1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 32 * $FreeBSD$ 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_netgraph.h" 38 #include "opt_mbuf_profiling.h" 39 #include "opt_rss.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bus.h> 44 #include <sys/eventhandler.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/module.h> 49 #include <sys/mbuf.h> 50 #include <sys/priv.h> 51 #include <sys/random.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/sysctl.h> 55 #include <sys/uuid.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_arp.h> 60 #include <net/netisr.h> 61 #include <net/route.h> 62 #include <net/if_llc.h> 63 #include <net/if_dl.h> 64 #include <net/if_types.h> 65 #include <net/bpf.h> 66 #include <net/ethernet.h> 67 #include <net/if_bridgevar.h> 68 #include <net/if_vlan_var.h> 69 #include <net/if_llatbl.h> 70 #include <net/pfil.h> 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netpfil/pf/pf_mtag.h> 75 76 #if defined(INET) || defined(INET6) 77 #include <netinet/in.h> 78 #include <netinet/in_var.h> 79 #include <netinet/if_ether.h> 80 #include <netinet/ip_carp.h> 81 #include <netinet/ip_var.h> 82 #endif 83 #ifdef INET6 84 #include <netinet6/nd6.h> 85 #endif 86 #include <security/mac/mac_framework.h> 87 88 #ifdef CTASSERT 89 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 90 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 91 #endif 92 93 VNET_DEFINE(struct pfil_head, link_pfil_hook); /* Packet filter hooks */ 94 95 /* netgraph node hooks for ng_ether(4) */ 96 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 97 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 98 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 99 void (*ng_ether_attach_p)(struct ifnet *ifp); 100 void (*ng_ether_detach_p)(struct ifnet *ifp); 101 102 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 103 104 /* if_bridge(4) support */ 105 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 106 107 /* if_lagg(4) support */ 108 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 109 110 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 111 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 112 113 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 114 struct sockaddr *); 115 #ifdef VIMAGE 116 static void ether_reassign(struct ifnet *, struct vnet *, char *); 117 #endif 118 static int ether_requestencap(struct ifnet *, struct if_encap_req *); 119 120 121 #define senderr(e) do { error = (e); goto bad;} while (0) 122 123 static void 124 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 125 { 126 int csum_flags = 0; 127 128 if (src->m_pkthdr.csum_flags & CSUM_IP) 129 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 130 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 131 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 132 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 133 csum_flags |= CSUM_SCTP_VALID; 134 dst->m_pkthdr.csum_flags |= csum_flags; 135 if (csum_flags & CSUM_DATA_VALID) 136 dst->m_pkthdr.csum_data = 0xffff; 137 } 138 139 /* 140 * Handle link-layer encapsulation requests. 141 */ 142 static int 143 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) 144 { 145 struct ether_header *eh; 146 struct arphdr *ah; 147 uint16_t etype; 148 const u_char *lladdr; 149 150 if (req->rtype != IFENCAP_LL) 151 return (EOPNOTSUPP); 152 153 if (req->bufsize < ETHER_HDR_LEN) 154 return (ENOMEM); 155 156 eh = (struct ether_header *)req->buf; 157 lladdr = req->lladdr; 158 req->lladdr_off = 0; 159 160 switch (req->family) { 161 case AF_INET: 162 etype = htons(ETHERTYPE_IP); 163 break; 164 case AF_INET6: 165 etype = htons(ETHERTYPE_IPV6); 166 break; 167 case AF_ARP: 168 ah = (struct arphdr *)req->hdata; 169 ah->ar_hrd = htons(ARPHRD_ETHER); 170 171 switch(ntohs(ah->ar_op)) { 172 case ARPOP_REVREQUEST: 173 case ARPOP_REVREPLY: 174 etype = htons(ETHERTYPE_REVARP); 175 break; 176 case ARPOP_REQUEST: 177 case ARPOP_REPLY: 178 default: 179 etype = htons(ETHERTYPE_ARP); 180 break; 181 } 182 183 if (req->flags & IFENCAP_FLAG_BROADCAST) 184 lladdr = ifp->if_broadcastaddr; 185 break; 186 default: 187 return (EAFNOSUPPORT); 188 } 189 190 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 191 memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); 192 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 193 req->bufsize = sizeof(struct ether_header); 194 195 return (0); 196 } 197 198 199 static int 200 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, 201 const struct sockaddr *dst, struct route *ro, u_char *phdr, 202 uint32_t *pflags, struct llentry **plle) 203 { 204 struct ether_header *eh; 205 uint32_t