1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 32 * $FreeBSD$ 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_netgraph.h" 38 #include "opt_mbuf_profiling.h" 39 #include "opt_rss.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bus.h> 44 #include <sys/eventhandler.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/module.h> 49 #include <sys/mbuf.h> 50 #include <sys/random.h> 51 #include <sys/socket.h> 52 #include <sys/sockio.h> 53 #include <sys/sysctl.h> 54 #include <sys/uuid.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_arp.h> 59 #include <net/netisr.h> 60 #include <net/route.h> 61 #include <net/if_llc.h> 62 #include <net/if_dl.h> 63 #include <net/if_types.h> 64 #include <net/bpf.h> 65 #include <net/ethernet.h> 66 #include <net/if_bridgevar.h> 67 #include <net/if_vlan_var.h> 68 #include <net/if_llatbl.h> 69 #include <net/pfil.h> 70 #include <net/rss_config.h> 71 #include <net/vnet.h> 72 73 #include <netpfil/pf/pf_mtag.h> 74 75 #if defined(INET) || defined(INET6) 76 #include <netinet/in.h> 77 #include <netinet/in_var.h> 78 #include <netinet/if_ether.h> 79 #include <netinet/ip_carp.h> 80 #include <netinet/ip_var.h> 81 #endif 82 #ifdef INET6 83 #include <netinet6/nd6.h> 84 #endif 85 #include <security/mac/mac_framework.h> 86 87 #ifdef CTASSERT 88 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 89 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 90 #endif 91 92 VNET_DEFINE(struct pfil_head, link_pfil_hook); /* Packet filter hooks */ 93 94 /* netgraph node hooks for ng_ether(4) */ 95 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 96 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 97 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 98 void (*ng_ether_attach_p)(struct ifnet *ifp); 99 void (*ng_ether_detach_p)(struct ifnet *ifp); 100 101 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 102 103 /* if_bridge(4) support */ 104 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 105 int (*bridge_output_p)(struct ifnet *, struct mbuf *, 106 struct sockaddr *, struct rtentry *); 107 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 108 109 /* if_lagg(4) support */ 110 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 111 112 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 113 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 114 115 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 116 struct sockaddr *); 117 #ifdef VIMAGE 118 static void ether_reassign(struct ifnet *, struct vnet *, char *); 119 #endif 120 static int ether_requestencap(struct ifnet *, struct if_encap_req *); 121 122 123 #define senderr(e) do { error = (e); goto bad;} while (0) 124 125 static void 126 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 127 { 128 int csum_flags = 0; 129 130 if (src->m_pkthdr.csum_flags & CSUM_IP) 131 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 132 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 133 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 134 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 135 csum_flags |= CSUM_SCTP_VALID; 136 dst->m_pkthdr.csum_flags |= csum_flags; 137 if (csum_flags & CSUM_DATA_VALID) 138 dst->m_pkthdr.csum_data = 0xffff; 139 } 140 141 /* 142 * Handle link-layer encapsulation requests. 143 */ 144 static int 145 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) 146 { 147 struct ether_header *eh; 148 struct arphdr *ah; 149 uint16_t etype; 150 const u_char *lladdr; 151 152 if (req->rtype != IFENCAP_LL) 153 return (EOPNOTSUPP); 154 155 if (req->bufsize < ETHER_HDR_LEN) 156 return (ENOMEM); 157 158 eh = (struct ether_header *)req->buf; 159 lladdr = req->lladdr; 160 req->lladdr_off = 0; 161 162 switch (req->family) { 163 case AF_INET: 164 etype = htons(ETHERTYPE_IP); 165 break; 166 case AF_INET6: 167 etype = htons(ETHERTYPE_IPV6); 168 break; 169 case AF_ARP: 170 ah = (struct arphdr *)req->hdata; 171 ah->ar_hrd = htons(ARPHRD_ETHER); 172 173 switch(ntohs(ah->ar_op)) { 174 case ARPOP_REVREQUEST: 175 case ARPOP_REVREPLY: 176 etype = htons(ETHERTYPE_REVARP); 177 break; 178 case ARPOP_REQUEST: 179 case ARPOP_REPLY: 180 default: 181 etype = htons(ETHERTYPE_ARP); 182 break; 183 } 184 185 if (req->flags & IFENCAP_FLAG_BROADCAST) 186 lladdr = ifp->if_broadcastaddr; 187 break; 188 default: 189 return (EAFNOSUPPORT); 190 } 191 192 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 193 memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); 194 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 195 req->bufsize = sizeof(struct ether_header); 196 197 return (0); 198 } 199 200 201 static int 202 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, 203 const struct sockaddr *dst, struct route *ro, u_char *phdr, 204 uint32_t *pflags, struct llentry **plle) 205 { 206 struct ether_header *eh; 207 uint32_t lleflags = 0; 208 int error = 0; 209 #if defined(INET) || defined(INET6) 210 uint16_t etype; 211 #endif 212 213 if (plle) 214 *plle = NULL; 215 eh = (struct ether_header *)phdr; 216 217 switch (dst->sa_family) { 218 #ifdef INET 219 case AF_INET: 220 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) 221 error = arpresolve(ifp, 0, m, dst, phdr, &lleflags, 222 plle); 223 else { 224 if (m->m_flags & M_BCAST) 225 memcpy(eh->ether_dhost, ifp->if_broadcastaddr, 226 ETHER_ADDR_LEN); 227 else { 228 const struct in_addr *a; 229 a = &(((const struct sockaddr_in *)dst)->sin_addr); 230 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); 231 } 232 etype = htons(ETHERTYPE_IP); 233 memcpy(&eh->ether_type, &etype, sizeof(etype)); 234 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 235 } 236 break; 237 #endif 238 #ifdef INET6 239 case AF_INET6: 240 if ((m->m_flags & M_MCAST) == 0) 241 error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags, 242 plle); 243 else { 244 const struct in6_addr *a6; 245 a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); 246 ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); 247 etype = htons(ETHERTYPE_IPV6); 248 memcpy(&eh->ether_type, &etype, sizeof(etype)); 249 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 250 } 251 break; 252 #endif 253 default: 254 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 255 if (m != NULL) 256 m_freem(m); 257 return (EAFNOSUPPORT); 258 } 259 260 if (error == EHOSTDOWN) { 261 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) 262 error = EHOSTUNREACH; 263 } 264 265 if (error != 0) 266 return (error); 267 268 *pflags = RT_MAY_LOOP; 269 if (lleflags & LLE_IFADDR) 270 *pflags |= RT_L2_ME; 271 272 return (0); 273 } 274 275 /* 276 * Ethernet output routine. 277 * Encapsulate a packet of type family for the local net. 278 * Use trailer local net encapsulation if enough data in first 279 * packet leaves a multiple of 512 bytes of data in remainder. 280 */ 281 int 282 ether_output(struct ifnet *ifp, struct mbuf *m, 283 const struct sockaddr *dst, struct route *ro) 284 { 285 int error = 0; 286 char linkhdr[ETHER_HDR_LEN], *phdr; 287 struct ether_header *eh; 288 struct pf_mtag *t; 289 int loop_copy = 1; 290 int hlen; /* link layer header length */ 291 uint32_t pflags; 292 struct llentry *lle = NULL; 293 int addref = 0; 294 295 phdr = NULL; 296 pflags = 0; 297 if (ro != NULL) { 298 /* XXX BPF uses ro_prepend */ 299 if (ro->ro_prepend != NULL) { 300 phdr = ro->ro_prepend; 301 hlen = ro->ro_plen; 302 } else if (!(m->m_flags & (M_BCAST | M_MCAST))) { 303 if ((ro->ro_flags & RT_LLE_CACHE) != 0) { 304 lle = ro->ro_lle; 305 if (lle != NULL && 306 (lle->la_flags & LLE_VALID) == 0) { 307 LLE_FREE(lle); 308 lle = NULL; /* redundant */ 309 ro->ro_lle = NULL; 310 } 311 if (lle == NULL) { 312 /* if we lookup, keep cache */ 313 addref = 1; 314 } else 315 /* 316 * Notify LLE code that 317 * the entry was used 318 * by datapath. 319 */ 320 llentry_mark_used(lle); 321 } 322 if (lle != NULL) { 323 phdr = lle->r_linkdata; 324 hlen = lle->r_hdrlen; 325 pflags = lle->r_flags; 326 } 327 } 328 } 329 330 #ifdef MAC 331 error = mac_ifnet_check_transmit(ifp, m); 332 if (error) 333 senderr(error); 334 #endif 335 336 M_PROFILE(m); 337 if (ifp->if_flags & IFF_MONITOR) 338 senderr(ENETDOWN); 339 if (!((ifp->if_flags & IFF_UP) && 340 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 341 senderr(ENETDOWN); 342 343 if (phdr == NULL) { 344 /* No prepend data supplied. Try to calculate ourselves. */ 345 phdr = linkhdr; 346 hlen = ETHER_HDR_LEN; 347 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags, 348 addref ? &lle : NULL); 349 if (addref && lle != NULL) 350 ro->ro_lle = lle; 351 if (error != 0) 352 return (error == EWOULDBLOCK ? 