1 /*- 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 30 * $FreeBSD$ 31 */ 32 33 #include "opt_atalk.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_ipx.h" 37 #include "opt_netgraph.h" 38 #include "opt_mbuf_profiling.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mbuf.h> 47 #include <sys/random.h> 48 #include <sys/rwlock.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/sysctl.h> 52 53 #include <net/if.h> 54 #include <net/if_arp.h> 55 #include <net/netisr.h> 56 #include <net/route.h> 57 #include <net/if_llc.h> 58 #include <net/if_dl.h> 59 #include <net/if_types.h> 60 #include <net/bpf.h> 61 #include <net/ethernet.h> 62 #include <net/if_bridgevar.h> 63 #include <net/if_vlan_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/pf_mtag.h> 66 #include <net/vnet.h> 67 68 #if defined(INET) || defined(INET6) 69 #include <netinet/in.h> 70 #include <netinet/in_var.h> 71 #include <netinet/if_ether.h> 72 #include <netinet/ip_carp.h> 73 #include <netinet/ip_var.h> 74 #include <netinet/ip_fw.h> 75 #endif 76 #ifdef INET6 77 #include <netinet6/nd6.h> 78 #endif 79 80 #ifdef IPX 81 #include <netipx/ipx.h> 82 #include <netipx/ipx_if.h> 83 #endif 84 85 int (*ef_inputp)(struct ifnet*, struct ether_header *eh, struct mbuf *m); 86 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, 87 struct sockaddr *dst, short *tp, int *hlen); 88 89 #ifdef NETATALK 90 #include <netatalk/at.h> 91 #include <netatalk/at_var.h> 92 #include <netatalk/at_extern.h> 93 94 #define llc_snap_org_code llc_un.type_snap.org_code 95 #define llc_snap_ether_type llc_un.type_snap.ether_type 96 97 extern u_char at_org_code[3]; 98 extern u_char aarp_org_code[3]; 99 #endif /* NETATALK */ 100 101 #include <security/mac/mac_framework.h> 102 103 #ifdef CTASSERT 104 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 105 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 106 #endif 107 108 /* netgraph node hooks for ng_ether(4) */ 109 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 110 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 111 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 112 void (*ng_ether_attach_p)(struct ifnet *ifp); 113 void (*ng_ether_detach_p)(struct ifnet *ifp); 114 115 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 116 117 /* if_bridge(4) support */ 118 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 119 int (*bridge_output_p)(struct ifnet *, struct mbuf *, 120 struct sockaddr *, struct rtentry *); 121 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 122 123 /* if_lagg(4) support */ 124 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 125 126 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 127 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 128 129 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 130 struct sockaddr *); 131 #ifdef VIMAGE 132 static void ether_reassign(struct ifnet *, struct vnet *, char *); 133 #endif 134 135 /* XXX: should be in an arp support file, not here */ 136 static MALLOC_DEFINE(M_ARPCOM, "arpcom", "802.* interface internals"); 137 138 #define ETHER_IS_BROADCAST(addr) \ 139 (bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0) 140 141 #define senderr(e) do { error = (e); goto bad;} while (0) 142 143 #if defined(INET) || defined(INET6) 144 int 145 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, int shared); 146 static VNET_DEFINE(int, ether_ipfw); 147 #define V_ether_ipfw VNET(ether_ipfw) 148 #endif 149 150 151 /* 152 * Ethernet output routine. 153 * Encapsulate a packet of type family for the local net. 154 * Use trailer local net encapsulation if enough data in first 155 * packet leaves a multiple of 512 bytes of data in remainder. 156 */ 157 int 158 ether_output(struct ifnet *ifp, struct mbuf *m, 159 struct sockaddr *dst, struct route *ro) 160 { 161 short type; 162 int error = 0, hdrcmplt = 0; 163 u_char esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 164 struct llentry *lle = NULL; 165 struct rtentry *rt0 = NULL; 166 struct ether_header *eh; 167 struct pf_mtag *t; 168 int loop_copy = 1; 169 int hlen; /* link layer header length */ 170 171 if (ro != NULL) { 172 if (!(m->m_flags & (M_BCAST | M_MCAST))) 173 lle = ro->ro_lle; 174 rt0 = ro->ro_rt; 175 } 176 #ifdef MAC 177 error = mac_ifnet_check_transmit(ifp, m); 178 if (error) 179 senderr(error); 180 #endif 181 182 M_PROFILE(m); 183 if (ifp->if_flags & IFF_MONITOR) 184 senderr(ENETDOWN); 185 if (!((ifp->if_flags & IFF_UP) && 186 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 187 senderr(ENETDOWN); 188 189 hlen = ETHER_HDR_LEN; 190 switch (dst->sa_family) { 191 #ifdef INET 192 case AF_INET: 193 if (lle != NULL && (lle->la_flags & LLE_VALID)) 194 memcpy(edst, &lle->ll_addr.mac16, sizeof(edst)); 195 else 196 error = arpresolve(ifp, rt0, m, dst, edst, &lle); 197 if (error) 198 return (error == EWOULDBLOCK ? 