lleflags = 0; 206 int error = 0; 207 #if defined(INET) || defined(INET6) 208 uint16_t etype; 209 #endif 210 211 if (plle) 212 *plle = NULL; 213 eh = (struct ether_header *)phdr; 214 215 switch (dst->sa_family) { 216 #ifdef INET 217 case AF_INET: 218 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) 219 error = arpresolve(ifp, 0, m, dst, phdr, &lleflags, 220 plle); 221 else { 222 if (m->m_flags & M_BCAST) 223 memcpy(eh->ether_dhost, ifp->if_broadcastaddr, 224 ETHER_ADDR_LEN); 225 else { 226 const struct in_addr *a; 227 a = &(((const struct sockaddr_in *)dst)->sin_addr); 228 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); 229 } 230 etype = htons(ETHERTYPE_IP); 231 memcpy(&eh->ether_type, &etype, sizeof(etype)); 232 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 233 } 234 break; 235 #endif 236 #ifdef INET6 237 case AF_INET6: 238 if ((m->m_flags & M_MCAST) == 0) 239 error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags, 240 plle); 241 else { 242 const struct in6_addr *a6; 243 a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); 244 ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); 245 etype = htons(ETHERTYPE_IPV6); 246 memcpy(&eh->ether_type, &etype, sizeof(etype)); 247 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 248 } 249 break; 250 #endif 251 default: 252 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 253 if (m != NULL) 254 m_freem(m); 255 return (EAFNOSUPPORT); 256 } 257 258 if (error == EHOSTDOWN) { 259 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) 260 error = EHOSTUNREACH; 261 } 262 263 if (error != 0) 264 return (error); 265 266 *pflags = RT_MAY_LOOP; 267 if (lleflags & LLE_IFADDR) 268 *pflags |= RT_L2_ME; 269 270 return (0); 271 } 272 273 /* 274 * Ethernet output routine. 275 * Encapsulate a packet of type family for the local net. 276 * Use trailer local net encapsulation if enough data in first 277 * packet leaves a multiple of 512 bytes of data in remainder. 278 */ 279 int 280 ether_output(struct ifnet *ifp, struct mbuf *m, 281 const struct sockaddr *dst, struct route *ro) 282 { 283 int error = 0; 284 char linkhdr[ETHER_HDR_LEN], *phdr; 285 struct ether_header *eh; 286 struct pf_mtag *t; 287 int loop_copy = 1; 288 int hlen; /* link layer header length */ 289 uint32_t pflags; 290 struct llentry *lle = NULL; 291 int addref = 0; 292 293 phdr = NULL; 294 pflags = 0; 295 if (ro != NULL) { 296 /* XXX BPF uses ro_prepend */ 297 if (ro->ro_prepend != NULL) { 298 phdr = ro->ro_prepend; 299 hlen = ro->ro_plen; 300 } else if (!(m->m_flags & (M_BCAST | M_MCAST))) { 301 if ((ro->ro_flags & RT_LLE_CACHE) != 0) { 302 lle = ro->ro_lle; 303 if (lle != NULL && 304 (lle->la_flags & LLE_VALID) == 0) { 305 LLE_FREE(lle); 306 lle = NULL; /* redundant */ 307 ro->ro_lle = NULL; 308 } 309 if (lle == NULL) { 310 /* if we lookup, keep cache */ 311 addref = 1; 312 } else 313 /* 314 * Notify LLE code that 315 * the entry was used 316 * by datapath. 317 */ 318 llentry_mark_used(lle); 319 } 320 if (lle != NULL) { 321 phdr = lle->r_linkdata; 322 hlen = lle->r_hdrlen; 323 pflags = lle->r_flags; 324 } 325 } 326 } 327 328 #ifdef MAC 329 error = mac_ifnet_check_transmit(ifp, m); 330 if (error) 331 senderr(error); 332 #endif 333 334 M_PROFILE(m); 335 if (ifp->if_flags & IFF_MONITOR) 336 senderr(ENETDOWN); 337 if (!((ifp->if_flags & IFF_UP) && 338 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 339 senderr(ENETDOWN); 340 341 if (phdr == NULL) { 342 /* No prepend data supplied. Try to calculate ourselves. */ 343 phdr = linkhdr; 344 hlen = ETHER_HDR_LEN; 345 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags, 346 addref ? &lle : NULL); 347 if (addref && lle != NULL) 348 ro->ro_lle = lle; 349 if (error != 0) 350 return (error == EWOULDBLOCK ? 0 : error); 351 } 352 353 if ((pflags & RT_L2_ME) != 0) { 354 update_mbuf_csumflags(m, m); 355 return (if_simloop(ifp, m, dst->sa_family, 0)); 356 } 357 loop_copy = pflags & RT_MAY_LOOP; 358 359 /* 360 * Add local net header. If no space in first mbuf, 361 * allocate another. 362 * 363 * Note that we do prepend regardless of RT_HAS_HEADER flag. 364 * This is done because BPF code shifts m_data pointer 365 * to the end of ethernet header prior to calling if_output(). 366 */ 367 M_PREPEND(m, hlen, M_NOWAIT); 368 if (m == NULL) 369 senderr(ENOBUFS); 370 if ((pflags & RT_HAS_HEADER) == 0) { 371 eh = mtod(m, struct ether_header *); 372 memcpy(eh, phdr, hlen); 373 } 374 375 /* 376 * If a simplex interface, and the packet is being sent to our 377 * Ethernet address or a broadcast address, loopback a copy. 378 * XXX To make a simplex device behave exactly like a duplex 379 * device, we should copy in the case of sending to our own 380 * ethernet address (thus letting the original actually appear 381 * on the wire). However, we don't do that here for security 382 * reasons and compatibility with the original behavior. 