0 : error); 353 } 354 355 if ((pflags & RT_L2_ME) != 0) { 356 update_mbuf_csumflags(m, m); 357 return (if_simloop(ifp, m, dst->sa_family, 0)); 358 } 359 loop_copy = pflags & RT_MAY_LOOP; 360 361 /* 362 * Add local net header. If no space in first mbuf, 363 * allocate another. 364 * 365 * Note that we do prepend regardless of RT_HAS_HEADER flag. 366 * This is done because BPF code shifts m_data pointer 367 * to the end of ethernet header prior to calling if_output(). 368 */ 369 M_PREPEND(m, hlen, M_NOWAIT); 370 if (m == NULL) 371 senderr(ENOBUFS); 372 if ((pflags & RT_HAS_HEADER) == 0) { 373 eh = mtod(m, struct ether_header *); 374 memcpy(eh, phdr, hlen); 375 } 376 377 /* 378 * If a simplex interface, and the packet is being sent to our 379 * Ethernet address or a broadcast address, loopback a copy. 380 * XXX To make a simplex device behave exactly like a duplex 381 * device, we should copy in the case of sending to our own 382 * ethernet address (thus letting the original actually appear 383 * on the wire). However, we don't do that here for security 384 * reasons and compatibility with the original behavior. 385 */ 386 if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && 387 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 388 struct mbuf *n; 389 390 /* 391 * Because if_simloop() modifies the packet, we need a 392 * writable copy through m_dup() instead of a readonly 393 * one as m_copy[m] would give us. The alternative would 394 * be to modify if_simloop() to handle the readonly mbuf, 395 * but performancewise it is mostly equivalent (trading 396 * extra data copying vs. extra locking). 397 * 398 * XXX This is a local workaround. A number of less 399 * often used kernel parts suffer from the same bug. 400 * See PR kern/105943 for a proposed general solution. 401 */ 402 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 403 update_mbuf_csumflags(m, n); 404 (void)if_simloop(ifp, n, dst->sa_family, hlen); 405 } else 406 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 407 } 408 409 /* 410 * Bridges require special output handling. 411 */ 412 if (ifp->if_bridge) { 413 BRIDGE_OUTPUT(ifp, m, error); 414 return (error); 415 } 416 417 #if defined(INET) || defined(INET6) 418 if (ifp->if_carp && 419 (error = (*carp_output_p)(ifp, m, dst))) 420 goto bad; 421 #endif 422 423 /* Handle ng_ether(4) processing, if any */ 424 if (ifp->if_l2com != NULL) { 425 KASSERT(ng_ether_output_p != NULL, 426 ("ng_ether_output_p is NULL")); 427 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 428 bad: if (m != NULL) 429 m_freem(m); 430 return (error); 431 } 432 if (m == NULL) 433 return (0); 434 } 435 436 /* Continue with link-layer output */ 437 return ether_output_frame(ifp, m); 438 } 439 440 /* 441 * Ethernet link layer output routine to send a raw frame to the device. 442 * 443 * This assumes that the 14 byte Ethernet header is present and contiguous 444 * in the first mbuf (if BRIDGE'ing). 445 */ 446 int 447 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 448 { 449 int i; 450 451 if (PFIL_HOOKED(&V_link_pfil_hook)) { 452 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL); 453 454 if (i != 0) 455 return (EACCES); 456 457 if (m == NULL) 458 return (0); 459 } 460 461 /* 462 * Queue message on interface, update output statistics if 463 * successful, and start output if interface not yet active. 464 */ 465 return ((ifp->if_transmit)(ifp, m)); 466 } 467 468 /* 469 * Process a received Ethernet packet; the packet is in the 470 * mbuf chain m with the ethernet header at the front. 