <net/vnet.h>
68 
69 #include <netpfil/pf/pf_mtag.h>
70 
71 #if defined(INET) || defined(INET6)
72 #include <netinet/in.h>
73 #include <netinet/in_var.h>
74 #include <netinet/if_ether.h>
75 #include <netinet/ip_carp.h>
76 #include <netinet/ip_var.h>
77 #endif
78 #ifdef INET6
79 #include <netinet6/nd6.h>
80 #endif
81 #include <security/mac/mac_framework.h>
82 
83 #ifdef CTASSERT
84 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
85 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
86 #endif
87 
88 VNET_DEFINE(struct pfil_head, link_pfil_hook);	/* Packet filter hooks */
89 
90 /* netgraph node hooks for ng_ether(4) */
91 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
92 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
93 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
94 void	(*ng_ether_attach_p)(struct ifnet *ifp);
95 void	(*ng_ether_detach_p)(struct ifnet *ifp);
96 
97 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
98 
99 /* if_bridge(4) support */
100 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
101 int	(*bridge_output_p)(struct ifnet *, struct mbuf *,
102 		struct sockaddr *, struct rtentry *);
103 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
104 
105 /* if_lagg(4) support */
106 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *);
107 
108 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
109 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
110 
111 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
112 		struct sockaddr *);
113 #ifdef VIMAGE
114 static	void ether_reassign(struct ifnet *, struct vnet *, char *);
115 #endif
116 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
117 
118 #define	ETHER_IS_BROADCAST(addr) \
119 	(bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0)
120 
121 #define senderr(e) do { error = (e); goto bad;} while (0)
122 
123 static void
124 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
125 {
126 	int csum_flags = 0;
127 
128 	if (src->m_pkthdr.csum_flags & CSUM_IP)
129 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
130 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
131 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
132 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
133 		csum_flags |= CSUM_SCTP_VALID;
134 	dst->m_pkthdr.csum_flags |= csum_flags;
135 	if (csum_flags & CSUM_DATA_VALID)
136 		dst->m_pkthdr.csum_data = 0xffff;
137 }
138 
139 /*
140  * Handle link-layer encapsulation requests.
141  */
142 static int
143 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
144 {
145 	struct ether_header *eh;
146 	struct arphdr *ah;
147 	uint16_t etype;
148 	const u_char *lladdr;
149 
150 	if (req->rtype != IFENCAP_LL)
151 		return (EOPNOTSUPP);
152 
153 	if (req->bufsize < ETHER_HDR_LEN)
154 		return (ENOMEM);
155 
156 	eh = (struct ether_header *)req->buf;
157 	lladdr = req->lladdr;
158 	req->lladdr_off = 0;
159 
160 	switch (req->family) {
161 	case AF_INET:
162 		etype = htons(ETHERTYPE_IP);
163 		break;
164 	case AF_INET6:
165 		etype = htons(ETHERTYPE_IPV6);
166 		break;
167 	case AF_ARP:
168 		ah = (struct arphdr *)req->hdata;
169 		ah->ar_hrd = htons(ARPHRD_ETHER);
170 
171 		switch(ntohs(ah->ar_op)) {
172 		case ARPOP_REVREQUEST:
173 		case ARPOP_REVREPLY:
174 			etype = htons(ETHERTYPE_REVARP);
175 			break;
176 		case ARPOP_REQUEST:
177 		case ARPOP_REPLY:
178 		default:
179 			etype = htons(ETHERTYPE_ARP);
180 			break;
181 		}
182 
183 		if (req->flags & IFENCAP_FLAG_BROADCAST)
184 			lladdr = ifp->if_broadcastaddr;
185 		break;
186 	default:
187 		return (EAFNOSUPPORT);
188 	}
189 
190 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
191 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
192 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
193 	req->bufsize = sizeof(struct ether_header);
194 
195 	return (0);
196 }
197 
198 
199 static int
200 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
201 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
202 	uint32_t *pflags, struct llentry **plle)
203 {
204 	struct ether_header *eh;
205 	uint32_t lleflags = 0;
206 	int error = 0;
207 #if defined(INET) || defined(INET6)
208 	uint16_t etype;
209 #endif
210 
211 	if (plle)
212 		*plle = NULL;
213 	eh = (struct ether_header *)phdr;
