xref: /freebsd/sys/net/if_ethersubr.c (revision c07d6445eb89d9dd3950361b065b7bd110e3a043)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
32  * $FreeBSD$
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 #include "opt_netgraph.h"
38 #include "opt_mbuf_profiling.h"
39 #include "opt_rss.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/devctl.h>
44 #include <sys/eventhandler.h>
45 #include <sys/jail.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/module.h>
51 #include <sys/msan.h>
52 #include <sys/proc.h>
53 #include <sys/priv.h>
54 #include <sys/random.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <sys/uuid.h>
59 
60 #include <net/ieee_oui.h>
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_arp.h>
64 #include <net/netisr.h>
65 #include <net/route.h>
66 #include <net/if_llc.h>
67 #include <net/if_dl.h>
68 #include <net/if_types.h>
69 #include <net/bpf.h>
70 #include <net/ethernet.h>
71 #include <net/if_bridgevar.h>
72 #include <net/if_vlan_var.h>
73 #include <net/if_llatbl.h>
74 #include <net/pfil.h>
75 #include <net/rss_config.h>
76 #include <net/vnet.h>
77 
78 #include <netpfil/pf/pf_mtag.h>
79 
80 #if defined(INET) || defined(INET6)
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #include <netinet/ip_carp.h>
85 #include <netinet/ip_var.h>
86 #endif
87 #ifdef INET6
88 #include <netinet6/nd6.h>
89 #endif
90 #include <security/mac/mac_framework.h>
91 
92 #include <crypto/sha1.h>
93 
94 #ifdef CTASSERT
95 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
96 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
97 #endif
98 
99 VNET_DEFINE(pfil_head_t, link_pfil_head);	/* Packet filter hooks */
100 
101 /* netgraph node hooks for ng_ether(4) */
102 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
103 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
104 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
105 void	(*ng_ether_attach_p)(struct ifnet *ifp);
106 void	(*ng_ether_detach_p)(struct ifnet *ifp);
107 
108 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
109 
110 /* if_bridge(4) support */
111 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
112 
113 /* if_lagg(4) support */
114 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
115 
116 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
117 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
118 
119 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
120 		struct sockaddr *);
121 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
122 
123 #define senderr(e) do { error = (e); goto bad;} while (0)
124 
125 static void
126 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
127 {
128 	int csum_flags = 0;
129 
130 	if (src->m_pkthdr.csum_flags & CSUM_IP)
131 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
132 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
133 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
134 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
135 		csum_flags |= CSUM_SCTP_VALID;
136 	dst->m_pkthdr.csum_flags |= csum_flags;
137 	if (csum_flags & CSUM_DATA_VALID)
138 		dst->m_pkthdr.csum_data = 0xffff;
139 }
140 
141 /*
142  * Handle link-layer encapsulation requests.
143  */
144 static int
145 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
146 {
147 	struct ether_header *eh;
148 	struct arphdr *ah;
149 	uint16_t etype;
150 	const u_char *lladdr;
151 
152 	if (req->rtype != IFENCAP_LL)
153 		return (EOPNOTSUPP);
154 
155 	if (req->bufsize < ETHER_HDR_LEN)
156 		return (ENOMEM);
157 
158 	eh = (struct ether_header *)req->buf;
159 	lladdr = req->lladdr;
160 	req->lladdr_off = 0;
161 
162 	switch (req->family) {
163 	case AF_INET:
164 		etype = htons(ETHERTYPE_IP);
165 		break;
166 	case AF_INET6:
167 		etype = htons(ETHERTYPE_IPV6);
168 		break;
169 	case AF_ARP:
170 		ah = (struct arphdr *)req->hdata;
171 		ah->ar_hrd = htons(ARPHRD_ETHER);
172 
173 		switch(ntohs(ah->ar_op)) {
174 		case ARPOP_REVREQUEST:
175 		case ARPOP_REVREPLY:
176 			etype = htons(ETHERTYPE_REVARP);
177 			break;
178 		case ARPOP_REQUEST:
179 		case ARPOP_REPLY:
180 		default:
181 			etype = htons(ETHERTYPE_ARP);
182 			break;
183 		}
184 
185 		if (req->flags & IFENCAP_FLAG_BROADCAST)
186 			lladdr = ifp->if_broadcastaddr;
187 		break;
188 	default:
189 		return (EAFNOSUPPORT);
190 	}
191 
192 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
193 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
194 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
195 	req->bufsize = sizeof(struct ether_header);
196 
197 	return (0);
198 }
199 
200 static int
201 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
202 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
203 	uint32_t *pflags, struct llentry **plle)
204 {
205 	uint32_t lleflags = 0;
206 	int error = 0;
207 #if defined(INET) || defined(INET6)
208 	struct ether_header *eh = (struct ether_header *)phdr;
209 	uint16_t etype;
210 #endif
211 
212 	if (plle)
213 		*plle = NULL;
214 
215 	switch (dst->sa_family) {
216 #ifdef INET
217 	case AF_INET:
218 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
219 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
220 			    plle);
221 		else {
222 			if (m->m_flags & M_BCAST)
223 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
224 				    ETHER_ADDR_LEN);
225 			else {
226 				const struct in_addr *a;
227 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
228 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
229 			}
230 			etype = htons(ETHERTYPE_IP);
231 			memcpy(&eh->ether_type, &etype, sizeof(etype));
232 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
233 		}
234 		break;
235 #endif
236 #ifdef INET6
237 	case AF_INET6:
238 		if ((m->m_flags & M_MCAST) == 0) {
239 			int af = RO_GET_FAMILY(ro, dst);
240 			error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr,
241 			    &lleflags, plle);
242 		} else {
243 			const struct in6_addr *a6;
244 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
245 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
246 			etype = htons(ETHERTYPE_IPV6);
247 			memcpy(&eh->ether_type, &etype, sizeof(etype));
248 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
249 		}
250 		break;
251 #endif
252 	default:
253 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
254 		if (m != NULL)
255 			m_freem(m);
256 		return (EAFNOSUPPORT);
257 	}
258 
259 	if (error == EHOSTDOWN) {
260 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
261 			error = EHOSTUNREACH;
262 	}
263 
264 	if (error != 0)
265 		return (error);
266 
267 	*pflags = RT_MAY_LOOP;
268 	if (lleflags & LLE_IFADDR)
269 		*pflags |= RT_L2_ME;
270 
271 	return (0);
272 }
273 
274 /*
275  * Ethernet output routine.