471 */ 472 static void 473 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 474 { 475 struct ether_header *eh; 476 u_short etype; 477 478 if ((ifp->if_flags & IFF_UP) == 0) { 479 m_freem(m); 480 return; 481 } 482 #ifdef DIAGNOSTIC 483 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 484 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 485 m_freem(m); 486 return; 487 } 488 #endif 489 if (m->m_len < ETHER_HDR_LEN) { 490 /* XXX maybe should pullup? */ 491 if_printf(ifp, "discard frame w/o leading ethernet " 492 "header (len %u pkt len %u)\n", 493 m->m_len, m->m_pkthdr.len); 494 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 495 m_freem(m); 496 return; 497 } 498 eh = mtod(m, struct ether_header *); 499 etype = ntohs(eh->ether_type); 500 random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER); 501 502 CURVNET_SET_QUIET(ifp->if_vnet); 503 504 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 505 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 506 m->m_flags |= M_BCAST; 507 else 508 m->m_flags |= M_MCAST; 509 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 510 } 511 512 #ifdef MAC 513 /* 514 * Tag the mbuf with an appropriate MAC label before any other 515 * consumers can get to it. 516 */ 517 mac_ifnet_create_mbuf(ifp, m); 518 #endif 519 520 /* 521 * Give bpf a chance at the packet. 522 */ 523 ETHER_BPF_MTAP(ifp, m); 524 525 /* 526 * If the CRC is still on the packet, trim it off. We do this once 527 * and once only in case we are re-entered. Nothing else on the 528 * Ethernet receive path expects to see the FCS. 529 */ 530 if (m->m_flags & M_HASFCS) { 531 m_adj(m, -ETHER_CRC_LEN); 532 m->m_flags &= ~M_HASFCS; 533 } 534 535 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 536 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 537 538 /* Allow monitor mode to claim this frame, after stats are updated. */ 539 if (ifp->if_flags & IFF_MONITOR) { 540 m_freem(m); 541 CURVNET_RESTORE(); 542 return; 543 } 544 545 /* Handle input from a lagg(4) port */ 546 if (ifp->if_type == IFT_IEEE8023ADLAG) { 547 KASSERT(lagg_input_p != NULL, 548 ("%s: if_lagg not loaded!", __func__)); 549 m = (*lagg_input_p)(ifp, m); 550 if (m != NULL) 551 ifp = m->m_pkthdr.rcvif; 552 else { 553 CURVNET_RESTORE(); 554 return; 555 } 556 } 557 558 /* 559 * If the hardware did not process an 802.1Q tag, do this now, 560 * to allow 802.1P priority frames to be passed to the main input 561 * path correctly. 562 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 563 */ 564 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 565 struct ether_vlan_header *evl; 566 567 if (m->m_len < sizeof(*evl) && 568 (m = m_pullup(m, sizeof(*evl))) == NULL) { 569 #ifdef DIAGNOSTIC 570 if_printf(ifp, "cannot pullup VLAN header\n"); 571 #endif 572 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 573 CURVNET_RESTORE(); 574 return; 575 } 576 577 evl = mtod(m, struct ether_vlan_header *); 578 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 579 m->m_flags |= M_VLANTAG; 580 581 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 582 ETHER_HDR_LEN - ETHER_TYPE_LEN); 583 m_adj(m, ETHER_VLAN_ENCAP_LEN); 584 eh = mtod(m, struct ether_header *); 585 } 586 587 M_SETFIB(m, ifp->if_fib); 588 589 /* Allow ng_ether(4) to claim this frame. */ 590 if (ifp->if_l2com != NULL) { 591 KASSERT(ng_ether_input_p != NULL, 592 ("%s: ng_ether_input_p is NULL", __func__)); 593 m->m_flags &= ~M_PROMISC; 594 (*ng_ether_input_p)(ifp, &m); 595 if (m == NULL) { 596 CURVNET_RESTORE(); 597 return; 598 } 599 eh = mtod(m, struct ether_header *); 600 } 601 602 /* 603 * Allow if_bridge(4) to claim this frame. 604 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 605 * and the frame should be delivered locally. 606 */ 607 if (ifp->if_bridge != NULL) { 608 m->m_flags &= ~M_PROMISC; 609 BRIDGE_INPUT(ifp, m); 610 if (m == NULL) { 611 CURVNET_RESTORE(); 612 return; 613 } 614 eh = mtod(m, struct ether_header *); 615 } 616 617 #if defined(INET) || defined(INET6) 618 /* 619 * Clear M_PROMISC on frame so that carp(4) will see it when the 620 * mbuf flows up to Layer 3. 621 * FreeBSD's implementation of carp(4) uses the inprotosw 622 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 623 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 624 * is outside the scope of the M_PROMISC test below. 625 * TODO: Maintain a hash table of ethernet addresses other than 626 * ether_dhost which may be active on this ifp. 627 */ 628 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 629 m->m_flags &= ~M_PROMISC; 630 } else 631 #endif 632 { 633 /* 634 * If the frame received was not for our MAC address, set the 635 * M_PROMISC flag on the mbuf chain. The frame may need to 636 * be seen by the rest of the Ethernet input path in case of 637 * re-entry (e.g. bridge, vlan, netgraph) but should not be 638 * seen by upper protocol layers. 