1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 32 * $FreeBSD$ 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_netgraph.h" 38 #include "opt_mbuf_profiling.h" 39 #include "opt_rss.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/devctl.h> 44 #include <sys/eventhandler.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/module.h> 50 #include <sys/mbuf.h> 51 #include <sys/proc.h> 52 #include <sys/priv.h> 53 #include <sys/random.h> 54 #include <sys/socket.h> 55 #include <sys/sockio.h> 56 #include <sys/sysctl.h> 57 #include <sys/uuid.h> 58 59 #include <net/ieee_oui.h> 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_arp.h> 63 #include <net/netisr.h> 64 #include <net/route.h> 65 #include <net/if_llc.h> 66 #include <net/if_dl.h> 67 #include <net/if_types.h> 68 #include <net/bpf.h> 69 #include <net/ethernet.h> 70 #include <net/if_bridgevar.h> 71 #include <net/if_vlan_var.h> 72 #include <net/if_llatbl.h> 73 #include <net/pfil.h> 74 #include <net/rss_config.h> 75 #include <net/vnet.h> 76 77 #include <netpfil/pf/pf_mtag.h> 78 79 #if defined(INET) || defined(INET6) 80 #include <netinet/in.h> 81 #include <netinet/in_var.h> 82 #include <netinet/if_ether.h> 83 #include <netinet/ip_carp.h> 84 #include <netinet/ip_var.h> 85 #endif 86 #ifdef INET6 87 #include <netinet6/nd6.h> 88 #endif 89 #include <security/mac/mac_framework.h> 90 91 #include <crypto/sha1.h> 92 93 #ifdef CTASSERT 94 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 95 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 96 #endif 97 98 VNET_DEFINE(pfil_head_t, link_pfil_head); /* Packet filter hooks */ 99 100 /* netgraph node hooks for ng_ether(4) */ 101 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 102 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 103 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 104 void (*ng_ether_attach_p)(struct ifnet *ifp); 105 void (*ng_ether_detach_p)(struct ifnet *ifp); 106 107 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 108 109 /* if_bridge(4) support */ 110 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 111 112 /* if_lagg(4) support */ 113 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 114 115 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 116 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 117 118 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 119 struct sockaddr *); 120 #ifdef VIMAGE 121 static void ether_reassign(struct ifnet *, struct vnet *, char *); 122 #endif 123 static int ether_requestencap(struct ifnet *, struct if_encap_req *); 124 125 #define senderr(e) do { error = (e); goto bad;} while (0) 126 127 static void 128 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 129 { 130 int csum_flags = 0; 131 132 if (src->m_pkthdr.csum_flags & CSUM_IP) 133 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 134 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 135 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 136 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 137 csum_flags |= CSUM_SCTP_VALID; 138 dst->m_pkthdr.csum_flags |= csum_flags; 139 if (csum_flags & CSUM_DATA_VALID) 140 dst->m_pkthdr.csum_data = 0xffff; 141 } 142 143 /* 144 * Handle link-layer encapsulation requests. 145 */ 146 static int 147 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) 148 { 149 struct ether_header *eh; 150 struct arphdr *ah; 151 uint16_t etype; 152 const u_char *lladdr; 153 154 if (req->rtype != IFENCAP_LL) 155 return (EOPNOTSUPP); 156 157 if (req->bufsize < ETHER_HDR_LEN) 158 return (ENOMEM); 159 160 eh = (struct ether_header *)req->buf; 161 lladdr = req->lladdr; 162 req->lladdr_off = 0; 163 164 switch (req->family) { 165 case AF_INET: 166 etype = htons(ETHERTYPE_IP); 167 break; 168 case AF_INET6: 169 etype = htons(ETHERTYPE_IPV6); 170 break; 171 case AF_ARP: 172 ah = (struct arphdr *)req->hdata; 173 ah->ar_hrd = htons(ARPHRD_ETHER); 174 175 switch(ntohs(ah->ar_op)) { 176 case ARPOP_REVREQUEST: 177 case ARPOP_REVREPLY: 178 etype = htons(ETHERTYPE_REVARP); 179 break; 180 case ARPOP_REQUEST: 181 case ARPOP_REPLY: 182 default: 183 etype = htons(ETHERTYPE_ARP); 184 break; 185 } 186 187 if (req->flags & IFENCAP_FLAG_BROADCAST) 188 lladdr = ifp->if_broadcastaddr; 189 break; 190 default: 191 return (EAFNOSUPPORT); 192 } 193 194 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 195 memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); 196 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 197 req->bufsize = sizeof(struct ether_header); 198 199 return (0); 200 } 201 202 static int 203 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, 204 const struct sockaddr *dst, struct route *ro, u_char *phdr, 205 uint32_t *pflags, struct llentry **plle) 206 { 207 struct ether_header *eh; 208 uint32_t lleflags = 0; 209 int error = 0; 210 #if defined(INET) || defined(INET6) 211 uint16_t etype; 212 #endif 213 214 if (plle) 215 *plle = NULL; 216 eh = (struct ether_header *)phdr; 217 218 switch (dst->sa_family) { 219 #ifdef INET 220 case AF_INET: 