1 /*- 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 30 * $FreeBSD$ 31 */ 32 33 #include "opt_atalk.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_ipx.h" 37 #include "opt_netgraph.h" 38 #include "opt_mbuf_profiling.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mbuf.h> 47 #include <sys/random.h> 48 #include <sys/rwlock.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/sysctl.h> 52 53 #include <net/if.h> 54 #include <net/if_arp.h> 55 #include <net/netisr.h> 56 #include <net/route.h> 57 #include <net/if_llc.h> 58 #include <net/if_dl.h> 59 #include <net/if_types.h> 60 #include <net/bpf.h> 61 #include <net/ethernet.h> 62 #include <net/if_bridgevar.h> 63 #include <net/if_vlan_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/pf_mtag.h> 66 #include <net/vnet.h> 67 68 #if defined(INET) || defined(INET6) 69 #include <netinet/in.h> 70 #include <netinet/in_var.h> 71 #include <netinet/if_ether.h> 72 #include <netinet/ip_carp.h> 73 #include <netinet/ip_var.h> 74 #include <netinet/ip_fw.h> 75 #include <netinet/ipfw/ip_fw_private.h> 76 #endif 77 #ifdef INET6 78 #include <netinet6/nd6.h> 79 #endif 80 81 #ifdef IPX 82 #include <netipx/ipx.h> 83 #include <netipx/ipx_if.h> 84 #endif 85 86 int (*ef_inputp)(struct ifnet*, struct ether_header *eh, struct mbuf *m); 87 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, 88 struct sockaddr *dst, short *tp, int *hlen); 89 90 #ifdef NETATALK 91 #include <netatalk/at.h> 92 #include <netatalk/at_var.h> 93 #include <netatalk/at_extern.h> 94 95 #define llc_snap_org_code llc_un.type_snap.org_code 96 #define llc_snap_ether_type llc_un.type_snap.ether_type 97 98 extern u_char at_org_code[3]; 99 extern u_char aarp_org_code[3]; 100 #endif /* NETATALK */ 101 102 #include <security/mac/mac_framework.h> 103 104 #ifdef CTASSERT 105 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 106 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 107 #endif 108 109 /* netgraph node hooks for ng_ether(4) */ 110 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 111 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 112 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 113 void (*ng_ether_attach_p)(struct ifnet *ifp); 114 void (*ng_ether_detach_p)(struct ifnet *ifp); 115 116 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 117 118 /* if_bridge(4) support */ 119 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 120 int (*bridge_output_p)(struct ifnet *, struct mbuf *, 121 struct sockaddr *, struct rtentry *); 122 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 123 124 /* if_lagg(4) support */ 125 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 126 127 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 128 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 129 130 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 131 struct sockaddr *); 132 #ifdef VIMAGE 133 static void ether_reassign(struct ifnet *, struct vnet *, char *); 134 #endif 135 136 /* XXX: should be in an arp support file, not here */ 137 static MALLOC_DEFINE(M_ARPCOM, "arpcom", "802.* interface internals"); 138 139 #define ETHER_IS_BROADCAST(addr) \ 140 (bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0) 141 142 #define senderr(e) do { error = (e); goto bad;} while (0) 143 144 #if defined(INET) || defined(INET6) 145 int 146 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, int shared); 147 static VNET_DEFINE(int, ether_ipfw); 148 #define V_ether_ipfw VNET(ether_ipfw) 149 #endif 150 151 152 /* 153 * Ethernet output routine. 154 * Encapsulate a packet of type family for the local net. 155 * Use trailer local net encapsulation if enough data in first 156 * packet leaves a multiple of 512 bytes of data in remainder. 157 */ 158 int 159 ether_output(struct ifnet *ifp, struct mbuf *m, 160 struct sockaddr *dst, struct route *ro) 161 { 162 short type; 163 int error = 0, hdrcmplt = 0; 164 u_char esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 165 struct llentry *lle = NULL; 166 struct rtentry *rt0 = NULL; 167 struct ether_header *eh; 168 struct pf_mtag *t; 169 int loop_copy = 1; 170 int hlen; /* link layer header length */ 171 172 if (ro != NULL) { 173 if (!(m->m_flags & (M_BCAST | M_MCAST))) 174 lle = ro->ro_lle; 175 rt0 = ro->ro_rt; 176 } 177 #ifdef MAC 178 error = mac_ifnet_check_transmit(ifp, m); 179 if (error) 180 senderr(error); 181 #endif 182 183 M_PROFILE(m); 184 if (ifp->if_flags & IFF_MONITOR) 185 senderr(ENETDOWN); 186 if (!