0 : error); 199 type = htons(ETHERTYPE_IP); 200 break; 201 case AF_ARP: 202 { 203 struct arphdr *ah; 204 ah = mtod(m, struct arphdr *); 205 ah->ar_hrd = htons(ARPHRD_ETHER); 206 207 loop_copy = 0; /* if this is for us, don't do it */ 208 209 switch(ntohs(ah->ar_op)) { 210 case ARPOP_REVREQUEST: 211 case ARPOP_REVREPLY: 212 type = htons(ETHERTYPE_REVARP); 213 break; 214 case ARPOP_REQUEST: 215 case ARPOP_REPLY: 216 default: 217 type = htons(ETHERTYPE_ARP); 218 break; 219 } 220 221 if (m->m_flags & M_BCAST) 222 bcopy(ifp->if_broadcastaddr, edst, ETHER_ADDR_LEN); 223 else 224 bcopy(ar_tha(ah), edst, ETHER_ADDR_LEN); 225 226 } 227 break; 228 #endif 229 #ifdef INET6 230 case AF_INET6: 231 if (lle != NULL && (lle->la_flags & LLE_VALID)) 232 memcpy(edst, &lle->ll_addr.mac16, sizeof(edst)); 233 else 234 error = nd6_storelladdr(ifp, m, dst, (u_char *)edst, &lle); 235 if (error) 236 return error; 237 type = htons(ETHERTYPE_IPV6); 238 break; 239 #endif 240 #ifdef IPX 241 case AF_IPX: 242 if (ef_outputp) { 243 error = ef_outputp(ifp, &m, dst, &type, &hlen); 244 if (error) 245 goto bad; 246 } else 247 type = htons(ETHERTYPE_IPX); 248 bcopy((caddr_t)&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host), 249 (caddr_t)edst, sizeof (edst)); 250 break; 251 #endif 252 #ifdef NETATALK 253 case AF_APPLETALK: 254 { 255 struct at_ifaddr *aa; 256 257 if ((aa = at_ifawithnet((struct sockaddr_at *)dst)) == NULL) 258 senderr(EHOSTUNREACH); /* XXX */ 259 if (!aarpresolve(ifp, m, (struct sockaddr_at *)dst, edst)) { 260 ifa_free(&aa->aa_ifa); 261 return (0); 262 } 263 /* 264 * In the phase 2 case, need to prepend an mbuf for the llc header. 265 */ 266 if ( aa->aa_flags & AFA_PHASE2 ) { 267 struct llc llc; 268 269 ifa_free(&aa->aa_ifa); 270 M_PREPEND(m, LLC_SNAPFRAMELEN, M_DONTWAIT); 271 if (m == NULL) 272 senderr(ENOBUFS); 273 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 274 llc.llc_control = LLC_UI; 275 bcopy(at_org_code, llc.llc_snap_org_code, sizeof(at_org_code)); 276 llc.llc_snap_ether_type = htons( ETHERTYPE_AT ); 277 bcopy(&llc, mtod(m, caddr_t), LLC_SNAPFRAMELEN); 278 type = htons(m->m_pkthdr.len); 279 hlen = LLC_SNAPFRAMELEN + ETHER_HDR_LEN; 280 } else { 281 ifa_free(&aa->aa_ifa); 282 type = htons(ETHERTYPE_AT); 283 } 284 break; 285 } 286 #endif /* NETATALK */ 287 288 case pseudo_AF_HDRCMPLT: 289 hdrcmplt = 1; 290 eh = (struct ether_header *)dst->sa_data; 291 (void)memcpy(esrc, eh->ether_shost, sizeof (esrc)); 292 /* FALLTHROUGH */ 293 294 case AF_UNSPEC: 295 loop_copy = 0; /* if this is for us, don't do it */ 296 eh = (struct ether_header *)dst->sa_data; 297 (void)memcpy(edst, eh->ether_dhost, sizeof (edst)); 298 type = eh->ether_type; 299 break; 300 301 default: 302 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 303 senderr(EAFNOSUPPORT); 304 } 305 306 if (lle != NULL && (lle->la_flags & LLE_IFADDR)) { 307 int csum_flags = 0; 308 if (m->m_pkthdr.csum_flags & CSUM_IP) 309 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 310 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 311 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 312 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 313 csum_flags |= CSUM_SCTP_VALID; 314 m->m_pkthdr.csum_flags |= csum_flags; 315 m->m_pkthdr.csum_data = 0xffff; 316 return (if_simloop(ifp, m, dst->sa_family, 0)); 317 } 318 319 /* 320 * Add local net header. If no space in first mbuf, 321 * allocate another. 322 */ 323 M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT); 324 if (m == NULL) 325 senderr(ENOBUFS); 326 eh = mtod(m, struct ether_header *); 327 (void)memcpy(&eh->ether_type, &type, 328 sizeof(eh->ether_type)); 329 (void)memcpy(eh->ether_dhost, edst, sizeof (edst)); 330 if (hdrcmplt) 331 (void)memcpy(eh->ether_shost, esrc, 332 sizeof(eh->ether_shost)); 333 else 334 (void)memcpy(eh->ether_shost, IF_LLADDR(ifp), 335 sizeof(eh->ether_shost)); 336 337 /* 338 * If a simplex interface, and the packet is being sent to our 339 * Ethernet address or a broadcast address, loopback a copy. 340 * XXX To make a simplex device behave exactly like a duplex 341 * device, we should copy in the case of sending to our own 342 * ethernet address (thus letting the original actually appear 343 * on the wire). However, we don't do that here for security 344 * reasons and compatibility with the original behavior. 