1 /*- 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 30 * $FreeBSD$ 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_netgraph.h" 36 #include "opt_mbuf_profiling.h" 37 #include "opt_rss.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mbuf.h> 46 #include <sys/random.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/sysctl.h> 50 #include <sys/uuid.h> 51 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_arp.h> 55 #include <net/netisr.h> 56 #include <net/route.h> 57 #include <net/if_llc.h> 58 #include <net/if_dl.h> 59 #include <net/if_types.h> 60 #include <net/bpf.h> 61 #include <net/ethernet.h> 62 #include <net/if_bridgevar.h> 63 #include <net/if_vlan_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/pfil.h> 66 #include <net/vnet.h> 67 68 #include <netpfil/pf/pf_mtag.h> 69 70 #if defined(INET) || defined(INET6) 71 #include <netinet/in.h> 72 #include <netinet/in_var.h> 73 #include <netinet/if_ether.h> 74 #include <netinet/in_rss.h> 75 #include <netinet/ip_carp.h> 76 #include <netinet/ip_var.h> 77 #endif 78 #ifdef INET6 79 #include <netinet6/nd6.h> 80 #endif 81 #include <net/rt_nhops.h> 82 83 int (*ef_inputp)(struct ifnet*, struct ether_header *eh, struct mbuf *m); 84 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, 85 const struct sockaddr *dst, short *tp, int *hlen); 86 87 #include <security/mac/mac_framework.h> 88 89 #ifdef CTASSERT 90 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 91 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 92 #endif 93 94 VNET_DEFINE(struct pfil_head, link_pfil_hook); /* Packet filter hooks */ 95 96 /* netgraph node hooks for ng_ether(4) */ 97 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 98 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 99 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 100 void (*ng_ether_attach_p)(struct ifnet *ifp); 101 void (*ng_ether_detach_p)(struct ifnet *ifp); 102 103 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 104 105 /* if_bridge(4) support */ 106 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 107 int (*bridge_output_p)(struct ifnet *, struct mbuf *, 108 struct sockaddr *, struct rtentry *); 109 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 110 111 /* if_lagg(4) support */ 112 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 113 114 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 115 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 116 117 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 118 struct sockaddr *); 119 #ifdef VIMAGE 120 static void ether_reassign(struct ifnet *, struct vnet *, char *); 121 #endif 122 123 int ether_output_full(struct ifnet *ifp, struct mbuf *m, 124 const struct sockaddr *dst, struct route *ro); 125 int ether_output2(struct ifnet *ifp, struct mbuf *m, struct nhop_prepend *nh, 126 int af); 127 128 static int loopback_frame(struct ifnet *ifp, struct mbuf *m, int family, 129 int hlen); 130 131 #define ETHER_IS_BROADCAST(addr) \ 132 (bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0) 133 134 #define senderr(e) do { error = (e); goto bad;} while (0) 135 136 static void 137 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 138 { 139 int csum_flags = 0; 140 141 if (src->m_pkthdr.csum_flags & CSUM_IP) 142 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 143 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 144 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 145 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 146 csum_flags |= CSUM_SCTP_VALID; 147 dst->m_pkthdr.csum_flags |= csum_flags; 148 if (csum_flags & CSUM_DATA_VALID) 149 dst->m_pkthdr.csum_data = 0xffff; 150 } 151 152 int 153 ether_output(struct ifnet *ifp, struct mbuf *m, 154 const struct sockaddr *dst, struct route *ro) 155 { 156 if (ro != NULL && (ro->ro_flags & RT_NHOP)) 157 return (ether_output2(ifp, m, (struct nhop_prepend *)ro->ro_lle, 158 (ro->ro_flags >> 8) & 0xFF)); 159 160 return (ether_output_full(ifp, m, dst, ro)); 161 } 162 163 /* 164 * Ethernet output routine. 165 * Encapsulate a packet of type family for the local net. 166 * Use trailer local net encapsulation if enough data in first 167 * packet leaves a multiple of 512 bytes of data in remainder. 