((ifp->if_flags & IFF_UP) && 187 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 188 senderr(ENETDOWN); 189 190 hlen = ETHER_HDR_LEN; 191 switch (dst->sa_family) { 192 #ifdef INET 193 case AF_INET: 194 if (lle != NULL && (lle->la_flags & LLE_VALID)) 195 memcpy(edst, &lle->ll_addr.mac16, sizeof(edst)); 196 else 197 error = arpresolve(ifp, rt0, m, dst, edst, &lle); 198 if (error) 199 return (error == EWOULDBLOCK ? 0 : error); 200 type = htons(ETHERTYPE_IP); 201 break; 202 case AF_ARP: 203 { 204 struct arphdr *ah; 205 ah = mtod(m, struct arphdr *); 206 ah->ar_hrd = htons(ARPHRD_ETHER); 207 208 loop_copy = 0; /* if this is for us, don't do it */ 209 210 switch(ntohs(ah->ar_op)) { 211 case ARPOP_REVREQUEST: 212 case ARPOP_REVREPLY: 213 type = htons(ETHERTYPE_REVARP); 214 break; 215 case ARPOP_REQUEST: 216 case ARPOP_REPLY: 217 default: 218 type = htons(ETHERTYPE_ARP); 219 break; 220 } 221 222 if (m->m_flags & M_BCAST) 223 bcopy(ifp->if_broadcastaddr, edst, ETHER_ADDR_LEN); 224 else 225 bcopy(ar_tha(ah), edst, ETHER_ADDR_LEN); 226 227 } 228 break; 229 #endif 230 #ifdef INET6 231 case AF_INET6: 232 if (lle != NULL && (lle->la_flags & LLE_VALID)) 233 memcpy(edst, &lle->ll_addr.mac16, sizeof(edst)); 234 else 235 error = nd6_storelladdr(ifp, m, dst, (u_char *)edst, &lle); 236 if (error) 237 return error; 238 type = htons(ETHERTYPE_IPV6); 239 break; 240 #endif 241 #ifdef IPX 242 case AF_IPX: 243 if (ef_outputp) { 244 error = ef_outputp(ifp, &m, dst, &type, &hlen); 245 if (error) 246 goto bad; 247 } else 248 type = htons(ETHERTYPE_IPX); 249 bcopy((caddr_t)&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host), 250 (caddr_t)edst, sizeof (edst)); 251 break; 252 #endif 253 #ifdef NETATALK 254 case AF_APPLETALK: 255 { 256 struct at_ifaddr *aa; 257 258 if ((aa = at_ifawithnet((struct sockaddr_at *)dst)) == NULL) 259 senderr(EHOSTUNREACH); /* XXX */ 260 if (!aarpresolve(ifp, m, (struct sockaddr_at *)dst, edst)) { 261 ifa_free(&aa->aa_ifa); 262 return (0); 263 } 264 /* 265 * In the phase 2 case, need to prepend an mbuf for the llc header. 266 */ 267 if ( aa->aa_flags & AFA_PHASE2 ) { 268 struct llc llc; 269 270 ifa_free(&aa->aa_ifa); 271 M_PREPEND(m, LLC_SNAPFRAMELEN, M_DONTWAIT); 272 if (m == NULL) 273 senderr(ENOBUFS); 274 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 275 llc.llc_control = LLC_UI; 276 bcopy(at_org_code, llc.llc_snap_org_code, sizeof(at_org_code)); 277 llc.llc_snap_ether_type = htons( ETHERTYPE_AT ); 278 bcopy(&llc, mtod(m, caddr_t), LLC_SNAPFRAMELEN); 279 type = htons(m->m_pkthdr.len); 280 hlen = LLC_SNAPFRAMELEN + ETHER_HDR_LEN; 281 } else { 282 ifa_free(&aa->aa_ifa); 283 type = htons(ETHERTYPE_AT); 284 } 285 break; 286 } 287 #endif /* NETATALK */ 288 289 case pseudo_AF_HDRCMPLT: 290 hdrcmplt = 1; 291 eh = (struct ether_header *)dst->sa_data; 292 (void)memcpy(esrc, eh->ether_shost, sizeof (esrc)); 293 /* FALLTHROUGH */ 294 295 case AF_UNSPEC: 296 loop_copy = 0; /* if this is for us, don't do it */ 297 eh = (struct ether_header *)dst->sa_data; 298 (void)memcpy(edst, eh->ether_dhost, sizeof (edst)); 299 type = eh->ether_type; 300 break; 301 302 default: 303 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 304 senderr(EAFNOSUPPORT); 305 } 306 307 if (lle != NULL && (lle->la_flags & LLE_IFADDR)) { 308 int csum_flags = 0; 309 if (m->m_pkthdr.csum_flags & CSUM_IP) 310 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 311 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 312 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 313 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 314 csum_flags |= CSUM_SCTP_VALID; 315 m->m_pkthdr.csum_flags |= csum_flags; 316 m->m_pkthdr.csum_data = 0xffff; 317 return (if_simloop(ifp, m, dst->sa_family, 0)); 318 } 319 320 /* 321 * Add local net header. If no space in first mbuf, 322 * allocate another. 323 */ 324 M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT); 325 if (m == NULL) 326 senderr(ENOBUFS); 327 eh = mtod(m, struct ether_header *); 328 (void)memcpy(&eh->ether_type, &type, 329 sizeof(eh->ether_type)); 330 (void)memcpy(eh->ether_dhost, edst, sizeof (edst)); 331 if (hdrcmplt) 332 (void)memcpy(eh->ether_shost, esrc, 333 sizeof(eh->ether_shost)); 334 else 335 (void)memcpy(eh->ether_shost, IF_LLADDR(ifp), 336 sizeof(eh->ether_shost)); 337 338 /* 339 * If a simplex interface, and the packet is being sent to our 340 * Ethernet address or a broadcast address, loopback a copy. 341 * XXX To make a simplex device behave exactly like a duplex 342 * device, we should copy in the case of sending to our own 343 * ethernet address (thus letting the original actually appear 344 * on the wire). However, we don't do that here for security 345 * reasons and compatibility with the original behavior. 