214 
215 	switch (dst->sa_family) {
216 #ifdef INET
217 	case AF_INET:
218 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
219 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
220 			    plle);
221 		else {
222 			if (m->m_flags & M_BCAST)
223 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
224 				    ETHER_ADDR_LEN);
225 			else {
226 				const struct in_addr *a;
227 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
228 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
229 			}
230 			etype = htons(ETHERTYPE_IP);
231 			memcpy(&eh->ether_type, &etype, sizeof(etype));
232 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
233 		}
234 		break;
235 #endif
236 #ifdef INET6
237 	case AF_INET6:
238 		if ((m->m_flags & M_MCAST) == 0)
239 			error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags,
240 			    plle);
241 		else {
242 			const struct in6_addr *a6;
243 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
244 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
245 			etype = htons(ETHERTYPE_IPV6);
246 			memcpy(&eh->ether_type, &etype, sizeof(etype));
247 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
248 		}
249 		break;
250 #endif
251 	default:
252 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
253 		if (m != NULL)
254 			m_freem(m);
255 		return (EAFNOSUPPORT);
256 	}
257 
258 	if (error == EHOSTDOWN) {
259 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
260 			error = EHOSTUNREACH;
261 	}
262 
263 	if (error != 0)
264 		return (error);
265 
266 	*pflags = RT_MAY_LOOP;
267 	if (lleflags & LLE_IFADDR)
268 		*pflags |= RT_L2_ME;
269 
270 	return (0);
271 }
272 
273 /*
274  * Ethernet output routine.
275  * Encapsulate a packet of type family for the local net.
276  * Use trailer local net encapsulation if enough data in first
277  * packet leaves a multiple of 512 bytes of data in remainder.
278  */
279 int
280 ether_output(struct ifnet *ifp, struct mbuf *m,
281 	const struct sockaddr *dst, struct route *ro)
282 {
283 	int error = 0;
284 	char linkhdr[ETHER_HDR_LEN], *phdr;
285 	struct ether_header *eh;
286 	struct pf_mtag *t;
287 	int loop_copy = 1;
288 	int hlen;	/* link layer header length */
289 	uint32_t pflags;
290 	struct llentry *lle = NULL;
291 	struct rtentry *rt0 = NULL;
292 	int addref = 0;
293 
294 	phdr = NULL;
295 	pflags = 0;
296 	if (ro != NULL) {
297 		/* XXX BPF uses ro_prepend */
298 		if (ro->ro_prepend != NULL) {
299 			phdr = ro->ro_prepend;
300 			hlen = ro->ro_plen;
301 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
302 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
303 				lle = ro->ro_lle;
304 				if (lle != NULL &&
305 				    (lle->la_flags & LLE_VALID) == 0) {
306 					LLE_FREE(lle);
307 					lle = NULL;	/* redundant */
308 					ro->ro_lle = NULL;
309 				}
310 				if (lle == NULL) {
311 					/* if we lookup, keep cache */
312 					addref = 1;
313 				}
314 			}
315 			if (lle != NULL) {
316 				phdr = lle->r_linkdata;
317 				hlen = lle->r_hdrlen;
318 				pflags = lle->r_flags;
319 			}
320 		}
321 		rt0 = ro->ro_rt;
322 	}
323 
324 #ifdef MAC
325 	error = mac_ifnet_check_transmit(ifp, m);
326 	if (error)
327 		senderr(error);
328 #endif
329 
330 	M_PROFILE(m);
331 	if (ifp->if_flags & IFF_MONITOR)
332 		senderr(ENETDOWN);
333 	if (!((ifp->if_flags & IFF_UP) &&
334 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
335 		senderr(ENETDOWN);
336 
337 	if (phdr == NULL) {
338 		/* No prepend data supplied. Try to calculate ourselves. */
339 		phdr = linkhdr;
340 		hlen = ETHER_HDR_LEN;
341 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
342 		    addref ? &lle : NULL);
343 		if (addref && lle != NULL)
344 			ro->ro_lle = lle;
345 		if (error != 0)
346 			return (error == EWOULDBLOCK ? 0 : error);
347 	}
348 
349 	if ((pflags & RT_L2_ME) != 0) {
350 		update_mbuf_csumflags(m, m);
351 		return (if_simloop(ifp, m, dst->sa_family, 0));
352 	}
353 	loop_copy = pflags & RT_MAY_LOOP;
354 
355 	/*
356 	 * Add local net header.  If no space in first mbuf,
357 	 * allocate another.
358 	 *
359 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
360 	 * This is done because BPF code shifts m_data pointer
361 	 * to the end of ethernet header prior to calling if_output().
