xref: /freebsd/sys/net/if_ethersubr.c (revision 9b37d84c87e69dabc69d818aa4d2fea718bd8b74)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_netgraph.h"
35 #include "opt_mbuf_profiling.h"
36 #include "opt_rss.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/devctl.h>
41 #include <sys/eventhandler.h>
42 #include <sys/jail.h>
43 #include <sys/kernel.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/module.h>
48 #include <sys/msan.h>
49 #include <sys/proc.h>
50 #include <sys/priv.h>
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <sys/uuid.h>
56 #ifdef KDB
57 #include <sys/kdb.h>
58 #endif
59 
60 #include <net/ieee_oui.h>
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_private.h>
64 #include <net/if_arp.h>
65 #include <net/netisr.h>
66 #include <net/route.h>
67 #include <net/if_llc.h>
68 #include <net/if_dl.h>
69 #include <net/if_types.h>
70 #include <net/bpf.h>
71 #include <net/ethernet.h>
72 #include <net/if_bridgevar.h>
73 #include <net/if_vlan_var.h>
74 #include <net/if_llatbl.h>
75 #include <net/pfil.h>
76 #include <net/rss_config.h>
77 #include <net/vnet.h>
78 
79 #include <netpfil/pf/pf_mtag.h>
80 
81 #if defined(INET) || defined(INET6)
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 #include <netinet/if_ether.h>
85 #include <netinet/ip_carp.h>
86 #include <netinet/ip_var.h>
87 #endif
88 #ifdef INET6
89 #include <netinet6/nd6.h>
90 #endif
91 #include <security/mac/mac_framework.h>
92 
93 #include <crypto/sha1.h>
94 
95 #ifdef CTASSERT
96 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
97 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
98 #endif
99 
100 VNET_DEFINE(pfil_head_t, link_pfil_head);	/* Packet filter hooks */
101 
102 /* netgraph node hooks for ng_ether(4) */
103 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
104 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
105 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
106 void	(*ng_ether_attach_p)(struct ifnet *ifp);
107 void	(*ng_ether_detach_p)(struct ifnet *ifp);
108 
109 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
110 
111 /* if_bridge(4) support */
112 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
113 bool	(*bridge_same_p)(const void *, const void *);
114 void	*(*bridge_get_softc_p)(struct ifnet *);
115 bool	(*bridge_member_ifaddrs_p)(void);
116 
117 /* if_lagg(4) support */
118 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
119 
120 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
121 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
122 
123 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
124 		struct sockaddr *);
125 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
126 
127 static inline bool ether_do_pcp(struct ifnet *, struct mbuf *);
128 
129 #define senderr(e) do { error = (e); goto bad;} while (0)
130 
131 static void
132 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
133 {
134 	int csum_flags = 0;
135 
136 	if (src->m_pkthdr.csum_flags & CSUM_IP)
137 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
138 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
139 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
140 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
141 		csum_flags |= CSUM_SCTP_VALID;
142 	dst->m_pkthdr.csum_flags |= csum_flags;
143 	if (csum_flags & CSUM_DATA_VALID)
144 		dst->m_pkthdr.csum_data = 0xffff;
145 }
146 
147 /*
148  * Handle link-layer encapsulation requests.
149  */
150 static int
151 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
152 {
153 	struct ether_header *eh;
154 	struct arphdr *ah;
155 	uint16_t etype;
156 	const u_char *lladdr;
157 
158 	if (req->rtype != IFENCAP_LL)
159 		return (EOPNOTSUPP);
160 
161 	if (req->bufsize < ETHER_HDR_LEN)
162 		return (ENOMEM);
163 
164 	eh = (struct ether_header *)req->buf;
165 	lladdr = req->lladdr;
166 	req->lladdr_off = 0;
167 
168 	switch (req->family) {
169 	case AF_INET:
170 		etype = htons(ETHERTYPE_IP);
171 		break;
172 	case AF_INET6:
173 		etype = htons(ETHERTYPE_IPV6);
174 		break;
175 	case AF_ARP:
176 		ah = (struct arphdr *)req->hdata;
177 		ah->ar_hrd = htons(ARPHRD_ETHER);
178 
179 		switch(ntohs(ah->ar_op)) {
180 		case ARPOP_REVREQUEST:
181 		case ARPOP_REVREPLY:
182 			etype = htons(ETHERTYPE_REVARP);
183 			break;
184 		case ARPOP_REQUEST:
185 		case ARPOP_REPLY:
186 		default:
187 			etype = htons(ETHERTYPE_ARP);
188 			break;
189 		}
190 
191 		if (req->flags & IFENCAP_FLAG_BROADCAST)
192 			lladdr = ifp->if_broadcastaddr;
193 		break;
194 	default:
195 		return (EAFNOSUPPORT);
196 	}
197 
198 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
199 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
200 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
201 	req->bufsize = sizeof(struct ether_header);
202 
203 	return (0);
204 }
205 
206 static int
207 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
208 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
209 	uint32_t *pflags, struct llentry **plle)
210 {
211 	uint32_t lleflags = 0;
212 	int error = 0;
213 #if defined(INET) || defined(INET6)
214 	struct ether_header *eh = (struct ether_header *)phdr;
215 	uint16_t etype;
216 #endif
217 
218 	if (plle)
219 		*plle = NULL;
220 
221 	switch (dst->sa_family) {
222 #ifdef INET
223 	case AF_INET:
224 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
225 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
226 			    plle);
227 		else {
228 			if (m->m_flags & M_BCAST)
229 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
230 				    ETHER_ADDR_LEN);
231 			else {
232 				const struct in_addr *a;
233 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
234 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
235 			}
236 			etype = htons(ETHERTYPE_IP);
237 			memcpy(&eh->ether_type, &etype, sizeof(etype));
238 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
239 		}
240 		break;
241 #endif
242 #ifdef INET6
243 	case AF_INET6:
244 		if ((m->m_flags & M_MCAST) == 0) {
245 			int af = RO_GET_FAMILY(ro, dst);
246 			error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr,
247 			    &lleflags, plle);
248 		} else {
249 			const struct in6_addr *a6;
250 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
251 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
252 			etype = htons(ETHERTYPE_IPV6);
253 			memcpy(&eh->ether_type, &etype, sizeof(etype));
254 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
255 		}
256 		break;
257 #endif
258 	default:
259 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
260 		if (m != NULL)
261 			m_freem(m);
262 		return (EAFNOSUPPORT);
263 	}
264 
265 	if (error == EHOSTDOWN) {
266 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
267 			error = EHOSTUNREACH;
268 	}
269 
270 	if (error != 0)
271 		return (error);
272 
273 	*pflags = RT_MAY_LOOP;
274 	if (lleflags & LLE_IFADDR)
275 		*pflags |= RT_L2_ME;
276 
277 	return (0);
278 }
279 
280 /*
281  * Ethernet output routine.