345 */ 346 if ((ifp->if_flags & IFF_SIMPLEX) && loop_copy && 347 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 348 int csum_flags = 0; 349 350 if (m->m_pkthdr.csum_flags & CSUM_IP) 351 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 352 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 353 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 354 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 355 csum_flags |= CSUM_SCTP_VALID; 356 357 if (m->m_flags & M_BCAST) { 358 struct mbuf *n; 359 360 /* 361 * Because if_simloop() modifies the packet, we need a 362 * writable copy through m_dup() instead of a readonly 363 * one as m_copy[m] would give us. The alternative would 364 * be to modify if_simloop() to handle the readonly mbuf, 365 * but performancewise it is mostly equivalent (trading 366 * extra data copying vs. extra locking). 367 * 368 * XXX This is a local workaround. A number of less 369 * often used kernel parts suffer from the same bug. 370 * See PR kern/105943 for a proposed general solution. 371 */ 372 if ((n = m_dup(m, M_DONTWAIT)) != NULL) { 373 n->m_pkthdr.csum_flags |= csum_flags; 374 if (csum_flags & CSUM_DATA_VALID) 375 n->m_pkthdr.csum_data = 0xffff; 376 (void)if_simloop(ifp, n, dst->sa_family, hlen); 377 } else 378 ifp->if_iqdrops++; 379 } else if (bcmp(eh->ether_dhost, eh->ether_shost, 380 ETHER_ADDR_LEN) == 0) { 381 m->m_pkthdr.csum_flags |= csum_flags; 382 if (csum_flags & CSUM_DATA_VALID) 383 m->m_pkthdr.csum_data = 0xffff; 384 (void) if_simloop(ifp, m, dst->sa_family, hlen); 385 return (0); /* XXX */ 386 } 387 } 388 389 /* 390 * Bridges require special output handling. 391 */ 392 if (ifp->if_bridge) { 393 BRIDGE_OUTPUT(ifp, m, error); 394 return (error); 395 } 396 397 #if defined(INET) || defined(INET6) 398 if (ifp->if_carp && 399 (error = (*carp_output_p)(ifp, m, dst))) 400 goto bad; 401 #endif 402 403 /* Handle ng_ether(4) processing, if any */ 404 if (IFP2AC(ifp)->ac_netgraph != NULL) { 405 KASSERT(ng_ether_output_p != NULL, 406 ("ng_ether_output_p is NULL")); 407 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 408 bad: if (m != NULL) 409 m_freem(m); 410 return (error); 411 } 412 if (m == NULL) 413 return (0); 414 } 415 416 /* Continue with link-layer output */ 417 return ether_output_frame(ifp, m); 418 } 419 420 /* 421 * Ethernet link layer output routine to send a raw frame to the device. 422 * 423 * This assumes that the 14 byte Ethernet header is present and contiguous 424 * in the first mbuf (if BRIDGE'ing). 425 */ 426 int 427 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 428 { 429 #if defined(INET) || defined(INET6) 430 431 if (V_ip_fw_chk_ptr && V_ether_ipfw != 0) { 432 if (ether_ipfw_chk(&m, ifp, 0) == 0) { 433 if (m) { 434 m_freem(m); 435 return EACCES; /* pkt dropped */ 436 } else 437 return 0; /* consumed e.g. in a pipe */ 438 } 439 } 440 #endif 441 442 /* 443 * Queue message on interface, update output statistics if 444 * successful, and start output if interface not yet active. 445 */ 446 return ((ifp->if_transmit)(ifp, m)); 447 } 448 449 #if defined(INET) || defined(INET6) 450 /* 451 * ipfw processing for ethernet packets (in and out). 452 * The second parameter is NULL from ether_demux, and ifp from 453 * ether_output_frame. 454 */ 455 int 456 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, int shared) 457 { 458 struct ether_header *eh; 459 struct ether_header save_eh; 460 struct mbuf *m; 461 int i; 462 struct ip_fw_args args; 463 struct m_tag *mtag; 464 465 /* fetch start point from rule, if any */ 466 mtag = m_tag_locate(*m0, MTAG_IPFW_RULE, 0, NULL); 467 if (mtag == NULL) { 468 args.rule.slot = 0; 469 } else { 470 /* dummynet packet, already partially processed */ 471 struct ipfw_rule_ref *r; 472 473 /* XXX can we free it after use ? */ 474 mtag->m_tag_id = PACKET_TAG_NONE; 475 r = (struct ipfw_rule_ref *)(mtag + 1); 476 if (r->info & IPFW_ONEPASS) 477 return (1); 478 args.rule = *r; 479 } 480 481 /* 482 * I need some amt of data to be contiguous, and in case others need 483 * the packet (shared==1) also better be in the first mbuf. 484 */ 485 m = *m0; 486 i = min( m->m_pkthdr.len, max_protohdr); 487 if ( shared || m->m_len < i) { 488 m = m_pullup(m, i); 489 if (m == NULL) { 490 *m0 = m; 491 return 0; 492 } 493 } 494 eh = mtod(m, struct ether_header *); 495 save_eh = *eh; /* save copy for restore below */ 496 m_adj(m, ETHER_HDR_LEN); /* strip ethernet header */ 497 498 args.m = m; /* the packet we are looking at */ 499 args.oif = dst; /* destination, if any */ 500 args.next_hop = NULL; /* we do not support forward yet */ 501 args.next_hop6 = NULL; /* we do not support forward yet */ 502 args.eh = &save_eh; /* MAC header for bridged/MAC packets */ 503 args.inp = NULL; /* used by ipfw uid/gid/jail rules */ 504 i = V_ip_fw_chk_ptr(&args); 