xref: /freebsd/sys/net/if_ethersubr.c (revision 60fde7ce5d7bf5d94290720ea53db5701ab406a8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
32  * $FreeBSD$
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 #include "opt_netgraph.h"
38 #include "opt_mbuf_profiling.h"
39 #include "opt_rss.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/eventhandler.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/module.h>
49 #include <sys/mbuf.h>
50 #include <sys/random.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/uuid.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_arp.h>
59 #include <net/netisr.h>
60 #include <net/route.h>
61 #include <net/if_llc.h>
62 #include <net/if_dl.h>
63 #include <net/if_types.h>
64 #include <net/bpf.h>
65 #include <net/ethernet.h>
66 #include <net/if_bridgevar.h>
67 #include <net/if_vlan_var.h>
68 #include <net/if_llatbl.h>
69 #include <net/pfil.h>
70 #include <net/rss_config.h>
71 #include <net/vnet.h>
72 
73 #include <netpfil/pf/pf_mtag.h>
74 
75 #if defined(INET) || defined(INET6)
76 #include <netinet/in.h>
77 #include <netinet/in_var.h>
78 #include <netinet/if_ether.h>
79 #include <netinet/ip_carp.h>
80 #include <netinet/ip_var.h>
81 #endif
82 #ifdef INET6
83 #include <netinet6/nd6.h>
84 #endif
85 #include <security/mac/mac_framework.h>
86 
87 #ifdef CTASSERT
88 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
89 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
90 #endif
91 
92 VNET_DEFINE(struct pfil_head, link_pfil_hook);	/* Packet filter hooks */
93 
94 /* netgraph node hooks for ng_ether(4) */
95 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
96 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
97 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
98 void	(*ng_ether_attach_p)(struct ifnet *ifp);
99 void	(*ng_ether_detach_p)(struct ifnet *ifp);
100 
101 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
102 
103 /* if_bridge(4) support */
104 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
105 int	(*bridge_output_p)(struct ifnet *, struct mbuf *,
106 		struct sockaddr *, struct rtentry *);
107 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
108 
109 /* if_lagg(4) support */
110 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *);
111 
112 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
113 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
114 
115 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
116 		struct sockaddr *);
117 #ifdef VIMAGE
118 static	void ether_reassign(struct ifnet *, struct vnet *, char *);
119 #endif
120 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
121 
122 
123 #define senderr(e) do { error = (e); goto bad;} while (0)
124 
125 static void
126 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
127 {
128 	int csum_flags = 0;
129 
130 	if (src->m_pkthdr.csum_flags & CSUM_IP)
131 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
132 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
133 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
134 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
135 		csum_flags |= CSUM_SCTP_VALID;
136 	dst->m_pkthdr.csum_flags |= csum_flags;
137 	if (csum_flags & CSUM_DATA_VALID)
138 		dst->m_pkthdr.csum_data = 0xffff;
139 }
140 
141 /*
142  * Handle link-layer encapsulation requests.
143  */
144 static int
145 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
146 {
147 	struct ether_header *eh;
148 	struct arphdr *ah;
149 	uint16_t etype;
150 	const u_char *lladdr;
151 
152 	if (req->rtype != IFENCAP_LL)
153 		return (EOPNOTSUPP);
154 
155 	if (req->bufsize < ETHER_HDR_LEN)
156 		return (ENOMEM);
157 
158 	eh = (struct ether_header *)req->buf;
159 	lladdr = req->lladdr;
160 	req->lladdr_off = 0;
161 
162 	switch (req->family) {
163 	case AF_INET:
164 		etype = htons(ETHERTYPE_IP);
165 		break;
166 	case AF_INET6:
167 		etype = htons(ETHERTYPE_IPV6);
168 		break;
169 	case AF_ARP:
170 		ah = (struct arphdr *)req->hdata;
171 		ah->ar_hrd = htons(ARPHRD_ETHER);
172 
173 		switch(ntohs(ah->ar_op)) {
174 		case ARPOP_REVREQUEST:
175 		case ARPOP_REVREPLY:
176 			etype = htons(ETHERTYPE_REVARP);
177 			break;
178 		case ARPOP_REQUEST:
179 		case ARPOP_REPLY:
180 		default:
181 			etype = htons(ETHERTYPE_ARP);
182 			break;
183 		}
184 
185 		if (req->flags & IFENCAP_FLAG_BROADCAST)
186 			lladdr = ifp->if_broadcastaddr;
187 		break;
188 	default:
189 		return (EAFNOSUPPORT);
190 	}
191 
192 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
193 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
194 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