282  * Encapsulate a packet of type family for the local net.
283  * Use trailer local net encapsulation if enough data in first
284  * packet leaves a multiple of 512 bytes of data in remainder.
285  */
286 int
287 ether_output(struct ifnet *ifp, struct mbuf *m,
288 	const struct sockaddr *dst, struct route *ro)
289 {
290 	int error = 0;
291 	char linkhdr[ETHER_HDR_LEN], *phdr;
292 	struct ether_header *eh;
293 	struct pf_mtag *t;
294 	bool loop_copy;
295 	int hlen;	/* link layer header length */
296 	uint32_t pflags;
297 	struct llentry *lle = NULL;
298 	int addref = 0;
299 
300 	phdr = NULL;
301 	pflags = 0;
302 	if (ro != NULL) {
303 		/* XXX BPF uses ro_prepend */
304 		if (ro->ro_prepend != NULL) {
305 			phdr = ro->ro_prepend;
306 			hlen = ro->ro_plen;
307 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
308 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
309 				lle = ro->ro_lle;
310 				if (lle != NULL &&
311 				    (lle->la_flags & LLE_VALID) == 0) {
312 					LLE_FREE(lle);
313 					lle = NULL;	/* redundant */
314 					ro->ro_lle = NULL;
315 				}
316 				if (lle == NULL) {
317 					/* if we lookup, keep cache */
318 					addref = 1;
319 				} else
320 					/*
321 					 * Notify LLE code that
322 					 * the entry was used
323 					 * by datapath.
324 					 */
325 					llentry_provide_feedback(lle);
326 			}
327 			if (lle != NULL) {
328 				phdr = lle->r_linkdata;
329 				hlen = lle->r_hdrlen;
330 				pflags = lle->r_flags;
331 			}
332 		}
333 	}
334 
335 #ifdef MAC
336 	error = mac_ifnet_check_transmit(ifp, m);
337 	if (error)
338 		senderr(error);
339 #endif
340 
341 	M_PROFILE(m);
342 	if (ifp->if_flags & IFF_MONITOR)
343 		senderr(ENETDOWN);
344 	if (!((ifp->if_flags & IFF_UP) &&
345 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
346 		senderr(ENETDOWN);
347 
348 	if (phdr == NULL) {
349 		/* No prepend data supplied. Try to calculate ourselves. */
350 		phdr = linkhdr;
351 		hlen = ETHER_HDR_LEN;
352 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
353 		    addref ? &lle : NULL);
354 		if (addref && lle != NULL)
355 			ro->ro_lle = lle;
356 		if (error != 0)
357 			return (error == EWOULDBLOCK ? 0 : error);
358 	}
359 
360 	if ((pflags & RT_L2_ME) != 0) {
361 		update_mbuf_csumflags(m, m);
362 		return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0));
363 	}
364 	loop_copy = (pflags & RT_MAY_LOOP) != 0;
365 
366 	/*
367 	 * Add local net header.  If no space in first mbuf,
368 	 * allocate another.
369 	 *
370 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
371 	 * This is done because BPF code shifts m_data pointer
372 	 * to the end of ethernet header prior to calling if_output().
373 	 */
374 	M_PREPEND(m, hlen, M_NOWAIT);
375 	if (m == NULL)
376 		senderr(ENOBUFS);
377 	if ((pflags & RT_HAS_HEADER) == 0) {
378 		eh = mtod(m, struct ether_header *);
379 		memcpy(eh, phdr, hlen);
380 	}
381 
382 	/*
383 	 * If a simplex interface, and the packet is being sent to our
384 	 * Ethernet address or a broadcast address, loopback a copy.
385 	 * XXX To make a simplex device behave exactly like a duplex
386 	 * device, we should copy in the case of sending to our own
387 	 * ethernet address (thus letting the original actually appear
388 	 * on the wire). However, we don't do that here for security
389 	 * reasons and compatibility with the original behavior.
390 	 */
391 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
392 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
393 		struct mbuf *n;
394 
395 		/*
396 		 * Because if_simloop() modifies the packet, we need a
397 		 * writable copy through m_dup() instead of a readonly
398 		 * one as m_copy[m] would give us. The alternative would
399 		 * be to modify if_simloop() to handle the readonly mbuf,
400 		 * but performancewise it is mostly equivalent (trading
401 		 * extra data copying vs. extra locking).
402 		 *
403 		 * XXX This is a local workaround.  A number of less
404 		 * often used kernel parts suffer from the same bug.
405 		 * See PR kern/105943 for a proposed general solution.
406 		 */
407 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
408 			update_mbuf_csumflags(m, n);
409 			(void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen);
410 		} else
411 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
412 	}
413 
414        /*
415 	* Bridges require special output handling.