362 	 */
363 	M_PREPEND(m, hlen, M_NOWAIT);
364 	if (m == NULL)
365 		senderr(ENOBUFS);
366 	if ((pflags & RT_HAS_HEADER) == 0) {
367 		eh = mtod(m, struct ether_header *);
368 		memcpy(eh, phdr, hlen);
369 	}
370 
371 	/*
372 	 * If a simplex interface, and the packet is being sent to our
373 	 * Ethernet address or a broadcast address, loopback a copy.
374 	 * XXX To make a simplex device behave exactly like a duplex
375 	 * device, we should copy in the case of sending to our own
376 	 * ethernet address (thus letting the original actually appear
377 	 * on the wire). However, we don't do that here for security
378 	 * reasons and compatibility with the original behavior.
379 	 */
380 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
381 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
382 		struct mbuf *n;
383 
384 		/*
385 		 * Because if_simloop() modifies the packet, we need a
386 		 * writable copy through m_dup() instead of a readonly
387 		 * one as m_copy[m] would give us. The alternative would
388 		 * be to modify if_simloop() to handle the readonly mbuf,
389 		 * but performancewise it is mostly equivalent (trading
390 		 * extra data copying vs. extra locking).
391 		 *
392 		 * XXX This is a local workaround.  A number of less
393 		 * often used kernel parts suffer from the same bug.
394 		 * See PR kern/105943 for a proposed general solution.
395 		 */
396 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
397 			update_mbuf_csumflags(m, n);
398 			(void)if_simloop(ifp, n, dst->sa_family, hlen);
399 		} else
400 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
401 	}
402 
403        /*
404 	* Bridges require special output handling.
405 	*/
406 	if (ifp->if_bridge) {
407 		BRIDGE_OUTPUT(ifp, m, error);
408 		return (error);
409 	}
410 
411 #if defined(INET) || defined(INET6)
412 	if (ifp->if_carp &&
413 	    (error = (*carp_output_p)(ifp, m, dst)))
414 		goto bad;
415 #endif
416 
417 	/* Handle ng_ether(4) processing, if any */
418 	if (ifp->if_l2com != NULL) {
419 		KASSERT(ng_ether_output_p != NULL,
420 		    ("ng_ether_output_p is NULL"));
421 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
422 bad:			if (m != NULL)
423 				m_freem(m);
424 			return (error);
425 		}
426 		if (m == NULL)
427 			return (0);
428 	}
429 
430 	/* Continue with link-layer output */
431 	return ether_output_frame(ifp, m);
432 }
433 
434 /*
435  * Ethernet link layer output routine to send a raw frame to the device.
436  *
437  * This assumes that the 14 byte Ethernet header is present and contiguous
438  * in the first mbuf (if BRIDGE'ing).
439  */
440 int
441 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
442 {
443 	int i;
444 
445 	if (PFIL_HOOKED(&V_link_pfil_hook)) {
446 		i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL);
447 
448 		if (i != 0)
449 			return (EACCES);
450 
451 		if (m == NULL)
452 			return (0);
453 	}
454 
455 	/*
456 	 * Queue message on interface, update output statistics if
457 	 * successful, and start output if interface not yet active.
458 	 */
459 	return ((ifp->if_transmit)(ifp, m));
460 }
461 
462 /*
463  * Process a received Ethernet packet; the packet is in the
464  * mbuf chain m with the ethernet header at the front.
465  */
466 static void
467 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
468 {
469 	struct ether_header *eh;
470 	u_short etype;
471 
472 	if ((ifp->if_flags & IFF_UP) == 0) {
473 		m_freem(m);
474 		return;
475 	}
476 #ifdef DIAGNOSTIC
477 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
478 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
479 		m_freem(m);
480 		return;
481 	}
482 #endif
483 	if (m->m_len < ETHER_HDR_LEN) {
484 		/* XXX maybe should pullup? */
485 		if_printf(ifp, "discard frame w/o leading ethernet "
486 				"header (len %u pkt len %u)\n",
487 				m->m_len, m->m_pkthdr.len);
488 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
489 		m_freem(m);
490 		return;
491 	}
492 	eh = mtod(m, struct ether_header *);
493 	etype = ntohs(eh->ether_type);
494 	random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER);
495 
496 	CURVNET_SET_QUIET(ifp->if_vnet);
497 
498 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
499 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
500 			m->m_flags |= M_BCAST;
501 		else
502 			m->m_flags |= M_MCAST;
503 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
504 	}
505 
506 #ifdef MAC
507 	/*
508 	 * Tag the mbuf with an appropriate MAC label before any other
509 	 * consumers can get to it.