195 	req->bufsize = sizeof(struct ether_header);
196 
197 	return (0);
198 }
199 
200 
201 static int
202 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
203 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
204 	uint32_t *pflags, struct llentry **plle)
205 {
206 	struct ether_header *eh;
207 	uint32_t lleflags = 0;
208 	int error = 0;
209 #if defined(INET) || defined(INET6)
210 	uint16_t etype;
211 #endif
212 
213 	if (plle)
214 		*plle = NULL;
215 	eh = (struct ether_header *)phdr;
216 
217 	switch (dst->sa_family) {
218 #ifdef INET
219 	case AF_INET:
220 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
221 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
222 			    plle);
223 		else {
224 			if (m->m_flags & M_BCAST)
225 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
226 				    ETHER_ADDR_LEN);
227 			else {
228 				const struct in_addr *a;
229 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
230 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
231 			}
232 			etype = htons(ETHERTYPE_IP);
233 			memcpy(&eh->ether_type, &etype, sizeof(etype));
234 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
235 		}
236 		break;
237 #endif
238 #ifdef INET6
239 	case AF_INET6:
240 		if ((m->m_flags & M_MCAST) == 0)
241 			error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags,
242 			    plle);
243 		else {
244 			const struct in6_addr *a6;
245 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
246 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
247 			etype = htons(ETHERTYPE_IPV6);
248 			memcpy(&eh->ether_type, &etype, sizeof(etype));
249 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
250 		}
251 		break;
252 #endif
253 	default:
254 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
255 		if (m != NULL)
256 			m_freem(m);
257 		return (EAFNOSUPPORT);
258 	}
259 
260 	if (error == EHOSTDOWN) {
261 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
262 			error = EHOSTUNREACH;
263 	}
264 
265 	if (error != 0)
266 		return (error);
267 
268 	*pflags = RT_MAY_LOOP;
269 	if (lleflags & LLE_IFADDR)
270 		*pflags |= RT_L2_ME;
271 
272 	return (0);
273 }
274 
275 /*
276  * Ethernet output routine.
277  * Encapsulate a packet of type family for the local net.
278  * Use trailer local net encapsulation if enough data in first
279  * packet leaves a multiple of 512 bytes of data in remainder.
280  */
281 int
282 ether_output(struct ifnet *ifp, struct mbuf *m,
283 	const struct sockaddr *dst, struct route *ro)
284 {
285 	int error = 0;
286 	char linkhdr[ETHER_HDR_LEN], *phdr;
287 	struct ether_header *eh;
288 	struct pf_mtag *t;
289 	int loop_copy = 1;
290 	int hlen;	/* link layer header length */
291 	uint32_t pflags;
292 	struct llentry *lle = NULL;
293 	int addref = 0;
294 
295 	phdr = NULL;
296 	pflags = 0;
297 	if (ro != NULL) {
298 		/* XXX BPF uses ro_prepend */
299 		if (ro->ro_prepend != NULL) {
300 			phdr = ro->ro_prepend;
301 			hlen = ro->ro_plen;
302 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
303 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
304 				lle = ro->ro_lle;
305 				if (lle != NULL &&
306 				    (lle->la_flags & LLE_VALID) == 0) {
307 					LLE_FREE(lle);
308 					lle = NULL;	/* redundant */
309 					ro->ro_lle = NULL;
310 				}
311 				if (lle == NULL) {
312 					/* if we lookup, keep cache */
313 					addref = 1;
314 				} else
315 					/*
316 					 * Notify LLE code that
317 					 * the entry was used
318 					 * by datapath.
319 					 */
320 					llentry_mark_used(lle);
321 			}
322 			if (lle != NULL) {
323 				phdr = lle->r_linkdata;
324 				hlen = lle->r_hdrlen;
325 				pflags = lle->r_flags;
326 			}
327 		}
328 	}
329 
330 #ifdef MAC
331 	error = mac_ifnet_check_transmit(ifp, m);
332 	if (error)
333 		senderr(error);
334 #endif
335 
336 	M_PROFILE(m);
337 	if (ifp->if_flags & IFF_MONITOR)
338 		senderr(ENETDOWN);
339 	if (!((ifp->if_flags & IFF_UP) &&
340 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
341 		senderr(ENETDOWN);
342 
343 	if (phdr == NULL) {
344 		/* No prepend data supplied. Try to calculate ourselves. */
345 		phdr = linkhdr;
346 		hlen = ETHER_HDR_LEN;
347 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
348 		    addref ? &lle : NULL);
349 		if (addref && lle != NULL)
350 			ro->ro_lle = lle;
351 		if (error != 0)
352 			return (error == EWOULDBLOCK ? 0 : error);
353 	}
354 
355 	if ((pflags & RT_L2_ME) != 0) {
356 		update_mbuf_csumflags(m, m);
357 		return (if_simloop(ifp, m, dst->sa_family, 0));
358 	}
359 	loop_copy = pflags & RT_MAY_LOOP;
360 
361 	/*
362 	 * Add local net header.  If no space in first mbuf,
363 	 * allocate another.