276  * Encapsulate a packet of type family for the local net.
277  * Use trailer local net encapsulation if enough data in first
278  * packet leaves a multiple of 512 bytes of data in remainder.
279  */
280 int
281 ether_output(struct ifnet *ifp, struct mbuf *m,
282 	const struct sockaddr *dst, struct route *ro)
283 {
284 	int error = 0;
285 	char linkhdr[ETHER_HDR_LEN], *phdr;
286 	struct ether_header *eh;
287 	struct pf_mtag *t;
288 	bool loop_copy;
289 	int hlen;	/* link layer header length */
290 	uint32_t pflags;
291 	struct llentry *lle = NULL;
292 	int addref = 0;
293 
294 	phdr = NULL;
295 	pflags = 0;
296 	if (ro != NULL) {
297 		/* XXX BPF uses ro_prepend */
298 		if (ro->ro_prepend != NULL) {
299 			phdr = ro->ro_prepend;
300 			hlen = ro->ro_plen;
301 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
302 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
303 				lle = ro->ro_lle;
304 				if (lle != NULL &&
305 				    (lle->la_flags & LLE_VALID) == 0) {
306 					LLE_FREE(lle);
307 					lle = NULL;	/* redundant */
308 					ro->ro_lle = NULL;
309 				}
310 				if (lle == NULL) {
311 					/* if we lookup, keep cache */
312 					addref = 1;
313 				} else
314 					/*
315 					 * Notify LLE code that
316 					 * the entry was used
317 					 * by datapath.
318 					 */
319 					llentry_provide_feedback(lle);
320 			}
321 			if (lle != NULL) {
322 				phdr = lle->r_linkdata;
323 				hlen = lle->r_hdrlen;
324 				pflags = lle->r_flags;
325 			}
326 		}
327 	}
328 
329 #ifdef MAC
330 	error = mac_ifnet_check_transmit(ifp, m);
331 	if (error)
332 		senderr(error);
333 #endif
334 
335 	M_PROFILE(m);
336 	if (ifp->if_flags & IFF_MONITOR)
337 		senderr(ENETDOWN);
338 	if (!((ifp->if_flags & IFF_UP) &&
339 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
340 		senderr(ENETDOWN);
341 
342 	if (phdr == NULL) {
343 		/* No prepend data supplied. Try to calculate ourselves. */
344 		phdr = linkhdr;
345 		hlen = ETHER_HDR_LEN;
346 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
347 		    addref ? &lle : NULL);
348 		if (addref && lle != NULL)
349 			ro->ro_lle = lle;
350 		if (error != 0)
351 			return (error == EWOULDBLOCK ? 0 : error);
352 	}
353 
354 	if ((pflags & RT_L2_ME) != 0) {
355 		update_mbuf_csumflags(m, m);
356 		return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0));
357 	}
358 	loop_copy = (pflags & RT_MAY_LOOP) != 0;
359 
360 	/*
361 	 * Add local net header.  If no space in first mbuf,
362 	 * allocate another.
363 	 *
364 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
365 	 * This is done because BPF code shifts m_data pointer
366 	 * to the end of ethernet header prior to calling if_output().
367 	 */
368 	M_PREPEND(m, hlen, M_NOWAIT);
369 	if (m == NULL)
370 		senderr(ENOBUFS);
371 	if ((pflags & RT_HAS_HEADER) == 0) {
372 		eh = mtod(m, struct ether_header *);
373 		memcpy(eh, phdr, hlen);
374 	}
375 
376 	/*
377 	 * If a simplex interface, and the packet is being sent to our
378 	 * Ethernet address or a broadcast address, loopback a copy.
379 	 * XXX To make a simplex device behave exactly like a duplex
380 	 * device, we should copy in the case of sending to our own
381 	 * ethernet address (thus letting the original actually appear
382 	 * on the wire). However, we don't do that here for security
383 	 * reasons and compatibility with the original behavior.
384 	 */
385 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
386 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
387 		struct mbuf *n;
388 
389 		/*
390 		 * Because if_simloop() modifies the packet, we need a
391 		 * writable copy through m_dup() instead of a readonly
392 		 * one as m_copy[m] would give us. The alternative would
393 		 * be to modify if_simloop() to handle the readonly mbuf,
394 		 * but performancewise it is mostly equivalent (trading
395 		 * extra data copying vs. extra locking).
396 		 *
397 		 * XXX This is a local workaround.  A number of less
398 		 * often used kernel parts suffer from the same bug.
399 		 * See PR kern/105943 for a proposed general solution.
400 		 */
401 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
402 			update_mbuf_csumflags(m, n);
403 			(void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen);
404 		} else
405 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
406 	}
407 
408        /*
409 	* Bridges require special output handling.