383 */ 384 if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && 385 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 386 struct mbuf *n; 387 388 /* 389 * Because if_simloop() modifies the packet, we need a 390 * writable copy through m_dup() instead of a readonly 391 * one as m_copy[m] would give us. The alternative would 392 * be to modify if_simloop() to handle the readonly mbuf, 393 * but performancewise it is mostly equivalent (trading 394 * extra data copying vs. extra locking). 395 * 396 * XXX This is a local workaround. A number of less 397 * often used kernel parts suffer from the same bug. 398 * See PR kern/105943 for a proposed general solution. 399 */ 400 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 401 update_mbuf_csumflags(m, n); 402 (void)if_simloop(ifp, n, dst->sa_family, hlen); 403 } else 404 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 405 } 406 407 /* 408 * Bridges require special output handling. 409 */ 410 if (ifp->if_bridge) { 411 BRIDGE_OUTPUT(ifp, m, error); 412 return (error); 413 } 414 415 #if defined(INET) || defined(INET6) 416 if (ifp->if_carp && 417 (error = (*carp_output_p)(ifp, m, dst))) 418 goto bad; 419 #endif 420 421 /* Handle ng_ether(4) processing, if any */ 422 if (ifp->if_l2com != NULL) { 423 KASSERT(ng_ether_output_p != NULL, 424 ("ng_ether_output_p is NULL")); 425 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 426 bad: if (m != NULL) 427 m_freem(m); 428 return (error); 429 } 430 if (m == NULL) 431 return (0); 432 } 433 434 /* Continue with link-layer output */ 435 return ether_output_frame(ifp, m); 436 } 437 438 static bool 439 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp) 440 { 441 struct ether_header *eh; 442 443 eh = mtod(*mp, struct ether_header *); 444 if (ntohs(eh->ether_type) == ETHERTYPE_VLAN || 445 ether_8021q_frame(mp, ifp, ifp, 0, pcp)) 446 return (true); 447 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 448 return (false); 449 } 450 451 /* 452 * Ethernet link layer output routine to send a raw frame to the device. 453 * 454 * This assumes that the 14 byte Ethernet header is present and contiguous 455 * in the first mbuf (if BRIDGE'ing). 456 */ 457 int 458 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 459 { 460 int error; 461 uint8_t pcp; 462 463 pcp = ifp->if_pcp; 464 if (pcp != IFNET_PCP_NONE && !ether_set_pcp(&m, ifp, pcp)) 465 return (0); 466 467 if (PFIL_HOOKED(&V_link_pfil_hook)) { 468 error = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, 469 PFIL_OUT, 0, NULL); 470 if (error != 0) 471 return (EACCES); 472 473 if (m == NULL) 474 return (0); 475 } 476 477 /* 478 * Queue message on interface, update output statistics if 479 * successful, and start output if interface not yet active. 480 */ 481 return ((ifp->if_transmit)(ifp, m)); 482 } 483 484 /* 485 * Process a received Ethernet packet; the packet is in the 486 * mbuf chain m with the ethernet header at the front. 487 */ 488 static void 489 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 490 { 491 struct ether_header *eh; 492 u_short etype; 493 494 if ((ifp->if_flags & IFF_UP) == 0) { 495 m_freem(m); 496 return; 497 } 498 #ifdef DIAGNOSTIC 499 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 500 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 501 m_freem(m); 502 return; 503 } 504 #endif 505 if (m->m_len < ETHER_HDR_LEN) { 506 /* XXX maybe should pullup? */ 507 if_printf(ifp, "discard frame w/o leading ethernet " 508 "header (len %u pkt len %u)\n", 509 m->m_len, m->m_pkthdr.len); 510 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 511 m_freem(m); 512 return; 513 } 514 eh = mtod(m, struct ether_header *); 515 etype = ntohs(eh->ether_type); 516 random_harvest_queue_ether(m, sizeof(*m), 2); 517 518 CURVNET_SET_QUIET(ifp->if_vnet); 519 520 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 521 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 522 m->m_flags |= M_BCAST; 523 else 524 m->m_flags |= M_MCAST; 525 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 526 } 527 528 #ifdef MAC 529 /* 530 * Tag the mbuf with an appropriate MAC label before any other 531 * consumers can get to it. 532 */ 533 mac_ifnet_create_mbuf(ifp, m); 534 #endif 535 536 /* 537 * Give bpf a chance at the packet. 