364 	 *
365 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
366 	 * This is done because BPF code shifts m_data pointer
367 	 * to the end of ethernet header prior to calling if_output().
368 	 */
369 	M_PREPEND(m, hlen, M_NOWAIT);
370 	if (m == NULL)
371 		senderr(ENOBUFS);
372 	if ((pflags & RT_HAS_HEADER) == 0) {
373 		eh = mtod(m, struct ether_header *);
374 		memcpy(eh, phdr, hlen);
375 	}
376 
377 	/*
378 	 * If a simplex interface, and the packet is being sent to our
379 	 * Ethernet address or a broadcast address, loopback a copy.
380 	 * XXX To make a simplex device behave exactly like a duplex
381 	 * device, we should copy in the case of sending to our own
382 	 * ethernet address (thus letting the original actually appear
383 	 * on the wire). However, we don't do that here for security
384 	 * reasons and compatibility with the original behavior.
385 	 */
386 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
387 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
388 		struct mbuf *n;
389 
390 		/*
391 		 * Because if_simloop() modifies the packet, we need a
392 		 * writable copy through m_dup() instead of a readonly
393 		 * one as m_copy[m] would give us. The alternative would
394 		 * be to modify if_simloop() to handle the readonly mbuf,
395 		 * but performancewise it is mostly equivalent (trading
396 		 * extra data copying vs. extra locking).
397 		 *
398 		 * XXX This is a local workaround.  A number of less
399 		 * often used kernel parts suffer from the same bug.
400 		 * See PR kern/105943 for a proposed general solution.
401 		 */
402 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
403 			update_mbuf_csumflags(m, n);
404 			(void)if_simloop(ifp, n, dst->sa_family, hlen);
405 		} else
406 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
407 	}
408 
409        /*
410 	* Bridges require special output handling.
411 	*/
412 	if (ifp->if_bridge) {
413 		BRIDGE_OUTPUT(ifp, m, error);
414 		return (error);
415 	}
416 
417 #if defined(INET) || defined(INET6)
418 	if (ifp->if_carp &&
419 	    (error = (*carp_output_p)(ifp, m, dst)))
420 		goto bad;
421 #endif
422 
423 	/* Handle ng_ether(4) processing, if any */
424 	if (ifp->if_l2com != NULL) {
425 		KASSERT(ng_ether_output_p != NULL,
426 		    ("ng_ether_output_p is NULL"));
427 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
428 bad:			if (m != NULL)
429 				m_freem(m);
430 			return (error);
431 		}
432 		if (m == NULL)
433 			return (0);
434 	}
435 
436 	/* Continue with link-layer output */
437 	return ether_output_frame(ifp, m);
438 }
439 
440 /*
441  * Ethernet link layer output routine to send a raw frame to the device.
442  *
443  * This assumes that the 14 byte Ethernet header is present and contiguous
444  * in the first mbuf (if BRIDGE'ing).
445  */
446 int
447 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
448 {
449 	int i;
450 
451 	if (PFIL_HOOKED(&V_link_pfil_hook)) {
452 		i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, 0,
453 		    NULL);
454 
455 		if (i != 0)
456 			return (EACCES);
457 
458 		if (m == NULL)
459 			return (0);
460 	}
461 
462 	/*
463 	 * Queue message on interface, update output statistics if
464 	 * successful, and start output if interface not yet active.
465 	 */
466 	return ((ifp->if_transmit)(ifp, m));
467 }
468 
469 /*
470  * Process a received Ethernet packet; the packet is in the
471  * mbuf chain m with the ethernet header at the front.