410 	*/
411 	if (ifp->if_bridge) {
412 		BRIDGE_OUTPUT(ifp, m, error);
413 		return (error);
414 	}
415 
416 #if defined(INET) || defined(INET6)
417 	if (ifp->if_carp &&
418 	    (error = (*carp_output_p)(ifp, m, dst)))
419 		goto bad;
420 #endif
421 
422 	/* Handle ng_ether(4) processing, if any */
423 	if (ifp->if_l2com != NULL) {
424 		KASSERT(ng_ether_output_p != NULL,
425 		    ("ng_ether_output_p is NULL"));
426 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
427 bad:			if (m != NULL)
428 				m_freem(m);
429 			return (error);
430 		}
431 		if (m == NULL)
432 			return (0);
433 	}
434 
435 	/* Continue with link-layer output */
436 	return ether_output_frame(ifp, m);
437 }
438 
439 static bool
440 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
441 {
442 	struct ether_8021q_tag qtag;
443 	struct ether_header *eh;
444 
445 	eh = mtod(*mp, struct ether_header *);
446 	if (ntohs(eh->ether_type) == ETHERTYPE_VLAN ||
447 	    ntohs(eh->ether_type) == ETHERTYPE_QINQ)
448 		return (true);
449 
450 	qtag.vid = 0;
451 	qtag.pcp = pcp;
452 	qtag.proto = ETHERTYPE_VLAN;
453 	if (ether_8021q_frame(mp, ifp, ifp, &qtag))
454 		return (true);
455 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
456 	return (false);
457 }
458 
459 /*
460  * Ethernet link layer output routine to send a raw frame to the device.
461  *
462  * This assumes that the 14 byte Ethernet header is present and contiguous
463  * in the first mbuf (if BRIDGE'ing).
464  */
465 int
466 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
467 {
468 	uint8_t pcp;
469 
470 	pcp = ifp->if_pcp;
471 	if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN &&
472 	    !ether_set_pcp(&m, ifp, pcp))
473 		return (0);
474 
475 	if (PFIL_HOOKED_OUT(V_link_pfil_head))
476 		switch (pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_OUT,
477 		    NULL)) {
478 		case PFIL_DROPPED:
479 			return (EACCES);
480 		case PFIL_CONSUMED:
481 			return (0);
482 		}
483 
484 #ifdef EXPERIMENTAL
485 #if defined(INET6) && defined(INET)
486 	/* draft-ietf-6man-ipv6only-flag */
487 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
488 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
489 		struct ether_header *eh;
490 
491 		eh = mtod(m, struct ether_header *);
492 		switch (ntohs(eh->ether_type)) {
493 		case ETHERTYPE_IP:
494 		case ETHERTYPE_ARP:
495 		case ETHERTYPE_REVARP:
496 			m_freem(m);
497 			return (EAFNOSUPPORT);
498 			/* NOTREACHED */
499 			break;
500 		};
501 	}
502 #endif
503 #endif
504 
505 	/*
506 	 * Queue message on interface, update output statistics if successful,
507 	 * and start output if interface not yet active.
508 	 *
509 	 * If KMSAN is enabled, use it to verify that the data does not contain
510 	 * any uninitialized bytes.
511 	 */
512 	kmsan_check_mbuf(m, "ether_output");
513 	return ((ifp->if_transmit)(ifp, m));
514 }
515 
516 /*
517  * Process a received Ethernet packet; the packet is in the
518  * mbuf chain m with the ethernet header at the front.
519  */
520 static void
521 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
522 {
523 	struct ether_header *eh;
524 	u_short etype;
525 
526 	if ((ifp->if_flags & IFF_UP) == 0) {
527 		m_freem(m);
528 		return;
529 	}
530 #ifdef DIAGNOSTIC
531 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
532 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
533 		m_freem(m);
534 		return;
535 	}
536 #endif
537 	if (m->m_len < ETHER_HDR_LEN) {
538 		/* XXX maybe should pullup? */
539 		if_printf(ifp, "discard frame w/o leading ethernet "
540 				"header (len %u pkt len %u)\n",
541 				m->m_len, m->m_pkthdr.len);
542 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
543 		m_freem(m);
544 		return;
545 	}
546 	eh = mtod(m, struct ether_header *);
547 	etype = ntohs(eh->ether_type);
548 	random_harvest_queue_ether(m, sizeof(*m));
549 
550 #ifdef EXPERIMENTAL
551 #if defined(INET6) && defined(INET)
552 	/* draft-ietf-6man-ipv6only-flag */
553 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
554 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
555 		switch (etype) {
556 		case ETHERTYPE_IP:
557 		case ETHERTYPE_ARP:
558 		case ETHERTYPE_REVARP:
559 			m_freem(m);
560 			return;
561 			/* NOTREACHED */
562 			break;
563 		};
564 	}
565 #endif
566 #endif
567 
568 	CURVNET_SET_QUIET(ifp->if_vnet);
569 
570 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
571 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
572 			m->m_flags |= M_BCAST;
573 		else
574 			m->m_flags |= M_MCAST;
575 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
576 	}
577 
578 #ifdef MAC
579 	/*
580 	 * Tag the mbuf with an appropriate MAC label before any other
581 	 * consumers can get to it.
582 	 */
583 	mac_ifnet_create_mbuf(ifp, m);
584 #endif
585 
586 	/*
587 	 * Give bpf a chance at the packet.
588 	 */
589 	ETHER_BPF_MTAP(ifp, m);
590 
591 	/*
592 	 * If the CRC is still on the packet, trim it off. We do this once
593 	 * and once only in case we are re-entered. Nothing else on the
594 	 * Ethernet receive path expects to see the FCS.