416 	*/
417 	if (ifp->if_bridge) {
418 		BRIDGE_OUTPUT(ifp, m, error);
419 		return (error);
420 	}
421 
422 #if defined(INET) || defined(INET6)
423 	if (ifp->if_carp &&
424 	    (error = (*carp_output_p)(ifp, m, dst)))
425 		goto bad;
426 #endif
427 
428 	/* Handle ng_ether(4) processing, if any */
429 	if (ifp->if_l2com != NULL) {
430 		KASSERT(ng_ether_output_p != NULL,
431 		    ("ng_ether_output_p is NULL"));
432 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
433 bad:			if (m != NULL)
434 				m_freem(m);
435 			return (error);
436 		}
437 		if (m == NULL)
438 			return (0);
439 	}
440 
441 	/* Continue with link-layer output */
442 	return ether_output_frame(ifp, m);
443 }
444 
445 static bool
446 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
447 {
448 	struct ether_8021q_tag qtag;
449 	struct ether_header *eh;
450 
451 	eh = mtod(*mp, struct ether_header *);
452 	if (eh->ether_type == htons(ETHERTYPE_VLAN) ||
453 	    eh->ether_type == htons(ETHERTYPE_QINQ)) {
454 		(*mp)->m_flags &= ~M_VLANTAG;
455 		return (true);
456 	}
457 
458 	qtag.vid = 0;
459 	qtag.pcp = pcp;
460 	qtag.proto = ETHERTYPE_VLAN;
461 	if (ether_8021q_frame(mp, ifp, ifp, &qtag))
462 		return (true);
463 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
464 	return (false);
465 }
466 
467 /*
468  * Ethernet link layer output routine to send a raw frame to the device.
469  *
470  * This assumes that the 14 byte Ethernet header is present and contiguous
471  * in the first mbuf (if BRIDGE'ing).
472  */
473 int
474 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
475 {
476 	if (ether_do_pcp(ifp, m) && !ether_set_pcp(&m, ifp, ifp->if_pcp))
477 		return (0);
478 
479 	if (PFIL_HOOKED_OUT(V_link_pfil_head))
480 		switch (pfil_mbuf_out(V_link_pfil_head, &m, ifp, NULL)) {
481 		case PFIL_DROPPED:
482 			return (EACCES);
483 		case PFIL_CONSUMED:
484 			return (0);
485 		}
486 
487 #ifdef EXPERIMENTAL
488 #if defined(INET6) && defined(INET)
489 	/* draft-ietf-6man-ipv6only-flag */
490 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
491 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
492 		struct ether_header *eh;
493 
494 		eh = mtod(m, struct ether_header *);
495 		switch (ntohs(eh->ether_type)) {
496 		case ETHERTYPE_IP:
497 		case ETHERTYPE_ARP:
498 		case ETHERTYPE_REVARP:
499 			m_freem(m);
500 			return (EAFNOSUPPORT);
501 			/* NOTREACHED */
502 			break;
503 		};
504 	}
505 #endif
506 #endif
507 
508 	/*
509 	 * Queue message on interface, update output statistics if successful,
510 	 * and start output if interface not yet active.
511 	 *
512 	 * If KMSAN is enabled, use it to verify that the data does not contain
513 	 * any uninitialized bytes.
514 	 */
515 	kmsan_check_mbuf(m, "ether_output");
516 	return ((ifp->if_transmit)(ifp, m));
517 }
518 
519 /*
520  * Process a received Ethernet packet; the packet is in the
521  * mbuf chain m with the ethernet header at the front.
522  */
523 static void
524 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
525 {
526 	struct ether_header *eh;
527 	u_short etype;
528 
529 	if ((ifp->if_flags & IFF_UP) == 0) {
530 		m_freem(m);
531 		return;
532 	}
533 #ifdef DIAGNOSTIC
534 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
535 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
536 		m_freem(m);
537 		return;
538 	}
539 #endif
540 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
541 		/* Drivers should pullup and ensure the mbuf is valid */
542 		if_printf(ifp, "discard frame w/o leading ethernet "
543 				"header (len %d pkt len %d)\n",
544 				m->m_len, m->m_pkthdr.len);
545 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
546 		m_freem(m);
547 		return;
548 	}
549 	eh = mtod(m, struct ether_header *);
550 	etype = ntohs(eh->ether_type);
551 	random_harvest_queue_ether(m, sizeof(*m));
552 
553 #ifdef EXPERIMENTAL
554 #if defined(INET6) && defined(INET)
555 	/* draft-ietf-6man-ipv6only-flag */
556 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
557 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
558 		switch (etype) {
559 		case ETHERTYPE_IP:
560 		case ETHERTYPE_ARP:
561 		case ETHERTYPE_REVARP:
562 			m_freem(m);
563 			return;
564 			/* NOTREACHED */
565 			break;
566 		};
567 	}
568 #endif
569 #endif
570 
571 	CURVNET_SET_QUIET(ifp->if_vnet);
572 
573 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
574 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
575 			m->m_flags |= M_BCAST;
576 		else
577 			m->m_flags |= M_MCAST;
578 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
579 	}
580 
581 #ifdef MAC
582 	/*
583 	 * Tag the mbuf with an appropriate MAC label before any other
584 	 * consumers can get to it.
585 	 */
586 	mac_ifnet_create_mbuf(ifp, m);
587 #endif
588 
589 	/*
590 	 * Give bpf a chance at the packet.
591 	 */
592 	ETHER_BPF_MTAP(ifp, m);
593 
594 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
595 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
596 
597 	/* Allow monitor mode to claim this frame, after stats are updated. */
598 	if (ifp->if_flags & IFF_MONITOR) {
599 		m_freem(m);
600 		CURVNET_RESTORE();
601 		return;
602 	}
603 
604 	/* Handle input from a lagg(4) port */
605 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
606 		KASSERT(lagg_input_ethernet_p != NULL,
607 		    ("%s: if_lagg not loaded!", __func__));
608 		m = (*lagg_input_ethernet_p)(ifp, m);
609 		if (m != NULL)
610 			ifp = m->m_pkthdr.rcvif;
611 		else {
612 			CURVNET_RESTORE();
613 			return;
614 		}
615 	}
616 
617 	/*
618 	 * If the hardware did not process an 802.1Q tag, do this now,
619 	 * to allow 802.1P priority frames to be passed to the main input
620 	 * path correctly.