472  */
473 static void
474 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
475 {
476 	struct ether_header *eh;
477 	u_short etype;
478 
479 	if ((ifp->if_flags & IFF_UP) == 0) {
480 		m_freem(m);
481 		return;
482 	}
483 #ifdef DIAGNOSTIC
484 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
485 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
486 		m_freem(m);
487 		return;
488 	}
489 #endif
490 	if (m->m_len < ETHER_HDR_LEN) {
491 		/* XXX maybe should pullup? */
492 		if_printf(ifp, "discard frame w/o leading ethernet "
493 				"header (len %u pkt len %u)\n",
494 				m->m_len, m->m_pkthdr.len);
495 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
496 		m_freem(m);
497 		return;
498 	}
499 	eh = mtod(m, struct ether_header *);
500 	etype = ntohs(eh->ether_type);
501 	random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER);
502 
503 	CURVNET_SET_QUIET(ifp->if_vnet);
504 
505 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
506 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
507 			m->m_flags |= M_BCAST;
508 		else
509 			m->m_flags |= M_MCAST;
510 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
511 	}
512 
513 #ifdef MAC
514 	/*
515 	 * Tag the mbuf with an appropriate MAC label before any other
516 	 * consumers can get to it.
517 	 */
518 	mac_ifnet_create_mbuf(ifp, m);
519 #endif
520 
521 	/*
522 	 * Give bpf a chance at the packet.
523 	 */
524 	ETHER_BPF_MTAP(ifp, m);
525 
526 	/*
527 	 * If the CRC is still on the packet, trim it off. We do this once
528 	 * and once only in case we are re-entered. Nothing else on the
529 	 * Ethernet receive path expects to see the FCS.
530 	 */
531 	if (m->m_flags & M_HASFCS) {
532 		m_adj(m, -ETHER_CRC_LEN);
533 		m->m_flags &= ~M_HASFCS;
534 	}
535 
536 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
537 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
538 
539 	/* Allow monitor mode to claim this frame, after stats are updated. */
540 	if (ifp->if_flags & IFF_MONITOR) {
541 		m_freem(m);
542 		CURVNET_RESTORE();
543 		return;
544 	}
545 
546 	/* Handle input from a lagg(4) port */
547 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
548 		KASSERT(lagg_input_p != NULL,
549 		    ("%s: if_lagg not loaded!", __func__));
550 		m = (*lagg_input_p)(ifp, m);
551 		if (m != NULL)
552 			ifp = m->m_pkthdr.rcvif;
553 		else {
554 			CURVNET_RESTORE();
555 			return;
556 		}
557 	}
558 
559 	/*
560 	 * If the hardware did not process an 802.1Q tag, do this now,
561 	 * to allow 802.1P priority frames to be passed to the main input
562 	 * path correctly.
563 	 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels.
564 	 */
565 	if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) {
566 		struct ether_vlan_header *evl;
567 
568 		if (m->m_len < sizeof(*evl) &&
569 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
570 #ifdef DIAGNOSTIC
571 			if_printf(ifp, "cannot pullup VLAN header\n");
572 #endif
573 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
574 			CURVNET_RESTORE();
575 			return;
576 		}
577 
578 		evl = mtod(m, struct ether_vlan_header *);
579 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
580 		m->m_flags |= M_VLANTAG;
581 
582 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
583 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
584 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
585 		eh = mtod(m, struct ether_header *);
586 	}
587 
588 	M_SETFIB(m, ifp->if_fib);
589 
590 	/* Allow ng_ether(4) to claim this frame. */
591 	if (ifp->if_l2com != NULL) {
592 		KASSERT(ng_ether_input_p != NULL,
593 		    ("%s: ng_ether_input_p is NULL", __func__));
594 		m->m_flags &= ~M_PROMISC;
595 		(*ng_ether_input_p)(ifp, &m);
596 		if (m == NULL) {
597 			CURVNET_RESTORE();
598 			return;
599 		}
600 		eh = mtod(m, struct ether_header *);
601 	}
602 
603 	/*
604 	 * Allow if_bridge(4) to claim this frame.
605 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
606 	 * and the frame should be delivered locally.
607 	 */
608 	if (ifp->if_bridge != NULL) {
609 		m->m_flags &= ~M_PROMISC;
610 		BRIDGE_INPUT(ifp, m);
611 		if (m == NULL) {
612 			CURVNET_RESTORE();
613 			return;
614 		}
615 		eh = mtod(m, struct ether_header *);
616 	}
617 
618 #if defined(INET) || defined(INET6)
619 	/*
620 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
621 	 * mbuf flows up to Layer 3.
622 	 * FreeBSD's implementation of carp(4) uses the inprotosw
623 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
624 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
625 	 * is outside the scope of the M_PROMISC test below.
626 	 * TODO: Maintain a hash table of ethernet addresses other than
627 	 * ether_dhost which may be active on this ifp.