595 	 */
596 	if (m->m_flags & M_HASFCS) {
597 		m_adj(m, -ETHER_CRC_LEN);
598 		m->m_flags &= ~M_HASFCS;
599 	}
600 
601 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
602 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
603 
604 	/* Allow monitor mode to claim this frame, after stats are updated. */
605 	if (ifp->if_flags & IFF_MONITOR) {
606 		m_freem(m);
607 		CURVNET_RESTORE();
608 		return;
609 	}
610 
611 	/* Handle input from a lagg(4) port */
612 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
613 		KASSERT(lagg_input_ethernet_p != NULL,
614 		    ("%s: if_lagg not loaded!", __func__));
615 		m = (*lagg_input_ethernet_p)(ifp, m);
616 		if (m != NULL)
617 			ifp = m->m_pkthdr.rcvif;
618 		else {
619 			CURVNET_RESTORE();
620 			return;
621 		}
622 	}
623 
624 	/*
625 	 * If the hardware did not process an 802.1Q tag, do this now,
626 	 * to allow 802.1P priority frames to be passed to the main input
627 	 * path correctly.
628 	 */
629 	if ((m->m_flags & M_VLANTAG) == 0 &&
630 	    ((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) {
631 		struct ether_vlan_header *evl;
632 
633 		if (m->m_len < sizeof(*evl) &&
634 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
635 #ifdef DIAGNOSTIC
636 			if_printf(ifp, "cannot pullup VLAN header\n");
637 #endif
638 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
639 			CURVNET_RESTORE();
640 			return;
641 		}
642 
643 		evl = mtod(m, struct ether_vlan_header *);
644 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
645 		m->m_flags |= M_VLANTAG;
646 
647 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
648 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
649 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
650 		eh = mtod(m, struct ether_header *);
651 	}
652 
653 	M_SETFIB(m, ifp->if_fib);
654 
655 	/* Allow ng_ether(4) to claim this frame. */
656 	if (ifp->if_l2com != NULL) {
657 		KASSERT(ng_ether_input_p != NULL,
658 		    ("%s: ng_ether_input_p is NULL", __func__));
659 		m->m_flags &= ~M_PROMISC;
660 		(*ng_ether_input_p)(ifp, &m);
661 		if (m == NULL) {
662 			CURVNET_RESTORE();
663 			return;
664 		}
665 		eh = mtod(m, struct ether_header *);
666 	}
667 
668 	/*
669 	 * Allow if_bridge(4) to claim this frame.
670 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
671 	 * and the frame should be delivered locally.
672 	 */
673 	if (ifp->if_bridge != NULL) {
674 		m->m_flags &= ~M_PROMISC;
675 		BRIDGE_INPUT(ifp, m);
676 		if (m == NULL) {
677 			CURVNET_RESTORE();
678 			return;
679 		}
680 		eh = mtod(m, struct ether_header *);
681 	}
682 
683 #if defined(INET) || defined(INET6)
684 	/*
685 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
686 	 * mbuf flows up to Layer 3.
687 	 * FreeBSD's implementation of carp(4) uses the inprotosw
688 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
689 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
690 	 * is outside the scope of the M_PROMISC test below.
691 	 * TODO: Maintain a hash table of ethernet addresses other than
692 	 * ether_dhost which may be active on this ifp.
693 	 */
694 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
695 		m->m_flags &= ~M_PROMISC;
696 	} else
697 #endif
698 	{
699 		/*
700 		 * If the frame received was not for our MAC address, set the
701 		 * M_PROMISC flag on the mbuf chain. The frame may need to
702 		 * be seen by the rest of the Ethernet input path in case of
703 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
704 		 * seen by upper protocol layers.
705 		 */
706 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
707 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
708 			m->m_flags |= M_PROMISC;
709 	}
710 
711 	ether_demux(ifp, m);
712 	CURVNET_RESTORE();
713 }
714 
715 /*
716  * Ethernet input dispatch; by default, direct dispatch here regardless of
717  * global configuration.  However, if RSS is enabled, hook up RSS affinity
718  * so that when deferred or hybrid dispatch is enabled, we can redistribute
719  * load based on RSS.
720  *
721  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
722  * not it had already done work distribution via multi-queue.  Then we could
723  * direct dispatch in the event load balancing was already complete and
724  * handle the case of interfaces with different capabilities better.
725  *
726  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
727  * at multiple layers?
728  *
729  * XXXRW: For now, enable all this only if RSS is compiled in, although it
730  * works fine without RSS.  Need to characterise the performance overhead
731  * of the detour through the netisr code in the event the result is always
732  * direct dispatch.