346 */ 347 if ((ifp->if_flags & IFF_SIMPLEX) && loop_copy && 348 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 349 int csum_flags = 0; 350 351 if (m->m_pkthdr.csum_flags & CSUM_IP) 352 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 353 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 354 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 355 if (m->m_pkthdr.csum_flags & CSUM_SCTP) 356 csum_flags |= CSUM_SCTP_VALID; 357 358 if (m->m_flags & M_BCAST) { 359 struct mbuf *n; 360 361 /* 362 * Because if_simloop() modifies the packet, we need a 363 * writable copy through m_dup() instead of a readonly 364 * one as m_copy[m] would give us. The alternative would 365 * be to modify if_simloop() to handle the readonly mbuf, 366 * but performancewise it is mostly equivalent (trading 367 * extra data copying vs. extra locking). 368 * 369 * XXX This is a local workaround. A number of less 370 * often used kernel parts suffer from the same bug. 371 * See PR kern/105943 for a proposed general solution. 372 */ 373 if ((n = m_dup(m, M_DONTWAIT)) != NULL) { 374 n->m_pkthdr.csum_flags |= csum_flags; 375 if (csum_flags & CSUM_DATA_VALID) 376 n->m_pkthdr.csum_data = 0xffff; 377 (void)if_simloop(ifp, n, dst->sa_family, hlen); 378 } else 379 ifp->if_iqdrops++; 380 } else if (bcmp(eh->ether_dhost, eh->ether_shost, 381 ETHER_ADDR_LEN) == 0) { 382 m->m_pkthdr.csum_flags |= csum_flags; 383 if (csum_flags & CSUM_DATA_VALID) 384 m->m_pkthdr.csum_data = 0xffff; 385 (void) if_simloop(ifp, m, dst->sa_family, hlen); 386 return (0); /* XXX */ 387 } 388 } 389 390 /* 391 * Bridges require special output handling. 392 */ 393 if (ifp->if_bridge) { 394 BRIDGE_OUTPUT(ifp, m, error); 395 return (error); 396 } 397 398 #if defined(INET) || defined(INET6) 399 if (ifp->if_carp && 400 (error = (*carp_output_p)(ifp, m, dst))) 401 goto bad; 402 #endif 403 404 /* Handle ng_ether(4) processing, if any */ 405 if (IFP2AC(ifp)->ac_netgraph != NULL) { 406 KASSERT(ng_ether_output_p != NULL, 407 ("ng_ether_output_p is NULL")); 408 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 409 bad: if (m != NULL) 410 m_freem(m); 411 return (error); 412 } 413 if (m == NULL) 414 return (0); 415 } 416 417 /* Continue with link-layer output */ 418 return ether_output_frame(ifp, m); 419 } 420 421 /* 422 * Ethernet link layer output routine to send a raw frame to the device. 423 * 424 * This assumes that the 14 byte Ethernet header is present and contiguous 425 * in the first mbuf (if BRIDGE'ing). 426 */ 427 int 428 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 429 { 430 #if defined(INET) || defined(INET6) 431 432 if (V_ip_fw_chk_ptr && V_ether_ipfw != 0) { 433 if (ether_ipfw_chk(&m, ifp, 0) == 0) { 434 if (m) { 435 m_freem(m); 436 return EACCES; /* pkt dropped */ 437 } else 438 return 0; /* consumed e.g. in a pipe */ 439 } 440 } 441 #endif 442 443 /* 444 * Queue message on interface, update output statistics if 445 * successful, and start output if interface not yet active. 446 */ 447 return ((ifp->if_transmit)(ifp, m)); 448 } 449 450 #if defined(INET) || defined(INET6) 451 /* 452 * ipfw processing for ethernet packets (in and out). 453 * The second parameter is NULL from ether_demux, and ifp from 454 * ether_output_frame. 455 */ 456 int 457 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, int shared) 458 { 459 struct ether_header *eh; 460 struct ether_header save_eh; 461 struct mbuf *m; 462 int i; 463 struct ip_fw_args args; 464 struct m_tag *mtag; 465 466 /* fetch start point from rule, if any */ 467 mtag = m_tag_locate(*m0, MTAG_IPFW_RULE, 0, NULL); 468 if (mtag == NULL) { 469 args.rule.slot = 0; 470 } else { 471 /* dummynet packet, already partially processed */ 472 struct ipfw_rule_ref *r; 473 474 /* XXX can we free it after use ? */ 475 mtag->m_tag_id = PACKET_TAG_NONE; 476 r = (struct ipfw_rule_ref *)(mtag + 1); 477 if (r->info & IPFW_ONEPASS) 478 return (1); 479 args.rule = *r; 480 } 481 482 /* 483 * I need some amt of data to be contiguous, and in case others need 484 * the packet (shared==1) also better be in the first mbuf. 485 */ 486 m = *m0; 487 i = min( m->m_pkthdr.len, max_protohdr); 488 if ( shared || m->m_len < i) { 489 m = m_pullup(m, i); 490 if (m == NULL) { 491 *m0 = m; 492 return 0; 493 } 494 } 495 eh = mtod(m, struct ether_header *); 496 save_eh = *eh; /* save copy for restore below */ 497 m_adj(m, ETHER_HDR_LEN); /* strip ethernet header */ 498 499 args.m = m; /* the packet we are looking at */ 500 args.oif = dst; /* destination, if any */ 501 args.next_hop = NULL; /* we do not support forward yet */ 502 args.next_hop6 = NULL; /* we do not support forward yet */ 503 args.eh = &save_eh; /* MAC header for bridged/MAC packets */ 504 args.inp = NULL; /* used by ipfw uid/gid/jail