221 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) 222 error = arpresolve(ifp, 0, m, dst, phdr, &lleflags, 223 plle); 224 else { 225 if (m->m_flags & M_BCAST) 226 memcpy(eh->ether_dhost, ifp->if_broadcastaddr, 227 ETHER_ADDR_LEN); 228 else { 229 const struct in_addr *a; 230 a = &(((const struct sockaddr_in *)dst)->sin_addr); 231 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); 232 } 233 etype = htons(ETHERTYPE_IP); 234 memcpy(&eh->ether_type, &etype, sizeof(etype)); 235 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 236 } 237 break; 238 #endif 239 #ifdef INET6 240 case AF_INET6: 241 if ((m->m_flags & M_MCAST) == 0) 242 error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags, 243 plle); 244 else { 245 const struct in6_addr *a6; 246 a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); 247 ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); 248 etype = htons(ETHERTYPE_IPV6); 249 memcpy(&eh->ether_type, &etype, sizeof(etype)); 250 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 251 } 252 break; 253 #endif 254 default: 255 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 256 if (m != NULL) 257 m_freem(m); 258 return (EAFNOSUPPORT); 259 } 260 261 if (error == EHOSTDOWN) { 262 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) 263 error = EHOSTUNREACH; 264 } 265 266 if (error != 0) 267 return (error); 268 269 *pflags = RT_MAY_LOOP; 270 if (lleflags & LLE_IFADDR) 271 *pflags |= RT_L2_ME; 272 273 return (0); 274 } 275 276 /* 277 * Ethernet output routine. 278 * Encapsulate a packet of type family for the local net. 279 * Use trailer local net encapsulation if enough data in first 280 * packet leaves a multiple of 512 bytes of data in remainder. 281 */ 282 int 283 ether_output(struct ifnet *ifp, struct mbuf *m, 284 const struct sockaddr *dst, struct route *ro) 285 { 286 int error = 0; 287 char linkhdr[ETHER_HDR_LEN], *phdr; 288 struct ether_header *eh; 289 struct pf_mtag *t; 290 int loop_copy = 1; 291 int hlen; /* link layer header length */ 292 uint32_t pflags; 293 struct llentry *lle = NULL; 294 int addref = 0; 295 296 phdr = NULL; 297 pflags = 0; 298 if (ro != NULL) { 299 /* XXX BPF uses ro_prepend */ 300 if (ro->ro_prepend != NULL) { 301 phdr = ro->ro_prepend; 302 hlen = ro->ro_plen; 303 } else if (!(m->m_flags & (M_BCAST | M_MCAST))) { 304 if ((ro->ro_flags & RT_LLE_CACHE) != 0) { 305 lle = ro->ro_lle; 306 if (lle != NULL && 307 (lle->la_flags & LLE_VALID) == 0) { 308 LLE_FREE(lle); 309 lle = NULL; /* redundant */ 310 ro->ro_lle = NULL; 311 } 312 if (lle == NULL) { 313 /* if we lookup, keep cache */ 314 addref = 1; 315 } else 316 /* 317 * Notify LLE code that 318 * the entry was used 319 * by datapath. 320 */ 321 llentry_mark_used(lle); 322 } 323 if (lle != NULL) { 324 phdr = lle->r_linkdata; 325 hlen = lle->r_hdrlen; 326 pflags = lle->r_flags; 327 } 328 } 329 } 330 331 #ifdef MAC 332 error = mac_ifnet_check_transmit(ifp, m); 333 if (error) 334 senderr(error); 335 #endif 336 337 M_PROFILE(m); 338 if (ifp->if_flags & IFF_MONITOR) 339 senderr(ENETDOWN); 340 if (!((ifp->if_flags & IFF_UP) && 341 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 342 senderr(ENETDOWN); 343 344 if (phdr == NULL) { 345 /* No prepend data supplied. Try to calculate ourselves. */ 346 phdr = linkhdr; 347 hlen = ETHER_HDR_LEN; 348 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags, 349 addref ? &lle : NULL); 350 if (addref && lle != NULL) 351 ro->ro_lle = lle; 352 if (error != 0) 353 return (error == EWOULDBLOCK ? 0 : error); 354 } 355 356 if ((pflags & RT_L2_ME) != 0) { 357 update_mbuf_csumflags(m, m); 358 return (if_simloop(ifp, m, dst->sa_family, 0)); 359 } 360 loop_copy = pflags & RT_MAY_LOOP; 361 362 /* 363 * Add local net header. If no space in first mbuf, 364 * allocate another. 365 * 366 * Note that we do prepend regardless of RT_HAS_HEADER flag. 367 * This is done because BPF code shifts m_data pointer 368 * to the end of ethernet header prior to calling if_output(). 369 */ 370 M_PREPEND(m, hlen, M_NOWAIT); 371 if (m == NULL) 372 senderr(ENOBUFS); 373 if ((pflags & RT_HAS_HEADER) == 0) { 374 eh = mtod(m, struct ether_header *); 375 memcpy(eh, phdr, hlen); 376 } 377 378 /* 379 * If a simplex interface, and the packet is being sent to our 380 * Ethernet address or a broadcast address, loopback a copy. 381 * XXX To make a simplex device behave exactly like a duplex 382 * device, we should copy in the case of sending to our own 383 * ethernet address (thus letting the original actually appear 384 * on the wire). However, we don't do that here for security 385 * reasons and compatibility with the original behavior. 386 */ 387 if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && 388 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 389 struct mbuf *n; 390 391 /* 392 * Because if_simloop() modifies the packet, we need a 393 * writable copy through m_dup() instead of a readonly 394 * one as m_copy[m] would give us. The alternative would 395 * be to modify if_simloop() to handle the readonly mbuf, 396 * but performancewise it is mostly equivalent (trading 397 * extra data copying vs. extra locking). 