505 m = args.m; 506 if (m != NULL) { 507 /* 508 * Restore Ethernet header, as needed, in case the 509 * mbuf chain was replaced by ipfw. 510 */ 511 M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT); 512 if (m == NULL) { 513 *m0 = m; 514 return 0; 515 } 516 if (eh != mtod(m, struct ether_header *)) 517 bcopy(&save_eh, mtod(m, struct ether_header *), 518 ETHER_HDR_LEN); 519 } 520 *m0 = m; 521 522 if (i == IP_FW_DENY) /* drop */ 523 return 0; 524 525 KASSERT(m != NULL, ("ether_ipfw_chk: m is NULL")); 526 527 if (i == IP_FW_PASS) /* a PASS rule. */ 528 return 1; 529 530 if (ip_dn_io_ptr && (i == IP_FW_DUMMYNET)) { 531 int dir; 532 /* 533 * Pass the pkt to dummynet, which consumes it. 534 * If shared, make a copy and keep the original. 535 */ 536 if (shared) { 537 m = m_copypacket(m, M_DONTWAIT); 538 if (m == NULL) 539 return 0; 540 } else { 541 /* 542 * Pass the original to dummynet and 543 * nothing back to the caller 544 */ 545 *m0 = NULL ; 546 } 547 dir = PROTO_LAYER2 | (dst ? DIR_OUT : DIR_IN); 548 ip_dn_io_ptr(&m, dir, &args); 549 return 0; 550 } 551 /* 552 * XXX at some point add support for divert/forward actions. 553 * If none of the above matches, we have to drop the pkt. 554 */ 555 return 0; 556 } 557 #endif 558 559 /* 560 * Process a received Ethernet packet; the packet is in the 561 * mbuf chain m with the ethernet header at the front. 562 */ 563 static void 564 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 565 { 566 struct ether_header *eh; 567 u_short etype; 568 569 if ((ifp->if_flags & IFF_UP) == 0) { 570 m_freem(m); 571 return; 572 } 573 #ifdef DIAGNOSTIC 574 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 575 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 576 m_freem(m); 577 return; 578 } 579 #endif 580 /* 581 * Do consistency checks to verify assumptions 582 * made by code past this point. 583 */ 584 if ((m->m_flags & M_PKTHDR) == 0) { 585 if_printf(ifp, "discard frame w/o packet header\n"); 586 ifp->if_ierrors++; 587 m_freem(m); 588 return; 589 } 590 if (m->m_len < ETHER_HDR_LEN) { 591 /* XXX maybe should pullup? */ 592 if_printf(ifp, "discard frame w/o leading ethernet " 593 "header (len %u pkt len %u)\n", 594 m->m_len, m->m_pkthdr.len); 595 ifp->if_ierrors++; 596 m_freem(m); 597 return; 598 } 599 eh = mtod(m, struct ether_header *); 600 etype = ntohs(eh->ether_type); 601 if (m->m_pkthdr.rcvif == NULL) { 602 if_printf(ifp, "discard frame w/o interface pointer\n"); 603 ifp->if_ierrors++; 604 m_freem(m); 605 return; 606 } 607 #ifdef DIAGNOSTIC 608 if (m->m_pkthdr.rcvif != ifp) { 609 if_printf(ifp, "Warning, frame marked as received on %s\n", 610 m->m_pkthdr.rcvif->if_xname); 611 } 612 #endif 613 614 CURVNET_SET_QUIET(ifp->if_vnet); 615 616 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 617 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 618 m->m_flags |= M_BCAST; 619 else 620 m->m_flags |= M_MCAST; 621 ifp->if_imcasts++; 622 } 623 624 #ifdef MAC 625 /* 626 * Tag the mbuf with an appropriate MAC label before any other 627 * consumers can get to it. 628 */ 629 mac_ifnet_create_mbuf(ifp, m); 630 #endif 631 632 /* 633 * Give bpf a chance at the packet. 634 */ 635 ETHER_BPF_MTAP(ifp, m); 636 637 /* 638 * If the CRC is still on the packet, trim it off. We do this once 639 * and once only in case we are re-entered. Nothing else on the 640 * Ethernet receive path expects to see the FCS. 641 */ 642 if (m->m_flags & M_HASFCS) { 643 m_adj(m, -ETHER_CRC_LEN); 644 m->m_flags &= ~M_HASFCS; 645 } 646 647 ifp->if_ibytes += m->m_pkthdr.len; 648 649 /* Allow monitor mode to claim this frame, after stats are updated. */ 650 if (ifp->if_flags & IFF_MONITOR) { 651 m_freem(m); 652 CURVNET_RESTORE(); 653 return; 654 } 655 656 /* Handle input from a lagg(4) port */ 657 if (ifp->if_type == IFT_IEEE8023ADLAG) { 658 KASSERT(lagg_input_p != NULL, 659 ("%s: if_lagg not loaded!", __func__)); 660 m = (*lagg_input_p)(ifp, m); 661 if (m != NULL) 662 ifp = m->m_pkthdr.rcvif; 663 else { 664 CURVNET_RESTORE(); 665 return; 666 } 667 } 668 669 /* 670 * If the hardware did not process an 802.1Q tag, do this now, 671 * to allow 802.1P priority frames to be passed to the main input 672 * path correctly. 