rules */ 505 i = V_ip_fw_chk_ptr(&args); 506 m = args.m; 507 if (m != NULL) { 508 /* 509 * Restore Ethernet header, as needed, in case the 510 * mbuf chain was replaced by ipfw. 511 */ 512 M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT); 513 if (m == NULL) { 514 *m0 = m; 515 return 0; 516 } 517 if (eh != mtod(m, struct ether_header *)) 518 bcopy(&save_eh, mtod(m, struct ether_header *), 519 ETHER_HDR_LEN); 520 } 521 *m0 = m; 522 523 if (i == IP_FW_DENY) /* drop */ 524 return 0; 525 526 KASSERT(m != NULL, ("ether_ipfw_chk: m is NULL")); 527 528 if (i == IP_FW_PASS) /* a PASS rule. */ 529 return 1; 530 531 if (ip_dn_io_ptr && (i == IP_FW_DUMMYNET)) { 532 int dir; 533 /* 534 * Pass the pkt to dummynet, which consumes it. 535 * If shared, make a copy and keep the original. 536 */ 537 if (shared) { 538 m = m_copypacket(m, M_DONTWAIT); 539 if (m == NULL) 540 return 0; 541 } else { 542 /* 543 * Pass the original to dummynet and 544 * nothing back to the caller 545 */ 546 *m0 = NULL ; 547 } 548 dir = PROTO_LAYER2 | (dst ? DIR_OUT : DIR_IN); 549 ip_dn_io_ptr(&m, dir, &args); 550 return 0; 551 } 552 /* 553 * XXX at some point add support for divert/forward actions. 554 * If none of the above matches, we have to drop the pkt. 555 */ 556 return 0; 557 } 558 #endif 559 560 /* 561 * Process a received Ethernet packet; the packet is in the 562 * mbuf chain m with the ethernet header at the front. 563 */ 564 static void 565 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 566 { 567 struct ether_header *eh; 568 u_short etype; 569 570 if ((ifp->if_flags & IFF_UP) == 0) { 571 m_freem(m); 572 return; 573 } 574 #ifdef DIAGNOSTIC 575 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 576 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 577 m_freem(m); 578 return; 579 } 580 #endif 581 /* 582 * Do consistency checks to verify assumptions 583 * made by code past this point. 584 */ 585 if ((m->m_flags & M_PKTHDR) == 0) { 586 if_printf(ifp, "discard frame w/o packet header\n"); 587 ifp->if_ierrors++; 588 m_freem(m); 589 return; 590 } 591 if (m->m_len < ETHER_HDR_LEN) { 592 /* XXX maybe should pullup? */ 593 if_printf(ifp, "discard frame w/o leading ethernet " 594 "header (len %u pkt len %u)\n", 595 m->m_len, m->m_pkthdr.len); 596 ifp->if_ierrors++; 597 m_freem(m); 598 return; 599 } 600 eh = mtod(m, struct ether_header *); 601 etype = ntohs(eh->ether_type); 602 if (m->m_pkthdr.rcvif == NULL) { 603 if_printf(ifp, "discard frame w/o interface pointer\n"); 604 ifp->if_ierrors++; 605 m_freem(m); 606 return; 607 } 608 #ifdef DIAGNOSTIC 609 if (m->m_pkthdr.rcvif != ifp) { 610 if_printf(ifp, "Warning, frame marked as received on %s\n", 611 m->m_pkthdr.rcvif->if_xname); 612 } 613 #endif 614 615 CURVNET_SET_QUIET(ifp->if_vnet); 616 617 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 618 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 619 m->m_flags |= M_BCAST; 620 else 621 m->m_flags |= M_MCAST; 622 ifp->if_imcasts++; 623 } 624 625 #ifdef MAC 626 /* 627 * Tag the mbuf with an appropriate MAC label before any other 628 * consumers can get to it. 629 */ 630 mac_ifnet_create_mbuf(ifp, m); 631 #endif 632 633 /* 634 * Give bpf a chance at the packet. 635 */ 636 ETHER_BPF_MTAP(ifp, m); 637 638 /* 639 * If the CRC is still on the packet, trim it off. We do this once 640 * and once only in case we are re-entered. Nothing else on the 641 * Ethernet receive path expects to see the FCS. 642 */ 643 if (m->m_flags & M_HASFCS) { 644 m_adj(m, -ETHER_CRC_LEN); 645 m->m_flags &= ~M_HASFCS; 646 } 647 648 ifp->if_ibytes += m->m_pkthdr.len; 649 650 /* Allow monitor mode to claim this frame, after stats are updated. */ 651 if (ifp->if_flags & IFF_MONITOR) { 652 m_freem(m); 653 CURVNET_RESTORE(); 654 return; 655 } 656 657 /* Handle input from a lagg(4) port */ 658 if (ifp->if_type == IFT_IEEE8023ADLAG) { 659 KASSERT(lagg_input_p != NULL, 660 ("%s: if_lagg not loaded!", __func__)); 661 m = (*lagg_input_p)(ifp, m); 662 if (m != NULL) 663 ifp = m->m_pkthdr.rcvif; 664 else 665 return; 666 } 667 668 /* 669 * If the hardware did not process an 802.1Q tag, do this now, 670 * to allow 802.1P priority frames to be passed to the main input 671 * path correctly. 