621 	 */
622 	if ((m->m_flags & M_VLANTAG) == 0 &&
623 	    ((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) {
624 		struct ether_vlan_header *evl;
625 
626 		if (m->m_len < sizeof(*evl) &&
627 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
628 #ifdef DIAGNOSTIC
629 			if_printf(ifp, "cannot pullup VLAN header\n");
630 #endif
631 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
632 			CURVNET_RESTORE();
633 			return;
634 		}
635 
636 		evl = mtod(m, struct ether_vlan_header *);
637 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
638 		m->m_flags |= M_VLANTAG;
639 
640 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
641 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
642 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
643 		eh = mtod(m, struct ether_header *);
644 	}
645 
646 	M_SETFIB(m, ifp->if_fib);
647 
648 	/* Allow ng_ether(4) to claim this frame. */
649 	if (ifp->if_l2com != NULL) {
650 		KASSERT(ng_ether_input_p != NULL,
651 		    ("%s: ng_ether_input_p is NULL", __func__));
652 		m->m_flags &= ~M_PROMISC;
653 		(*ng_ether_input_p)(ifp, &m);
654 		if (m == NULL) {
655 			CURVNET_RESTORE();
656 			return;
657 		}
658 		eh = mtod(m, struct ether_header *);
659 	}
660 
661 	/*
662 	 * Allow if_bridge(4) to claim this frame.
663 	 *
664 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
665 	 * and the frame should be delivered locally.
666 	 *
667 	 * If M_BRIDGE_INJECT is set, the packet was received directly by the
668 	 * bridge via netmap, so "ifp" is the bridge itself and the packet
669 	 * should be re-examined.
670 	 */
671 	if (ifp->if_bridge != NULL || (m->m_flags & M_BRIDGE_INJECT) != 0) {
672 		m->m_flags &= ~M_PROMISC;
673 		BRIDGE_INPUT(ifp, m);
674 		if (m == NULL) {
675 			CURVNET_RESTORE();
676 			return;
677 		}
678 		eh = mtod(m, struct ether_header *);
679 	}
680 
681 #if defined(INET) || defined(INET6)
682 	/*
683 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
684 	 * mbuf flows up to Layer 3.
685 	 * FreeBSD's implementation of carp(4) uses the inprotosw
686 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
687 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
688 	 * is outside the scope of the M_PROMISC test below.
689 	 * TODO: Maintain a hash table of ethernet addresses other than
690 	 * ether_dhost which may be active on this ifp.
691 	 */
692 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
693 		m->m_flags &= ~M_PROMISC;
694 	} else
695 #endif
696 	{
697 		/*
698 		 * If the frame received was not for our MAC address, set the
699 		 * M_PROMISC flag on the mbuf chain. The frame may need to
700 		 * be seen by the rest of the Ethernet input path in case of
701 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
702 		 * seen by upper protocol layers.
703 		 */
704 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
705 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
706 			m->m_flags |= M_PROMISC;
707 	}
708 
709 	ether_demux(ifp, m);
710 	CURVNET_RESTORE();
711 }
712 
713 /*
714  * Ethernet input dispatch; by default, direct dispatch here regardless of
715  * global configuration.  However, if RSS is enabled, hook up RSS affinity
716  * so that when deferred or hybrid dispatch is enabled, we can redistribute
717  * load based on RSS.
718  *
719  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
720  * not it had already done work distribution via multi-queue.  Then we could
721  * direct dispatch in the event load balancing was already complete and
722  * handle the case of interfaces with different capabilities better.
723  *
724  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
725  * at multiple layers?
726  *
727  * XXXRW: For now, enable all this only if RSS is compiled in, although it
728  * works fine without RSS.  Need to characterise the performance overhead
729  * of the detour through the netisr code in the event the result is always
730  * direct dispatch.
731  */
732 static void
733 ether_nh_input(struct mbuf *m)
734 {
735 
736 	M_ASSERTPKTHDR(m);
737 	KASSERT(m->m_pkthdr.rcvif != NULL,
738 	    ("%s: NULL interface pointer", __func__));
739 	ether_input_internal(m->m_pkthdr.rcvif, m);
740 }
741 
742 static struct netisr_handler	ether_nh = {
743 	.nh_name = "ether",
744 	.nh_handler = ether_nh_input,
745 	.nh_proto = NETISR_ETHER,
746 #ifdef RSS
747 	.nh_policy = NETISR_POLICY_CPU,
748 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
749 	.nh_m2cpuid = rss_m2cpuid,
750 #else
751 	.nh_policy = NETISR_POLICY_SOURCE,
752 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
753 #endif
754 };
755 
756 static void
757 ether_init(__unused void *arg)
758 {
759 
760 	netisr_register(&ether_nh);
761 }
762 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
763 
764 static void
765 vnet_ether_init(const __unused void *arg)
766 {
767 	struct pfil_head_args args;
768 
769 	args.pa_version = PFIL_VERSION;
770 	args.pa_flags = PFIL_IN | PFIL_OUT;
771 	args.pa_type = PFIL_TYPE_ETHERNET;
772 	args.pa_headname = PFIL_ETHER_NAME;
773 	V_link_pfil_head = pfil_head_register(&args);
774 
775 #ifdef VIMAGE
776 	netisr_register_vnet(&ether_nh);
777 #endif
778 }
779 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
780     vnet_ether_init, NULL);
781 
782 #ifdef VIMAGE
783 static void
784 vnet_ether_pfil_destroy(const __unused void *arg)
785 {
786 
787 	pfil_head_unregister(V_link_pfil_head);
788 }
789 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
790     vnet_ether_pfil_destroy, NULL);
791 
792 static void
793 vnet_ether_destroy(__unused void *arg)
794 {
795 
796 	netisr_unregister_vnet(&ether_nh);
797 }
798 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
799     vnet_ether_destroy, NULL);
800 #endif
801 
802 static void
803 ether_input(struct ifnet *ifp, struct mbuf *m)
804 {
805 	struct epoch_tracker et;
806 	struct mbuf *mn;
807 	bool needs_epoch;
808 
809 	needs_epoch = (ifp->if_flags & IFF_NEEDSEPOCH);
810 #ifdef INVARIANTS
811 	/*
812 	 * This temporary code is here to prevent epoch unaware and unmarked
813 	 * drivers to panic the system.  Once all drivers are taken care of,
814 	 * the whole INVARIANTS block should go away.