733  */
734 static void
735 ether_nh_input(struct mbuf *m)
736 {
737 
738 	M_ASSERTPKTHDR(m);
739 	KASSERT(m->m_pkthdr.rcvif != NULL,
740 	    ("%s: NULL interface pointer", __func__));
741 	ether_input_internal(m->m_pkthdr.rcvif, m);
742 }
743 
744 static struct netisr_handler	ether_nh = {
745 	.nh_name = "ether",
746 	.nh_handler = ether_nh_input,
747 	.nh_proto = NETISR_ETHER,
748 #ifdef RSS
749 	.nh_policy = NETISR_POLICY_CPU,
750 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
751 	.nh_m2cpuid = rss_m2cpuid,
752 #else
753 	.nh_policy = NETISR_POLICY_SOURCE,
754 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
755 #endif
756 };
757 
758 static void
759 ether_init(__unused void *arg)
760 {
761 
762 	netisr_register(&ether_nh);
763 }
764 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
765 
766 static void
767 vnet_ether_init(__unused void *arg)
768 {
769 	struct pfil_head_args args;
770 
771 	args.pa_version = PFIL_VERSION;
772 	args.pa_flags = PFIL_IN | PFIL_OUT;
773 	args.pa_type = PFIL_TYPE_ETHERNET;
774 	args.pa_headname = PFIL_ETHER_NAME;
775 	V_link_pfil_head = pfil_head_register(&args);
776 
777 #ifdef VIMAGE
778 	netisr_register_vnet(&ether_nh);
779 #endif
780 }
781 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
782     vnet_ether_init, NULL);
783 
784 #ifdef VIMAGE
785 static void
786 vnet_ether_pfil_destroy(__unused void *arg)
787 {
788 
789 	pfil_head_unregister(V_link_pfil_head);
790 }
791 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
792     vnet_ether_pfil_destroy, NULL);
793 
794 static void
795 vnet_ether_destroy(__unused void *arg)
796 {
797 
798 	netisr_unregister_vnet(&ether_nh);
799 }
800 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
801     vnet_ether_destroy, NULL);
802 #endif
803 
804 static void
805 ether_input(struct ifnet *ifp, struct mbuf *m)
806 {
807 	struct epoch_tracker et;
808 	struct mbuf *mn;
809 	bool needs_epoch;
810 
811 	needs_epoch = !(ifp->if_flags & IFF_KNOWSEPOCH);
812 
813 	/*
814 	 * The drivers are allowed to pass in a chain of packets linked with
815 	 * m_nextpkt. We split them up into separate packets here and pass
816 	 * them up. This allows the drivers to amortize the receive lock.
817 	 */
818 	CURVNET_SET_QUIET(ifp->if_vnet);
819 	if (__predict_false(needs_epoch))
820 		NET_EPOCH_ENTER(et);
821 	while (m) {
822 		mn = m->m_nextpkt;
823 		m->m_nextpkt = NULL;
824 
825 		/*
826 		 * We will rely on rcvif being set properly in the deferred
827 		 * context, so assert it is correct here.
828 		 */
829 		MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
830 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
831 		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
832 		netisr_dispatch(NETISR_ETHER, m);
833 		m = mn;
834 	}
835 	if (__predict_false(needs_epoch))
836 		NET_EPOCH_EXIT(et);
837 	CURVNET_RESTORE();
838 }
839 
840 /*
841  * Upper layer processing for a received Ethernet packet.
842  */
843 void
844 ether_demux(struct ifnet *ifp, struct mbuf *m)
845 {
846 	struct ether_header *eh;
847 	int i, isr;
848 	u_short ether_type;
849 
850 	NET_EPOCH_ASSERT();
851 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
852 
853 	/* Do not grab PROMISC frames in case we are re-entered. */
854 	if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
855 		i = pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_IN, NULL);
856 		if (i != 0 || m == NULL)
857 			return;
858 	}
859 
860 	eh = mtod(m, struct ether_header *);
861 	ether_type = ntohs(eh->ether_type);
862 
863 	/*
864 	 * If this frame has a VLAN tag other than 0, call vlan_input()
865 	 * if its module is loaded. Otherwise, drop.
866 	 */
867 	if ((m->m_flags & M_VLANTAG) &&
868 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
869 		if (ifp->if_vlantrunk == NULL) {
870 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
871 			m_freem(m);
872 			return;
873 		}
874 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
875 		    __func__));
876 		/* Clear before possibly re-entering ether_input(). */
877 		m->m_flags &= ~M_PROMISC;
878 		(*vlan_input_p)(ifp, m);
879 		return;
880 	}
881 
882 	/*
883 	 * Pass promiscuously received frames to the upper layer if the user
884 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
885 	 */
886 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
887 		m_freem(m);
888 		return;
889 	}
890 
891 	/*
892 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
893 	 */
894 	m->m_flags &= ~M_VLANTAG;
895 	m_clrprotoflags(m);
896 
897 	/*
898 	 * Dispatch frame to upper layer.
899 	 */
900 	switch (ether_type) {
901 #ifdef INET
902 	case ETHERTYPE_IP:
903 		isr = NETISR_IP;
904 		break;
905 
906 	case ETHERTYPE_ARP:
907 		if (ifp->if_flags & IFF_NOARP) {
908 			/* Discard packet if ARP is disabled on interface */
909 			m_freem(m);
910 			return;
911 		}
912 		isr = NETISR_ARP;
913 		break;
914 #endif
915 #ifdef INET6
916 	case ETHERTYPE_IPV6:
917 		isr = NETISR_IPV6;
918 		break;
919 #endif
920 	default:
921 		goto discard;
922 	}
923 
924 	/* Strip off Ethernet header. */
925 	m_adj(m, ETHER_HDR_LEN);
926 
927 	netisr_dispatch(isr, m);
928 	return;
929 
930 discard:
931 	/*
932 	 * Packet is to be discarded.  If netgraph is present,
933 	 * hand the packet to it for last chance processing;
934 	 * otherwise dispose of it.
935 	 */
936 	if (ifp->if_l2com != NULL) {
937 		KASSERT(ng_ether_input_orphan_p != NULL,
938 		    ("ng_ether_input_orphan_p is NULL"));
939 		(*ng_ether_input_orphan_p)(ifp, m);
940 		return;
941 	}
942 	m_freem(m);
943 }
944 
945 /*
946  * Convert Ethernet address to printable (loggable) representation.
947  * This routine is for compatibility; it's better to just use
948  *
949  *	printf("%6D", <pointer to address>, ":");
950  *
951  * since there's no static buffer involved.