672 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 673 */ 674 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 675 struct ether_vlan_header *evl; 676 677 if (m->m_len < sizeof(*evl) && 678 (m = m_pullup(m, sizeof(*evl))) == NULL) { 679 #ifdef DIAGNOSTIC 680 if_printf(ifp, "cannot pullup VLAN header\n"); 681 #endif 682 ifp->if_ierrors++; 683 m_freem(m); 684 return; 685 } 686 687 evl = mtod(m, struct ether_vlan_header *); 688 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 689 m->m_flags |= M_VLANTAG; 690 691 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 692 ETHER_HDR_LEN - ETHER_TYPE_LEN); 693 m_adj(m, ETHER_VLAN_ENCAP_LEN); 694 } 695 696 M_SETFIB(m, ifp->if_fib); 697 698 /* Allow ng_ether(4) to claim this frame. */ 699 if (IFP2AC(ifp)->ac_netgraph != NULL) { 700 KASSERT(ng_ether_input_p != NULL, 701 ("%s: ng_ether_input_p is NULL", __func__)); 702 m->m_flags &= ~M_PROMISC; 703 (*ng_ether_input_p)(ifp, &m); 704 if (m == NULL) { 705 CURVNET_RESTORE(); 706 return; 707 } 708 } 709 710 /* 711 * Allow if_bridge(4) to claim this frame. 712 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 713 * and the frame should be delivered locally. 714 */ 715 if (ifp->if_bridge != NULL) { 716 m->m_flags &= ~M_PROMISC; 717 BRIDGE_INPUT(ifp, m); 718 if (m == NULL) { 719 CURVNET_RESTORE(); 720 return; 721 } 722 } 723 724 #if defined(INET) || defined(INET6) 725 /* 726 * Clear M_PROMISC on frame so that carp(4) will see it when the 727 * mbuf flows up to Layer 3. 728 * FreeBSD's implementation of carp(4) uses the inprotosw 729 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 730 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 731 * is outside the scope of the M_PROMISC test below. 732 * TODO: Maintain a hash table of ethernet addresses other than 733 * ether_dhost which may be active on this ifp. 734 */ 735 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 736 m->m_flags &= ~M_PROMISC; 737 } else 738 #endif 739 { 740 /* 741 * If the frame received was not for our MAC address, set the 742 * M_PROMISC flag on the mbuf chain. The frame may need to 743 * be seen by the rest of the Ethernet input path in case of 744 * re-entry (e.g. bridge, vlan, netgraph) but should not be 745 * seen by upper protocol layers. 746 */ 747 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 748 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 749 m->m_flags |= M_PROMISC; 750 } 751 752 /* First chunk of an mbuf contains good entropy */ 753 if (harvest.ethernet) 754 random_harvest(m, 16, 3, 0, RANDOM_NET); 755 756 ether_demux(ifp, m); 757 CURVNET_RESTORE(); 758 } 759 760 /* 761 * Ethernet input dispatch; by default, direct dispatch here regardless of 762 * global configuration. 763 */ 764 static void 765 ether_nh_input(struct mbuf *m) 766 { 767 768 ether_input_internal(m->m_pkthdr.rcvif, m); 769 } 770 771 static struct netisr_handler ether_nh = { 772 .nh_name = "ether", 773 .nh_handler = ether_nh_input, 774 .nh_proto = NETISR_ETHER, 775 .nh_policy = NETISR_POLICY_SOURCE, 776 .nh_dispatch = NETISR_DISPATCH_DIRECT, 777 }; 778 779 static void 780 ether_init(__unused void *arg) 781 { 782 783 netisr_register(ðer_nh); 784 } 785 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 786 787 static void 788 ether_input(struct ifnet *ifp, struct mbuf *m) 789 { 790 791 /* 792 * We will rely on rcvif being set properly in the deferred context, 793 * so assert it is correct here. 794 */ 795 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch", __func__)); 796 797 netisr_dispatch(NETISR_ETHER, m); 798 } 799 800 /* 801 * Upper layer processing for a received Ethernet packet. 802 */ 803 void 804 ether_demux(struct ifnet *ifp, struct mbuf *m) 805 { 806 struct ether_header *eh; 807 int isr; 808 u_short ether_type; 809 #if defined(NETATALK) 810 struct llc *l; 811 #endif 812 813 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 814 815 #if defined(INET) || defined(INET6) 816 /* 817 * Allow dummynet and/or ipfw to claim the frame. 818 * Do not do this for PROMISC frames in case we are re-entered. 819 */ 820 if (V_ip_fw_chk_ptr && V_ether_ipfw != 0 && !(m->m_flags & M_PROMISC)) { 821 if (ether_ipfw_chk(&m, NULL, 0) == 0) { 822 if (m) 823 m_freem(m); /* dropped; free mbuf chain */ 824 return; /* consumed */ 825 } 826 } 827 #endif 828 eh = mtod(m, struct ether_header *); 829 ether_type = ntohs(eh->ether_type); 830 831 /* 832 * If this frame has a VLAN tag other than 0, call vlan_input() 833 * if its module is loaded. Otherwise, drop. 834 */ 835 if ((m->m_flags & M_VLANTAG) && 836 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 837 if (ifp->if_vlantrunk == NULL) { 838 ifp->if_noproto++; 839 m_freem(m); 840 return; 841 } 842 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 843 __func__)); 844 /* Clear before possibly re-entering ether_input(). */ 845 m->m_flags &= ~M_PROMISC; 846 (*vlan_input_p)(ifp, m); 847 return; 848 } 849 850 /* 851 * Pass promiscuously received frames to the upper layer if the user 852 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 853 */ 854 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 855 m_freem(m); 856 return; 857 } 858 859 /* 860 * Reset layer specific mbuf flags to avoid confusing upper layers. 