639 */ 640 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 641 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 642 m->m_flags |= M_PROMISC; 643 } 644 645 ether_demux(ifp, m); 646 CURVNET_RESTORE(); 647 } 648 649 /* 650 * Ethernet input dispatch; by default, direct dispatch here regardless of 651 * global configuration. However, if RSS is enabled, hook up RSS affinity 652 * so that when deferred or hybrid dispatch is enabled, we can redistribute 653 * load based on RSS. 654 * 655 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 656 * not it had already done work distribution via multi-queue. Then we could 657 * direct dispatch in the event load balancing was already complete and 658 * handle the case of interfaces with different capabilities better. 659 * 660 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 661 * at multiple layers? 662 * 663 * XXXRW: For now, enable all this only if RSS is compiled in, although it 664 * works fine without RSS. Need to characterise the performance overhead 665 * of the detour through the netisr code in the event the result is always 666 * direct dispatch. 667 */ 668 static void 669 ether_nh_input(struct mbuf *m) 670 { 671 672 M_ASSERTPKTHDR(m); 673 KASSERT(m->m_pkthdr.rcvif != NULL, 674 ("%s: NULL interface pointer", __func__)); 675 ether_input_internal(m->m_pkthdr.rcvif, m); 676 } 677 678 static struct netisr_handler ether_nh = { 679 .nh_name = "ether", 680 .nh_handler = ether_nh_input, 681 .nh_proto = NETISR_ETHER, 682 #ifdef RSS 683 .nh_policy = NETISR_POLICY_CPU, 684 .nh_dispatch = NETISR_DISPATCH_DIRECT, 685 .nh_m2cpuid = rss_m2cpuid, 686 #else 687 .nh_policy = NETISR_POLICY_SOURCE, 688 .nh_dispatch = NETISR_DISPATCH_DIRECT, 689 #endif 690 }; 691 692 static void 693 ether_init(__unused void *arg) 694 { 695 696 netisr_register(ðer_nh); 697 } 698 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 699 700 static void 701 vnet_ether_init(__unused void *arg) 702 { 703 int i; 704 705 /* Initialize packet filter hooks. */ 706 V_link_pfil_hook.ph_type = PFIL_TYPE_AF; 707 V_link_pfil_hook.ph_af = AF_LINK; 708 if ((i = pfil_head_register(&V_link_pfil_hook)) != 0) 709 printf("%s: WARNING: unable to register pfil link hook, " 710 "error %d\n", __func__, i); 711 #ifdef VIMAGE 712 netisr_register_vnet(ðer_nh); 713 #endif 714 } 715 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 716 vnet_ether_init, NULL); 717 718 #ifdef VIMAGE 719 static void 720 vnet_ether_pfil_destroy(__unused void *arg) 721 { 722 int i; 723 724 if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0) 725 printf("%s: WARNING: unable to unregister pfil link hook, " 726 "error %d\n", __func__, i); 727 } 728 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY, 729 vnet_ether_pfil_destroy, NULL); 730 731 static void 732 vnet_ether_destroy(__unused void *arg) 733 { 734 735 netisr_unregister_vnet(ðer_nh); 736 } 737 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 738 vnet_ether_destroy, NULL); 739 #endif 740 741 742 743 static void 744 ether_input(struct ifnet *ifp, struct mbuf *m) 745 { 746 747 struct mbuf *mn; 748 749 /* 750 * The drivers are allowed to pass in a chain of packets linked with 751 * m_nextpkt. We split them up into separate packets here and pass 752 * them up. This allows the drivers to amortize the receive lock. 753 */ 754 while (m) { 755 mn = m->m_nextpkt; 756 m->m_nextpkt = NULL; 757 758 /* 759 * We will rely on rcvif being set properly in the deferred context, 760 * so assert it is correct here. 761 */ 762 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p " 763 "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp)); 764 CURVNET_SET_QUIET(ifp->if_vnet); 765 netisr_dispatch(NETISR_ETHER, m); 766 CURVNET_RESTORE(); 767 m = mn; 768 } 769 } 770 771 /* 772 * Upper layer processing for a received Ethernet packet. 