815 	 */
816 	if (!needs_epoch && !in_epoch(net_epoch_preempt)) {
817 		static bool printedonce;
818 
819 		needs_epoch = true;
820 		if (!printedonce) {
821 			printedonce = true;
822 			if_printf(ifp, "called %s w/o net epoch! "
823 			    "PLEASE file a bug report.", __func__);
824 #ifdef KDB
825 			kdb_backtrace();
826 #endif
827 		}
828 	}
829 #endif
830 
831 	/*
832 	 * The drivers are allowed to pass in a chain of packets linked with
833 	 * m_nextpkt. We split them up into separate packets here and pass
834 	 * them up. This allows the drivers to amortize the receive lock.
835 	 */
836 	CURVNET_SET_QUIET(ifp->if_vnet);
837 	if (__predict_false(needs_epoch))
838 		NET_EPOCH_ENTER(et);
839 	while (m) {
840 		mn = m->m_nextpkt;
841 		m->m_nextpkt = NULL;
842 
843 		/*
844 		 * We will rely on rcvif being set properly in the deferred
845 		 * context, so assert it is correct here.
846 		 */
847 		MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
848 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
849 		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
850 		netisr_dispatch(NETISR_ETHER, m);
851 		m = mn;
852 	}
853 	if (__predict_false(needs_epoch))
854 		NET_EPOCH_EXIT(et);
855 	CURVNET_RESTORE();
856 }
857 
858 /*
859  * Upper layer processing for a received Ethernet packet.
860  */
861 void
862 ether_demux(struct ifnet *ifp, struct mbuf *m)
863 {
864 	struct ether_header *eh;
865 	int i, isr;
866 	u_short ether_type;
867 
868 	NET_EPOCH_ASSERT();
869 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
870 
871 	/* Do not grab PROMISC frames in case we are re-entered. */
872 	if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
873 		i = pfil_mbuf_in(V_link_pfil_head, &m, ifp, NULL);
874 		if (i != PFIL_PASS)
875 			return;
876 	}
877 
878 	eh = mtod(m, struct ether_header *);
879 	ether_type = ntohs(eh->ether_type);
880 
881 	/*
882 	 * If this frame has a VLAN tag other than 0, call vlan_input()
883 	 * if its module is loaded. Otherwise, drop.
884 	 */
885 	if ((m->m_flags & M_VLANTAG) &&
886 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
887 		if (ifp->if_vlantrunk == NULL) {
888 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
889 			m_freem(m);
890 			return;
891 		}
892 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
893 		    __func__));
894 		/* Clear before possibly re-entering ether_input(). */
895 		m->m_flags &= ~M_PROMISC;
896 		(*vlan_input_p)(ifp, m);
897 		return;
898 	}
899 
900 	/*
901 	 * Pass promiscuously received frames to the upper layer if the user
902 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
903 	 */
904 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
905 		m_freem(m);
906 		return;
907 	}
908 
909 	/*
910 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
911 	 */
912 	m->m_flags &= ~M_VLANTAG;
913 	m_clrprotoflags(m);
914 
915 	/*
916 	 * Dispatch frame to upper layer.
917 	 */
918 	switch (ether_type) {
919 #ifdef INET
920 	case ETHERTYPE_IP:
921 		isr = NETISR_IP;
922 		break;
923 
924 	case ETHERTYPE_ARP:
925 		if (ifp->if_flags & IFF_NOARP) {
926 			/* Discard packet if ARP is disabled on interface */
927 			m_freem(m);
928 			return;
929 		}
930 		isr = NETISR_ARP;
931 		break;
932 #endif
933 #ifdef INET6
934 	case ETHERTYPE_IPV6:
935 		isr = NETISR_IPV6;
936 		break;
937 #endif
938 	default:
939 		goto discard;
940 	}
941 
942 	/* Strip off Ethernet header. */
943 	m_adj(m, ETHER_HDR_LEN);
944 
945 	netisr_dispatch(isr, m);
946 	return;
947 
948 discard:
949 	/*
950 	 * Packet is to be discarded.  If netgraph is present,
951 	 * hand the packet to it for last chance processing;
952 	 * otherwise dispose of it.
953 	 */
954 	if (ifp->if_l2com != NULL) {
955 		KASSERT(ng_ether_input_orphan_p != NULL,
956 		    ("ng_ether_input_orphan_p is NULL"));
957 		(*ng_ether_input_orphan_p)(ifp, m);
958 		return;
959 	}
960 	m_freem(m);
961 }
962 
963 /*
964  * Convert Ethernet address to printable (loggable) representation.
965  * This routine is for compatibility; it's better to just use
966  *
967  *	printf("%6D", <pointer to address>, ":");
968  *
969  * since there's no static buffer involved.