628 	 */
629 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
630 		m->m_flags &= ~M_PROMISC;
631 	} else
632 #endif
633 	{
634 		/*
635 		 * If the frame received was not for our MAC address, set the
636 		 * M_PROMISC flag on the mbuf chain. The frame may need to
637 		 * be seen by the rest of the Ethernet input path in case of
638 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
639 		 * seen by upper protocol layers.
640 		 */
641 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
642 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
643 			m->m_flags |= M_PROMISC;
644 	}
645 
646 	ether_demux(ifp, m);
647 	CURVNET_RESTORE();
648 }
649 
650 /*
651  * Ethernet input dispatch; by default, direct dispatch here regardless of
652  * global configuration.  However, if RSS is enabled, hook up RSS affinity
653  * so that when deferred or hybrid dispatch is enabled, we can redistribute
654  * load based on RSS.
655  *
656  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
657  * not it had already done work distribution via multi-queue.  Then we could
658  * direct dispatch in the event load balancing was already complete and
659  * handle the case of interfaces with different capabilities better.
660  *
661  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
662  * at multiple layers?
663  *
664  * XXXRW: For now, enable all this only if RSS is compiled in, although it
665  * works fine without RSS.  Need to characterise the performance overhead
666  * of the detour through the netisr code in the event the result is always
667  * direct dispatch.
668  */
669 static void
670 ether_nh_input(struct mbuf *m)
671 {
672 
673 	M_ASSERTPKTHDR(m);
674 	KASSERT(m->m_pkthdr.rcvif != NULL,
675 	    ("%s: NULL interface pointer", __func__));
676 	ether_input_internal(m->m_pkthdr.rcvif, m);
677 }
678 
679 static struct netisr_handler	ether_nh = {
680 	.nh_name = "ether",
681 	.nh_handler = ether_nh_input,
682 	.nh_proto = NETISR_ETHER,
683 #ifdef RSS
684 	.nh_policy = NETISR_POLICY_CPU,
685 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
686 	.nh_m2cpuid = rss_m2cpuid,
687 #else
688 	.nh_policy = NETISR_POLICY_SOURCE,
689 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
690 #endif
691 };
692 
693 static void
694 ether_init(__unused void *arg)
695 {
696 
697 	netisr_register(&ether_nh);
698 }
699 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
700 
701 static void
702 vnet_ether_init(__unused void *arg)
703 {
704 	int i;
705 
706 	/* Initialize packet filter hooks. */
707 	V_link_pfil_hook.ph_type = PFIL_TYPE_AF;
708 	V_link_pfil_hook.ph_af = AF_LINK;
709 	if ((i = pfil_head_register(&V_link_pfil_hook)) != 0)
710 		printf("%s: WARNING: unable to register pfil link hook, "
711 			"error %d\n", __func__, i);
712 #ifdef VIMAGE
713 	netisr_register_vnet(&ether_nh);
714 #endif
715 }
716 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
717     vnet_ether_init, NULL);
718 
719 #ifdef VIMAGE
720 static void
721 vnet_ether_pfil_destroy(__unused void *arg)
722 {
723 	int i;
724 
725 	if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0)
726 		printf("%s: WARNING: unable to unregister pfil link hook, "
727 			"error %d\n", __func__, i);
728 }
729 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
730     vnet_ether_pfil_destroy, NULL);
731 
732 static void
733 vnet_ether_destroy(__unused void *arg)
734 {
735 
736 	netisr_unregister_vnet(&ether_nh);
737 }
738 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
739     vnet_ether_destroy, NULL);
740 #endif
741 
742 
743 
744 static void
745 ether_input(struct ifnet *ifp, struct mbuf *m)
746 {
747 
748 	struct mbuf *mn;
749 
750 	/*
751 	 * The drivers are allowed to pass in a chain of packets linked with
752 	 * m_nextpkt. We split them up into separate packets here and pass
753 	 * them up. This allows the drivers to amortize the receive lock.
754 	 */
755 	while (m) {
756 		mn = m->m_nextpkt;
757 		m->m_nextpkt = NULL;
758 
759 		/*
760 		 * We will rely on rcvif being set properly in the deferred context,
761 		 * so assert it is correct here.
762 		 */
763 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
764 		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
765 		CURVNET_SET_QUIET(ifp->if_vnet);
766 		netisr_dispatch(NETISR_ETHER, m);
767 		CURVNET_RESTORE();
768 		m = mn;
769 	}
770 }
771 
772 /*
773  * Upper layer processing for a received Ethernet packet.