510 	 */
511 	mac_ifnet_create_mbuf(ifp, m);
512 #endif
513 
514 	/*
515 	 * Give bpf a chance at the packet.
516 	 */
517 	ETHER_BPF_MTAP(ifp, m);
518 
519 	/*
520 	 * If the CRC is still on the packet, trim it off. We do this once
521 	 * and once only in case we are re-entered. Nothing else on the
522 	 * Ethernet receive path expects to see the FCS.
523 	 */
524 	if (m->m_flags & M_HASFCS) {
525 		m_adj(m, -ETHER_CRC_LEN);
526 		m->m_flags &= ~M_HASFCS;
527 	}
528 
529 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
530 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
531 
532 	/* Allow monitor mode to claim this frame, after stats are updated. */
533 	if (ifp->if_flags & IFF_MONITOR) {
534 		m_freem(m);
535 		CURVNET_RESTORE();
536 		return;
537 	}
538 
539 	/* Handle input from a lagg(4) port */
540 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
541 		KASSERT(lagg_input_p != NULL,
542 		    ("%s: if_lagg not loaded!", __func__));
543 		m = (*lagg_input_p)(ifp, m);
544 		if (m != NULL)
545 			ifp = m->m_pkthdr.rcvif;
546 		else {
547 			CURVNET_RESTORE();
548 			return;
549 		}
550 	}
551 
552 	/*
553 	 * If the hardware did not process an 802.1Q tag, do this now,
554 	 * to allow 802.1P priority frames to be passed to the main input
555 	 * path correctly.
556 	 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels.
557 	 */
558 	if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) {
559 		struct ether_vlan_header *evl;
560 
561 		if (m->m_len < sizeof(*evl) &&
562 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
563 #ifdef DIAGNOSTIC
564 			if_printf(ifp, "cannot pullup VLAN header\n");
565 #endif
566 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
567 			CURVNET_RESTORE();
568 			return;
569 		}
570 
571 		evl = mtod(m, struct ether_vlan_header *);
572 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
573 		m->m_flags |= M_VLANTAG;
574 
575 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
576 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
577 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
578 		eh = mtod(m, struct ether_header *);
579 	}
580 
581 	M_SETFIB(m, ifp->if_fib);
582 
583 	/* Allow ng_ether(4) to claim this frame. */
584 	if (ifp->if_l2com != NULL) {
585 		KASSERT(ng_ether_input_p != NULL,
586 		    ("%s: ng_ether_input_p is NULL", __func__));
587 		m->m_flags &= ~M_PROMISC;
588 		(*ng_ether_input_p)(ifp, &m);
589 		if (m == NULL) {
590 			CURVNET_RESTORE();
591 			return;
592 		}
593 		eh = mtod(m, struct ether_header *);
594 	}
595 
596 	/*
597 	 * Allow if_bridge(4) to claim this frame.
598 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
599 	 * and the frame should be delivered locally.
600 	 */
601 	if (ifp->if_bridge != NULL) {
602 		m->m_flags &= ~M_PROMISC;
603 		BRIDGE_INPUT(ifp, m);
604 		if (m == NULL) {
605 			CURVNET_RESTORE();
606 			return;
607 		}
608 		eh = mtod(m, struct ether_header *);
609 	}
610 
611 #if defined(INET) || defined(INET6)
612 	/*
613 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
614 	 * mbuf flows up to Layer 3.
615 	 * FreeBSD's implementation of carp(4) uses the inprotosw
616 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
617 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
618 	 * is outside the scope of the M_PROMISC test below.
619 	 * TODO: Maintain a hash table of ethernet addresses other than
620 	 * ether_dhost which may be active on this ifp.
621 	 */
622 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
623 		m->m_flags &= ~M_PROMISC;
624 	} else
625 #endif
626 	{
627 		/*
628 		 * If the frame received was not for our MAC address, set the
629 		 * M_PROMISC flag on the mbuf chain. The frame may need to
630 		 * be seen by the rest of the Ethernet input path in case of
631 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
632 		 * seen by upper protocol layers.