538 */ 539 ETHER_BPF_MTAP(ifp, m); 540 541 /* 542 * If the CRC is still on the packet, trim it off. We do this once 543 * and once only in case we are re-entered. Nothing else on the 544 * Ethernet receive path expects to see the FCS. 545 */ 546 if (m->m_flags & M_HASFCS) { 547 m_adj(m, -ETHER_CRC_LEN); 548 m->m_flags &= ~M_HASFCS; 549 } 550 551 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 552 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 553 554 /* Allow monitor mode to claim this frame, after stats are updated. */ 555 if (ifp->if_flags & IFF_MONITOR) { 556 m_freem(m); 557 CURVNET_RESTORE(); 558 return; 559 } 560 561 /* Handle input from a lagg(4) port */ 562 if (ifp->if_type == IFT_IEEE8023ADLAG) { 563 KASSERT(lagg_input_p != NULL, 564 ("%s: if_lagg not loaded!", __func__)); 565 m = (*lagg_input_p)(ifp, m); 566 if (m != NULL) 567 ifp = m->m_pkthdr.rcvif; 568 else { 569 CURVNET_RESTORE(); 570 return; 571 } 572 } 573 574 /* 575 * If the hardware did not process an 802.1Q tag, do this now, 576 * to allow 802.1P priority frames to be passed to the main input 577 * path correctly. 578 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 579 */ 580 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 581 struct ether_vlan_header *evl; 582 583 if (m->m_len < sizeof(*evl) && 584 (m = m_pullup(m, sizeof(*evl))) == NULL) { 585 #ifdef DIAGNOSTIC 586 if_printf(ifp, "cannot pullup VLAN header\n"); 587 #endif 588 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 589 CURVNET_RESTORE(); 590 return; 591 } 592 593 evl = mtod(m, struct ether_vlan_header *); 594 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 595 m->m_flags |= M_VLANTAG; 596 597 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 598 ETHER_HDR_LEN - ETHER_TYPE_LEN); 599 m_adj(m, ETHER_VLAN_ENCAP_LEN); 600 eh = mtod(m, struct ether_header *); 601 } 602 603 M_SETFIB(m, ifp->if_fib); 604 605 /* Allow ng_ether(4) to claim this frame. */ 606 if (ifp->if_l2com != NULL) { 607 KASSERT(ng_ether_input_p != NULL, 608 ("%s: ng_ether_input_p is NULL", __func__)); 609 m->m_flags &= ~M_PROMISC; 610 (*ng_ether_input_p)(ifp, &m); 611 if (m == NULL) { 612 CURVNET_RESTORE(); 613 return; 614 } 615 eh = mtod(m, struct ether_header *); 616 } 617 618 /* 619 * Allow if_bridge(4) to claim this frame. 620 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 621 * and the frame should be delivered locally. 622 */ 623 if (ifp->if_bridge != NULL) { 624 m->m_flags &= ~M_PROMISC; 625 BRIDGE_INPUT(ifp, m); 626 if (m == NULL) { 627 CURVNET_RESTORE(); 628 return; 629 } 630 eh = mtod(m, struct ether_header *); 631 } 632 633 #if defined(INET) || defined(INET6) 634 /* 635 * Clear M_PROMISC on frame so that carp(4) will see it when the 636 * mbuf flows up to Layer 3. 637 * FreeBSD's implementation of carp(4) uses the inprotosw 638 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 639 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 640 * is outside the scope of the M_PROMISC test below. 641 * TODO: Maintain a hash table of ethernet addresses other than 642 * ether_dhost which may be active on this ifp. 643 */ 644 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 645 m->m_flags &= ~M_PROMISC; 646 } else 647 #endif 648 { 649 /* 650 * If the frame received was not for our MAC address, set the 651 * M_PROMISC flag on the mbuf chain. The frame may need to 652 * be seen by the rest of the Ethernet input path in case of 653 * re-entry (e.g. bridge, vlan, netgraph) but should not be 654 * seen by upper protocol layers. 655 */ 656 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 657 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 658 m->m_flags |= M_PROMISC; 659 } 660 661 ether_demux(ifp, m); 662 CURVNET_RESTORE(); 663 } 664 665 /* 666 * Ethernet input dispatch; by default, direct dispatch here regardless of 667 * global configuration. However, if RSS is enabled, hook up RSS affinity 668 * so that when deferred or hybrid dispatch is enabled, we can redistribute 669 * load based on RSS. 670 * 671 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 672 * not it had already done work distribution via multi-queue. Then we could 673 * direct dispatch in the event load balancing was already complete and 674 * handle the case of interfaces with different capabilities better. 675 * 676 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 677 * at multiple layers? 678 * 679 * XXXRW: For now, enable all this only if RSS is compiled in, although it 680 * works fine without RSS. Need to characterise the performance overhead 681 * of the detour through the netisr code in the event the result is always 682 * direct dispatch. 