861 * Strip off Ethernet header. 862 */ 863 m->m_flags &= ~M_VLANTAG; 864 m->m_flags &= ~(M_PROTOFLAGS); 865 m_adj(m, ETHER_HDR_LEN); 866 867 /* 868 * Dispatch frame to upper layer. 869 */ 870 switch (ether_type) { 871 #ifdef INET 872 case ETHERTYPE_IP: 873 if ((m = ip_fastforward(m)) == NULL) 874 return; 875 isr = NETISR_IP; 876 break; 877 878 case ETHERTYPE_ARP: 879 if (ifp->if_flags & IFF_NOARP) { 880 /* Discard packet if ARP is disabled on interface */ 881 m_freem(m); 882 return; 883 } 884 isr = NETISR_ARP; 885 break; 886 #endif 887 #ifdef IPX 888 case ETHERTYPE_IPX: 889 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) 890 return; 891 isr = NETISR_IPX; 892 break; 893 #endif 894 #ifdef INET6 895 case ETHERTYPE_IPV6: 896 isr = NETISR_IPV6; 897 break; 898 #endif 899 #ifdef NETATALK 900 case ETHERTYPE_AT: 901 isr = NETISR_ATALK1; 902 break; 903 case ETHERTYPE_AARP: 904 isr = NETISR_AARP; 905 break; 906 #endif /* NETATALK */ 907 default: 908 #ifdef IPX 909 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) 910 return; 911 #endif /* IPX */ 912 #if defined(NETATALK) 913 if (ether_type > ETHERMTU) 914 goto discard; 915 l = mtod(m, struct llc *); 916 if (l->llc_dsap == LLC_SNAP_LSAP && 917 l->llc_ssap == LLC_SNAP_LSAP && 918 l->llc_control == LLC_UI) { 919 if (bcmp(&(l->llc_snap_org_code)[0], at_org_code, 920 sizeof(at_org_code)) == 0 && 921 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AT) { 922 m_adj(m, LLC_SNAPFRAMELEN); 923 isr = NETISR_ATALK2; 924 break; 925 } 926 if (bcmp(&(l->llc_snap_org_code)[0], aarp_org_code, 927 sizeof(aarp_org_code)) == 0 && 928 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AARP) { 929 m_adj(m, LLC_SNAPFRAMELEN); 930 isr = NETISR_AARP; 931 break; 932 } 933 } 934 #endif /* NETATALK */ 935 goto discard; 936 } 937 netisr_dispatch(isr, m); 938 return; 939 940 discard: 941 /* 942 * Packet is to be discarded. If netgraph is present, 943 * hand the packet to it for last chance processing; 944 * otherwise dispose of it. 945 */ 946 if (IFP2AC(ifp)->ac_netgraph != NULL) { 947 KASSERT(ng_ether_input_orphan_p != NULL, 948 ("ng_ether_input_orphan_p is NULL")); 949 /* 950 * Put back the ethernet header so netgraph has a 951 * consistent view of inbound packets. 952 */ 953 M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT); 954 (*ng_ether_input_orphan_p)(ifp, m); 955 return; 956 } 957 m_freem(m); 958 } 959 960 /* 961 * Convert Ethernet address to printable (loggable) representation. 962 * This routine is for compatibility; it's better to just use 963 * 964 * printf("%6D", <pointer to address>, ":"); 965 * 966 * since there's no static buffer involved. 967 */ 968 char * 969 ether_sprintf(const u_char *ap) 970 { 971 static char etherbuf[18]; 972 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 973 return (etherbuf); 974 } 975 976 /* 977 * Perform common duties while attaching to interface list 978 */ 979 void 980 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 981 { 982 int i; 983 struct ifaddr *ifa; 984 struct sockaddr_dl *sdl; 985 986 ifp->if_addrlen = ETHER_ADDR_LEN; 987 ifp->if_hdrlen = ETHER_HDR_LEN; 988 if_attach(ifp); 989 ifp->if_mtu = ETHERMTU; 990 ifp->if_output = ether_output; 991 ifp->if_input = ether_input; 992 ifp->if_resolvemulti = ether_resolvemulti; 993 #ifdef VIMAGE 994 ifp->if_reassign = ether_reassign; 995 #endif 996 if (ifp->if_baudrate == 0) 997 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 998 ifp->if_broadcastaddr = etherbroadcastaddr; 999 1000 ifa = ifp->if_addr; 1001 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 1002 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1003 sdl->sdl_type = IFT_ETHER; 1004 sdl->sdl_alen = ifp->if_addrlen; 1005 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 1006 1007 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 1008 if (ng_ether_attach_p != NULL) 1009 (*ng_ether_attach_p)(ifp); 1010 1011 /* Announce Ethernet MAC address if non-zero. */ 1012 for (i = 0; i < ifp->if_addrlen; i++) 1013 if (lla[i] != 0) 1014 break; 1015 if (i != ifp->if_addrlen) 1016 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 1017 } 1018 1019 /* 1020 * Perform common duties while detaching an Ethernet interface 1021 */ 1022 void 1023 ether_ifdetach(struct ifnet *ifp) 1024 { 1025 if (IFP2AC(ifp)->ac_netgraph != NULL) { 1026 KASSERT(ng_ether_detach_p != NULL, 1027 ("ng_ether_detach_p is NULL")); 1028 (*ng_ether_detach_p)(ifp); 1029 } 1030 1031 bpfdetach(ifp); 1032 if_detach(ifp); 1033 } 1034 1035 #ifdef VIMAGE 1036 void 1037 