952  */
953 char *
954 ether_sprintf(const u_char *ap)
955 {
956 	static char etherbuf[18];
957 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
958 	return (etherbuf);
959 }
960 
961 /*
962  * Perform common duties while attaching to interface list
963  */
964 void
965 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
966 {
967 	int i;
968 	struct ifaddr *ifa;
969 	struct sockaddr_dl *sdl;
970 
971 	ifp->if_addrlen = ETHER_ADDR_LEN;
972 	ifp->if_hdrlen = ETHER_HDR_LEN;
973 	ifp->if_mtu = ETHERMTU;
974 	if_attach(ifp);
975 	ifp->if_output = ether_output;
976 	ifp->if_input = ether_input;
977 	ifp->if_resolvemulti = ether_resolvemulti;
978 	ifp->if_requestencap = ether_requestencap;
979 #ifdef VIMAGE
980 	ifp->if_reassign = ether_reassign;
981 #endif
982 	if (ifp->if_baudrate == 0)
983 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
984 	ifp->if_broadcastaddr = etherbroadcastaddr;
985 
986 	ifa = ifp->if_addr;
987 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
988 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
989 	sdl->sdl_type = IFT_ETHER;
990 	sdl->sdl_alen = ifp->if_addrlen;
991 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
992 
993 	if (ifp->if_hw_addr != NULL)
994 		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
995 
996 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
997 	if (ng_ether_attach_p != NULL)
998 		(*ng_ether_attach_p)(ifp);
999 
1000 	/* Announce Ethernet MAC address if non-zero. */
1001 	for (i = 0; i < ifp->if_addrlen; i++)
1002 		if (lla[i] != 0)
1003 			break;
1004 	if (i != ifp->if_addrlen)
1005 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
1006 
1007 	uuid_ether_add(LLADDR(sdl));
1008 
1009 	/* Add necessary bits are setup; announce it now. */
1010 	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
1011 	if (IS_DEFAULT_VNET(curvnet))
1012 		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
1013 }
1014 
1015 /*
1016  * Perform common duties while detaching an Ethernet interface
1017  */
1018 void
1019 ether_ifdetach(struct ifnet *ifp)
1020 {
1021 	struct sockaddr_dl *sdl;
1022 
1023 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1024 	uuid_ether_del(LLADDR(sdl));
1025 
1026 	if (ifp->if_l2com != NULL) {
1027 		KASSERT(ng_ether_detach_p != NULL,
1028 		    ("ng_ether_detach_p is NULL"));
1029 		(*ng_ether_detach_p)(ifp);
1030 	}
1031 
1032 	bpfdetach(ifp);
1033 	if_detach(ifp);
1034 }
1035 
1036 #ifdef VIMAGE
1037 void
1038 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
1039 {
1040 
1041 	if (ifp->if_l2com != NULL) {
1042 		KASSERT(ng_ether_detach_p != NULL,
1043 		    ("ng_ether_detach_p is NULL"));
1044 		(*ng_ether_detach_p)(ifp);
1045 	}
1046 
1047 	if (ng_ether_attach_p != NULL) {
1048 		CURVNET_SET_QUIET(new_vnet);
1049 		(*ng_ether_attach_p)(ifp);
1050 		CURVNET_RESTORE();
1051 	}
1052 }
1053 #endif
1054 
1055 SYSCTL_DECL(_net_link);
1056 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1057     "Ethernet");
1058 
1059 #if 0
1060 /*
1061  * This is for reference.  We have a table-driven version
1062  * of the little-endian crc32 generator, which is faster
1063  * than the double-loop.
1064  */
1065 uint32_t
1066 ether_crc32_le(const uint8_t *buf, size_t len)
1067 {
1068 	size_t i;
1069 	uint32_t crc;
1070 	int bit;
1071 	uint8_t data;
1072 
1073 	crc = 0xffffffff;	/* initial value */
1074 
1075 	for (i = 0; i < len; i++) {
1076 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1077 			carry = (crc ^ data) & 1;
1078 			crc >>= 1;
1079 			if (carry)
1080 				crc = (crc ^ ETHER_CRC_POLY_LE);
1081 		}
1082 	}
1083 
1084 	return (crc);
1085 }
1086 #else
1087 uint32_t
1088 ether_crc32_le(const uint8_t *buf, size_t len)
1089 {
1090 	static const uint32_t crctab[] = {
1091 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1092 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1093 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1094 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1095 	};
1096 	size_t i;
1097 	uint32_t crc;
1098 
1099 	crc = 0xffffffff;	/* initial value */
1100 
1101 	for (i = 0; i < len; i++) {
1102 		crc ^= buf[i];
1103 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1104 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1105 	}
1106 
1107 	return (crc);
1108 }
1109 #endif
1110 
1111 uint32_t
1112 ether_crc32_be(const uint8_t *buf, size_t len)
1113 {
1114 	size_t i;
1115 	uint32_t crc, carry;
1116 	int bit;
1117 	uint8_t data;
1118 
1119 	crc = 0xffffffff;	/* initial value */
1120 
1121 	for (i = 0; i < len; i++) {
1122 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1123 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1124 			crc <<= 1;
1125 			if (carry)
1126 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1127 		}
1128 	}
1129 
1130 	return (crc);
1131 }
1132 
1133 int
1134 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1135 {
1136 	struct ifaddr *ifa = (struct ifaddr *) data;
1137 	struct ifreq *ifr = (struct ifreq *) data;
1138 	int error = 0;
1139 
1140 	switch (command) {
1141 	case SIOCSIFADDR:
1142 		ifp->if_flags |= IFF_UP;
1143 
1144 		switch (ifa->ifa_addr->sa_family) {
1145 #ifdef INET
1146 		case AF_INET:
1147 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1148 			arp_ifinit(ifp, ifa);
1149 			break;
1150 #endif
1151 		default:
1152 			ifp->if_init(ifp->if_softc);
1153 			break;
1154 		}
1155 		break;
1156 
1157 	case SIOCGIFADDR:
1158 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1159 		    ETHER_ADDR_LEN);
1160 		break;
1161 
1162 	case SIOCSIFMTU:
1163 		/*
1164 		 * Set the interface MTU.