683 */ 684 static void 685 ether_nh_input(struct mbuf *m) 686 { 687 688 M_ASSERTPKTHDR(m); 689 KASSERT(m->m_pkthdr.rcvif != NULL, 690 ("%s: NULL interface pointer", __func__)); 691 ether_input_internal(m->m_pkthdr.rcvif, m); 692 } 693 694 static struct netisr_handler ether_nh = { 695 .nh_name = "ether", 696 .nh_handler = ether_nh_input, 697 .nh_proto = NETISR_ETHER, 698 #ifdef RSS 699 .nh_policy = NETISR_POLICY_CPU, 700 .nh_dispatch = NETISR_DISPATCH_DIRECT, 701 .nh_m2cpuid = rss_m2cpuid, 702 #else 703 .nh_policy = NETISR_POLICY_SOURCE, 704 .nh_dispatch = NETISR_DISPATCH_DIRECT, 705 #endif 706 }; 707 708 static void 709 ether_init(__unused void *arg) 710 { 711 712 netisr_register(ðer_nh); 713 } 714 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 715 716 static void 717 vnet_ether_init(__unused void *arg) 718 { 719 int i; 720 721 /* Initialize packet filter hooks. */ 722 V_link_pfil_hook.ph_type = PFIL_TYPE_AF; 723 V_link_pfil_hook.ph_af = AF_LINK; 724 if ((i = pfil_head_register(&V_link_pfil_hook)) != 0) 725 printf("%s: WARNING: unable to register pfil link hook, " 726 "error %d\n", __func__, i); 727 #ifdef VIMAGE 728 netisr_register_vnet(ðer_nh); 729 #endif 730 } 731 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 732 vnet_ether_init, NULL); 733 734 #ifdef VIMAGE 735 static void 736 vnet_ether_pfil_destroy(__unused void *arg) 737 { 738 int i; 739 740 if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0) 741 printf("%s: WARNING: unable to unregister pfil link hook, " 742 "error %d\n", __func__, i); 743 } 744 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY, 745 vnet_ether_pfil_destroy, NULL); 746 747 static void 748 vnet_ether_destroy(__unused void *arg) 749 { 750 751 netisr_unregister_vnet(ðer_nh); 752 } 753 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 754 vnet_ether_destroy, NULL); 755 #endif 756 757 758 759 static void 760 ether_input(struct ifnet *ifp, struct mbuf *m) 761 { 762 763 struct mbuf *mn; 764 765 /* 766 * The drivers are allowed to pass in a chain of packets linked with 767 * m_nextpkt. We split them up into separate packets here and pass 768 * them up. This allows the drivers to amortize the receive lock. 769 */ 770 while (m) { 771 mn = m->m_nextpkt; 772 m->m_nextpkt = NULL; 773 774 /* 775 * We will rely on rcvif being set properly in the deferred context, 776 * so assert it is correct here. 777 */ 778 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p " 779 "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp)); 780 CURVNET_SET_QUIET(ifp->if_vnet); 781 netisr_dispatch(NETISR_ETHER, m); 782 CURVNET_RESTORE(); 783 m = mn; 784 } 785 } 786 787 /* 788 * Upper layer processing for a received Ethernet packet. 789 */ 790 void 791 ether_demux(struct ifnet *ifp, struct mbuf *m) 792 { 793 struct ether_header *eh; 794 int i, isr; 795 u_short ether_type; 796 797 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 798 799 /* Do not grab PROMISC frames in case we are re-entered. */ 800 if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) { 801 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, 0, 802 NULL); 803 804 if (i != 0 || m == NULL) 805 return; 806 } 807 808 eh = mtod(m, struct ether_header *); 809 ether_type = ntohs(eh->ether_type); 810 811 /* 812 * If this frame has a VLAN tag other than 0, call vlan_input() 813 * if its module is loaded. Otherwise, drop. 814 */ 815 if ((m->m_flags & M_VLANTAG) && 816 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 817 if (ifp->if_vlantrunk == NULL) { 818 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 819 m_freem(m); 820 return; 821 } 822 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 823 __func__)); 824 /* Clear before possibly re-entering ether_input(). */ 825 m->m_flags &= ~M_PROMISC; 826 (*vlan_input_p)(ifp, m); 827 return; 828 } 829 830 /* 831 * Pass promiscuously received frames to the upper layer if the user 832 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 833 */ 834 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 835 m_freem(m); 836 return; 837 } 838 839 /* 840 * Reset layer specific mbuf flags to avoid confusing upper layers. 841 * Strip off Ethernet header. 842 */ 843 m->m_flags &= ~M_VLANTAG; 844 m_clrprotoflags(m); 845 m_adj(m, ETHER_HDR_LEN); 846 847 /* 848 * Dispatch frame to upper layer. 849 */ 850 switch (ether_type) { 851 #ifdef INET 852 case ETHERTYPE_IP: 853 isr = NETISR_IP; 854 break; 855 856 case ETHERTYPE_ARP: 857 if (ifp->if_flags & IFF_NOARP) { 858 /* Discard packet if ARP is disabled on interface */ 859 m_freem(m); 860 return; 861 } 862 isr = NETISR_ARP; 863 break; 864 #endif 865 #ifdef INET6 866 case ETHERTYPE_IPV6: 867 isr = NETISR_IPV6; 868 break; 869 #endif 870 default: 871 goto discard; 872 } 873 netisr_dispatch(isr, m); 874 return; 875 876 discard: 877 /* 878 * Packet is to be discarded. If netgraph is present, 879 * hand the packet to it for last chance processing; 880 * otherwise dispose of it. 881 */ 882 if (ifp->if_l2com != NULL) { 883 KASSERT(ng_ether_input_orphan_p != NULL, 884 ("ng_ether_input_orphan_p is NULL")); 885 /* 886 * Put back the ethernet header so netgraph has a 887 * consistent view of inbound packets. 