970  */
971 char *
972 ether_sprintf(const u_char *ap)
973 {
974 	static char etherbuf[18];
975 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
976 	return (etherbuf);
977 }
978 
979 /*
980  * Perform common duties while attaching to interface list
981  */
982 void
983 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
984 {
985 	int i;
986 	struct ifaddr *ifa;
987 	struct sockaddr_dl *sdl;
988 
989 	ifp->if_addrlen = ETHER_ADDR_LEN;
990 	ifp->if_hdrlen = ETHER_HDR_LEN;
991 	ifp->if_mtu = ETHERMTU;
992 	if_attach(ifp);
993 	ifp->if_output = ether_output;
994 	ifp->if_input = ether_input;
995 	ifp->if_resolvemulti = ether_resolvemulti;
996 	ifp->if_requestencap = ether_requestencap;
997 #ifdef VIMAGE
998 	ifp->if_reassign = ether_reassign;
999 #endif
1000 	if (ifp->if_baudrate == 0)
1001 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
1002 	ifp->if_broadcastaddr = etherbroadcastaddr;
1003 
1004 	ifa = ifp->if_addr;
1005 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
1006 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1007 	sdl->sdl_type = IFT_ETHER;
1008 	sdl->sdl_alen = ifp->if_addrlen;
1009 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
1010 
1011 	if (ifp->if_hw_addr != NULL)
1012 		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
1013 
1014 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
1015 	if (ng_ether_attach_p != NULL)
1016 		(*ng_ether_attach_p)(ifp);
1017 
1018 	/* Announce Ethernet MAC address if non-zero. */
1019 	for (i = 0; i < ifp->if_addrlen; i++)
1020 		if (lla[i] != 0)
1021 			break;
1022 	if (i != ifp->if_addrlen)
1023 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
1024 
1025 	uuid_ether_add(LLADDR(sdl));
1026 
1027 	/* Add necessary bits are setup; announce it now. */
1028 	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
1029 	if (IS_DEFAULT_VNET(curvnet))
1030 		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
1031 }
1032 
1033 /*
1034  * Perform common duties while detaching an Ethernet interface
1035  */
1036 void
1037 ether_ifdetach(struct ifnet *ifp)
1038 {
1039 	struct sockaddr_dl *sdl;
1040 
1041 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1042 	uuid_ether_del(LLADDR(sdl));
1043 
1044 	if (ifp->if_l2com != NULL) {
1045 		KASSERT(ng_ether_detach_p != NULL,
1046 		    ("ng_ether_detach_p is NULL"));
1047 		(*ng_ether_detach_p)(ifp);
1048 	}
1049 
1050 	bpfdetach(ifp);
1051 	if_detach(ifp);
1052 }
1053 
1054 #ifdef VIMAGE
1055 void
1056 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
1057 {
1058 
1059 	if (ifp->if_l2com != NULL) {
1060 		KASSERT(ng_ether_detach_p != NULL,
1061 		    ("ng_ether_detach_p is NULL"));
1062 		(*ng_ether_detach_p)(ifp);
1063 	}
1064 
1065 	if (ng_ether_attach_p != NULL) {
1066 		CURVNET_SET_QUIET(new_vnet);
1067 		(*ng_ether_attach_p)(ifp);
1068 		CURVNET_RESTORE();
1069 	}
1070 }
1071 #endif
1072 
1073 SYSCTL_DECL(_net_link);
1074 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1075     "Ethernet");
1076 
1077 #if 0
1078 /*
1079  * This is for reference.  We have a table-driven version
1080  * of the little-endian crc32 generator, which is faster
1081  * than the double-loop.
1082  */
1083 uint32_t
1084 ether_crc32_le(const uint8_t *buf, size_t len)
1085 {
1086 	size_t i;
1087 	uint32_t crc;
1088 	int bit;
1089 	uint8_t data;
1090 
1091 	crc = 0xffffffff;	/* initial value */
1092 
1093 	for (i = 0; i < len; i++) {
1094 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1095 			carry = (crc ^ data) & 1;
1096 			crc >>= 1;
1097 			if (carry)
1098 				crc = (crc ^ ETHER_CRC_POLY_LE);
1099 		}
1100 	}
1101 
1102 	return (crc);
1103 }
1104 #else
1105 uint32_t
1106 ether_crc32_le(const uint8_t *buf, size_t len)
1107 {
1108 	static const uint32_t crctab[] = {
1109 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1110 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1111 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1112 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1113 	};
1114 	size_t i;
1115 	uint32_t crc;
1116 
1117 	crc = 0xffffffff;	/* initial value */
1118 
1119 	for (i = 0; i < len; i++) {
1120 		crc ^= buf[i];
1121 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1122 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1123 	}
1124 
1125 	return (crc);
1126 }
1127 #endif
1128 
1129 uint32_t
1130 ether_crc32_be(const uint8_t *buf, size_t len)
1131 {
1132 	size_t i;
1133 	uint32_t crc, carry;
1134 	int bit;
1135 	uint8_t data;
1136 
1137 	crc = 0xffffffff;	/* initial value */
1138 
1139 	for (i = 0; i < len; i++) {
1140 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1141 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1142 			crc <<= 1;
1143 			if (carry)
1144 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1145 		}
1146 	}
1147 
1148 	return (crc);
1149 }
1150 
1151 int
1152 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1153 {
1154 	struct ifaddr *ifa = (struct ifaddr *) data;
1155 	struct ifreq *ifr = (struct ifreq *) data;
1156 	int error = 0;
1157 
1158 	switch (command) {
1159 	case SIOCSIFADDR:
1160 		ifp->if_flags |= IFF_UP;
1161 
1162 		switch (ifa->ifa_addr->sa_family) {
1163 #ifdef INET
1164 		case AF_INET:
1165 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1166 			arp_ifinit(ifp, ifa);
1167 			break;
1168 #endif
1169 		default:
1170 			ifp->if_init(ifp->if_softc);
1171 			break;
1172 		}
1173 		break;
1174 
1175 	case SIOCGIFADDR:
1176 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1177 		    ETHER_ADDR_LEN);
1178 		break;
1179 
1180 	case SIOCSIFMTU:
1181 		/*
1182 		 * Set the interface MTU.