398 * 399 * XXX This is a local workaround. A number of less 400 * often used kernel parts suffer from the same bug. 401 * See PR kern/105943 for a proposed general solution. 402 */ 403 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 404 update_mbuf_csumflags(m, n); 405 (void)if_simloop(ifp, n, dst->sa_family, hlen); 406 } else 407 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 408 } 409 410 /* 411 * Bridges require special output handling. 412 */ 413 if (ifp->if_bridge) { 414 BRIDGE_OUTPUT(ifp, m, error); 415 return (error); 416 } 417 418 #if defined(INET) || defined(INET6) 419 if (ifp->if_carp && 420 (error = (*carp_output_p)(ifp, m, dst))) 421 goto bad; 422 #endif 423 424 /* Handle ng_ether(4) processing, if any */ 425 if (ifp->if_l2com != NULL) { 426 KASSERT(ng_ether_output_p != NULL, 427 ("ng_ether_output_p is NULL")); 428 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 429 bad: if (m != NULL) 430 m_freem(m); 431 return (error); 432 } 433 if (m == NULL) 434 return (0); 435 } 436 437 /* Continue with link-layer output */ 438 return ether_output_frame(ifp, m); 439 } 440 441 static bool 442 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp) 443 { 444 struct ether_header *eh; 445 446 eh = mtod(*mp, struct ether_header *); 447 if (ntohs(eh->ether_type) == ETHERTYPE_VLAN || 448 ether_8021q_frame(mp, ifp, ifp, 0, pcp)) 449 return (true); 450 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 451 return (false); 452 } 453 454 /* 455 * Ethernet link layer output routine to send a raw frame to the device. 456 * 457 * This assumes that the 14 byte Ethernet header is present and contiguous 458 * in the first mbuf (if BRIDGE'ing). 459 */ 460 int 461 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 462 { 463 uint8_t pcp; 464 465 pcp = ifp->if_pcp; 466 if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN && 467 !ether_set_pcp(&m, ifp, pcp)) 468 return (0); 469 470 if (PFIL_HOOKED_OUT(V_link_pfil_head)) 471 switch (pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_OUT, 472 NULL)) { 473 case PFIL_DROPPED: 474 return (EACCES); 475 case PFIL_CONSUMED: 476 return (0); 477 } 478 479 #ifdef EXPERIMENTAL 480 #if defined(INET6) && defined(INET) 481 /* draft-ietf-6man-ipv6only-flag */ 482 /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ 483 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { 484 struct ether_header *eh; 485 486 eh = mtod(m, struct ether_header *); 487 switch (ntohs(eh->ether_type)) { 488 case ETHERTYPE_IP: 489 case ETHERTYPE_ARP: 490 case ETHERTYPE_REVARP: 491 m_freem(m); 492 return (EAFNOSUPPORT); 493 /* NOTREACHED */ 494 break; 495 }; 496 } 497 #endif 498 #endif 499 500 /* 501 * Queue message on interface, update output statistics if 502 * successful, and start output if interface not yet active. 503 */ 504 return ((ifp->if_transmit)(ifp, m)); 505 } 506 507 /* 508 * Process a received Ethernet packet; the packet is in the 509 * mbuf chain m with the ethernet header at the front. 510 */ 511 static void 512 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 513 { 514 struct ether_header *eh; 515 u_short etype; 516 517 if ((ifp->if_flags & IFF_UP) == 0) { 518 m_freem(m); 519 return; 520 } 521 #ifdef DIAGNOSTIC 522 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 523 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 524 m_freem(m); 525 return; 526 } 527 #endif 528 if (m->m_len < ETHER_HDR_LEN) { 529 /* XXX maybe should pullup? */ 530 if_printf(ifp, "discard frame w/o leading ethernet " 531 "header (len %u pkt len %u)\n", 532 m->m_len, m->m_pkthdr.len); 533 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 534 m_freem(m); 535 return; 536 } 537 eh = mtod(m, struct ether_header *); 538 etype = ntohs(eh->ether_type); 539 random_harvest_queue_ether(m, sizeof(*m)); 540 541 #ifdef EXPERIMENTAL 542 #if defined(INET6) && defined(INET) 543 /* draft-ietf-6man-ipv6only-flag */ 544 /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ 545 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { 546 switch (etype) { 547 case ETHERTYPE_IP: 548 case ETHERTYPE_ARP: 549 case ETHERTYPE_REVARP: 550 m_freem(m); 551 return; 552 /* NOTREACHED */ 553 break; 554 }; 555 } 556 #endif 557 #endif 558 559 CURVNET_SET_QUIET(ifp->if_vnet); 560 561 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 562 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 563 m->m_flags |= M_BCAST; 564 else 565 m->m_flags |= M_MCAST; 566 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 567 } 568 569 #ifdef MAC 570 /* 571 * Tag the mbuf with an appropriate MAC label before any other 572 * consumers can get to it. 573 */ 574 mac_ifnet_create_mbuf(ifp, m); 575 #endif 576 577 /* 578 * Give bpf a chance at the packet. 