888 */ 889 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 890 (*ng_ether_input_orphan_p)(ifp, m); 891 return; 892 } 893 m_freem(m); 894 } 895 896 /* 897 * Convert Ethernet address to printable (loggable) representation. 898 * This routine is for compatibility; it's better to just use 899 * 900 * printf("%6D", <pointer to address>, ":"); 901 * 902 * since there's no static buffer involved. 903 */ 904 char * 905 ether_sprintf(const u_char *ap) 906 { 907 static char etherbuf[18]; 908 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 909 return (etherbuf); 910 } 911 912 /* 913 * Perform common duties while attaching to interface list 914 */ 915 void 916 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 917 { 918 int i; 919 struct ifaddr *ifa; 920 struct sockaddr_dl *sdl; 921 922 ifp->if_addrlen = ETHER_ADDR_LEN; 923 ifp->if_hdrlen = ETHER_HDR_LEN; 924 if_attach(ifp); 925 ifp->if_mtu = ETHERMTU; 926 ifp->if_output = ether_output; 927 ifp->if_input = ether_input; 928 ifp->if_resolvemulti = ether_resolvemulti; 929 ifp->if_requestencap = ether_requestencap; 930 #ifdef VIMAGE 931 ifp->if_reassign = ether_reassign; 932 #endif 933 if (ifp->if_baudrate == 0) 934 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 935 ifp->if_broadcastaddr = etherbroadcastaddr; 936 937 ifa = ifp->if_addr; 938 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 939 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 940 sdl->sdl_type = IFT_ETHER; 941 sdl->sdl_alen = ifp->if_addrlen; 942 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 943 944 if (ifp->if_hw_addr != NULL) 945 bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen); 946 947 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 948 if (ng_ether_attach_p != NULL) 949 (*ng_ether_attach_p)(ifp); 950 951 /* Announce Ethernet MAC address if non-zero. */ 952 for (i = 0; i < ifp->if_addrlen; i++) 953 if (lla[i] != 0) 954 break; 955 if (i != ifp->if_addrlen) 956 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 957 958 uuid_ether_add(LLADDR(sdl)); 959 960 /* Add necessary bits are setup; announce it now. */ 961 EVENTHANDLER_INVOKE(ether_ifattach_event, ifp); 962 if (IS_DEFAULT_VNET(curvnet)) 963 devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL); 964 } 965 966 /* 967 * Perform common duties while detaching an Ethernet interface 968 */ 969 void 970 ether_ifdetach(struct ifnet *ifp) 971 { 972 struct sockaddr_dl *sdl; 973 974 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 975 uuid_ether_del(LLADDR(sdl)); 976 977 if (ifp->if_l2com != NULL) { 978 KASSERT(ng_ether_detach_p != NULL, 979 ("ng_ether_detach_p is NULL")); 980 (*ng_ether_detach_p)(ifp); 981 } 982 983 bpfdetach(ifp); 984 if_detach(ifp); 985 } 986 987 #ifdef VIMAGE 988 void 989 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 990 { 991 992 if (ifp->if_l2com != NULL) { 993 KASSERT(ng_ether_detach_p != NULL, 994 ("ng_ether_detach_p is NULL")); 995 (*ng_ether_detach_p)(ifp); 996 } 997 998 if (ng_ether_attach_p != NULL) { 999 CURVNET_SET_QUIET(new_vnet); 1000 (*ng_ether_attach_p)(ifp); 1001 CURVNET_RESTORE(); 1002 } 1003 } 1004 #endif 1005 1006 SYSCTL_DECL(_net_link); 1007 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 1008 1009 #if 0 1010 /* 1011 * This is for reference. We have a table-driven version 1012 * of the little-endian crc32 generator, which is faster 1013 * than the double-loop. 1014 */ 1015 uint32_t 1016 ether_crc32_le(const uint8_t *buf, size_t len) 1017 { 1018 size_t i; 1019 uint32_t crc; 1020 int bit; 1021 uint8_t data; 1022 1023 crc = 0xffffffff; /* initial value */ 1024 1025 for (i = 0; i < len; i++) { 1026 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1027 carry = (crc ^ data) & 1; 1028 crc >>= 1; 1029 if (carry) 1030 crc = (crc ^ ETHER_CRC_POLY_LE); 1031 } 1032 } 1033 1034 return (crc); 1035 } 1036 #else 1037 uint32_t 1038 ether_crc32_le(const uint8_t *buf, size_t len) 1039 { 1040 static const uint32_t crctab[] = { 1041 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1042 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1043 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1044 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1045 }; 1046 size_t i; 1047 uint32_t crc; 1048 1049 crc = 0xffffffff; /* initial