168 */ 169 int 170 ether_output_full(struct ifnet *ifp, struct mbuf *m, 171 const struct sockaddr *dst, struct route *ro) 172 { 173 short type; 174 int error = 0, hdrcmplt = 0; 175 u_char esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 176 struct llentry *lle = NULL; 177 struct rtentry *rt0 = NULL; 178 struct ether_header *eh; 179 struct pf_mtag *t; 180 int loop_copy = 1; 181 int hlen; /* link layer header length */ 182 183 if (ro != NULL) { 184 if (!(m->m_flags & (M_BCAST | M_MCAST))) 185 lle = ro->ro_lle; 186 rt0 = ro->ro_rt; 187 } 188 #ifdef MAC 189 error = mac_ifnet_check_transmit(ifp, m); 190 if (error) 191 senderr(error); 192 #endif 193 194 M_PROFILE(m); 195 if (ifp->if_flags & IFF_MONITOR) 196 senderr(ENETDOWN); 197 if (!((ifp->if_flags & IFF_UP) && 198 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 199 senderr(ENETDOWN); 200 201 hlen = ETHER_HDR_LEN; 202 switch (dst->sa_family) { 203 #ifdef INET 204 case AF_INET: 205 if (lle != NULL && (lle->la_flags & LLE_VALID)) 206 memcpy(edst, &lle->ll_addr.mac16, sizeof(edst)); 207 else 208 error = arpresolve(ifp, rt0, m, dst, edst, &lle); 209 if (error) 210 return (error == EWOULDBLOCK ? 0 : error); 211 type = htons(ETHERTYPE_IP); 212 break; 213 case AF_ARP: 214 { 215 struct arphdr *ah; 216 ah = mtod(m, struct arphdr *); 217 ah->ar_hrd = htons(ARPHRD_ETHER); 218 219 loop_copy = 0; /* if this is for us, don't do it */ 220 221 switch(ntohs(ah->ar_op)) { 222 case ARPOP_REVREQUEST: 223 case ARPOP_REVREPLY: 224 type = htons(ETHERTYPE_REVARP); 225 break; 226 case ARPOP_REQUEST: 227 case ARPOP_REPLY: 228 default: 229 type = htons(ETHERTYPE_ARP); 230 break; 231 } 232 233 if (m->m_flags & M_BCAST) 234 bcopy(ifp->if_broadcastaddr, edst, ETHER_ADDR_LEN); 235 else 236 bcopy(ar_tha(ah), edst, ETHER_ADDR_LEN); 237 238 } 239 break; 240 #endif 241 #ifdef INET6 242 case AF_INET6: 243 if (lle != NULL && (lle->la_flags & LLE_VALID)) 244 memcpy(edst, &lle->ll_addr.mac16, sizeof(edst)); 245 else 246 error = nd6_storelladdr(ifp, m, dst, (u_char *)edst, &lle); 247 if (error) 248 return error; 249 type = htons(ETHERTYPE_IPV6); 250 break; 251 #endif 252 case pseudo_AF_HDRCMPLT: 253 { 254 const struct ether_header *eh; 255 256 hdrcmplt = 1; 257 eh = (const struct ether_header *)dst->sa_data; 258 (void)memcpy(esrc, eh->ether_shost, sizeof (esrc)); 259 /* FALLTHROUGH */ 260 261 case AF_UNSPEC: 262 loop_copy = 0; /* if this is for us, don't do it */ 263 eh = (const struct ether_header *)dst->sa_data; 264 (void)memcpy(edst, eh->ether_dhost, sizeof (edst)); 265 type = eh->ether_type; 266 break; 267 } 268 default: 269 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 270 senderr(EAFNOSUPPORT); 271 } 272 273 if (lle != NULL && (lle->la_flags & LLE_IFADDR)) { 274 update_mbuf_csumflags(m, m); 275 return (if_simloop(ifp, m, dst->sa_family, 0)); 276 } 277 278 /* 279 * Add local net header. If no space in first mbuf, 280 * allocate another. 281 */ 282 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 283 if (m == NULL) 284 senderr(ENOBUFS); 285 eh = mtod(m, struct ether_header *); 286 (void)memcpy(&eh->ether_type, &type, 287 sizeof(eh->ether_type)); 288 (void)memcpy(eh->ether_dhost, edst, sizeof (edst)); 289 if (hdrcmplt) 290 (void)memcpy(eh->ether_shost, esrc, 291 sizeof(eh->ether_shost)); 292 else 293 (void)memcpy(eh->ether_shost, IF_LLADDR(ifp), 294 sizeof(eh->ether_shost)); 295 296 /* 297 * If a simplex interface, and the packet is being sent to our 298 * Ethernet address or a broadcast address, loopback a copy. 299 * XXX To make a simplex device behave exactly like a duplex 300 * device, we should copy in the case of sending to our own 301 * ethernet address (thus letting the original actually appear 302 * on the wire). However, we don't do that here for security 303 * reasons and compatibility with the original behavior. 304 */ 305 if ((ifp->if_flags & IFF_SIMPLEX) && loop_copy && 306 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 307 if ((m->m_flags & M_BCAST) || (bcmp(eh->ether_dhost, 308 eh->ether_shost, ETHER_ADDR_LEN) == 0)) { 309 /* Either broadcast or to-us L2 header */ 310 if (loopback_frame(ifp, m, dst->sa_family, hlen) == 1) 311 return (0); 312 } 313 } 314 315 /* 316 * Bridges require special output handling. 