773 */ 774 void 775 ether_demux(struct ifnet *ifp, struct mbuf *m) 776 { 777 struct ether_header *eh; 778 int i, isr; 779 u_short ether_type; 780 781 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 782 783 /* Do not grab PROMISC frames in case we are re-entered. */ 784 if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) { 785 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL); 786 787 if (i != 0 || m == NULL) 788 return; 789 } 790 791 eh = mtod(m, struct ether_header *); 792 ether_type = ntohs(eh->ether_type); 793 794 /* 795 * If this frame has a VLAN tag other than 0, call vlan_input() 796 * if its module is loaded. Otherwise, drop. 797 */ 798 if ((m->m_flags & M_VLANTAG) && 799 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 800 if (ifp->if_vlantrunk == NULL) { 801 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 802 m_freem(m); 803 return; 804 } 805 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 806 __func__)); 807 /* Clear before possibly re-entering ether_input(). */ 808 m->m_flags &= ~M_PROMISC; 809 (*vlan_input_p)(ifp, m); 810 return; 811 } 812 813 /* 814 * Pass promiscuously received frames to the upper layer if the user 815 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 816 */ 817 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 818 m_freem(m); 819 return; 820 } 821 822 /* 823 * Reset layer specific mbuf flags to avoid confusing upper layers. 824 * Strip off Ethernet header. 825 */ 826 m->m_flags &= ~M_VLANTAG; 827 m_clrprotoflags(m); 828 m_adj(m, ETHER_HDR_LEN); 829 830 /* 831 * Dispatch frame to upper layer. 832 */ 833 switch (ether_type) { 834 #ifdef INET 835 case ETHERTYPE_IP: 836 isr = NETISR_IP; 837 break; 838 839 case ETHERTYPE_ARP: 840 if (ifp->if_flags & IFF_NOARP) { 841 /* Discard packet if ARP is disabled on interface */ 842 m_freem(m); 843 return; 844 } 845 isr = NETISR_ARP; 846 break; 847 #endif 848 #ifdef INET6 849 case ETHERTYPE_IPV6: 850 isr = NETISR_IPV6; 851 break; 852 #endif 853 default: 854 goto discard; 855 } 856 netisr_dispatch(isr, m); 857 return; 858 859 discard: 860 /* 861 * Packet is to be discarded. If netgraph is present, 862 * hand the packet to it for last chance processing; 863 * otherwise dispose of it. 864 */ 865 if (ifp->if_l2com != NULL) { 866 KASSERT(ng_ether_input_orphan_p != NULL, 867 ("ng_ether_input_orphan_p is NULL")); 868 /* 869 * Put back the ethernet header so netgraph has a 870 * consistent view of inbound packets. 871 */ 872 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 873 (*ng_ether_input_orphan_p)(ifp, m); 874 return; 875 } 876 m_freem(m); 877 } 878 879 /* 880 * Convert Ethernet address to printable (loggable) representation. 881 * This routine is for compatibility; it's better to just use 882 * 883 * printf("%6D", <pointer to address>, ":"); 884 * 885 * since there's no static buffer involved. 886 */ 887 char * 888 ether_sprintf(const u_char *ap) 889 { 890 static char etherbuf[18]; 891 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 892 return (etherbuf); 893 } 894 895 /* 896 * Perform common duties while attaching to interface list 897 */ 898 void 899 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 900 { 901 int i; 902 struct ifaddr *ifa; 903 struct sockaddr_dl *sdl; 904 905 ifp->if_addrlen = ETHER_ADDR_LEN; 906 ifp->if_hdrlen = ETHER_HDR_LEN; 907 if_attach(ifp); 908 ifp->if_mtu = ETHERMTU; 909 ifp->if_output = ether_output; 910 ifp->if_input = ether_input; 911 ifp->if_resolvemulti = ether_resolvemulti; 912 ifp->if_requestencap = ether_requestencap; 913 #ifdef VIMAGE 914 ifp->if_reassign = ether_reassign; 915 #endif 916 if (ifp->if_baudrate == 0) 917 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 918 ifp->if_broadcastaddr = etherbroadcastaddr; 919 920 ifa = ifp->if_addr; 921 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 922 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 923 sdl->sdl_type = IFT_ETHER; 924 sdl->sdl_alen = ifp->if_addrlen; 925 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 926 927 if (ifp->if_hw_addr != NULL) 928 bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen); 929 930 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 931 if (ng_ether_attach_p != NULL) 932 (*ng_ether_attach_p)(ifp); 933 934 /* Announce Ethernet MAC address if non-zero. */ 935 for (i = 0; i < ifp->if_addrlen; i++) 936 if (lla[i] != 