774  */
775 void
776 ether_demux(struct ifnet *ifp, struct mbuf *m)
777 {
778 	struct ether_header *eh;
779 	int i, isr;
780 	u_short ether_type;
781 
782 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
783 
784 	/* Do not grab PROMISC frames in case we are re-entered. */
785 	if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) {
786 		i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, 0,
787 		    NULL);
788 
789 		if (i != 0 || m == NULL)
790 			return;
791 	}
792 
793 	eh = mtod(m, struct ether_header *);
794 	ether_type = ntohs(eh->ether_type);
795 
796 	/*
797 	 * If this frame has a VLAN tag other than 0, call vlan_input()
798 	 * if its module is loaded. Otherwise, drop.
799 	 */
800 	if ((m->m_flags & M_VLANTAG) &&
801 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
802 		if (ifp->if_vlantrunk == NULL) {
803 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
804 			m_freem(m);
805 			return;
806 		}
807 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
808 		    __func__));
809 		/* Clear before possibly re-entering ether_input(). */
810 		m->m_flags &= ~M_PROMISC;
811 		(*vlan_input_p)(ifp, m);
812 		return;
813 	}
814 
815 	/*
816 	 * Pass promiscuously received frames to the upper layer if the user
817 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
818 	 */
819 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
820 		m_freem(m);
821 		return;
822 	}
823 
824 	/*
825 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
826 	 * Strip off Ethernet header.
827 	 */
828 	m->m_flags &= ~M_VLANTAG;
829 	m_clrprotoflags(m);
830 	m_adj(m, ETHER_HDR_LEN);
831 
832 	/*
833 	 * Dispatch frame to upper layer.
834 	 */
835 	switch (ether_type) {
836 #ifdef INET
837 	case ETHERTYPE_IP:
838 		isr = NETISR_IP;
839 		break;
840 
841 	case ETHERTYPE_ARP:
842 		if (ifp->if_flags & IFF_NOARP) {
843 			/* Discard packet if ARP is disabled on interface */
844 			m_freem(m);
845 			return;
846 		}
847 		isr = NETISR_ARP;
848 		break;
849 #endif
850 #ifdef INET6
851 	case ETHERTYPE_IPV6:
852 		isr = NETISR_IPV6;
853 		break;
854 #endif
855 	default:
856 		goto discard;
857 	}
858 	netisr_dispatch(isr, m);
859 	return;
860 
861 discard:
862 	/*
863 	 * Packet is to be discarded.  If netgraph is present,
864 	 * hand the packet to it for last chance processing;
865 	 * otherwise dispose of it.
866 	 */
867 	if (ifp->if_l2com != NULL) {
868 		KASSERT(ng_ether_input_orphan_p != NULL,
869 		    ("ng_ether_input_orphan_p is NULL"));
870 		/*
871 		 * Put back the ethernet header so netgraph has a
872 		 * consistent view of inbound packets.
873 		 */
874 		M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
875 		(*ng_ether_input_orphan_p)(ifp, m);
876 		return;
877 	}
878 	m_freem(m);
879 }
880 
881 /*
882  * Convert Ethernet address to printable (loggable) representation.
883  * This routine is for compatibility; it's better to just use
884  *
885  *	printf("%6D", <pointer to address>, ":");
886  *
887  * since there's no static buffer involved.