317 */ 318 if (ifp->if_bridge) { 319 BRIDGE_OUTPUT(ifp, m, error); 320 return (error); 321 } 322 323 #if defined(INET) || defined(INET6) 324 if (ifp->if_carp && 325 (error = (*carp_output_p)(ifp, m, dst))) 326 goto bad; 327 #endif 328 329 /* Handle ng_ether(4) processing, if any */ 330 if (ifp->if_l2com != NULL) { 331 KASSERT(ng_ether_output_p != NULL, 332 ("ng_ether_output_p is NULL")); 333 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 334 bad: if (m != NULL) 335 m_freem(m); 336 return (error); 337 } 338 if (m == NULL) 339 return (0); 340 } 341 342 /* Continue with link-layer output */ 343 return ether_output_frame(ifp, m); 344 } 345 346 /* 347 * We assume this function to be called for 348 * ip[6]_output(), with already pre-compiled L2 header. 349 * 350 * Function assumes all loopback routing is already done on L3, 351 * so the only reason to push packet (copy) to host is M_BCAST flag. 352 */ 353 int 354 ether_output2(struct ifnet *ifp, struct mbuf *m, struct nhop_prepend *nh,int af) 355 { 356 int error; 357 358 #ifdef MAC 359 error = mac_ifnet_check_transmit(ifp, m); 360 if (error) 361 senderr(error); 362 #endif 363 364 M_PROFILE(m); 365 if (ifp->if_flags & IFF_MONITOR) 366 senderr(ENETDOWN); 367 if (!((ifp->if_flags & IFF_UP) && 368 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 369 senderr(ENETDOWN); 370 371 if ((ifp->if_flags & IFF_SIMPLEX) && (m->m_flags & M_BCAST)) { 372 /* We have to copy frame to-us */ 373 if (loopback_frame(NH_LIFP(nh), m, af, nh->nh_count) != 0) 374 return (0); 375 } 376 377 /* 378 * Bridges require special output handling. 379 */ 380 if (ifp->if_bridge) { 381 BRIDGE_OUTPUT(ifp, m, error); 382 return (error); 383 } 384 385 #if defined(INET) || defined(INET6) 386 if (ifp->if_carp) { 387 struct sockaddr_in dst; 388 memset(&dst, 0, sizeof(dst)); 389 //dst.sin_addr = 390 error = (*carp_output_p)(ifp, m, 391 (const struct sockaddr *)&dst); 392 if (error != 0) 393 goto bad; 394 } 395 #endif 396 397 /* Handle ng_ether(4) processing, if any */ 398 if (ifp->if_l2com != NULL) { 399 KASSERT(ng_ether_output_p != NULL, 400 ("ng_ether_output_p is NULL")); 401 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 402 bad: if (m != NULL) 403 m_freem(m); 404 return (error); 405 } 406 if (m == NULL) 407 return (0); 408 } 409 410 /* Continue with link-layer output */ 411 return (ether_output_frame(ifp, m)); 412 } 413 414 static int 415 loopback_frame(struct ifnet *ifp, struct mbuf *m, int family, int hlen) 416 { 417 struct ether_header *eh; 418 419 if (m->m_flags & M_BCAST) { 420 struct mbuf *n; 421 422 /* 423 * Because if_simloop() modifies the packet, we need a 424 * writable copy through m_dup() instead of a readonly 425 * one as m_copy[m] would give us. The alternative would 426 * be to modify if_simloop() to handle the readonly mbuf, 427 * but performancewise it is mostly equivalent (trading 428 * extra data copying vs. extra locking). 429 * 430 * XXX This is a local workaround. A number of less 431 * often used kernel parts suffer from the same bug. 432 * See PR kern/105943 for a proposed general solution. 433 */ 434 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 435 update_mbuf_csumflags(m, n); 436 if_simloop(ifp, n, family, hlen); 437 } else 438 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 439 } else { 440 eh = mtod(m, struct ether_header *); 441 if (bcmp(eh->ether_dhost, eh->ether_shost, 442 ETHER_ADDR_LEN) == 0) { 443 update_mbuf_csumflags(m, m); 444 if_simloop(ifp, m, family, hlen); 445 return (1); 446 } 447 } 448 449 return (0); 450 } 451 452 /* 453 * Ethernet link layer output routine to send a raw frame to the device. 454 * 455 * This assumes that the 14 byte Ethernet header is present and contiguous 456 * in the first mbuf (if BRIDGE'ing). 457 */ 458 int 459 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 460 { 461 int i; 462 463 if (PFIL_HOOKED(&V_link_pfil_hook)) { 464 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL); 465 466 if (i != 0) 467 return (EACCES); 468 469 if (m == NULL) 470 return (0); 471 } 472 473 /* 474 * Queue message on interface, update output statistics if 475 * successful, and start output if interface not yet active. 476 */ 477 return ((ifp->if_transmit)(ifp, m)); 478 } 479 480 #if defined(INET) || defined(INET6) 481 #endif 482 483 /* 484 * Process a received Ethernet packet; the packet is in the 485 * mbuf chain m with the ethernet header at the front. 