633 		 */
634 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
635 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
636 			m->m_flags |= M_PROMISC;
637 	}
638 
639 	ether_demux(ifp, m);
640 	CURVNET_RESTORE();
641 }
642 
643 /*
644  * Ethernet input dispatch; by default, direct dispatch here regardless of
645  * global configuration.  However, if RSS is enabled, hook up RSS affinity
646  * so that when deferred or hybrid dispatch is enabled, we can redistribute
647  * load based on RSS.
648  *
649  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
650  * not it had already done work distribution via multi-queue.  Then we could
651  * direct dispatch in the event load balancing was already complete and
652  * handle the case of interfaces with different capabilities better.
653  *
654  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
655  * at multiple layers?
656  *
657  * XXXRW: For now, enable all this only if RSS is compiled in, although it
658  * works fine without RSS.  Need to characterise the performance overhead
659  * of the detour through the netisr code in the event the result is always
660  * direct dispatch.
661  */
662 static void
663 ether_nh_input(struct mbuf *m)
664 {
665 
666 	M_ASSERTPKTHDR(m);
667 	KASSERT(m->m_pkthdr.rcvif != NULL,
668 	    ("%s: NULL interface pointer", __func__));
669 	ether_input_internal(m->m_pkthdr.rcvif, m);
670 }
671 
672 static struct netisr_handler	ether_nh = {
673 	.nh_name = "ether",
674 	.nh_handler = ether_nh_input,
675 	.nh_proto = NETISR_ETHER,
676 #ifdef RSS
677 	.nh_policy = NETISR_POLICY_CPU,
678 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
679 	.nh_m2cpuid = rss_m2cpuid,
680 #else
681 	.nh_policy = NETISR_POLICY_SOURCE,
682 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
683 #endif
684 };
685 
686 static void
687 ether_init(__unused void *arg)
688 {
689 
690 	netisr_register(&ether_nh);
691 }
692 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
693 
694 static void
695 vnet_ether_init(__unused void *arg)
696 {
697 	int i;
698 
699 	/* Initialize packet filter hooks. */
700 	V_link_pfil_hook.ph_type = PFIL_TYPE_AF;
701 	V_link_pfil_hook.ph_af = AF_LINK;
702 	if ((i = pfil_head_register(&V_link_pfil_hook)) != 0)
703 		printf("%s: WARNING: unable to register pfil link hook, "
704 			"error %d\n", __func__, i);
705 }
706 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
707     vnet_ether_init, NULL);
708 
709 static void
710 vnet_ether_destroy(__unused void *arg)
711 {
712 	int i;
713 
714 	if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0)
715 		printf("%s: WARNING: unable to unregister pfil link hook, "
716 			"error %d\n", __func__, i);
717 }
718 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
719     vnet_ether_destroy, NULL);
720 
721 
722 
723 static void
724 ether_input(struct ifnet *ifp, struct mbuf *m)
725 {
726 
727 	struct mbuf *mn;
728 
729 	/*
730 	 * The drivers are allowed to pass in a chain of packets linked with
731 	 * m_nextpkt. We split them up into separate packets here and pass
732 	 * them up. This allows the drivers to amortize the receive lock.
733 	 */
734 	while (m) {
735 		mn = m->m_nextpkt;
736 		m->m_nextpkt = NULL;
737 
738 		/*
739 		 * We will rely on rcvif being set properly in the deferred context,
740 		 * so assert it is correct here.
741 		 */
742 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch", __func__));
743 		netisr_dispatch(NETISR_ETHER, m);
744 		m = mn;
745 	}
746 }
747 
748 /*
749  * Upper layer processing for a received Ethernet packet.
750  */
751 void
752 ether_demux(struct ifnet *ifp, struct mbuf *m)
753 {
754 	struct ether_header *eh;
755 	int i, isr;
756 	u_short ether_type;
757 
758 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
759 
760 	/* Do not grab PROMISC frames in case we are re-entered. */
761 	if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) {
762 		i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL);
763 
764 		if (i != 0 || m == NULL)
765 			return;
766 	}
767 
768 	eh = mtod(m, struct ether_header *);
769 	ether_type = ntohs(eh->ether_type);
770 
771 	/*
772 	 * If this frame has a VLAN tag other than 0, call vlan_input()
773 	 * if its module is loaded. Otherwise, drop.