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 1038 { 1039 1040 if (IFP2AC(ifp)->ac_netgraph != NULL) { 1041 KASSERT(ng_ether_detach_p != NULL, 1042 ("ng_ether_detach_p is NULL")); 1043 (*ng_ether_detach_p)(ifp); 1044 } 1045 1046 if (ng_ether_attach_p != NULL) { 1047 CURVNET_SET_QUIET(new_vnet); 1048 (*ng_ether_attach_p)(ifp); 1049 CURVNET_RESTORE(); 1050 } 1051 } 1052 #endif 1053 1054 SYSCTL_DECL(_net_link); 1055 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 1056 #if defined(INET) || defined(INET6) 1057 SYSCTL_VNET_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW, 1058 &VNET_NAME(ether_ipfw), 0, "Pass ether pkts through firewall"); 1059 #endif 1060 1061 #if 0 1062 /* 1063 * This is for reference. We have a table-driven version 1064 * of the little-endian crc32 generator, which is faster 1065 * than the double-loop. 1066 */ 1067 uint32_t 1068 ether_crc32_le(const uint8_t *buf, size_t len) 1069 { 1070 size_t i; 1071 uint32_t crc; 1072 int bit; 1073 uint8_t data; 1074 1075 crc = 0xffffffff; /* initial value */ 1076 1077 for (i = 0; i < len; i++) { 1078 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1079 carry = (crc ^ data) & 1; 1080 crc >>= 1; 1081 if (carry) 1082 crc = (crc ^ ETHER_CRC_POLY_LE); 1083 } 1084 } 1085 1086 return (crc); 1087 } 1088 #else 1089 uint32_t 1090 ether_crc32_le(const uint8_t *buf, size_t len) 1091 { 1092 static const uint32_t crctab[] = { 1093 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1094 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1095 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1096 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1097 }; 1098 size_t i; 1099 uint32_t crc; 1100 1101 crc = 0xffffffff; /* initial value */ 1102 1103 for (i = 0; i < len; i++) { 1104 crc ^= buf[i]; 1105 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1106 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1107 } 1108 1109 return (crc); 1110 } 1111 #endif 1112 1113 uint32_t 1114 ether_crc32_be(const uint8_t *buf, size_t len) 1115 { 1116 size_t i; 1117 uint32_t crc, carry; 1118 int bit; 1119 uint8_t data; 1120 1121 crc = 0xffffffff; /* initial value */ 1122 1123 for (i = 0; i < len; i++) { 1124 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1125 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 1126 crc <<= 1; 1127 if (carry) 1128 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1129 } 1130 } 1131 1132 return (crc); 1133 } 1134 1135 int 1136 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1137 { 1138 struct ifaddr *ifa = (struct ifaddr *) data; 1139 struct ifreq *ifr = (struct ifreq *) data; 1140 int error = 0; 1141 1142 switch (command) { 1143 case SIOCSIFADDR: 1144 ifp->if_flags |= IFF_UP; 1145 1146 switch (ifa->ifa_addr->sa_family) { 1147 #ifdef INET 1148 case AF_INET: 1149 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1150 arp_ifinit(ifp, ifa); 1151 break; 1152 #endif 1153 #ifdef IPX 1154 /* 1155 * XXX - This code is probably wrong 1156 */ 1157 case AF_IPX: 1158 { 1159 struct ipx_addr *ina = &(IA_SIPX(ifa)->sipx_addr); 1160 1161 if (ipx_nullhost(*ina)) 1162 ina->x_host = 1163 *(union ipx_host *) 1164 IF_LLADDR(ifp); 1165 else { 1166 bcopy((caddr_t) ina->x_host.c_host, 1167 (caddr_t) IF_LLADDR(ifp), 1168 ETHER_ADDR_LEN); 1169 } 1170 1171 /* 1172 * Set new address 1173 */ 1174 ifp->if_init(ifp->if_softc); 1175 break; 1176 } 1177 #endif 1178 default: 1179 ifp->if_init(ifp->if_softc); 1180 break; 1181 } 1182 break; 1183 1184 case SIOCGIFADDR: 1185 { 1186 struct sockaddr *sa; 1187 1188 sa = (struct sockaddr *) & ifr->ifr_data; 1189 bcopy(IF_LLADDR(ifp), 1190 (caddr_t) sa->sa_data, ETHER_ADDR_LEN); 1191 } 1192 break; 1193 1194 case SIOCSIFMTU: 1195 /* 1196 * Set the interface MTU. 1197 */ 1198 if (ifr->ifr_mtu > ETHERMTU) { 1199 error = EINVAL; 1200 } else { 1201 ifp->if_mtu = ifr->ifr_mtu; 1202 } 1203 break; 1204 default: 1205 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1206 break; 1207 } 1208 return (error); 1209 } 1210 1211 static int 1212 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1213 struct sockaddr *sa) 1214 { 1215 struct sockaddr_dl *sdl; 1216 #ifdef INET 1217 struct sockaddr_in *sin; 1218 #endif 1219 #ifdef INET6 1220 struct sockaddr_in6 *sin6; 1221 #endif 1222 u_char *e_addr; 1223 1224 switch(sa->sa_family) { 1225 case AF_LINK: 1226 /* 1227 * No mapping needed. Just check that it's a valid MC address. 