1165 		 */
1166 		if (ifr->ifr_mtu > ETHERMTU) {
1167 			error = EINVAL;
1168 		} else {
1169 			ifp->if_mtu = ifr->ifr_mtu;
1170 		}
1171 		break;
1172 
1173 	case SIOCSLANPCP:
1174 		error = priv_check(curthread, PRIV_NET_SETLANPCP);
1175 		if (error != 0)
1176 			break;
1177 		if (ifr->ifr_lan_pcp > 7 &&
1178 		    ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1179 			error = EINVAL;
1180 		} else {
1181 			ifp->if_pcp = ifr->ifr_lan_pcp;
1182 			/* broadcast event about PCP change */
1183 			EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1184 		}
1185 		break;
1186 
1187 	case SIOCGLANPCP:
1188 		ifr->ifr_lan_pcp = ifp->if_pcp;
1189 		break;
1190 
1191 	default:
1192 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1193 		break;
1194 	}
1195 	return (error);
1196 }
1197 
1198 static int
1199 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1200 	struct sockaddr *sa)
1201 {
1202 	struct sockaddr_dl *sdl;
1203 #ifdef INET
1204 	struct sockaddr_in *sin;
1205 #endif
1206 #ifdef INET6
1207 	struct sockaddr_in6 *sin6;
1208 #endif
1209 	u_char *e_addr;
1210 
1211 	switch(sa->sa_family) {
1212 	case AF_LINK:
1213 		/*
1214 		 * No mapping needed. Just check that it's a valid MC address.
1215 		 */
1216 		sdl = (struct sockaddr_dl *)sa;
1217 		e_addr = LLADDR(sdl);
1218 		if (!ETHER_IS_MULTICAST(e_addr))
1219 			return EADDRNOTAVAIL;
1220 		*llsa = NULL;
1221 		return 0;
1222 
1223 #ifdef INET
1224 	case AF_INET:
1225 		sin = (struct sockaddr_in *)sa;
1226 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1227 			return EADDRNOTAVAIL;
1228 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1229 		sdl->sdl_alen = ETHER_ADDR_LEN;
1230 		e_addr = LLADDR(sdl);
1231 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1232 		*llsa = (struct sockaddr *)sdl;
1233 		return 0;
1234 #endif
1235 #ifdef INET6
1236 	case AF_INET6:
1237 		sin6 = (struct sockaddr_in6 *)sa;
1238 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1239 			/*
1240 			 * An IP6 address of 0 means listen to all
1241 			 * of the Ethernet multicast address used for IP6.
1242 			 * (This is used for multicast routers.)
1243 			 */
1244 			ifp->if_flags |= IFF_ALLMULTI;
1245 			*llsa = NULL;
1246 			return 0;
1247 		}
1248 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1249 			return EADDRNOTAVAIL;
1250 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1251 		sdl->sdl_alen = ETHER_ADDR_LEN;
1252 		e_addr = LLADDR(sdl);
1253 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1254 		*llsa = (struct sockaddr *)sdl;
1255 		return 0;
1256 #endif
1257 
1258 	default:
1259 		/*
1260 		 * Well, the text isn't quite right, but it's the name
1261 		 * that counts...
1262 		 */
1263 		return EAFNOSUPPORT;
1264 	}
1265 }
1266 
1267 static moduledata_t ether_mod = {
1268 	.name = "ether",
1269 };
1270 
1271 void
1272 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1273 {
1274 	struct ether_vlan_header vlan;
1275 	struct mbuf mv, mb;
1276 
1277 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1278 	    ("%s: vlan information not present", __func__));
1279 	KASSERT(m->m_len >= sizeof(struct ether_header),
1280 	    ("%s: mbuf not large enough for header", __func__));
1281 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1282 	vlan.evl_proto = vlan.evl_encap_proto;
1283 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1284 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1285 	m->m_len -= sizeof(struct ether_header);
1286 	m->m_data += sizeof(struct ether_header);
1287 	/*
1288 	 * If a data link has been supplied by the caller, then we will need to
1289 	 * re-create a stack allocated mbuf chain with the following structure:
1290 	 *
1291 	 * (1) mbuf #1 will contain the supplied data link
1292 	 * (2) mbuf #2 will contain the vlan header
1293 	 * (3) mbuf #3 will contain the original mbuf's packet data
1294 	 *
1295 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1296 	 */
1297 	if (data != NULL) {
1298 		mv.m_next = m;
1299 		mv.m_data = (caddr_t)&vlan;
1300 		mv.m_len = sizeof(vlan);
1301 		mb.m_next = &mv;
1302 		mb.m_data = data;
1303 		mb.m_len = dlen;
1304 		bpf_mtap(bp, &mb);
1305 	} else
1306 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1307 	m->m_len += sizeof(struct ether_header);
1308 	m->m_data -= sizeof(struct ether_header);
1309 }
1310 
1311 struct mbuf *
1312 ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto)
1313 {
1314 	struct ether_vlan_header *evl;
1315 
1316 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1317 	if (m == NULL)
1318 		return (NULL);
1319 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1320 
1321 	if (m->m_len < sizeof(*evl)) {
1322 		m = m_pullup(m, sizeof(*evl));
1323 		if (m == NULL)
1324 			return (NULL);
1325 	}
1326 
1327 	/*
1328 	 * Transform the Ethernet header into an Ethernet header
1329 	 * with 802.1Q encapsulation.