486 */ 487 static void 488 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 489 { 490 struct ether_header *eh; 491 u_short etype; 492 493 if ((ifp->if_flags & IFF_UP) == 0) { 494 m_freem(m); 495 return; 496 } 497 #ifdef DIAGNOSTIC 498 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 499 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 500 m_freem(m); 501 return; 502 } 503 #endif 504 /* 505 * Do consistency checks to verify assumptions 506 * made by code past this point. 507 */ 508 if ((m->m_flags & M_PKTHDR) == 0) { 509 if_printf(ifp, "discard frame w/o packet header\n"); 510 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 511 m_freem(m); 512 return; 513 } 514 if (m->m_len < ETHER_HDR_LEN) { 515 /* XXX maybe should pullup? */ 516 if_printf(ifp, "discard frame w/o leading ethernet " 517 "header (len %u pkt len %u)\n", 518 m->m_len, m->m_pkthdr.len); 519 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 520 m_freem(m); 521 return; 522 } 523 eh = mtod(m, struct ether_header *); 524 etype = ntohs(eh->ether_type); 525 if (m->m_pkthdr.rcvif == NULL) { 526 if_printf(ifp, "discard frame w/o interface pointer\n"); 527 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 528 m_freem(m); 529 return; 530 } 531 #ifdef DIAGNOSTIC 532 if (m->m_pkthdr.rcvif != ifp) { 533 if_printf(ifp, "Warning, frame marked as received on %s\n", 534 m->m_pkthdr.rcvif->if_xname); 535 } 536 #endif 537 538 CURVNET_SET_QUIET(ifp->if_vnet); 539 540 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 541 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 542 m->m_flags |= M_BCAST; 543 else 544 m->m_flags |= M_MCAST; 545 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 546 } 547 548 #ifdef MAC 549 /* 550 * Tag the mbuf with an appropriate MAC label before any other 551 * consumers can get to it. 552 */ 553 mac_ifnet_create_mbuf(ifp, m); 554 #endif 555 556 /* 557 * Give bpf a chance at the packet. 558 */ 559 ETHER_BPF_MTAP(ifp, m); 560 561 /* 562 * If the CRC is still on the packet, trim it off. We do this once 563 * and once only in case we are re-entered. Nothing else on the 564 * Ethernet receive path expects to see the FCS. 565 */ 566 if (m->m_flags & M_HASFCS) { 567 m_adj(m, -ETHER_CRC_LEN); 568 m->m_flags &= ~M_HASFCS; 569 } 570 571 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 572 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 573 574 /* Allow monitor mode to claim this frame, after stats are updated. */ 575 if (ifp->if_flags & IFF_MONITOR) { 576 m_freem(m); 577 CURVNET_RESTORE(); 578 return; 579 } 580 581 /* Handle input from a lagg(4) port */ 582 if (ifp->if_type == IFT_IEEE8023ADLAG) { 583 KASSERT(lagg_input_p != NULL, 584 ("%s: if_lagg not loaded!", __func__)); 585 m = (*lagg_input_p)(ifp, m); 586 if (m != NULL) 587 ifp = m->m_pkthdr.rcvif; 588 else { 589 CURVNET_RESTORE(); 590 return; 591 } 592 } 593 594 /* 595 * If the hardware did not process an 802.1Q tag, do this now, 596 * to allow 802.1P priority frames to be passed to the main input 597 * path correctly. 598 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 599 */ 600 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 601 struct ether_vlan_header *evl; 602 603 if (m->m_len < sizeof(*evl) && 604 (m = m_pullup(m, sizeof(*evl))) == NULL) { 605 #ifdef DIAGNOSTIC 606 if_printf(ifp, "cannot pullup VLAN header\n"); 607 #endif 608 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 609 m_freem(m); 610 CURVNET_RESTORE(); 611 return; 612 } 613 614 evl = mtod(m, struct ether_vlan_header *); 615 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 616 m->m_flags |= M_VLANTAG; 617 618 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 619 ETHER_HDR_LEN - ETHER_TYPE_LEN); 620 m_adj(m, ETHER_VLAN_ENCAP_LEN); 621 eh = mtod(m, struct ether_header *); 622 } 623 624 M_SETFIB(m, ifp->if_fib); 625 626 /* Allow ng_ether(4) to claim this frame. */ 627 if (ifp->if_l2com != NULL) { 628 KASSERT(ng_ether_input_p != NULL, 629 ("%s: ng_ether_input_p is NULL", __func__)); 630 m->m_flags &= ~M_PROMISC; 631 (*ng_ether_input_p)(ifp, &m); 632 if (m == NULL) { 633 CURVNET_RESTORE(); 634 return; 635 } 636 eh = mtod(m, struct ether_header *); 637 } 638 639 /* 640 * Allow if_bridge(4) to claim this frame. 