774 	 */
775 	if ((m->m_flags & M_VLANTAG) &&
776 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
777 		if (ifp->if_vlantrunk == NULL) {
778 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
779 			m_freem(m);
780 			return;
781 		}
782 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
783 		    __func__));
784 		/* Clear before possibly re-entering ether_input(). */
785 		m->m_flags &= ~M_PROMISC;
786 		(*vlan_input_p)(ifp, m);
787 		return;
788 	}
789 
790 	/*
791 	 * Pass promiscuously received frames to the upper layer if the user
792 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
793 	 */
794 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
795 		m_freem(m);
796 		return;
797 	}
798 
799 	/*
800 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
801 	 * Strip off Ethernet header.
802 	 */
803 	m->m_flags &= ~M_VLANTAG;
804 	m_clrprotoflags(m);
805 	m_adj(m, ETHER_HDR_LEN);
806 
807 	/*
808 	 * Dispatch frame to upper layer.
809 	 */
810 	switch (ether_type) {
811 #ifdef INET
812 	case ETHERTYPE_IP:
813 		isr = NETISR_IP;
814 		break;
815 
816 	case ETHERTYPE_ARP:
817 		if (ifp->if_flags & IFF_NOARP) {
818 			/* Discard packet if ARP is disabled on interface */
819 			m_freem(m);
820 			return;
821 		}
822 		isr = NETISR_ARP;
823 		break;
824 #endif
825 #ifdef INET6
826 	case ETHERTYPE_IPV6:
827 		isr = NETISR_IPV6;
828 		break;
829 #endif
830 	default:
831 		goto discard;
832 	}
833 	netisr_dispatch(isr, m);
834 	return;
835 
836 discard:
837 	/*
838 	 * Packet is to be discarded.  If netgraph is present,
839 	 * hand the packet to it for last chance processing;
840 	 * otherwise dispose of it.
841 	 */
842 	if (ifp->if_l2com != NULL) {
843 		KASSERT(ng_ether_input_orphan_p != NULL,
844 		    ("ng_ether_input_orphan_p is NULL"));
845 		/*
846 		 * Put back the ethernet header so netgraph has a
847 		 * consistent view of inbound packets.
848 		 */
849 		M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
850 		(*ng_ether_input_orphan_p)(ifp, m);
851 		return;
852 	}
853 	m_freem(m);
854 }
855 
856 /*
857  * Convert Ethernet address to printable (loggable) representation.
858  * This routine is for compatibility; it's better to just use
859  *
860  *	printf("%6D", <pointer to address>, ":");
861  *
862  * since there's no static buffer involved.
863  */
864 char *
865 ether_sprintf(const u_char *ap)
866 {
867 	static char etherbuf[18];
868 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
869 	return (etherbuf);
870 }
871 
872 /*
873  * Perform common duties while attaching to interface list
874  */
875 void
876 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
877 {
878 	int i;
879 	struct ifaddr *ifa;
880 	struct sockaddr_dl *sdl;
881 
882 	ifp->if_addrlen = ETHER_ADDR_LEN;
883 	ifp->if_hdrlen = ETHER_HDR_LEN;
884 	if_attach(ifp);
885 	ifp->if_mtu = ETHERMTU;
886 	ifp->if_output = ether_output;
887 	ifp->if_input = ether_input;
888 	ifp->if_resolvemulti = ether_resolvemulti;
889 	ifp->if_requestencap = ether_requestencap;
890 #ifdef VIMAGE
891 	ifp->if_reassign = ether_reassign;
892 #endif
893 	if (ifp->if_baudrate == 0)
894 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
895 	ifp->if_broadcastaddr = etherbroadcastaddr;
896 
897 	ifa = ifp->if_addr;
898 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
899 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
900 	sdl->sdl_type = IFT_ETHER;
901 	sdl->sdl_alen = ifp->if_addrlen;
902 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
903 
904 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
905 	if (ng_ether_attach_p != NULL)
906 		(*ng_ether_attach_p)(ifp);
907 
908 	/* Announce Ethernet MAC address if non-zero. */
909 	for (i = 0; i < ifp->if_addrlen; i++)
910 		if (lla[i] != 0)
911 			break;
912 	if (i != ifp->if_addrlen)
913 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
914 
915 	uuid_ether_add(LLADDR(sdl));
916 }
917 
918 /*
919  * Perform common duties while detaching an Ethernet interface
920  */
921 void
922 ether_ifdetach(struct ifnet *ifp)
923 {
924 	struct sockaddr_dl *sdl;
925 
926 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
927 	uuid_ether_del(LLADDR(sdl));
928 
929 	if (ifp->if_l2com != NULL) {
930 		KASSERT(ng_ether_detach_p != NULL,
931 		    ("ng_ether_detach_p is NULL"));
932 		(*ng_ether_detach_p)(ifp);
933 	}
934 
935 	bpfdetach(ifp);
936 	if_detach(ifp);
937 }
938 
939 #ifdef VIMAGE
940 void
941 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
942 {
943 
944 	if (ifp->if_l2com != NULL) {
945 		KASSERT(ng_ether_detach_p != NULL,
946 		    ("ng_ether_detach_p is NULL"));
947 		(*ng_ether_detach_p)(ifp);
948 	}
949 
950 	if (ng_ether_attach_p != NULL) {
951 		CURVNET_SET_QUIET(new_vnet);
952 		(*ng_ether_attach_p)(ifp);
953 		CURVNET_RESTORE();
954 	}
955 }
956 #endif
957 
958 SYSCTL_DECL(_net_link);
959 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
960 
961 #if 0
962 /*
963  * This is for reference.  We have a table-driven version
964  * of the little-endian crc32 generator, which is faster
965  * than the double-loop.