673 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 674 */ 675 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 676 struct ether_vlan_header *evl; 677 678 if (m->m_len < sizeof(*evl) && 679 (m = m_pullup(m, sizeof(*evl))) == NULL) { 680 #ifdef DIAGNOSTIC 681 if_printf(ifp, "cannot pullup VLAN header\n"); 682 #endif 683 ifp->if_ierrors++; 684 m_freem(m); 685 CURVNET_RESTORE(); 686 return; 687 } 688 689 evl = mtod(m, struct ether_vlan_header *); 690 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 691 m->m_flags |= M_VLANTAG; 692 693 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 694 ETHER_HDR_LEN - ETHER_TYPE_LEN); 695 m_adj(m, ETHER_VLAN_ENCAP_LEN); 696 } 697 698 M_SETFIB(m, ifp->if_fib); 699 700 /* Allow ng_ether(4) to claim this frame. */ 701 if (IFP2AC(ifp)->ac_netgraph != NULL) { 702 KASSERT(ng_ether_input_p != NULL, 703 ("%s: ng_ether_input_p is NULL", __func__)); 704 m->m_flags &= ~M_PROMISC; 705 (*ng_ether_input_p)(ifp, &m); 706 if (m == NULL) { 707 CURVNET_RESTORE(); 708 return; 709 } 710 } 711 712 /* 713 * Allow if_bridge(4) to claim this frame. 714 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 715 * and the frame should be delivered locally. 716 */ 717 if (ifp->if_bridge != NULL) { 718 m->m_flags &= ~M_PROMISC; 719 BRIDGE_INPUT(ifp, m); 720 if (m == NULL) { 721 CURVNET_RESTORE(); 722 return; 723 } 724 } 725 726 #if defined(INET) || defined(INET6) 727 /* 728 * Clear M_PROMISC on frame so that carp(4) will see it when the 729 * mbuf flows up to Layer 3. 730 * FreeBSD's implementation of carp(4) uses the inprotosw 731 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 732 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 733 * is outside the scope of the M_PROMISC test below. 734 * TODO: Maintain a hash table of ethernet addresses other than 735 * ether_dhost which may be active on this ifp. 736 */ 737 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 738 m->m_flags &= ~M_PROMISC; 739 } else 740 #endif 741 { 742 /* 743 * If the frame received was not for our MAC address, set the 744 * M_PROMISC flag on the mbuf chain. The frame may need to 745 * be seen by the rest of the Ethernet input path in case of 746 * re-entry (e.g. bridge, vlan, netgraph) but should not be 747 * seen by upper protocol layers. 748 */ 749 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 750 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 751 m->m_flags |= M_PROMISC; 752 } 753 754 /* First chunk of an mbuf contains good entropy */ 755 if (harvest.ethernet) 756 random_harvest(m, 16, 3, 0, RANDOM_NET); 757 758 ether_demux(ifp, m); 759 CURVNET_RESTORE(); 760 } 761 762 /* 763 * Ethernet input dispatch; by default, direct dispatch here regardless of 764 * global configuration. 765 */ 766 static void 767 ether_nh_input(struct mbuf *m) 768 { 769 770 ether_input_internal(m->m_pkthdr.rcvif, m); 771 } 772 773 static struct netisr_handler ether_nh = { 774 .nh_name = "ether", 775 .nh_handler = ether_nh_input, 776 .nh_proto = NETISR_ETHER, 777 .nh_policy = NETISR_POLICY_SOURCE, 778 .nh_dispatch = NETISR_DISPATCH_DIRECT, 779 }; 780 781 static void 782 ether_init(__unused void *arg) 783 { 784 785 netisr_register(ðer_nh); 786 } 787 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 788 789 static void 790 ether_input(struct ifnet *ifp, struct mbuf *m) 791 { 792 793 /* 794 * We will rely on rcvif being set properly in the deferred context, 795 * so assert it is correct here. 796 */ 797 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch", __func__)); 798 799 netisr_dispatch(NETISR_ETHER, m); 800 } 801 802 /* 803 * Upper layer processing for a received Ethernet packet. 804 */ 805 void 806 ether_demux(struct ifnet *ifp, struct mbuf *m) 807 { 808 struct ether_header *eh; 809 int isr; 810 u_short ether_type; 811 #if defined(NETATALK) 812 struct llc *l; 813 #endif 814 815 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 816 817 #if defined(INET) || defined(INET6) 818 /* 819 * Allow dummynet and/or ipfw to claim the frame. 820 * Do not do this for PROMISC frames in case we are re-entered. 821 */ 822 if (V_ip_fw_chk_ptr && V_ether_ipfw != 0 && !(m->m_flags & M_PROMISC)) { 823 if (ether_ipfw_chk(&m, NULL, 0) == 0) { 824 if (m) 825 m_freem(m); /* dropped; free mbuf chain */ 826 return; /* consumed */ 827 } 828 } 829 #endif 830 eh = mtod(m, struct ether_header *); 831 ether_type = ntohs(eh->ether_type); 832 833 /* 834 * If this frame has a VLAN tag other than 0, call vlan_input() 835 * if its module is loaded. Otherwise, drop. 836 */ 837 if ((m->m_flags & M_VLANTAG) && 838 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 839 if (ifp->if_vlantrunk == NULL) { 840 ifp->if_noproto++; 841 m_freem(m); 842 return; 843 } 844 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 845 __func__)); 846 /* Clear before possibly re-entering ether_input(). */ 847 m->m_flags &= ~M_PROMISC; 848 (*vlan_input_p)(ifp, m); 849 return; 850 } 851 852 /* 853 * Pass promiscuously received frames to the upper layer if the user 854 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 855 */ 856 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 857 m_freem(m); 858 return; 859 } 860 861 /* 862 * Reset layer specific mbuf flags to avoid confusing upper layers. 