0) 937 break; 938 if (i != ifp->if_addrlen) 939 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 940 941 uuid_ether_add(LLADDR(sdl)); 942 943 /* Add necessary bits are setup; announce it now. */ 944 EVENTHANDLER_INVOKE(ether_ifattach_event, ifp); 945 if (IS_DEFAULT_VNET(curvnet)) 946 devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL); 947 } 948 949 /* 950 * Perform common duties while detaching an Ethernet interface 951 */ 952 void 953 ether_ifdetach(struct ifnet *ifp) 954 { 955 struct sockaddr_dl *sdl; 956 957 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 958 uuid_ether_del(LLADDR(sdl)); 959 960 if (ifp->if_l2com != NULL) { 961 KASSERT(ng_ether_detach_p != NULL, 962 ("ng_ether_detach_p is NULL")); 963 (*ng_ether_detach_p)(ifp); 964 } 965 966 bpfdetach(ifp); 967 if_detach(ifp); 968 } 969 970 #ifdef VIMAGE 971 void 972 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 973 { 974 975 if (ifp->if_l2com != NULL) { 976 KASSERT(ng_ether_detach_p != NULL, 977 ("ng_ether_detach_p is NULL")); 978 (*ng_ether_detach_p)(ifp); 979 } 980 981 if (ng_ether_attach_p != NULL) { 982 CURVNET_SET_QUIET(new_vnet); 983 (*ng_ether_attach_p)(ifp); 984 CURVNET_RESTORE(); 985 } 986 } 987 #endif 988 989 SYSCTL_DECL(_net_link); 990 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 991 992 #if 0 993 /* 994 * This is for reference. We have a table-driven version 995 * of the little-endian crc32 generator, which is faster 996 * than the double-loop. 997 */ 998 uint32_t 999 ether_crc32_le(const uint8_t *buf, size_t len) 1000 { 1001 size_t i; 1002 uint32_t crc; 1003 int bit; 1004 uint8_t data; 1005 1006 crc = 0xffffffff; /* initial value */ 1007 1008 for (i = 0; i < len; i++) { 1009 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1010 carry = (crc ^ data) & 1; 1011 crc >>= 1; 1012 if (carry) 1013 crc = (crc ^ ETHER_CRC_POLY_LE); 1014 } 1015 } 1016 1017 return (crc); 1018 } 1019 #else 1020 uint32_t 1021 ether_crc32_le(const uint8_t *buf, size_t len) 1022 { 1023 static const uint32_t crctab[] = { 1024 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1025 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1026 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1027 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1028 }; 1029 size_t i; 1030 uint32_t crc; 1031 1032 crc = 0xffffffff; /* initial value */ 1033 1034 for (i = 0; i < len; i++) { 1035 crc ^= buf[i]; 1036 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1037 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1038 } 1039 1040 return (crc); 1041 } 1042 #endif 1043 1044 uint32_t 1045 ether_crc32_be(const uint8_t *buf, size_t len) 1046 { 1047 size_t i; 1048 uint32_t crc, carry; 1049 int bit; 1050 uint8_t data; 1051 1052 crc = 0xffffffff; /* initial value */ 1053 1054 for (i = 0; i < len; i++) { 1055 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1056 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 1057 crc <<= 1; 1058 if (carry) 1059 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1060 } 1061 } 1062 1063 return (crc); 1064 } 1065 1066 int 1067 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1068 { 1069 struct ifaddr *ifa = (struct ifaddr *) data; 1070 struct ifreq *ifr = (struct ifreq *) data; 1071 int error = 0; 1072 1073 switch (command) { 1074 case SIOCSIFADDR: 1075 ifp->if_flags |= IFF_UP; 1076 1077 switch (ifa->ifa_addr->sa_family) { 1078 #ifdef INET 1079 case AF_INET: 1080 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1081 arp_ifinit(ifp, ifa); 1082 break; 1083 #endif 1084 default: 1085 ifp->if_init(ifp->if_softc); 1086 break; 1087 } 1088 break; 1089 1090 case SIOCGIFADDR: 1091 { 1092 struct sockaddr *sa; 1093 1094 sa = (struct sockaddr *) & ifr->ifr_data; 1095 bcopy(IF_LLADDR(ifp), 1096 (caddr_t) sa->sa_data, ETHER_ADDR_LEN); 1097 } 1098 break; 1099 1100 case SIOCSIFMTU: 1101 /* 1102 * Set the interface MTU. 1103 */ 1104 if (ifr->ifr_mtu > ETHERMTU) { 1105 error = EINVAL; 1106 } else { 1107 ifp->if_mtu = ifr->ifr_mtu; 1108 } 1109 break; 1110 default: 1111 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1112 break; 1113 } 1114 return (error); 1115 } 1116 1117 static int 1118 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1119 struct sockaddr *sa) 1120 { 1121 struct sockaddr_dl *sdl; 1122 #ifdef INET 1123 struct sockaddr_in *sin; 1124 #endif 1125 #ifdef INET6 1126 struct sockaddr_in6 *sin6; 1127 #endif 1128 u_char *e_addr; 1129 1130 switch(sa->sa_family) { 1131 case AF_LINK: 1132 /* 1133 * No mapping needed. Just check that it's a valid MC address. 