966  */
967 uint32_t
968 ether_crc32_le(const uint8_t *buf, size_t len)
969 {
970 	size_t i;
971 	uint32_t crc;
972 	int bit;
973 	uint8_t data;
974 
975 	crc = 0xffffffff;	/* initial value */
976 
977 	for (i = 0; i < len; i++) {
978 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
979 			carry = (crc ^ data) & 1;
980 			crc >>= 1;
981 			if (carry)
982 				crc = (crc ^ ETHER_CRC_POLY_LE);
983 		}
984 	}
985 
986 	return (crc);
987 }
988 #else
989 uint32_t
990 ether_crc32_le(const uint8_t *buf, size_t len)
991 {
992 	static const uint32_t crctab[] = {
993 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
994 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
995 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
996 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
997 	};
998 	size_t i;
999 	uint32_t crc;
1000 
1001 	crc = 0xffffffff;	/* initial value */
1002 
1003 	for (i = 0; i < len; i++) {
1004 		crc ^= buf[i];
1005 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1006 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1007 	}
1008 
1009 	return (crc);
1010 }
1011 #endif
1012 
1013 uint32_t
1014 ether_crc32_be(const uint8_t *buf, size_t len)
1015 {
1016 	size_t i;
1017 	uint32_t crc, carry;
1018 	int bit;
1019 	uint8_t data;
1020 
1021 	crc = 0xffffffff;	/* initial value */
1022 
1023 	for (i = 0; i < len; i++) {
1024 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1025 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1026 			crc <<= 1;
1027 			if (carry)
1028 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1029 		}
1030 	}
1031 
1032 	return (crc);
1033 }
1034 
1035 int
1036 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1037 {
1038 	struct ifaddr *ifa = (struct ifaddr *) data;
1039 	struct ifreq *ifr = (struct ifreq *) data;
1040 	int error = 0;
1041 
1042 	switch (command) {
1043 	case SIOCSIFADDR:
1044 		ifp->if_flags |= IFF_UP;
1045 
1046 		switch (ifa->ifa_addr->sa_family) {
1047 #ifdef INET
1048 		case AF_INET:
1049 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1050 			arp_ifinit(ifp, ifa);
1051 			break;
1052 #endif
1053 		default:
1054 			ifp->if_init(ifp->if_softc);
1055 			break;
1056 		}
1057 		break;
1058 
1059 	case SIOCGIFADDR:
1060 		{
1061 			struct sockaddr *sa;
1062 
1063 			sa = (struct sockaddr *) & ifr->ifr_data;
1064 			bcopy(IF_LLADDR(ifp),
1065 			      (caddr_t) sa->sa_data, ETHER_ADDR_LEN);
1066 		}
1067 		break;
1068 
1069 	case SIOCSIFMTU:
1070 		/*
1071 		 * Set the interface MTU.
1072 		 */
1073 		if (ifr->ifr_mtu > ETHERMTU) {
1074 			error = EINVAL;
1075 		} else {
1076 			ifp->if_mtu = ifr->ifr_mtu;
1077 		}
1078 		break;
1079 	default:
1080 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1081 		break;
1082 	}
1083 	return (error);
1084 }
1085 
1086 static int
1087 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1088 	struct sockaddr *sa)
1089 {
1090 	struct sockaddr_dl *sdl;
1091 #ifdef INET
1092 	struct sockaddr_in *sin;
1093 #endif
1094 #ifdef INET6
1095 	struct sockaddr_in6 *sin6;
1096 #endif
1097 	u_char *e_addr;
1098 
1099 	switch(sa->sa_family) {
1100 	case AF_LINK:
1101 		/*
1102 		 * No mapping needed. Just check that it's a valid MC address.