579 */ 580 ETHER_BPF_MTAP(ifp, m); 581 582 /* 583 * If the CRC is still on the packet, trim it off. We do this once 584 * and once only in case we are re-entered. Nothing else on the 585 * Ethernet receive path expects to see the FCS. 586 */ 587 if (m->m_flags & M_HASFCS) { 588 m_adj(m, -ETHER_CRC_LEN); 589 m->m_flags &= ~M_HASFCS; 590 } 591 592 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 593 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 594 595 /* Allow monitor mode to claim this frame, after stats are updated. */ 596 if (ifp->if_flags & IFF_MONITOR) { 597 m_freem(m); 598 CURVNET_RESTORE(); 599 return; 600 } 601 602 /* Handle input from a lagg(4) port */ 603 if (ifp->if_type == IFT_IEEE8023ADLAG) { 604 KASSERT(lagg_input_p != NULL, 605 ("%s: if_lagg not loaded!", __func__)); 606 m = (*lagg_input_p)(ifp, m); 607 if (m != NULL) 608 ifp = m->m_pkthdr.rcvif; 609 else { 610 CURVNET_RESTORE(); 611 return; 612 } 613 } 614 615 /* 616 * If the hardware did not process an 802.1Q tag, do this now, 617 * to allow 802.1P priority frames to be passed to the main input 618 * path correctly. 619 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 620 */ 621 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 622 struct ether_vlan_header *evl; 623 624 if (m->m_len < sizeof(*evl) && 625 (m = m_pullup(m, sizeof(*evl))) == NULL) { 626 #ifdef DIAGNOSTIC 627 if_printf(ifp, "cannot pullup VLAN header\n"); 628 #endif 629 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 630 CURVNET_RESTORE(); 631 return; 632 } 633 634 evl = mtod(m, struct ether_vlan_header *); 635 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 636 m->m_flags |= M_VLANTAG; 637 638 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 639 ETHER_HDR_LEN - ETHER_TYPE_LEN); 640 m_adj(m, ETHER_VLAN_ENCAP_LEN); 641 eh = mtod(m, struct ether_header *); 642 } 643 644 M_SETFIB(m, ifp->if_fib); 645 646 /* Allow ng_ether(4) to claim this frame. */ 647 if (ifp->if_l2com != NULL) { 648 KASSERT(ng_ether_input_p != NULL, 649 ("%s: ng_ether_input_p is NULL", __func__)); 650 m->m_flags &= ~M_PROMISC; 651 (*ng_ether_input_p)(ifp, &m); 652 if (m == NULL) { 653 CURVNET_RESTORE(); 654 return; 655 } 656 eh = mtod(m, struct ether_header *); 657 } 658 659 /* 660 * Allow if_bridge(4) to claim this frame. 661 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 662 * and the frame should be delivered locally. 663 */ 664 if (ifp->if_bridge != NULL) { 665 m->m_flags &= ~M_PROMISC; 666 BRIDGE_INPUT(ifp, m); 667 if (m == NULL) { 668 CURVNET_RESTORE(); 669 return; 670 } 671 eh = mtod(m, struct ether_header *); 672 } 673 674 #if defined(INET) || defined(INET6) 675 /* 676 * Clear M_PROMISC on frame so that carp(4) will see it when the 677 * mbuf flows up to Layer 3. 678 * FreeBSD's implementation of carp(4) uses the inprotosw 679 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 680 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 681 * is outside the scope of the M_PROMISC test below. 682 * TODO: Maintain a hash table of ethernet addresses other than 683 * ether_dhost which may be active on this ifp. 684 */ 685 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 686 m->m_flags &= ~M_PROMISC; 687 } else 688 #endif 689 { 690 /* 691 * If the frame received was not for our MAC address, set the 692 * M_PROMISC flag on the mbuf chain. The frame may need to 693 * be seen by the rest of the Ethernet input path in case of 694 * re-entry (e.g. bridge, vlan, netgraph) but should not be 695 * seen by upper protocol layers. 696 */ 697 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 698 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 699 m->m_flags |= M_PROMISC; 700 } 701 702 ether_demux(ifp, m); 703 CURVNET_RESTORE(); 704 } 705 706 /* 707 * Ethernet input dispatch; by default, direct dispatch here regardless of 708 * global configuration. However, if RSS is enabled, hook up RSS affinity 709 * so that when deferred or hybrid dispatch is enabled, we can redistribute 710 * load based on RSS. 711 * 712 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 713 * not it had already done work distribution via multi-queue. Then we could 714 * direct dispatch in the event load balancing was already complete and 715 * handle the case of interfaces with different capabilities better. 716 * 717 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 718 * at multiple layers? 719 * 720 * XXXRW: For now, enable all this only if RSS is compiled in, although it 721 * works fine without RSS. Need to characterise the performance overhead 722 * of the detour through the netisr code in the event the result is always 723 * direct dispatch. 