863 * Strip off Ethernet header. 864 */ 865 m->m_flags &= ~M_VLANTAG; 866 m->m_flags &= ~(M_PROTOFLAGS); 867 m_adj(m, ETHER_HDR_LEN); 868 869 /* 870 * Dispatch frame to upper layer. 871 */ 872 switch (ether_type) { 873 #ifdef INET 874 case ETHERTYPE_IP: 875 if ((m = ip_fastforward(m)) == NULL) 876 return; 877 isr = NETISR_IP; 878 break; 879 880 case ETHERTYPE_ARP: 881 if (ifp->if_flags & IFF_NOARP) { 882 /* Discard packet if ARP is disabled on interface */ 883 m_freem(m); 884 return; 885 } 886 isr = NETISR_ARP; 887 break; 888 #endif 889 #ifdef IPX 890 case ETHERTYPE_IPX: 891 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) 892 return; 893 isr = NETISR_IPX; 894 break; 895 #endif 896 #ifdef INET6 897 case ETHERTYPE_IPV6: 898 isr = NETISR_IPV6; 899 break; 900 #endif 901 #ifdef NETATALK 902 case ETHERTYPE_AT: 903 isr = NETISR_ATALK1; 904 break; 905 case ETHERTYPE_AARP: 906 isr = NETISR_AARP; 907 break; 908 #endif /* NETATALK */ 909 default: 910 #ifdef IPX 911 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) 912 return; 913 #endif /* IPX */ 914 #if defined(NETATALK) 915 if (ether_type > ETHERMTU) 916 goto discard; 917 l = mtod(m, struct llc *); 918 if (l->llc_dsap == LLC_SNAP_LSAP && 919 l->llc_ssap == LLC_SNAP_LSAP && 920 l->llc_control == LLC_UI) { 921 if (bcmp(&(l->llc_snap_org_code)[0], at_org_code, 922 sizeof(at_org_code)) == 0 && 923 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AT) { 924 m_adj(m, LLC_SNAPFRAMELEN); 925 isr = NETISR_ATALK2; 926 break; 927 } 928 if (bcmp(&(l->llc_snap_org_code)[0], aarp_org_code, 929 sizeof(aarp_org_code)) == 0 && 930 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AARP) { 931 m_adj(m, LLC_SNAPFRAMELEN); 932 isr = NETISR_AARP; 933 break; 934 } 935 } 936 #endif /* NETATALK */ 937 goto discard; 938 } 939 netisr_dispatch(isr, m); 940 return; 941 942 discard: 943 /* 944 * Packet is to be discarded. If netgraph is present, 945 * hand the packet to it for last chance processing; 946 * otherwise dispose of it. 947 */ 948 if (IFP2AC(ifp)->ac_netgraph != NULL) { 949 KASSERT(ng_ether_input_orphan_p != NULL, 950 ("ng_ether_input_orphan_p is NULL")); 951 /* 952 * Put back the ethernet header so netgraph has a 953 * consistent view of inbound packets. 954 */ 955 M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT); 956 (*ng_ether_input_orphan_p)(ifp, m); 957 return; 958 } 959 m_freem(m); 960 } 961 962 /* 963 * Convert Ethernet address to printable (loggable) representation. 964 * This routine is for compatibility; it's better to just use 965 * 966 * printf("%6D", <pointer to address>, ":"); 967 * 968 * since there's no static buffer involved. 969 */ 970 char * 971 ether_sprintf(const u_char *ap) 972 { 973 static char etherbuf[18]; 974 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 975 return (etherbuf); 976 } 977 978 /* 979 * Perform common duties while attaching to interface list 980 */ 981 void 982 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 983 { 984 int i; 985 struct ifaddr *ifa; 986 struct sockaddr_dl *sdl; 987 988 ifp->if_addrlen = ETHER_ADDR_LEN; 989 ifp->if_hdrlen = ETHER_HDR_LEN; 990 if_attach(ifp); 991 ifp->if_mtu = ETHERMTU; 992 ifp->if_output = ether_output; 993 ifp->if_input = ether_input; 994 ifp->if_resolvemulti = ether_resolvemulti; 995 #ifdef VIMAGE 996 ifp->if_reassign = ether_reassign; 997 #endif 998 if (ifp->if_baudrate == 0) 999 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 1000 ifp->if_broadcastaddr = etherbroadcastaddr; 1001 1002 ifa = ifp->if_addr; 1003 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 1004 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1005 sdl->sdl_type = IFT_ETHER; 1006 sdl->sdl_alen = ifp->if_addrlen; 1007 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 1008 1009 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 1010 if (ng_ether_attach_p != NULL) 1011 (*ng_ether_attach_p)(ifp); 1012 1013 /* Announce Ethernet MAC address if non-zero. */ 1014 for (i = 0; i < ifp->if_addrlen; i++) 1015 if (lla[i] != 0) 1016 break; 1017 if (i != ifp->if_addrlen) 1018 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 1019 } 1020 1021 /* 1022 * Perform common duties while detaching an Ethernet interface 1023 */ 1024 void 1025 ether_ifdetach(struct ifnet *ifp) 1026 { 1027 if (IFP2AC(ifp)->ac_netgraph != NULL) { 1028 KASSERT(ng_ether_detach_p != NULL, 1029 ("ng_ether_detach_p is NULL")); 1030 (*ng_ether_detach_p)(ifp); 1031 } 1032 1033 bpfdetach(ifp); 1034 if_detach(ifp); 1035 } 1036 1037 #ifdef VIMAGE 1038 void 1039 