1134 */ 1135 sdl = (struct sockaddr_dl *)sa; 1136 e_addr = LLADDR(sdl); 1137 if (!ETHER_IS_MULTICAST(e_addr)) 1138 return EADDRNOTAVAIL; 1139 *llsa = NULL; 1140 return 0; 1141 1142 #ifdef INET 1143 case AF_INET: 1144 sin = (struct sockaddr_in *)sa; 1145 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1146 return EADDRNOTAVAIL; 1147 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1148 sdl->sdl_alen = ETHER_ADDR_LEN; 1149 e_addr = LLADDR(sdl); 1150 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1151 *llsa = (struct sockaddr *)sdl; 1152 return 0; 1153 #endif 1154 #ifdef INET6 1155 case AF_INET6: 1156 sin6 = (struct sockaddr_in6 *)sa; 1157 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1158 /* 1159 * An IP6 address of 0 means listen to all 1160 * of the Ethernet multicast address used for IP6. 1161 * (This is used for multicast routers.) 1162 */ 1163 ifp->if_flags |= IFF_ALLMULTI; 1164 *llsa = NULL; 1165 return 0; 1166 } 1167 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1168 return EADDRNOTAVAIL; 1169 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1170 sdl->sdl_alen = ETHER_ADDR_LEN; 1171 e_addr = LLADDR(sdl); 1172 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1173 *llsa = (struct sockaddr *)sdl; 1174 return 0; 1175 #endif 1176 1177 default: 1178 /* 1179 * Well, the text isn't quite right, but it's the name 1180 * that counts... 1181 */ 1182 return EAFNOSUPPORT; 1183 } 1184 } 1185 1186 static moduledata_t ether_mod = { 1187 .name = "ether", 1188 }; 1189 1190 void 1191 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1192 { 1193 struct ether_vlan_header vlan; 1194 struct mbuf mv, mb; 1195 1196 KASSERT((m->m_flags & M_VLANTAG) != 0, 1197 ("%s: vlan information not present", __func__)); 1198 KASSERT(m->m_len >= sizeof(struct ether_header), 1199 ("%s: mbuf not large enough for header", __func__)); 1200 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1201 vlan.evl_proto = vlan.evl_encap_proto; 1202 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1203 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1204 m->m_len -= sizeof(struct ether_header); 1205 m->m_data += sizeof(struct ether_header); 1206 /* 1207 * If a data link has been supplied by the caller, then we will need to 1208 * re-create a stack allocated mbuf chain with the following structure: 1209 * 1210 * (1) mbuf #1 will contain the supplied data link 1211 * (2) mbuf #2 will contain the vlan header 1212 * (3) mbuf #3 will contain the original mbuf's packet data 1213 * 1214 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1215 */ 1216 if (data != NULL) { 1217 mv.m_next = m; 1218 mv.m_data = (caddr_t)&vlan; 1219 mv.m_len = sizeof(vlan); 1220 mb.m_next = &mv; 1221 mb.m_data = data; 1222 mb.m_len = dlen; 1223 bpf_mtap(bp, &mb); 1224 } else 1225 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1226 m->m_len += sizeof(struct ether_header); 1227 m->m_data -= sizeof(struct ether_header); 1228 } 1229 1230 struct mbuf * 1231 ether_vlanencap(struct mbuf *m, uint16_t tag) 1232 { 1233 struct ether_vlan_header *evl; 1234 1235 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1236 if (m == NULL) 1237 return (NULL); 1238 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1239 1240 if (m->m_len < sizeof(*evl)) { 1241 m = m_pullup(m, sizeof(*evl)); 1242 if (m == NULL) 1243 return (NULL); 1244 } 1245 1246 /* 1247 * Transform the Ethernet header into an Ethernet header 1248 * with 802.1Q encapsulation. 1249 */ 1250 evl = mtod(m, struct ether_vlan_header *); 1251 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1252 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1253 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1254 evl->evl_tag = htons(tag); 1255 return (m); 1256 } 1257 1258 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1259 MODULE_VERSION(ether, 1); 1260