724 */ 725 static void 726 ether_nh_input(struct mbuf *m) 727 { 728 729 M_ASSERTPKTHDR(m); 730 KASSERT(m->m_pkthdr.rcvif != NULL, 731 ("%s: NULL interface pointer", __func__)); 732 ether_input_internal(m->m_pkthdr.rcvif, m); 733 } 734 735 static struct netisr_handler ether_nh = { 736 .nh_name = "ether", 737 .nh_handler = ether_nh_input, 738 .nh_proto = NETISR_ETHER, 739 #ifdef RSS 740 .nh_policy = NETISR_POLICY_CPU, 741 .nh_dispatch = NETISR_DISPATCH_DIRECT, 742 .nh_m2cpuid = rss_m2cpuid, 743 #else 744 .nh_policy = NETISR_POLICY_SOURCE, 745 .nh_dispatch = NETISR_DISPATCH_DIRECT, 746 #endif 747 }; 748 749 static void 750 ether_init(__unused void *arg) 751 { 752 753 netisr_register(ðer_nh); 754 } 755 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 756 757 static void 758 vnet_ether_init(__unused void *arg) 759 { 760 struct pfil_head_args args; 761 762 args.pa_version = PFIL_VERSION; 763 args.pa_flags = PFIL_IN | PFIL_OUT; 764 args.pa_type = PFIL_TYPE_ETHERNET; 765 args.pa_headname = PFIL_ETHER_NAME; 766 V_link_pfil_head = pfil_head_register(&args); 767 768 #ifdef VIMAGE 769 netisr_register_vnet(ðer_nh); 770 #endif 771 } 772 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 773 vnet_ether_init, NULL); 774 775 #ifdef VIMAGE 776 static void 777 vnet_ether_pfil_destroy(__unused void *arg) 778 { 779 780 pfil_head_unregister(V_link_pfil_head); 781 } 782 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY, 783 vnet_ether_pfil_destroy, NULL); 784 785 static void 786 vnet_ether_destroy(__unused void *arg) 787 { 788 789 netisr_unregister_vnet(ðer_nh); 790 } 791 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 792 vnet_ether_destroy, NULL); 793 #endif 794 795 static void 796 ether_input(struct ifnet *ifp, struct mbuf *m) 797 { 798 struct epoch_tracker et; 799 struct mbuf *mn; 800 bool needs_epoch; 801 802 needs_epoch = !(ifp->if_flags & IFF_KNOWSEPOCH); 803 804 /* 805 * The drivers are allowed to pass in a chain of packets linked with 806 * m_nextpkt. We split them up into separate packets here and pass 807 * them up. This allows the drivers to amortize the receive lock. 808 */ 809 CURVNET_SET_QUIET(ifp->if_vnet); 810 if (__predict_false(needs_epoch)) 811 NET_EPOCH_ENTER(et); 812 while (m) { 813 mn = m->m_nextpkt; 814 m->m_nextpkt = NULL; 815 816 /* 817 * We will rely on rcvif being set properly in the deferred 818 * context, so assert it is correct here. 819 */ 820 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 821 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p " 822 "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp)); 823 netisr_dispatch(NETISR_ETHER, m); 824 m = mn; 825 } 826 if (__predict_false(needs_epoch)) 827 NET_EPOCH_EXIT(et); 828 CURVNET_RESTORE(); 829 } 830 831 /* 832 * Upper layer processing for a received Ethernet packet. 833 */ 834 void 835 ether_demux(struct ifnet *ifp, struct mbuf *m) 836 { 837 struct ether_header *eh; 838 int i, isr; 839 u_short ether_type; 840 841 NET_EPOCH_ASSERT(); 842 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 843 844 /* Do not grab PROMISC frames in case we are re-entered. */ 845 if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) { 846 i = pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_IN, NULL); 847 if (i != 0 || m == NULL) 848 return; 849 } 850 851 eh = mtod(m, struct ether_header *); 852 ether_type = ntohs(eh->ether_type); 853 854 /* 855 * If this frame has a VLAN tag other than 0, call vlan_input() 856 * if its module is loaded. Otherwise, drop. 857 */ 858 if ((m->m_flags & M_VLANTAG) && 859 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 860 if (ifp->if_vlantrunk == NULL) { 861 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 862 m_freem(m); 863 return; 864 } 865 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 866 __func__)); 867 /* Clear before possibly re-entering ether_input(). */ 868 m->m_flags &= ~M_PROMISC; 869 (*vlan_input_p)(ifp, m); 870 return; 871 } 872 873 /* 874 * Pass promiscuously received frames to the upper layer if the user 875 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 876 */ 877 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 878 m_freem(m); 879 return; 880 } 881 882 /* 883 * Reset layer specific mbuf flags to avoid confusing upper layers. 884 * Strip off Ethernet header. 885 */ 886 m->m_flags &= ~M_VLANTAG; 887 m_clrprotoflags(m); 888 m_adj(m, ETHER_HDR_LEN); 889 890 /* 891 * Dispatch frame to upper layer. 892 */ 893 switch (ether_type) { 894 #ifdef INET 895 case ETHERTYPE_IP: 896 isr = NETISR_IP; 897 break; 898 899 case ETHERTYPE_ARP: 900 if (ifp->if_flags & IFF_NOARP) { 901 /* Discard packet if ARP is disabled on interface */ 902 m_freem(m); 903 return; 904 } 905 isr = NETISR_ARP; 906 break; 907 #endif 908 #ifdef INET6 909 case ETHERTYPE_IPV6: 910 isr = NETISR_IPV6; 911 break; 912 #endif 913 default: 914 goto discard; 915 } 916 netisr_dispatch(isr, m); 917 return; 918 919 discard: 920 /* 921 * Packet is to be discarded. If netgraph is present, 922 * hand the packet to it for last chance processing; 923 * otherwise dispose of it. 924 */ 925 if (ifp->if_l2com != NULL) { 926 KASSERT(ng_ether_input_orphan_p != NULL, 927 ("ng_ether_input_orphan_p is NULL")); 928 /* 929 * Put back the ethernet header so netgraph has a 930 * consistent view of inbound packets. 931 */ 932 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 933 (*ng_ether_input_orphan_p)(ifp, m); 934 return; 935 } 936 m_freem(m); 937 } 938 939 /* 940 * Convert Ethernet address to printable (loggable) representation. 