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 1040 { 1041 1042 if (IFP2AC(ifp)->ac_netgraph != NULL) { 1043 KASSERT(ng_ether_detach_p != NULL, 1044 ("ng_ether_detach_p is NULL")); 1045 (*ng_ether_detach_p)(ifp); 1046 } 1047 1048 if (ng_ether_attach_p != NULL) { 1049 CURVNET_SET_QUIET(new_vnet); 1050 (*ng_ether_attach_p)(ifp); 1051 CURVNET_RESTORE(); 1052 } 1053 } 1054 #endif 1055 1056 SYSCTL_DECL(_net_link); 1057 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 1058 #if defined(INET) || defined(INET6) 1059 SYSCTL_VNET_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW, 1060 &VNET_NAME(ether_ipfw), 0, "Pass ether pkts through firewall"); 1061 #endif 1062 1063 #if 0 1064 /* 1065 * This is for reference. We have a table-driven version 1066 * of the little-endian crc32 generator, which is faster 1067 * than the double-loop. 1068 */ 1069 uint32_t 1070 ether_crc32_le(const uint8_t *buf, size_t len) 1071 { 1072 size_t i; 1073 uint32_t crc; 1074 int bit; 1075 uint8_t data; 1076 1077 crc = 0xffffffff; /* initial value */ 1078 1079 for (i = 0; i < len; i++) { 1080 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1081 carry = (crc ^ data) & 1; 1082 crc >>= 1; 1083 if (carry) 1084 crc = (crc ^ ETHER_CRC_POLY_LE); 1085 } 1086 } 1087 1088 return (crc); 1089 } 1090 #else 1091 uint32_t 1092 ether_crc32_le(const uint8_t *buf, size_t len) 1093 { 1094 static const uint32_t crctab[] = { 1095 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1096 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1097 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1098 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1099 }; 1100 size_t i; 1101 uint32_t crc; 1102 1103 crc = 0xffffffff; /* initial value */ 1104 1105 for (i = 0; i < len; i++) { 1106 crc ^= buf[i]; 1107 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1108 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1109 } 1110 1111 return (crc); 1112 } 1113 #endif 1114 1115 uint32_t 1116 ether_crc32_be(const uint8_t *buf, size_t len) 1117 { 1118 size_t i; 1119 uint32_t crc, carry; 1120 int bit; 1121 uint8_t data; 1122 1123 crc = 0xffffffff; /* initial value */ 1124 1125 for (i = 0; i < len; i++) { 1126 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1127 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 1128 crc <<= 1; 1129 if (carry) 1130 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1131 } 1132 } 1133 1134 return (crc); 1135 } 1136 1137 int 1138 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1139 { 1140 struct ifaddr *ifa = (struct ifaddr *) data; 1141 struct ifreq *ifr = (struct ifreq *) data; 1142 int error = 0; 1143 1144 switch (command) { 1145 case SIOCSIFADDR: 1146 ifp->if_flags |= IFF_UP; 1147 1148 switch (ifa->ifa_addr->sa_family) { 1149 #ifdef INET 1150 case AF_INET: 1151 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1152 arp_ifinit(ifp, ifa); 1153 break; 1154 #endif 1155 #ifdef IPX 1156 /* 1157 * XXX - This code is probably wrong 1158 */ 1159 case AF_IPX: 1160 { 1161 struct ipx_addr *ina = &(IA_SIPX(ifa)->sipx_addr); 1162 1163 if (ipx_nullhost(*ina)) 1164 ina->x_host = 1165 *(union ipx_host *) 1166 IF_LLADDR(ifp); 1167 else { 1168 bcopy((caddr_t) ina->x_host.c_host, 1169 (caddr_t) IF_LLADDR(ifp), 1170 ETHER_ADDR_LEN); 1171 } 1172 1173 /* 1174 * Set new address 1175 */ 1176 ifp->if_init(ifp->if_softc); 1177 break; 1178 } 1179 #endif 1180 default: 1181 ifp->if_init(ifp->if_softc); 1182 break; 1183 } 1184 break; 1185 1186 case SIOCGIFADDR: 1187 { 1188 struct sockaddr *sa; 1189 1190 sa = (struct sockaddr *) & ifr->ifr_data; 1191 bcopy(IF_LLADDR(ifp), 1192 (caddr_t) sa->sa_data, ETHER_ADDR_LEN); 1193 } 1194 break; 1195 1196 case SIOCSIFMTU: 1197 /* 1198 * Set the interface MTU. 1199 */ 1200 if (ifr->ifr_mtu > ETHERMTU) { 1201 error = EINVAL; 1202 } else { 1203 ifp->if_mtu = ifr->ifr_mtu; 1204 } 1205 break; 1206 default: 1207 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1208 break; 1209 } 1210 return (error); 1211 } 1212 1213 static int 1214 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1215 struct sockaddr *sa) 1216 { 1217 struct sockaddr_dl *sdl; 1218 #ifdef INET 1219 struct sockaddr_in *sin; 1220 #endif 1221 #ifdef INET6 1222 struct sockaddr_in6 *sin6; 1223 #endif 1224 u_char *e_addr; 1225 1226 switch(sa->sa_family) { 1227 case AF_LINK: 1228 /* 1229 * No mapping needed. Just check that it's a valid MC address. 