1228 */ 1229 sdl = (struct sockaddr_dl *)sa; 1230 e_addr = LLADDR(sdl); 1231 if (!ETHER_IS_MULTICAST(e_addr)) 1232 return EADDRNOTAVAIL; 1233 *llsa = 0; 1234 return 0; 1235 1236 #ifdef INET 1237 case AF_INET: 1238 sin = (struct sockaddr_in *)sa; 1239 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1240 return EADDRNOTAVAIL; 1241 sdl = malloc(sizeof *sdl, M_IFMADDR, 1242 M_NOWAIT|M_ZERO); 1243 if (sdl == NULL) 1244 return ENOMEM; 1245 sdl->sdl_len = sizeof *sdl; 1246 sdl->sdl_family = AF_LINK; 1247 sdl->sdl_index = ifp->if_index; 1248 sdl->sdl_type = IFT_ETHER; 1249 sdl->sdl_alen = ETHER_ADDR_LEN; 1250 e_addr = LLADDR(sdl); 1251 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1252 *llsa = (struct sockaddr *)sdl; 1253 return 0; 1254 #endif 1255 #ifdef INET6 1256 case AF_INET6: 1257 sin6 = (struct sockaddr_in6 *)sa; 1258 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1259 /* 1260 * An IP6 address of 0 means listen to all 1261 * of the Ethernet multicast address used for IP6. 1262 * (This is used for multicast routers.) 1263 */ 1264 ifp->if_flags |= IFF_ALLMULTI; 1265 *llsa = 0; 1266 return 0; 1267 } 1268 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1269 return EADDRNOTAVAIL; 1270 sdl = malloc(sizeof *sdl, M_IFMADDR, 1271 M_NOWAIT|M_ZERO); 1272 if (sdl == NULL) 1273 return (ENOMEM); 1274 sdl->sdl_len = sizeof *sdl; 1275 sdl->sdl_family = AF_LINK; 1276 sdl->sdl_index = ifp->if_index; 1277 sdl->sdl_type = IFT_ETHER; 1278 sdl->sdl_alen = ETHER_ADDR_LEN; 1279 e_addr = LLADDR(sdl); 1280 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1281 *llsa = (struct sockaddr *)sdl; 1282 return 0; 1283 #endif 1284 1285 default: 1286 /* 1287 * Well, the text isn't quite right, but it's the name 1288 * that counts... 1289 */ 1290 return EAFNOSUPPORT; 1291 } 1292 } 1293 1294 static void* 1295 ether_alloc(u_char type, struct ifnet *ifp) 1296 { 1297 struct arpcom *ac; 1298 1299 ac = malloc(sizeof(struct arpcom), M_ARPCOM, M_WAITOK | M_ZERO); 1300 ac->ac_ifp = ifp; 1301 1302 return (ac); 1303 } 1304 1305 static void 1306 ether_free(void *com, u_char type) 1307 { 1308 1309 free(com, M_ARPCOM); 1310 } 1311 1312 static int 1313 ether_modevent(module_t mod, int type, void *data) 1314 { 1315 1316 switch (type) { 1317 case MOD_LOAD: 1318 if_register_com_alloc(IFT_ETHER, ether_alloc, ether_free); 1319 break; 1320 case MOD_UNLOAD: 1321 if_deregister_com_alloc(IFT_ETHER); 1322 break; 1323 default: 1324 return EOPNOTSUPP; 1325 } 1326 1327 return (0); 1328 } 1329 1330 static moduledata_t ether_mod = { 1331 "ether", 1332 ether_modevent, 1333 0 1334 }; 1335 1336 void 1337 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1338 { 1339 struct ether_vlan_header vlan; 1340 struct mbuf mv, mb; 1341 1342 KASSERT((m->m_flags & M_VLANTAG) != 0, 1343 ("%s: vlan information not present", __func__)); 1344 KASSERT(m->m_len >= sizeof(struct ether_header), 1345 ("%s: mbuf not large enough for header", __func__)); 1346 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1347 vlan.evl_proto = vlan.evl_encap_proto; 1348 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1349 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1350 m->m_len -= sizeof(struct ether_header); 1351 m->m_data += sizeof(struct ether_header); 1352 /* 1353 * If a data link has been supplied by the caller, then we will need to 1354 * re-create a stack allocated mbuf chain with the following structure: 1355 * 1356 * (1) mbuf #1 will contain the supplied data link 1357 * (2) mbuf #2 will contain the vlan header 1358 * (3) mbuf #3 will contain the original mbuf's packet data 1359 * 1360 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1361 */ 1362 if (data != NULL) { 1363 mv.m_next = m; 1364 mv.m_data = (caddr_t)&vlan; 1365 mv.m_len = sizeof(vlan); 1366 mb.m_next = &mv; 1367 mb.m_data = data; 1368 mb.m_len = dlen; 1369 bpf_mtap(bp, &mb); 1370 } else 1371 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1372 m->m_len += sizeof(struct ether_header); 1373 m->m_data -= sizeof(struct ether_header); 1374 } 1375 1376 struct mbuf * 1377 ether_vlanencap(struct mbuf *m, uint16_t tag) 1378 { 1379 struct ether_vlan_header *evl; 1380 1381 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT); 1382 if (m == NULL) 1383 return (NULL); 1384 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1385 1386 if (m->m_len < sizeof(*evl)) { 1387 m = m_pullup(m, sizeof(*evl)); 1388 if (m == NULL) 1389 return (NULL); 1390 } 1391 1392 /* 1393 * Transform the Ethernet header into an Ethernet header 1394 * with 802.1Q encapsulation. 1395 */ 1396 evl = mtod(m, struct ether_vlan_header *); 1397 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1398 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1399 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1400 evl->evl_tag = htons(tag); 1401 return (m); 1402 } 1403 1404 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1405 MODULE_VERSION(ether, 1); 1406