941 * This routine is for compatibility; it's better to just use 942 * 943 * printf("%6D", <pointer to address>, ":"); 944 * 945 * since there's no static buffer involved. 946 */ 947 char * 948 ether_sprintf(const u_char *ap) 949 { 950 static char etherbuf[18]; 951 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 952 return (etherbuf); 953 } 954 955 /* 956 * Perform common duties while attaching to interface list 957 */ 958 void 959 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 960 { 961 int i; 962 struct ifaddr *ifa; 963 struct sockaddr_dl *sdl; 964 965 ifp->if_addrlen = ETHER_ADDR_LEN; 966 ifp->if_hdrlen = ETHER_HDR_LEN; 967 ifp->if_mtu = ETHERMTU; 968 if_attach(ifp); 969 ifp->if_output = ether_output; 970 ifp->if_input = ether_input; 971 ifp->if_resolvemulti = ether_resolvemulti; 972 ifp->if_requestencap = ether_requestencap; 973 #ifdef VIMAGE 974 ifp->if_reassign = ether_reassign; 975 #endif 976 if (ifp->if_baudrate == 0) 977 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 978 ifp->if_broadcastaddr = etherbroadcastaddr; 979 980 ifa = ifp->if_addr; 981 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 982 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 983 sdl->sdl_type = IFT_ETHER; 984 sdl->sdl_alen = ifp->if_addrlen; 985 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 986 987 if (ifp->if_hw_addr != NULL) 988 bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen); 989 990 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 991 if (ng_ether_attach_p != NULL) 992 (*ng_ether_attach_p)(ifp); 993 994 /* Announce Ethernet MAC address if non-zero. */ 995 for (i = 0; i < ifp->if_addrlen; i++) 996 if (lla[i] != 0) 997 break; 998 if (i != ifp->if_addrlen) 999 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 1000 1001 uuid_ether_add(LLADDR(sdl)); 1002 1003 /* Add necessary bits are setup; announce it now. */ 1004 EVENTHANDLER_INVOKE(ether_ifattach_event, ifp); 1005 if (IS_DEFAULT_VNET(curvnet)) 1006 devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL); 1007 } 1008 1009 /* 1010 * Perform common duties while detaching an Ethernet interface 1011 */ 1012 void 1013 ether_ifdetach(struct ifnet *ifp) 1014 { 1015 struct sockaddr_dl *sdl; 1016 1017 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 1018 uuid_ether_del(LLADDR(sdl)); 1019 1020 if (ifp->if_l2com != NULL) { 1021 KASSERT(ng_ether_detach_p != NULL, 1022 ("ng_ether_detach_p is NULL")); 1023 (*ng_ether_detach_p)(ifp); 1024 } 1025 1026 bpfdetach(ifp); 1027 if_detach(ifp); 1028 } 1029 1030 #ifdef VIMAGE 1031 void 1032 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 1033 { 1034 1035 if (ifp->if_l2com != NULL) { 1036 KASSERT(ng_ether_detach_p != NULL, 1037 ("ng_ether_detach_p is NULL")); 1038 (*ng_ether_detach_p)(ifp); 1039 } 1040 1041 if (ng_ether_attach_p != NULL) { 1042 CURVNET_SET_QUIET(new_vnet); 1043 (*ng_ether_attach_p)(ifp); 1044 CURVNET_RESTORE(); 1045 } 1046 } 1047 #endif 1048 1049 SYSCTL_DECL(_net_link); 1050 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1051 "Ethernet"); 1052 1053 #if 0 1054 /* 1055 * This is for reference. We have a table-driven version 1056 * of the little-endian crc32 generator, which is faster 1057 * than the double-loop. 1058 */ 1059 uint32_t 1060 ether_crc32_le(const uint8_t *buf, size_t len) 1061 { 1062 size_t i; 1063 uint32_t crc; 1064 int bit; 1065 uint8_t data; 1066 1067 crc = 0xffffffff; /* initial value */ 1068 1069 for (i = 0; i < len; i++) { 1070 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1071 carry = (crc ^ data) & 1; 1072 crc >>= 1; 1073 if (carry) 1074 crc = (crc ^ ETHER_CRC_POLY_LE); 1075 } 1076 } 1077 1078 return (crc); 1079 } 1080 #else 1081 uint32_t 1082 ether_crc32_le(const uint8_t *buf, size_t len) 1083 { 1084 static const uint32_t crctab[] = { 1085 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1086 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1087 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1088 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1089 }; 1090 size_t i; 1091 uint32_t crc; 1092 1093 crc = 0xffffffff; /* initial value */ 1094 1095 for (i = 0; i < len; i++) { 1096 crc ^= buf[i]; 1097 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1098 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1099 } 1100 1101 return (crc); 1102 } 1103 #endif 1104 1105 uint32_t 1106 ether_crc32_be(const uint8_t *buf, size_t len) 1107 { 1108 size_t i; 1109 uint32_t crc, carry; 1110 int bit; 1111 uint8_t data; 1112 1113 crc = 0xffffffff; /* initial value */ 1114 1115 for (i = 0; i < len; i++) { 1116 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1117 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 1118 crc <<= 1; 1119 if (carry) 1120 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1121 } 1122 } 1123 1124 return (crc); 1125 } 1126 1127 int 1128 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1129 { 1130 struct ifaddr *ifa = (struct ifaddr *) data; 1131 struct ifreq *ifr = (struct ifreq *) data; 1132 int error = 0; 1133 1134 switch (command) { 1135 