value */ 1050 1051 for (i = 0; i < len; i++) { 1052 crc ^= buf[i]; 1053 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1054 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1055 } 1056 1057 return (crc); 1058 } 1059 #endif 1060 1061 uint32_t 1062 ether_crc32_be(const uint8_t *buf, size_t len) 1063 { 1064 size_t i; 1065 uint32_t crc, carry; 1066 int bit; 1067 uint8_t data; 1068 1069 crc = 0xffffffff; /* initial value */ 1070 1071 for (i = 0; i < len; i++) { 1072 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1073 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 1074 crc <<= 1; 1075 if (carry) 1076 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1077 } 1078 } 1079 1080 return (crc); 1081 } 1082 1083 int 1084 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1085 { 1086 struct ifaddr *ifa = (struct ifaddr *) data; 1087 struct ifreq *ifr = (struct ifreq *) data; 1088 int error = 0; 1089 1090 switch (command) { 1091 case SIOCSIFADDR: 1092 ifp->if_flags |= IFF_UP; 1093 1094 switch (ifa->ifa_addr->sa_family) { 1095 #ifdef INET 1096 case AF_INET: 1097 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1098 arp_ifinit(ifp, ifa); 1099 break; 1100 #endif 1101 default: 1102 ifp->if_init(ifp->if_softc); 1103 break; 1104 } 1105 break; 1106 1107 case SIOCGIFADDR: 1108 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 1109 ETHER_ADDR_LEN); 1110 break; 1111 1112 case SIOCSIFMTU: 1113 /* 1114 * Set the interface MTU. 1115 */ 1116 if (ifr->ifr_mtu > ETHERMTU) { 1117 error = EINVAL; 1118 } else { 1119 ifp->if_mtu = ifr->ifr_mtu; 1120 } 1121 break; 1122 1123 case SIOCSLANPCP: 1124 error = priv_check(curthread, PRIV_NET_SETLANPCP); 1125 if (error != 0) 1126 break; 1127 if (ifr->ifr_lan_pcp > 7 && 1128 ifr->ifr_lan_pcp != IFNET_PCP_NONE) { 1129 error = EINVAL; 1130 } else { 1131 ifp->if_pcp = ifr->ifr_lan_pcp; 1132 /* broadcast event about PCP change */ 1133 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 1134 } 1135 break; 1136 1137 case SIOCGLANPCP: 1138 ifr->ifr_lan_pcp = ifp->if_pcp; 1139 break; 1140 1141 default: 1142 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1143 break; 1144 } 1145 return (error); 1146 } 1147 1148 static int 1149 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1150 struct sockaddr *sa) 1151 { 1152 struct sockaddr_dl *sdl; 1153 #ifdef INET 1154 struct sockaddr_in *sin; 1155 #endif 1156 #ifdef INET6 1157 struct sockaddr_in6 *sin6; 1158 #endif 1159 u_char *e_addr; 1160 1161 switch(sa->sa_family) { 1162 case AF_LINK: 1163 /* 1164 * No mapping needed. Just check that it's a valid MC address. 1165 */ 1166 sdl = (struct sockaddr_dl *)sa; 1167 e_addr = LLADDR(sdl); 1168 if (!ETHER_IS_MULTICAST(e_addr)) 1169 return EADDRNOTAVAIL; 1170 *llsa = NULL; 1171 return 0; 1172 1173 #ifdef INET 1174 case AF_INET: 1175 sin = (struct sockaddr_in *)sa; 1176 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1177 return EADDRNOTAVAIL; 1178 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1179 sdl->sdl_alen = ETHER_ADDR_LEN; 1180 e_addr = LLADDR(sdl); 1181 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1182 *llsa = (struct sockaddr *)sdl; 1183 return 0; 1184 #endif 1185 #ifdef INET6 1186 case AF_INET6: 1187 sin6 = (struct sockaddr_in6 *)sa; 1188 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1189 /* 1190 * An IP6 address of 0 means listen to all 1191 * of the Ethernet multicast address used for IP6. 1192 * (This is used for multicast routers.) 1193 */ 1194 ifp->if_flags |= IFF_ALLMULTI; 1195 *llsa = NULL; 1196 return 0; 1197 } 1198 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1199 return EADDRNOTAVAIL; 1200 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1201 sdl->sdl_alen = ETHER_ADDR_LEN; 1202 e_addr = LLADDR(sdl); 1203 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1204 *llsa = (struct sockaddr *)sdl; 1205 return 0; 1206 #endif 1207 1208 default: 1209 /* 1210 * Well, the text isn't quite right, but it's the name 1211 * that counts... 