641 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 642 * and the frame should be delivered locally. 643 */ 644 if (ifp->if_bridge != NULL) { 645 m->m_flags &= ~M_PROMISC; 646 BRIDGE_INPUT(ifp, m); 647 if (m == NULL) { 648 CURVNET_RESTORE(); 649 return; 650 } 651 eh = mtod(m, struct ether_header *); 652 } 653 654 #if defined(INET) || defined(INET6) 655 /* 656 * Clear M_PROMISC on frame so that carp(4) will see it when the 657 * mbuf flows up to Layer 3. 658 * FreeBSD's implementation of carp(4) uses the inprotosw 659 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 660 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 661 * is outside the scope of the M_PROMISC test below. 662 * TODO: Maintain a hash table of ethernet addresses other than 663 * ether_dhost which may be active on this ifp. 664 */ 665 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 666 m->m_flags &= ~M_PROMISC; 667 } else 668 #endif 669 { 670 /* 671 * If the frame received was not for our MAC address, set the 672 * M_PROMISC flag on the mbuf chain. The frame may need to 673 * be seen by the rest of the Ethernet input path in case of 674 * re-entry (e.g. bridge, vlan, netgraph) but should not be 675 * seen by upper protocol layers. 676 */ 677 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 678 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 679 m->m_flags |= M_PROMISC; 680 } 681 682 random_harvest(&(m->m_data), 12, 2, RANDOM_NET_ETHER); 683 684 ether_demux(ifp, m); 685 CURVNET_RESTORE(); 686 } 687 688 /* 689 * Ethernet input dispatch; by default, direct dispatch here regardless of 690 * global configuration. However, if RSS is enabled, hook up RSS affinity 691 * so that when deferred or hybrid dispatch is enabled, we can redistribute 692 * load based on RSS. 693 * 694 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 695 * not it had already done work distribution via multi-queue. Then we could 696 * direct dispatch in the event load balancing was already complete and 697 * handle the case of interfaces with different capabilities better. 698 * 699 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 700 * at multiple layers? 701 * 702 * XXXRW: For now, enable all this only if RSS is compiled in, although it 703 * works fine without RSS. Need to characterise the performance overhead 704 * of the detour through the netisr code in the event the result is always 705 * direct dispatch. 706 */ 707 static void 708 ether_nh_input(struct mbuf *m) 709 { 710 711 ether_input_internal(m->m_pkthdr.rcvif, m); 712 } 713 714 static struct netisr_handler ether_nh = { 715 .nh_name = "ether", 716 .nh_handler = ether_nh_input, 717 .nh_proto = NETISR_ETHER, 718 #ifdef RSS 719 .nh_policy = NETISR_POLICY_CPU, 720 .nh_dispatch = NETISR_DISPATCH_DIRECT, 721 .nh_m2cpuid = rss_m2cpuid, 722 #else 723 .nh_policy = NETISR_POLICY_SOURCE, 724 .nh_dispatch = NETISR_DISPATCH_DIRECT, 725 #endif 726 }; 727 728 static void 729 ether_init(__unused void *arg) 730 { 731 732 netisr_register(ðer_nh); 733 } 734 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 735 736 static void 737 vnet_ether_init(__unused void *arg) 738 { 739 int i; 740 741 /* Initialize packet filter hooks. */ 742 V_link_pfil_hook.ph_type = PFIL_TYPE_AF; 743 V_link_pfil_hook.ph_af = AF_LINK; 744 if ((i = pfil_head_register(&V_link_pfil_hook)) != 0) 745 printf("%s: WARNING: unable to register pfil link hook, " 746 "error %d\n", __func__, i); 747 } 748 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 749 vnet_ether_init, NULL); 750 751 static void 752 vnet_ether_destroy(__unused void *arg) 753 { 754 int i; 755 756 if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0) 757 printf("%s: WARNING: unable to unregister pfil link hook, " 758 "error %d\n", __func__, i); 759 } 760 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 761 vnet_ether_destroy, NULL); 762 763 764 765 static void 766 ether_input(struct ifnet *ifp, struct mbuf *m) 767 { 768 769 struct mbuf *mn; 770 771 /* 772 * The drivers are allowed to pass in a chain of packets linked with 773 * m_nextpkt. We split them up into separate packets here and pass 774 * them up. This allows the drivers to amortize the receive lock. 775 */ 776 while (m) { 777 mn = m->m_nextpkt; 778 m->m_nextpkt = NULL; 779 780 /* 781 * We will rely on rcvif being set properly in the deferred context, 782 * so assert it is correct here. 783 */ 784 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch", __func__)); 785 netisr_dispatch(NETISR_ETHER, m); 786 m = mn; 787 } 788 } 789 790 /* 791 * Upper layer processing for a received Ethernet packet. 