case SIOCSIFADDR: 1136 ifp->if_flags |= IFF_UP; 1137 1138 switch (ifa->ifa_addr->sa_family) { 1139 #ifdef INET 1140 case AF_INET: 1141 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1142 arp_ifinit(ifp, ifa); 1143 break; 1144 #endif 1145 default: 1146 ifp->if_init(ifp->if_softc); 1147 break; 1148 } 1149 break; 1150 1151 case SIOCGIFADDR: 1152 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 1153 ETHER_ADDR_LEN); 1154 break; 1155 1156 case SIOCSIFMTU: 1157 /* 1158 * Set the interface MTU. 1159 */ 1160 if (ifr->ifr_mtu > ETHERMTU) { 1161 error = EINVAL; 1162 } else { 1163 ifp->if_mtu = ifr->ifr_mtu; 1164 } 1165 break; 1166 1167 case SIOCSLANPCP: 1168 error = priv_check(curthread, PRIV_NET_SETLANPCP); 1169 if (error != 0) 1170 break; 1171 if (ifr->ifr_lan_pcp > 7 && 1172 ifr->ifr_lan_pcp != IFNET_PCP_NONE) { 1173 error = EINVAL; 1174 } else { 1175 ifp->if_pcp = ifr->ifr_lan_pcp; 1176 /* broadcast event about PCP change */ 1177 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 1178 } 1179 break; 1180 1181 case SIOCGLANPCP: 1182 ifr->ifr_lan_pcp = ifp->if_pcp; 1183 break; 1184 1185 default: 1186 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1187 break; 1188 } 1189 return (error); 1190 } 1191 1192 static int 1193 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1194 struct sockaddr *sa) 1195 { 1196 struct sockaddr_dl *sdl; 1197 #ifdef INET 1198 struct sockaddr_in *sin; 1199 #endif 1200 #ifdef INET6 1201 struct sockaddr_in6 *sin6; 1202 #endif 1203 u_char *e_addr; 1204 1205 switch(sa->sa_family) { 1206 case AF_LINK: 1207 /* 1208 * No mapping needed. Just check that it's a valid MC address. 1209 */ 1210 sdl = (struct sockaddr_dl *)sa; 1211 e_addr = LLADDR(sdl); 1212 if (!ETHER_IS_MULTICAST(e_addr)) 1213 return EADDRNOTAVAIL; 1214 *llsa = NULL; 1215 return 0; 1216 1217 #ifdef INET 1218 case AF_INET: 1219 sin = (struct sockaddr_in *)sa; 1220 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1221 return EADDRNOTAVAIL; 1222 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1223 sdl->sdl_alen = ETHER_ADDR_LEN; 1224 e_addr = LLADDR(sdl); 1225 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1226 *llsa = (struct sockaddr *)sdl; 1227 return 0; 1228 #endif 1229 #ifdef INET6 1230 case AF_INET6: 1231 sin6 = (struct sockaddr_in6 *)sa; 1232 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1233 /* 1234 * An IP6 address of 0 means listen to all 1235 * of the Ethernet multicast address used for IP6. 1236 * (This is used for multicast routers.) 1237 */ 1238 ifp->if_flags |= IFF_ALLMULTI; 1239 *llsa = NULL; 1240 return 0; 1241 } 1242 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1243 return EADDRNOTAVAIL; 1244 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1245 sdl->sdl_alen = ETHER_ADDR_LEN; 1246 e_addr = LLADDR(sdl); 1247 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1248 *llsa = (struct sockaddr *)sdl; 1249 return 0; 1250 #endif 1251 1252 default: 1253 /* 1254 * Well, the text isn't quite right, but it's the name 1255 * that counts... 1256 */ 1257 return EAFNOSUPPORT; 1258 } 1259 } 1260 1261 static moduledata_t ether_mod = { 1262 .name = "ether", 1263 }; 1264 1265 void 1266 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1267 { 1268 struct ether_vlan_header vlan; 1269 struct mbuf mv, mb; 1270 1271 KASSERT((m->m_flags & M_VLANTAG) != 0, 1272 ("%s: vlan information not present", __func__)); 1273 KASSERT(m->m_len >= sizeof(struct ether_header), 1274 ("%s: mbuf not large enough for header", __func__)); 1275 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1276 vlan.evl_proto = vlan.evl_encap_proto; 1277 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1278 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1279 m->m_len -= sizeof(struct ether_header); 1280 m->m_data += sizeof(struct ether_header); 1281 /* 1282 * If a data link has been supplied by the caller, then we will need to 1283 * re-create a stack allocated mbuf chain with the following structure: 1284 * 1285 * (1) mbuf #1 will contain the supplied data link 1286 * (2) mbuf #2 will contain the vlan header 1287 * (3) mbuf #3 will contain the original mbuf's packet data 1288 * 1289 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1290 */ 1291 if (data != NULL) { 1292 mv.m_next = m; 1293 mv.m_data = (caddr_t)&vlan; 1294 mv.m_len = sizeof(vlan); 1295 mb.m_next = &mv; 1296 mb.m_data = data; 1297 mb.m_len = dlen; 1298 bpf_mtap(bp, &mb); 1299 } else 1300 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1301 m->m_len += sizeof(struct ether_header); 1302 m->m_data -= sizeof(struct ether_header); 1303 } 1304 1305 struct mbuf * 1306 ether_vlanencap(struct mbuf *m, uint16_t tag) 1307 { 1308 struct ether_vlan_header *evl; 1309 1310 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1311 if (m == NULL) 1312 return (NULL); 1313 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1314 1315 if (m->m_len < sizeof(*evl)) { 1316 m = m_pullup(m, sizeof(*evl)); 1317 if (m == NULL) 1318 return (NULL); 1319 } 1320 1321 /* 1322 * Transform the Ethernet header into an Ethernet header 1323 * with 802.1Q encapsulation. 