1183 		 */
1184 		if (ifr->ifr_mtu > ETHERMTU) {
1185 			error = EINVAL;
1186 		} else {
1187 			ifp->if_mtu = ifr->ifr_mtu;
1188 		}
1189 		break;
1190 
1191 	case SIOCSLANPCP:
1192 		error = priv_check(curthread, PRIV_NET_SETLANPCP);
1193 		if (error != 0)
1194 			break;
1195 		if (ifr->ifr_lan_pcp > 7 &&
1196 		    ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1197 			error = EINVAL;
1198 		} else {
1199 			ifp->if_pcp = ifr->ifr_lan_pcp;
1200 			/* broadcast event about PCP change */
1201 			EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1202 		}
1203 		break;
1204 
1205 	case SIOCGLANPCP:
1206 		ifr->ifr_lan_pcp = ifp->if_pcp;
1207 		break;
1208 
1209 	default:
1210 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1211 		break;
1212 	}
1213 	return (error);
1214 }
1215 
1216 static int
1217 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1218 	struct sockaddr *sa)
1219 {
1220 	struct sockaddr_dl *sdl;
1221 #ifdef INET
1222 	struct sockaddr_in *sin;
1223 #endif
1224 #ifdef INET6
1225 	struct sockaddr_in6 *sin6;
1226 #endif
1227 	u_char *e_addr;
1228 
1229 	switch(sa->sa_family) {
1230 	case AF_LINK:
1231 		/*
1232 		 * No mapping needed. Just check that it's a valid MC address.
1233 		 */
1234 		sdl = (struct sockaddr_dl *)sa;
1235 		e_addr = LLADDR(sdl);
1236 		if (!ETHER_IS_MULTICAST(e_addr))
1237 			return EADDRNOTAVAIL;
1238 		*llsa = NULL;
1239 		return 0;
1240 
1241 #ifdef INET
1242 	case AF_INET:
1243 		sin = (struct sockaddr_in *)sa;
1244 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1245 			return EADDRNOTAVAIL;
1246 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1247 		sdl->sdl_alen = ETHER_ADDR_LEN;
1248 		e_addr = LLADDR(sdl);
1249 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1250 		*llsa = (struct sockaddr *)sdl;
1251 		return 0;
1252 #endif
1253 #ifdef INET6
1254 	case AF_INET6:
1255 		sin6 = (struct sockaddr_in6 *)sa;
1256 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1257 			/*
1258 			 * An IP6 address of 0 means listen to all
1259 			 * of the Ethernet multicast address used for IP6.
1260 			 * (This is used for multicast routers.)
1261 			 */
1262 			ifp->if_flags |= IFF_ALLMULTI;
1263 			*llsa = NULL;
1264 			return 0;
1265 		}
1266 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1267 			return EADDRNOTAVAIL;
1268 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1269 		sdl->sdl_alen = ETHER_ADDR_LEN;
1270 		e_addr = LLADDR(sdl);
1271 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1272 		*llsa = (struct sockaddr *)sdl;
1273 		return 0;
1274 #endif
1275 
1276 	default:
1277 		/*
1278 		 * Well, the text isn't quite right, but it's the name
1279 		 * that counts...
1280 		 */
1281 		return EAFNOSUPPORT;
1282 	}
1283 }
1284 
1285 static moduledata_t ether_mod = {
1286 	.name = "ether",
1287 };
1288 
1289 void
1290 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1291 {
1292 	struct ether_vlan_header vlan;
1293 	struct mbuf mv, mb;
1294 
1295 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1296 	    ("%s: vlan information not present", __func__));
1297 	KASSERT(m->m_len >= sizeof(struct ether_header),
1298 	    ("%s: mbuf not large enough for header", __func__));
1299 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1300 	vlan.evl_proto = vlan.evl_encap_proto;
1301 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1302 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1303 	m->m_len -= sizeof(struct ether_header);
1304 	m->m_data += sizeof(struct ether_header);
1305 	/*
1306 	 * If a data link has been supplied by the caller, then we will need to
1307 	 * re-create a stack allocated mbuf chain with the following structure:
1308 	 *
1309 	 * (1) mbuf #1 will contain the supplied data link
1310 	 * (2) mbuf #2 will contain the vlan header
1311 	 * (3) mbuf #3 will contain the original mbuf's packet data
1312 	 *
1313 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1314 	 */
1315 	if (data != NULL) {
1316 		mv.m_next = m;
1317 		mv.m_data = (caddr_t)&vlan;
1318 		mv.m_len = sizeof(vlan);
1319 		mb.m_next = &mv;
1320 		mb.m_data = data;
1321 		mb.m_len = dlen;
1322 		bpf_mtap(bp, &mb);
1323 	} else
1324 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1325 	m->m_len += sizeof(struct ether_header);
1326 	m->m_data -= sizeof(struct ether_header);
1327 }
1328 
1329 struct mbuf *
1330 ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto)
1331 {
1332 	struct ether_vlan_header *evl;
1333 
1334 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1335 	if (m == NULL)
1336 		return (NULL);
1337 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1338 
1339 	if (m->m_len < sizeof(*evl)) {
1340 		m = m_pullup(m, sizeof(*evl));
1341 		if (m == NULL)
1342 			return (NULL);
1343 	}
1344 
1345 	/*
1346 	 * Transform the Ethernet header into an Ethernet header
1347 	 * with 802.1Q encapsulation.
1348 	 */
1349 	evl = mtod(m, struct ether_vlan_header *);
1350 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1351 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1352 	evl->evl_encap_proto = htons(proto);
1353 	evl->evl_tag = htons(tag);
1354 	return (m);
1355 }
1356 
1357 void
1358 ether_bpf_mtap_if(struct ifnet *ifp, struct mbuf *m)
1359 {
1360 	if (bpf_peers_present(ifp->if_bpf)) {
1361 		M_ASSERTVALID(m);
1362 		if ((m->m_flags & M_VLANTAG) != 0)
1363 			ether_vlan_mtap(ifp->if_bpf, m, NULL, 0);
1364 		else
1365 			bpf_mtap(ifp->if_bpf, m);
1366 	}
1367 }
1368 
1369 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1370     "IEEE 802.1Q VLAN");
1371 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
1372     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1373     "for consistency");
1374 
1375 VNET_DEFINE_STATIC(int, soft_pad);
1376 #define	V_soft_pad	VNET(soft_pad)
1377 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1378     &VNET_NAME(soft_pad), 0,
1379     "pad short frames before tagging");
1380 
1381 /*
1382  * For now, make preserving PCP via an mbuf tag optional, as it increases
1383  * per-packet memory allocations and frees.  In the future, it would be
1384  * preferable to reuse ether_vtag for this, or similar.