1212 */ 1213 return EAFNOSUPPORT; 1214 } 1215 } 1216 1217 static moduledata_t ether_mod = { 1218 .name = "ether", 1219 }; 1220 1221 void 1222 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1223 { 1224 struct ether_vlan_header vlan; 1225 struct mbuf mv, mb; 1226 1227 KASSERT((m->m_flags & M_VLANTAG) != 0, 1228 ("%s: vlan information not present", __func__)); 1229 KASSERT(m->m_len >= sizeof(struct ether_header), 1230 ("%s: mbuf not large enough for header", __func__)); 1231 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1232 vlan.evl_proto = vlan.evl_encap_proto; 1233 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1234 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1235 m->m_len -= sizeof(struct ether_header); 1236 m->m_data += sizeof(struct ether_header); 1237 /* 1238 * If a data link has been supplied by the caller, then we will need to 1239 * re-create a stack allocated mbuf chain with the following structure: 1240 * 1241 * (1) mbuf #1 will contain the supplied data link 1242 * (2) mbuf #2 will contain the vlan header 1243 * (3) mbuf #3 will contain the original mbuf's packet data 1244 * 1245 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1246 */ 1247 if (data != NULL) { 1248 mv.m_next = m; 1249 mv.m_data = (caddr_t)&vlan; 1250 mv.m_len = sizeof(vlan); 1251 mb.m_next = &mv; 1252 mb.m_data = data; 1253 mb.m_len = dlen; 1254 bpf_mtap(bp, &mb); 1255 } else 1256 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1257 m->m_len += sizeof(struct ether_header); 1258 m->m_data -= sizeof(struct ether_header); 1259 } 1260 1261 struct mbuf * 1262 ether_vlanencap(struct mbuf *m, uint16_t tag) 1263 { 1264 struct ether_vlan_header *evl; 1265 1266 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1267 if (m == NULL) 1268 return (NULL); 1269 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1270 1271 if (m->m_len < sizeof(*evl)) { 1272 m = m_pullup(m, sizeof(*evl)); 1273 if (m == NULL) 1274 return (NULL); 1275 } 1276 1277 /* 1278 * Transform the Ethernet header into an Ethernet header 1279 * with 802.1Q encapsulation. 1280 */ 1281 evl = mtod(m, struct ether_vlan_header *); 1282 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1283 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1284 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1285 evl->evl_tag = htons(tag); 1286 return (m); 1287 } 1288 1289 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, 1290 "IEEE 802.1Q VLAN"); 1291 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, 1292 "for consistency"); 1293 1294 VNET_DEFINE_STATIC(int, soft_pad); 1295 #define V_soft_pad VNET(soft_pad) 1296 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET, 1297 &VNET_NAME(soft_pad), 0, 1298 "pad short frames before tagging"); 1299 1300 /* 1301 * For now, make preserving PCP via an mbuf tag optional, as it increases 1302 * per-packet memory allocations and frees. In the future, it would be 1303 * preferable to reuse ether_vtag for this, or similar. 1304 */ 1305 int vlan_mtag_pcp = 0; 1306 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW, 1307 &vlan_mtag_pcp, 0, 1308 "Retain VLAN PCP information as packets are passed up the stack"); 1309 1310 bool 1311 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p, 1312 uint16_t vid, uint8_t pcp) 1313 { 1314 struct m_tag *mtag; 1315 int n; 1316 uint16_t tag; 1317 static const char pad[8]; /* just zeros */ 1318 1319 /* 1320 * Pad the frame to the minimum size allowed if told to. 1321 * This option is in accord with IEEE Std 802.1Q, 2003 Ed., 1322 * paragraph C.4.4.3.b. It can help to work around buggy 1323 * bridges that violate paragraph C.4.4.3.a from the same 1324 * document, i.e., fail to pad short frames after untagging. 1325 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but 1326 * untagging it will produce a 62-byte frame, which is a runt 1327 * and requires padding. There are VLAN-enabled network 1328 * devices that just discard such runts instead or mishandle 1329 * them somehow. 1330 */ 1331 if (V_soft_pad && p->if_type == IFT_ETHER) { 1332 for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len; 1333 n > 0; n -= sizeof(pad)) { 1334 if (!m_append(*mp, min(n, sizeof(pad)), pad)) 1335 break; 1336 } 1337 if (n > 0) { 1338 m_freem(*mp); 1339 *mp = NULL; 1340 if_printf(ife, "cannot pad short frame"); 1341 return (false); 1342 } 1343 } 1344 1345 /* 1346 * If underlying interface can do VLAN tag insertion itself, 1347 * just pass the packet along. However, we need some way to 1348 * tell the interface where the packet came from so that it 1349 * knows how to find the VLAN tag to use, so we attach a 1350 * packet tag that holds it. 1351 */ 1352 if (vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q, 1353 MTAG_8021Q_PCP_OUT, NULL)) != NULL) 1354 tag = EVL_MAKETAG(vid, *(uint8_t *)(mtag + 1), 0); 1355 else 1356 tag = EVL_MAKETAG(vid, pcp, 0); 1357 if (p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1358 (*mp)->m_pkthdr.ether_vtag = tag; 1359 (*mp)->m_flags |= M_VLANTAG; 1360 } else { 1361 *mp = ether_vlanencap(*mp, tag); 1362 if (*mp == NULL) { 1363 if_printf(ife, "unable to prepend 802.1Q header"); 1364 return (false); 1365 } 1366 } 1367 return (true); 1368 } 1369 1370 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1371 MODULE_VERSION(ether, 1); 1372