1324 */ 1325 evl = mtod(m, struct ether_vlan_header *); 1326 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1327 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1328 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1329 evl->evl_tag = htons(tag); 1330 return (m); 1331 } 1332 1333 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1334 "IEEE 802.1Q VLAN"); 1335 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, 1336 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1337 "for consistency"); 1338 1339 VNET_DEFINE_STATIC(int, soft_pad); 1340 #define V_soft_pad VNET(soft_pad) 1341 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET, 1342 &VNET_NAME(soft_pad), 0, 1343 "pad short frames before tagging"); 1344 1345 /* 1346 * For now, make preserving PCP via an mbuf tag optional, as it increases 1347 * per-packet memory allocations and frees. In the future, it would be 1348 * preferable to reuse ether_vtag for this, or similar. 1349 */ 1350 int vlan_mtag_pcp = 0; 1351 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW, 1352 &vlan_mtag_pcp, 0, 1353 "Retain VLAN PCP information as packets are passed up the stack"); 1354 1355 bool 1356 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p, 1357 uint16_t vid, uint8_t pcp) 1358 { 1359 struct m_tag *mtag; 1360 int n; 1361 uint16_t tag; 1362 static const char pad[8]; /* just zeros */ 1363 1364 /* 1365 * Pad the frame to the minimum size allowed if told to. 1366 * This option is in accord with IEEE Std 802.1Q, 2003 Ed., 1367 * paragraph C.4.4.3.b. It can help to work around buggy 1368 * bridges that violate paragraph C.4.4.3.a from the same 1369 * document, i.e., fail to pad short frames after untagging. 1370 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but 1371 * untagging it will produce a 62-byte frame, which is a runt 1372 * and requires padding. There are VLAN-enabled network 1373 * devices that just discard such runts instead or mishandle 1374 * them somehow. 1375 */ 1376 if (V_soft_pad && p->if_type == IFT_ETHER) { 1377 for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len; 1378 n > 0; n -= sizeof(pad)) { 1379 if (!m_append(*mp, min(n, sizeof(pad)), pad)) 1380 break; 1381 } 1382 if (n > 0) { 1383 m_freem(*mp); 1384 *mp = NULL; 1385 if_printf(ife, "cannot pad short frame"); 1386 return (false); 1387 } 1388 } 1389 1390 /* 1391 * If PCP is set in mbuf, use it 1392 */ 1393 if ((*mp)->m_flags & M_VLANTAG) { 1394 pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag); 1395 } 1396 1397 /* 1398 * If underlying interface can do VLAN tag insertion itself, 1399 * just pass the packet along. However, we need some way to 1400 * tell the interface where the packet came from so that it 1401 * knows how to find the VLAN tag to use, so we attach a 1402 * packet tag that holds it. 1403 */ 1404 if (vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q, 1405 MTAG_8021Q_PCP_OUT, NULL)) != NULL) 1406 tag = EVL_MAKETAG(vid, *(uint8_t *)(mtag + 1), 0); 1407 else 1408 tag = EVL_MAKETAG(vid, pcp, 0); 1409 if (p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1410 (*mp)->m_pkthdr.ether_vtag = tag; 1411 (*mp)->m_flags |= M_VLANTAG; 1412 } else { 1413 *mp = ether_vlanencap(*mp, tag); 1414 if (*mp == NULL) { 1415 if_printf(ife, "unable to prepend 802.1Q header"); 1416 return (false); 1417 } 1418 } 1419 return (true); 1420 } 1421 1422 /* 1423 * Allocate an address from the FreeBSD Foundation OUI. This uses a 1424 * cryptographic hash function on the containing jail's name, UUID and the 1425 * interface name to attempt to provide a unique but stable address. 1426 * Pseudo-interfaces which require a MAC address should use this function to 1427 * allocate non-locally-administered addresses. 1428 */ 1429 void 1430 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr) 1431 { 1432 SHA1_CTX ctx; 1433 char *buf; 1434 char uuid[HOSTUUIDLEN + 1]; 1435 uint64_t addr; 1436 int i, sz; 1437 char digest[SHA1_RESULTLEN]; 1438 char jailname[MAXHOSTNAMELEN]; 1439 1440 getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid)); 1441 /* If each (vnet) jail would also have a unique hostuuid this would not 1442 * be necessary. */ 1443 getjailname(curthread->td_ucred, jailname, sizeof(jailname)); 1444 sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp), 1445 jailname); 1446 if (sz < 0) { 1447 /* Fall back to a random mac address. */ 1448 arc4rand(hwaddr, sizeof(*hwaddr), 0); 1449 hwaddr->octet[0] = 0x02; 1450 return; 1451 } 1452 1453 SHA1Init(&ctx); 1454 SHA1Update(&ctx, buf, sz); 1455 SHA1Final(digest, &ctx); 1456 free(buf, M_TEMP); 1457 1458 addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) & 1459 OUI_FREEBSD_GENERATED_MASK; 1460 addr = OUI_FREEBSD(addr); 1461 for (i = 0; i < ETHER_ADDR_LEN; ++i) { 1462 hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) & 1463 0xFF; 1464 } 1465 } 1466 1467 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1468 MODULE_VERSION(ether, 1); 1469