792 */ 793 void 794 ether_demux(struct ifnet *ifp, struct mbuf *m) 795 { 796 struct ether_header *eh; 797 int i, isr; 798 u_short ether_type; 799 800 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 801 802 /* Do not grab PROMISC frames in case we are re-entered. */ 803 if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) { 804 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL); 805 806 if (i != 0 || m == NULL) 807 return; 808 } 809 810 eh = mtod(m, struct ether_header *); 811 ether_type = ntohs(eh->ether_type); 812 813 /* 814 * If this frame has a VLAN tag other than 0, call vlan_input() 815 * if its module is loaded. Otherwise, drop. 816 */ 817 if ((m->m_flags & M_VLANTAG) && 818 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 819 if (ifp->if_vlantrunk == NULL) { 820 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 821 m_freem(m); 822 return; 823 } 824 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 825 __func__)); 826 /* Clear before possibly re-entering ether_input(). */ 827 m->m_flags &= ~M_PROMISC; 828 (*vlan_input_p)(ifp, m); 829 return; 830 } 831 832 /* 833 * Pass promiscuously received frames to the upper layer if the user 834 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 835 */ 836 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 837 m_freem(m); 838 return; 839 } 840 841 /* 842 * Reset layer specific mbuf flags to avoid confusing upper layers. 843 * Strip off Ethernet header. 844 */ 845 m->m_flags &= ~M_VLANTAG; 846 m_clrprotoflags(m); 847 m_adj(m, ETHER_HDR_LEN); 848 849 /* 850 * Dispatch frame to upper layer. 851 */ 852 switch (ether_type) { 853 #ifdef INET 854 case ETHERTYPE_IP: 855 if ((m = ip_fastforward(m)) == NULL) 856 return; 857 isr = NETISR_IP; 858 break; 859 860 case ETHERTYPE_ARP: 861 if (ifp->if_flags & IFF_NOARP) { 862 /* Discard packet if ARP is disabled on interface */ 863 m_freem(m); 864 return; 865 } 866 isr = NETISR_ARP; 867 break; 868 #endif 869 #ifdef INET6 870 case ETHERTYPE_IPV6: 871 isr = NETISR_IPV6; 872 break; 873 #endif 874 default: 875 goto discard; 876 } 877 netisr_dispatch(isr, m); 878 return; 879 880 discard: 881 /* 882 * Packet is to be discarded. If netgraph is present, 883 * hand the packet to it for last chance processing; 884 * otherwise dispose of it. 885 */ 886 if (ifp->if_l2com != NULL) { 887 KASSERT(ng_ether_input_orphan_p != NULL, 888 ("ng_ether_input_orphan_p is NULL")); 889 /* 890 * Put back the ethernet header so netgraph has a 891 * consistent view of inbound packets. 892 */ 893 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 894 (*ng_ether_input_orphan_p)(ifp, m); 895 return; 896 } 897 m_freem(m); 898 } 899 900 /* 901 * Convert Ethernet address to printable (loggable) representation. 902 * This routine is for compatibility; it's better to just use 903 * 904 * printf("%6D", <pointer to address>, ":"); 905 * 906 * since there's no static buffer involved. 907 */ 908 char * 909 ether_sprintf(const u_char *ap) 910 { 911 static char etherbuf[18]; 912 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 913 return (etherbuf); 914 } 915 916 /* 917 * Perform common duties while attaching to interface list 918 */ 919 void 920 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 921 { 922 int i; 923 struct ifaddr *ifa; 924 struct sockaddr_dl *sdl; 925 926 ifp->if_addrlen = ETHER_ADDR_LEN; 927 ifp->if_hdrlen = ETHER_HDR_LEN; 928 if_attach(ifp); 929 ifp->if_mtu = ETHERMTU; 930 ifp->if_output = ether_output; 931 ifp->if_input = ether_input; 932 ifp->if_resolvemulti = ether_resolvemulti; 933 #ifdef VIMAGE 934 ifp->if_reassign = ether_reassign; 935 #endif 936 if (ifp->if_baudrate == 0) 937 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 938 ifp->if_broadcastaddr = etherbroadcastaddr; 939 940 ifa = ifp->if_addr; 941 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 942 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 943 sdl->sdl_type = IFT_ETHER; 944 sdl->sdl_alen = ifp->if_addrlen; 945 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 946 947 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 948 if (ng_ether_attach_p != NULL) 949 (*ng_ether_attach_p)(ifp); 950 951 /* Announce Ethernet MAC address if non-zero. */ 952 for (i = 0; i < ifp->if_addrlen; i++) 953 if (lla[i] != 0) 954 break; 955 if (i != ifp->if_addrlen) 956 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 957 958 uuid_ether_add(LLADDR(sdl)); 959 } 960 961 /* 962 * Perform common duties while detaching an Ethernet interface 963 */ 964 void 965 ether_ifdetach(struct ifnet *ifp) 966 { 967 struct sockaddr_dl *sdl; 968 969 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 970 uuid_ether_del(LLADDR(sdl)); 971 972 if (ifp->if_l2com != NULL) { 973 KASSERT(ng_ether_detach_p != NULL, 974 ("ng_ether_detach_p is NULL")); 975 (*ng_ether_detach_p)(ifp); 976 } 977 978 bpfdetach(ifp); 979 if_detach(ifp); 980 } 981 982 #ifdef VIMAGE 983 void 984 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 985 { 986 987 if (ifp->if_l2com != NULL) { 988 KASSERT(ng_ether_detach_p != NULL, 989 ("ng_ether_detach_p is NULL")); 990 (*ng_ether_detach_p)(ifp); 991 } 992 993 if (ng_ether_attach_p != NULL) { 994 CURVNET_SET_QUIET(new_vnet); 995 (*ng_ether_attach_p)(ifp); 996 CURVNET_RESTORE(); 997 } 998 } 999 #endif 1000 1001 SYSCTL_DECL(_net_link); 1002 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 1003 1004 #if 0 1005 /* 1006 * This is for reference. We have a table-driven version 1007 * of the little-endian crc32 generator, which is faster 1008 * than the double-loop. 1009 */ 1010 uint32_t 1011 ether_crc32_le(const uint8_t *buf, size_t len) 1012 { 1013 size_t i; 1014 uint32_t crc; 1015 int bit; 1016 uint8_t data; 1017 1018 crc = 0xffffffff; /* initial value */ 1019 1020 for (i = 0; i < len; i++) { 1021 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1022 carry = (crc ^ data) & 1; 1023 crc >>= 1; 1024 if (carry) 1025 crc = (crc ^ ETHER_CRC_POLY_LE); 1026 } 1027 } 1028 1029 return (crc); 1030 } 1031 #else 1032 uint32_t 1033 ether_crc32_le(const uint8_t *buf, size_t len) 1034 { 1035 static const uint32_t crctab[] = { 1036 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1037 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1038 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1039 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1040 }; 1041 size_t i; 1042 uint32_t crc; 1043 1044 crc = 0xffffffff; /* initial value */ 1045 1046 for (i = 0; i < len; i++) { 1047 crc ^= buf[i]; 1048 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1049 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1050 } 1051 1052 return (crc); 1053 } 1054 #endif 1055 1056 uint32_t 1057 ether_crc32_be(const uint8_t *buf, size_t len) 1058 { 1059 size_t i; 1060 uint32_t crc, carry; 1061 int bit; 1062 uint8_t data; 1063 1064 crc = 0xffffffff; /* initial value */ 1065 1066 for (i = 0; i < len; i++) { 1067 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1068 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 1069 crc <<= 1; 1070 if (carry) 1071 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1072 } 1073 } 1074 1075 return (crc); 1076 } 1077 1078 int 1079 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1080 { 1081 struct ifaddr *ifa = (struct ifaddr *) data; 1082 struct ifreq *ifr = (struct ifreq *) data; 1083 int error = 0; 1084 1085 switch (command) { 1086 case SIOCSIFADDR: 1087 ifp->if_flags |= IFF_UP; 1088 1089 switch (ifa->ifa_addr->sa_family) { 1090 #ifdef INET 1091 case AF_INET: 1092 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1093 arp_ifinit(ifp, ifa); 1094 break; 1095 #endif 1096 default: 1097 ifp->if_init(ifp->if_softc); 1098 break; 1099 } 1100 break; 1101 1102 case SIOCGIFADDR: 1103 { 1104 struct sockaddr *sa; 1105 1106 sa = (struct sockaddr *) & ifr->ifr_data; 1107 bcopy(IF_LLADDR(ifp), 1108 (caddr_t) sa->sa_data, ETHER_ADDR_LEN); 1109 } 1110 break; 1111 1112 case SIOCSIFMTU: 1113 /* 1114 * Set the interface MTU. 1115 */ 1116 if (ifr->ifr_mtu > ETHERMTU) { 1117 error = EINVAL; 1118 } else { 1119 ifp->if_mtu = ifr->ifr_mtu; 1120 } 1121 break; 1122 default: 1123 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1124 break; 1125 } 1126 return (error); 1127 } 1128 1129 static int 1130 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1131 struct sockaddr *sa) 1132 { 1133 struct sockaddr_dl *sdl; 1134 #ifdef INET 1135 struct sockaddr_in *sin; 1136 #endif 1137 #ifdef INET6 1138 struct sockaddr_in6 *sin6; 1139 #endif 1140 u_char *e_addr; 1141 1142 switch(sa->sa_family) { 1143 case AF_LINK: 1144 /* 1145 * No mapping needed. Just check that it's a valid MC address. 