1330 	 */
1331 	evl = mtod(m, struct ether_vlan_header *);
1332 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1333 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1334 	evl->evl_encap_proto = htons(proto);
1335 	evl->evl_tag = htons(tag);
1336 	return (m);
1337 }
1338 
1339 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1340     "IEEE 802.1Q VLAN");
1341 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
1342     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1343     "for consistency");
1344 
1345 VNET_DEFINE_STATIC(int, soft_pad);
1346 #define	V_soft_pad	VNET(soft_pad)
1347 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1348     &VNET_NAME(soft_pad), 0,
1349     "pad short frames before tagging");
1350 
1351 /*
1352  * For now, make preserving PCP via an mbuf tag optional, as it increases
1353  * per-packet memory allocations and frees.  In the future, it would be
1354  * preferable to reuse ether_vtag for this, or similar.
1355  */
1356 VNET_DEFINE(int, vlan_mtag_pcp) = 0;
1357 #define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
1358 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET,
1359     &VNET_NAME(vlan_mtag_pcp), 0,
1360     "Retain VLAN PCP information as packets are passed up the stack");
1361 
1362 bool
1363 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1364     struct ether_8021q_tag *qtag)
1365 {
1366 	struct m_tag *mtag;
1367 	int n;
1368 	uint16_t tag;
1369 	static const char pad[8];	/* just zeros */
1370 
1371 	/*
1372 	 * Pad the frame to the minimum size allowed if told to.
1373 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1374 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1375 	 * bridges that violate paragraph C.4.4.3.a from the same
1376 	 * document, i.e., fail to pad short frames after untagging.
1377 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1378 	 * untagging it will produce a 62-byte frame, which is a runt
1379 	 * and requires padding.  There are VLAN-enabled network
1380 	 * devices that just discard such runts instead or mishandle
1381 	 * them somehow.
1382 	 */
1383 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1384 		for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1385 		     n > 0; n -= sizeof(pad)) {
1386 			if (!m_append(*mp, min(n, sizeof(pad)), pad))
1387 				break;
1388 		}
1389 		if (n > 0) {
1390 			m_freem(*mp);
1391 			*mp = NULL;
1392 			if_printf(ife, "cannot pad short frame");
1393 			return (false);
1394 		}
1395 	}
1396 
1397 	/*
1398 	 * If PCP is set in mbuf, use it
1399 	 */
1400 	if ((*mp)->m_flags & M_VLANTAG) {
1401 		qtag->pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
1402 	}
1403 
1404 	/*
1405 	 * If underlying interface can do VLAN tag insertion itself,
1406 	 * just pass the packet along. However, we need some way to
1407 	 * tell the interface where the packet came from so that it
1408 	 * knows how to find the VLAN tag to use, so we attach a
1409 	 * packet tag that holds it.
1410 	 */
1411 	if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1412 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1413 		tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0);
1414 	else
1415 		tag = EVL_MAKETAG(qtag->vid, qtag->pcp, 0);
1416 	if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) &&
1417 	    (qtag->proto == ETHERTYPE_VLAN)) {
1418 		(*mp)->m_pkthdr.ether_vtag = tag;
1419 		(*mp)->m_flags |= M_VLANTAG;
1420 	} else {
1421 		*mp = ether_vlanencap_proto(*mp, tag, qtag->proto);
1422 		if (*mp == NULL) {
1423 			if_printf(ife, "unable to prepend 802.1Q header");
1424 			return (false);
1425 		}
1426 	}
1427 	return (true);
1428 }
1429 
1430 /*
1431  * Allocate an address from the FreeBSD Foundation OUI.  This uses a
1432  * cryptographic hash function on the containing jail's name, UUID and the
1433  * interface name to attempt to provide a unique but stable address.
1434  * Pseudo-interfaces which require a MAC address should use this function to
1435  * allocate non-locally-administered addresses.
1436  */
1437 void
1438 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1439 {
1440 	SHA1_CTX ctx;
1441 	char *buf;
1442 	char uuid[HOSTUUIDLEN + 1];
1443 	uint64_t addr;
1444 	int i, sz;
1445 	char digest[SHA1_RESULTLEN];
1446 	char jailname[MAXHOSTNAMELEN];
1447 
1448 	getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1449 	if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) {
1450 		/* Fall back to a random mac address. */
1451 		goto rando;
1452 	}
1453 
1454 	/* If each (vnet) jail would also have a unique hostuuid this would not
1455 	 * be necessary. */
1456 	getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1457 	sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp),
1458 	    jailname);
1459 	if (sz < 0) {
1460 		/* Fall back to a random mac address. */
1461 		goto rando;
1462 	}
1463 
1464 	SHA1Init(&ctx);
1465 	SHA1Update(&ctx, buf, sz);
1466 	SHA1Final(digest, &ctx);
1467 	free(buf, M_TEMP);
1468 
1469 	addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
1470 	    OUI_FREEBSD_GENERATED_MASK;
1471 	addr = OUI_FREEBSD(addr);
1472 	for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1473 		hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1474 		    0xFF;
1475 	}
1476 
1477 	return;
1478 rando:
1479 	arc4rand(hwaddr, sizeof(*hwaddr), 0);
1480 	/* Unicast */
1481 	hwaddr->octet[0] &= 0xFE;
1482 	/* Locally administered. */
1483 	hwaddr->octet[0] |= 0x02;
1484 }
1485 
1486 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1487 MODULE_VERSION(ether, 1);
1488