1103 		 */
1104 		sdl = (struct sockaddr_dl *)sa;
1105 		e_addr = LLADDR(sdl);
1106 		if (!ETHER_IS_MULTICAST(e_addr))
1107 			return EADDRNOTAVAIL;
1108 		*llsa = NULL;
1109 		return 0;
1110 
1111 #ifdef INET
1112 	case AF_INET:
1113 		sin = (struct sockaddr_in *)sa;
1114 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1115 			return EADDRNOTAVAIL;
1116 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1117 		sdl->sdl_alen = ETHER_ADDR_LEN;
1118 		e_addr = LLADDR(sdl);
1119 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1120 		*llsa = (struct sockaddr *)sdl;
1121 		return 0;
1122 #endif
1123 #ifdef INET6
1124 	case AF_INET6:
1125 		sin6 = (struct sockaddr_in6 *)sa;
1126 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1127 			/*
1128 			 * An IP6 address of 0 means listen to all
1129 			 * of the Ethernet multicast address used for IP6.
1130 			 * (This is used for multicast routers.)
1131 			 */
1132 			ifp->if_flags |= IFF_ALLMULTI;
1133 			*llsa = NULL;
1134 			return 0;
1135 		}
1136 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1137 			return EADDRNOTAVAIL;
1138 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1139 		sdl->sdl_alen = ETHER_ADDR_LEN;
1140 		e_addr = LLADDR(sdl);
1141 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1142 		*llsa = (struct sockaddr *)sdl;
1143 		return 0;
1144 #endif
1145 
1146 	default:
1147 		/*
1148 		 * Well, the text isn't quite right, but it's the name
1149 		 * that counts...
1150 		 */
1151 		return EAFNOSUPPORT;
1152 	}
1153 }
1154 
1155 static moduledata_t ether_mod = {
1156 	.name = "ether",
1157 };
1158 
1159 void
1160 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1161 {
1162 	struct ether_vlan_header vlan;
1163 	struct mbuf mv, mb;
1164 
1165 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1166 	    ("%s: vlan information not present", __func__));
1167 	KASSERT(m->m_len >= sizeof(struct ether_header),
1168 	    ("%s: mbuf not large enough for header", __func__));
1169 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1170 	vlan.evl_proto = vlan.evl_encap_proto;
1171 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1172 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1173 	m->m_len -= sizeof(struct ether_header);
1174 	m->m_data += sizeof(struct ether_header);
1175 	/*
1176 	 * If a data link has been supplied by the caller, then we will need to
1177 	 * re-create a stack allocated mbuf chain with the following structure:
1178 	 *
1179 	 * (1) mbuf #1 will contain the supplied data link
1180 	 * (2) mbuf #2 will contain the vlan header
1181 	 * (3) mbuf #3 will contain the original mbuf's packet data
1182 	 *
1183 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1184 	 */
1185 	if (data != NULL) {
1186 		mv.m_next = m;
1187 		mv.m_data = (caddr_t)&vlan;
1188 		mv.m_len = sizeof(vlan);
1189 		mb.m_next = &mv;
1190 		mb.m_data = data;
1191 		mb.m_len = dlen;
1192 		bpf_mtap(bp, &mb);
1193 	} else
1194 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1195 	m->m_len += sizeof(struct ether_header);
1196 	m->m_data -= sizeof(struct ether_header);
1197 }
1198 
1199 struct mbuf *
1200 ether_vlanencap(struct mbuf *m, uint16_t tag)
1201 {
1202 	struct ether_vlan_header *evl;
1203 
1204 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1205 	if (m == NULL)
1206 		return (NULL);
1207 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1208 
1209 	if (m->m_len < sizeof(*evl)) {
1210 		m = m_pullup(m, sizeof(*evl));
1211 		if (m == NULL)
1212 			return (NULL);
1213 	}
1214 
1215 	/*
1216 	 * Transform the Ethernet header into an Ethernet header
1217 	 * with 802.1Q encapsulation.
1218 	 */
1219 	evl = mtod(m, struct ether_vlan_header *);
1220 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1221 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1222 	evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1223 	evl->evl_tag = htons(tag);
1224 	return (m);
1225 }
1226 
1227 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1228 MODULE_VERSION(ether, 1);
1229