1385  */
1386 VNET_DEFINE(int, vlan_mtag_pcp) = 0;
1387 #define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
1388 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET,
1389     &VNET_NAME(vlan_mtag_pcp), 0,
1390     "Retain VLAN PCP information as packets are passed up the stack");
1391 
1392 static inline bool
1393 ether_do_pcp(struct ifnet *ifp, struct mbuf *m)
1394 {
1395 	if (ifp->if_type == IFT_L2VLAN)
1396 		return (false);
1397 	if (ifp->if_pcp != IFNET_PCP_NONE || (m->m_flags & M_VLANTAG) != 0)
1398 		return (true);
1399 	if (V_vlan_mtag_pcp &&
1400 	    m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL) != NULL)
1401 		return (true);
1402 	return (false);
1403 }
1404 
1405 bool
1406 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1407     const struct ether_8021q_tag *qtag)
1408 {
1409 	struct m_tag *mtag;
1410 	int n;
1411 	uint16_t tag;
1412 	uint8_t pcp = qtag->pcp;
1413 	static const char pad[8];	/* just zeros */
1414 
1415 	/*
1416 	 * Pad the frame to the minimum size allowed if told to.
1417 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1418 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1419 	 * bridges that violate paragraph C.4.4.3.a from the same
1420 	 * document, i.e., fail to pad short frames after untagging.
1421 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1422 	 * untagging it will produce a 62-byte frame, which is a runt
1423 	 * and requires padding.  There are VLAN-enabled network
1424 	 * devices that just discard such runts instead or mishandle
1425 	 * them somehow.
1426 	 */
1427 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1428 		for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1429 		     n > 0; n -= sizeof(pad)) {
1430 			if (!m_append(*mp, min(n, sizeof(pad)), pad))
1431 				break;
1432 		}
1433 		if (n > 0) {
1434 			m_freem(*mp);
1435 			*mp = NULL;
1436 			if_printf(ife, "cannot pad short frame");
1437 			return (false);
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * If PCP is set in mbuf, use it
1443 	 */
1444 	if ((*mp)->m_flags & M_VLANTAG) {
1445 		pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
1446 	}
1447 
1448 	/*
1449 	 * If underlying interface can do VLAN tag insertion itself,
1450 	 * just pass the packet along. However, we need some way to
1451 	 * tell the interface where the packet came from so that it
1452 	 * knows how to find the VLAN tag to use, so we attach a
1453 	 * packet tag that holds it.
1454 	 */
1455 	if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1456 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1457 		tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0);
1458 	else
1459 		tag = EVL_MAKETAG(qtag->vid, pcp, 0);
1460 	if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) &&
1461 	    (qtag->proto == ETHERTYPE_VLAN)) {
1462 		(*mp)->m_pkthdr.ether_vtag = tag;
1463 		(*mp)->m_flags |= M_VLANTAG;
1464 	} else {
1465 		*mp = ether_vlanencap_proto(*mp, tag, qtag->proto);
1466 		if (*mp == NULL) {
1467 			if_printf(ife, "unable to prepend 802.1Q header");
1468 			return (false);
1469 		}
1470 		(*mp)->m_flags &= ~M_VLANTAG;
1471 	}
1472 	return (true);
1473 }
1474 
1475 /*
1476  * Allocate an address from the FreeBSD Foundation OUI.  This uses a
1477  * cryptographic hash function on the containing jail's name, UUID and the
1478  * interface name to attempt to provide a unique but stable address.
1479  * Pseudo-interfaces which require a MAC address should use this function to
1480  * allocate non-locally-administered addresses.
1481  */
1482 void
1483 ether_gen_addr_byname(const char *nameunit, struct ether_addr *hwaddr)
1484 {
1485 	SHA1_CTX ctx;
1486 	char *buf;
1487 	char uuid[HOSTUUIDLEN + 1];
1488 	uint64_t addr;
1489 	int i, sz;
1490 	char digest[SHA1_RESULTLEN];
1491 	char jailname[MAXHOSTNAMELEN];
1492 
1493 	getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1494 	if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) {
1495 		/* Fall back to a random mac address. */
1496 		goto rando;
1497 	}
1498 
1499 	/* If each (vnet) jail would also have a unique hostuuid this would not
1500 	 * be necessary. */
1501 	getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1502 	sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, nameunit,
1503 	    jailname);
1504 	if (sz < 0) {
1505 		/* Fall back to a random mac address. */
1506 		goto rando;
1507 	}
1508 
1509 	SHA1Init(&ctx);
1510 	SHA1Update(&ctx, buf, sz);
1511 	SHA1Final(digest, &ctx);
1512 	free(buf, M_TEMP);
1513 
1514 	addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
1515 	    OUI_FREEBSD_GENERATED_MASK;
1516 	addr = OUI_FREEBSD(addr);
1517 	for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1518 		hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1519 		    0xFF;
1520 	}
1521 
1522 	return;
1523 rando:
1524 	arc4rand(hwaddr, sizeof(*hwaddr), 0);
1525 	/* Unicast */
1526 	hwaddr->octet[0] &= 0xFE;
1527 	/* Locally administered. */
1528 	hwaddr->octet[0] |= 0x02;
1529 }
1530 
1531 void
1532 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1533 {
1534 	ether_gen_addr_byname(if_name(ifp), hwaddr);
1535 }
1536 
1537 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1538 MODULE_VERSION(ether, 1);
1539