1146 */ 1147 sdl = (struct sockaddr_dl *)sa; 1148 e_addr = LLADDR(sdl); 1149 if (!ETHER_IS_MULTICAST(e_addr)) 1150 return EADDRNOTAVAIL; 1151 *llsa = 0; 1152 return 0; 1153 1154 #ifdef INET 1155 case AF_INET: 1156 sin = (struct sockaddr_in *)sa; 1157 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1158 return EADDRNOTAVAIL; 1159 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1160 sdl->sdl_alen = ETHER_ADDR_LEN; 1161 e_addr = LLADDR(sdl); 1162 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1163 *llsa = (struct sockaddr *)sdl; 1164 return 0; 1165 #endif 1166 #ifdef INET6 1167 case AF_INET6: 1168 sin6 = (struct sockaddr_in6 *)sa; 1169 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1170 /* 1171 * An IP6 address of 0 means listen to all 1172 * of the Ethernet multicast address used for IP6. 1173 * (This is used for multicast routers.) 1174 */ 1175 ifp->if_flags |= IFF_ALLMULTI; 1176 *llsa = 0; 1177 return 0; 1178 } 1179 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1180 return EADDRNOTAVAIL; 1181 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1182 sdl->sdl_alen = ETHER_ADDR_LEN; 1183 e_addr = LLADDR(sdl); 1184 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1185 *llsa = (struct sockaddr *)sdl; 1186 return 0; 1187 #endif 1188 1189 default: 1190 /* 1191 * Well, the text isn't quite right, but it's the name 1192 * that counts... 1193 */ 1194 return EAFNOSUPPORT; 1195 } 1196 } 1197 1198 static moduledata_t ether_mod = { 1199 .name = "ether", 1200 }; 1201 1202 void 1203 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1204 { 1205 struct ether_vlan_header vlan; 1206 struct mbuf mv, mb; 1207 1208 KASSERT((m->m_flags & M_VLANTAG) != 0, 1209 ("%s: vlan information not present", __func__)); 1210 KASSERT(m->m_len >= sizeof(struct ether_header), 1211 ("%s: mbuf not large enough for header", __func__)); 1212 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1213 vlan.evl_proto = vlan.evl_encap_proto; 1214 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1215 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1216 m->m_len -= sizeof(struct ether_header); 1217 m->m_data += sizeof(struct ether_header); 1218 /* 1219 * If a data link has been supplied by the caller, then we will need to 1220 * re-create a stack allocated mbuf chain with the following structure: 1221 * 1222 * (1) mbuf #1 will contain the supplied data link 1223 * (2) mbuf #2 will contain the vlan header 1224 * (3) mbuf #3 will contain the original mbuf's packet data 1225 * 1226 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1227 */ 1228 if (data != NULL) { 1229 mv.m_next = m; 1230 mv.m_data = (caddr_t)&vlan; 1231 mv.m_len = sizeof(vlan); 1232 mb.m_next = &mv; 1233 mb.m_data = data; 1234 mb.m_len = dlen; 1235 bpf_mtap(bp, &mb); 1236 } else 1237 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1238 m->m_len += sizeof(struct ether_header); 1239 m->m_data -= sizeof(struct ether_header); 1240 } 1241 1242 struct mbuf * 1243 ether_vlanencap(struct mbuf *m, uint16_t tag) 1244 { 1245 struct ether_vlan_header *evl; 1246 1247 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1248 if (m == NULL) 1249 return (NULL); 1250 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1251 1252 if (m->m_len < sizeof(*evl)) { 1253 m = m_pullup(m, sizeof(*evl)); 1254 if (m == NULL) 1255 return (NULL); 1256 } 1257 1258 /* 1259 * Transform the Ethernet header into an Ethernet header 1260 * with 802.1Q encapsulation. 1261 */ 1262 evl = mtod(m, struct ether_vlan_header *); 1263 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1264 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1265 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1266 evl->evl_tag = htons(tag); 1267 return (m); 1268 } 1269 1270 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1271 MODULE_VERSION(ether, 1); 1272