1230 */ 1231 sdl = (struct sockaddr_dl *)sa; 1232 e_addr = LLADDR(sdl); 1233 if (!ETHER_IS_MULTICAST(e_addr)) 1234 return EADDRNOTAVAIL; 1235 *llsa = 0; 1236 return 0; 1237 1238 #ifdef INET 1239 case AF_INET: 1240 sin = (struct sockaddr_in *)sa; 1241 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1242 return EADDRNOTAVAIL; 1243 sdl = malloc(sizeof *sdl, M_IFMADDR, 1244 M_NOWAIT|M_ZERO); 1245 if (sdl == NULL) 1246 return ENOMEM; 1247 sdl->sdl_len = sizeof *sdl; 1248 sdl->sdl_family = AF_LINK; 1249 sdl->sdl_index = ifp->if_index; 1250 sdl->sdl_type = IFT_ETHER; 1251 sdl->sdl_alen = ETHER_ADDR_LEN; 1252 e_addr = LLADDR(sdl); 1253 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1254 *llsa = (struct sockaddr *)sdl; 1255 return 0; 1256 #endif 1257 #ifdef INET6 1258 case AF_INET6: 1259 sin6 = (struct sockaddr_in6 *)sa; 1260 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1261 /* 1262 * An IP6 address of 0 means listen to all 1263 * of the Ethernet multicast address used for IP6. 1264 * (This is used for multicast routers.) 1265 */ 1266 ifp->if_flags |= IFF_ALLMULTI; 1267 *llsa = 0; 1268 return 0; 1269 } 1270 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1271 return EADDRNOTAVAIL; 1272 sdl = malloc(sizeof *sdl, M_IFMADDR, 1273 M_NOWAIT|M_ZERO); 1274 if (sdl == NULL) 1275 return (ENOMEM); 1276 sdl->sdl_len = sizeof *sdl; 1277 sdl->sdl_family = AF_LINK; 1278 sdl->sdl_index = ifp->if_index; 1279 sdl->sdl_type = IFT_ETHER; 1280 sdl->sdl_alen = ETHER_ADDR_LEN; 1281 e_addr = LLADDR(sdl); 1282 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1283 *llsa = (struct sockaddr *)sdl; 1284 return 0; 1285 #endif 1286 1287 default: 1288 /* 1289 * Well, the text isn't quite right, but it's the name 1290 * that counts... 1291 */ 1292 return EAFNOSUPPORT; 1293 } 1294 } 1295 1296 static void* 1297 ether_alloc(u_char type, struct ifnet *ifp) 1298 { 1299 struct arpcom *ac; 1300 1301 ac = malloc(sizeof(struct arpcom), M_ARPCOM, M_WAITOK | M_ZERO); 1302 ac->ac_ifp = ifp; 1303 1304 return (ac); 1305 } 1306 1307 static void 1308 ether_free(void *com, u_char type) 1309 { 1310 1311 free(com, M_ARPCOM); 1312 } 1313 1314 static int 1315 ether_modevent(module_t mod, int type, void *data) 1316 { 1317 1318 switch (type) { 1319 case MOD_LOAD: 1320 if_register_com_alloc(IFT_ETHER, ether_alloc, ether_free); 1321 break; 1322 case MOD_UNLOAD: 1323 if_deregister_com_alloc(IFT_ETHER); 1324 break; 1325 default: 1326 return EOPNOTSUPP; 1327 } 1328 1329 return (0); 1330 } 1331 1332 static moduledata_t ether_mod = { 1333 "ether", 1334 ether_modevent, 1335 0 1336 }; 1337 1338 void 1339 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1340 { 1341 struct ether_vlan_header vlan; 1342 struct mbuf mv, mb; 1343 1344 KASSERT((m->m_flags & M_VLANTAG) != 0, 1345 ("%s: vlan information not present", __func__)); 1346 KASSERT(m->m_len >= sizeof(struct ether_header), 1347 ("%s: mbuf not large enough for header", __func__)); 1348 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1349 vlan.evl_proto = vlan.evl_encap_proto; 1350 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1351 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1352 m->m_len -= sizeof(struct ether_header); 1353 m->m_data += sizeof(struct ether_header); 1354 /* 1355 * If a data link has been supplied by the caller, then we will need to 1356 * re-create a stack allocated mbuf chain with the following structure: 1357 * 1358 * (1) mbuf #1 will contain the supplied data link 1359 * (2) mbuf #2 will contain the vlan header 1360 * (3) mbuf #3 will contain the original mbuf's packet data 1361 * 1362 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1363 */ 1364 if (data != NULL) { 1365 mv.m_next = m; 1366 mv.m_data = (caddr_t)&vlan; 1367 mv.m_len = sizeof(vlan); 1368 mb.m_next = &mv; 1369 mb.m_data = data; 1370 mb.m_len = dlen; 1371 bpf_mtap(bp, &mb); 1372 } else 1373 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1374 m->m_len += sizeof(struct ether_header); 1375 m->m_data -= sizeof(struct ether_header); 1376 } 1377 1378 struct mbuf * 1379 ether_vlanencap(struct mbuf *m, uint16_t tag) 1380 { 1381 struct ether_vlan_header *evl; 1382 1383 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT); 1384 if (m == NULL) 1385 return (NULL); 1386 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1387 1388 if (m->m_len < sizeof(*evl)) { 1389 m = m_pullup(m, sizeof(*evl)); 1390 if (m == NULL) 1391 return (NULL); 1392 } 1393 1394 /* 1395 * Transform the Ethernet header into an Ethernet header 1396 * with 802.1Q encapsulation. 1397 */ 1398 evl = mtod(m, struct ether_vlan_header *); 1399 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1400 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1401 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1402 evl->evl_tag = htons(tag); 1403 return (m); 1404 } 1405 1406 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1407 MODULE_VERSION(ether, 1); 1408