888  */
889 char *
890 ether_sprintf(const u_char *ap)
891 {
892 	static char etherbuf[18];
893 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
894 	return (etherbuf);
895 }
896 
897 /*
898  * Perform common duties while attaching to interface list
899  */
900 void
901 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
902 {
903 	int i;
904 	struct ifaddr *ifa;
905 	struct sockaddr_dl *sdl;
906 
907 	ifp->if_addrlen = ETHER_ADDR_LEN;
908 	ifp->if_hdrlen = ETHER_HDR_LEN;
909 	if_attach(ifp);
910 	ifp->if_mtu = ETHERMTU;
911 	ifp->if_output = ether_output;
912 	ifp->if_input = ether_input;
913 	ifp->if_resolvemulti = ether_resolvemulti;
914 	ifp->if_requestencap = ether_requestencap;
915 #ifdef VIMAGE
916 	ifp->if_reassign = ether_reassign;
917 #endif
918 	if (ifp->if_baudrate == 0)
919 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
920 	ifp->if_broadcastaddr = etherbroadcastaddr;
921 
922 	ifa = ifp->if_addr;
923 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
924 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
925 	sdl->sdl_type = IFT_ETHER;
926 	sdl->sdl_alen = ifp->if_addrlen;
927 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
928 
929 	if (ifp->if_hw_addr != NULL)
930 		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
931 
932 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
933 	if (ng_ether_attach_p != NULL)
934 		(*ng_ether_attach_p)(ifp);
935 
936 	/* Announce Ethernet MAC address if non-zero. */
937 	for (i = 0; i < ifp->if_addrlen; i++)
938 		if (lla[i] != 0)
939 			break;
940 	if (i != ifp->if_addrlen)
941 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
942 
943 	uuid_ether_add(LLADDR(sdl));
944 
945 	/* Add necessary bits are setup; announce it now. */
946 	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
947 	if (IS_DEFAULT_VNET(curvnet))
948 		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
949 }
950 
951 /*
952  * Perform common duties while detaching an Ethernet interface
953  */
954 void
955 ether_ifdetach(struct ifnet *ifp)
956 {
957 	struct sockaddr_dl *sdl;
958 
959 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
960 	uuid_ether_del(LLADDR(sdl));
961 
962 	if (ifp->if_l2com != NULL) {
963 		KASSERT(ng_ether_detach_p != NULL,
964 		    ("ng_ether_detach_p is NULL"));
965 		(*ng_ether_detach_p)(ifp);
966 	}
967 
968 	bpfdetach(ifp);
969 	if_detach(ifp);
970 }
971 
972 #ifdef VIMAGE
973 void
974 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
975 {
976 
977 	if (ifp->if_l2com != NULL) {
978 		KASSERT(ng_ether_detach_p != NULL,
979 		    ("ng_ether_detach_p is NULL"));
980 		(*ng_ether_detach_p)(ifp);
981 	}
982 
983 	if (ng_ether_attach_p != NULL) {
984 		CURVNET_SET_QUIET(new_vnet);
985 		(*ng_ether_attach_p)(ifp);
986 		CURVNET_RESTORE();
987 	}
988 }
989 #endif
990 
991 SYSCTL_DECL(_net_link);
992 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
993 
994 #if 0
995 /*
996  * This is for reference.  We have a table-driven version
997  * of the little-endian crc32 generator, which is faster
998  * than the double-loop.
999  */
1000 uint32_t
1001 ether_crc32_le(const uint8_t *buf, size_t len)
1002 {
1003 	size_t i;
1004 	uint32_t crc;
1005 	int bit;
1006 	uint8_t data;
1007 
1008 	crc = 0xffffffff;	/* initial value */
1009 
1010 	for (i = 0; i < len; i++) {
1011 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1012 			carry = (crc ^ data) & 1;
1013 			crc >>= 1;
1014 			if (carry)
1015 				crc = (crc ^ ETHER_CRC_POLY_LE);
1016 		}
1017 	}
1018 
1019 	return (crc);
1020 }
1021 #else
1022 uint32_t
1023 ether_crc32_le(const uint8_t *buf, size_t len)
1024 {
1025 	static const uint32_t crctab[] = {
1026 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1027 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1028 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1029 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1030 	};
1031 	size_t i;
1032 	uint32_t crc;
1033 
1034 	crc = 0xffffffff;	/* initial value */
1035 
1036 	for (i = 0; i < len; i++) {
1037 		crc ^= buf[i];
1038 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1039 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1040 	}
1041 
1042 	return (crc);
1043 }
1044 #endif
1045 
1046 uint32_t
1047 ether_crc32_be(const uint8_t *buf, size_t len)
1048 {
1049 	size_t i;
1050 	uint32_t crc, carry;
1051 	int bit;
1052 	uint8_t data;
1053 
1054 	crc = 0xffffffff;	/* initial value */
1055 
1056 	for (i = 0; i < len; i++) {
1057 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1058 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1059 			crc <<= 1;
1060 			if (carry)
1061 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1062 		}
1063 	}
1064 
1065 	return (crc);
1066 }
1067 
1068 int
1069 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1070 {
1071 	struct ifaddr *ifa = (struct ifaddr *) data;
1072 	struct ifreq *ifr = (struct ifreq *) data;
1073 	int error = 0;
1074 
1075 	switch (command) {
1076 	case SIOCSIFADDR:
1077 		ifp->if_flags |= IFF_UP;
1078 
1079 		switch (ifa->ifa_addr->sa_family) {
1080 #ifdef INET
1081 		case AF_INET:
1082 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1083 			arp_ifinit(ifp, ifa);
1084 			break;
1085 #endif
1086 		default:
1087 			ifp->if_init(ifp->if_softc);
1088 			break;
1089 		}
1090 		break;
1091 
1092 	case SIOCGIFADDR:
1093 		{
1094 			struct sockaddr *sa;
1095 
1096 			sa = (struct sockaddr *) & ifr->ifr_data;
1097 			bcopy(IF_LLADDR(ifp),
1098 			      (caddr_t) sa->sa_data, ETHER_ADDR_LEN);
1099 		}
1100 		break;
1101 
1102 	case SIOCSIFMTU:
1103 		/*
1104 		 * Set the interface MTU.
1105 		 */
1106 		if (ifr->ifr_mtu > ETHERMTU) {
1107 			error = EINVAL;
1108 		} else {
1109 			ifp->if_mtu = ifr->ifr_mtu;
1110 		}
1111 		break;
1112 	default:
1113 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1114 		break;
1115 	}
1116 	return (error);
1117 }
1118 
1119 static int
1120 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1121 	struct sockaddr *sa)
1122 {
1123 	struct sockaddr_dl *sdl;
1124 #ifdef INET
1125 	struct sockaddr_in *sin;
1126 #endif
1127 #ifdef INET6
1128 	struct sockaddr_in6 *sin6;
1129 #endif
1130 	u_char *e_addr;
1131 
1132 	switch(sa->sa_family) {
1133 	case AF_LINK:
1134 		/*
1135 		 * No mapping needed. Just check that it's a valid MC address.
1136 		 */
1137 		sdl = (struct sockaddr_dl *)sa;
1138 		e_addr = LLADDR(sdl);
1139 		if (!ETHER_IS_MULTICAST(e_addr))
1140 			return EADDRNOTAVAIL;
1141 		*llsa = NULL;
1142 		return 0;
1143 
1144 #ifdef INET
1145 	case AF_INET:
1146 		sin = (struct sockaddr_in *)sa;
1147 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1148 			return EADDRNOTAVAIL;
1149 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1150 		sdl->sdl_alen = ETHER_ADDR_LEN;
1151 		e_addr = LLADDR(sdl);
1152 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1153 		*llsa = (struct sockaddr *)sdl;
1154 		return 0;
1155 #endif
1156 #ifdef INET6
1157 	case AF_INET6:
1158 		sin6 = (struct sockaddr_in6 *)sa;
1159 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1160 			/*
1161 			 * An IP6 address of 0 means listen to all
1162 			 * of the Ethernet multicast address used for IP6.
1163 			 * (This is used for multicast routers.)
1164 			 */
1165 			ifp->if_flags |= IFF_ALLMULTI;
1166 			*llsa = NULL;
1167 			return 0;
1168 		}
1169 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1170 			return EADDRNOTAVAIL;
1171 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1172 		sdl->sdl_alen = ETHER_ADDR_LEN;
1173 		e_addr = LLADDR(sdl);
1174 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1175 		*llsa = (struct sockaddr *)sdl;
1176 		return 0;
1177 #endif
1178 
1179 	default:
1180 		/*
1181 		 * Well, the text isn't quite right, but it's the name
1182 		 * that counts...
1183 		 */
1184 		return EAFNOSUPPORT;
1185 	}
1186 }
1187 
1188 static moduledata_t ether_mod = {
1189 	.name = "ether",
1190 };
1191 
1192 void
1193 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1194 {
1195 	struct ether_vlan_header vlan;
1196 	struct mbuf mv, mb;
1197 
1198 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1199 	    ("%s: vlan information not present", __func__));
1200 	KASSERT(m->m_len >= sizeof(struct ether_header),
1201 	    ("%s: mbuf not large enough for header", __func__));
1202 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1203 	vlan.evl_proto = vlan.evl_encap_proto;
1204 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1205 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1206 	m->m_len -= sizeof(struct ether_header);
1207 	m->m_data += sizeof(struct ether_header);
1208 	/*
1209 	 * If a data link has been supplied by the caller, then we will need to
1210 	 * re-create a stack allocated mbuf chain with the following structure:
1211 	 *
1212 	 * (1) mbuf #1 will contain the supplied data link
1213 	 * (2) mbuf #2 will contain the vlan header
1214 	 * (3) mbuf #3 will contain the original mbuf's packet data
1215 	 *
1216 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1217 	 */
1218 	if (data != NULL) {
1219 		mv.m_next = m;
1220 		mv.m_data = (caddr_t)&vlan;
1221 		mv.m_len = sizeof(vlan);
1222 		mb.m_next = &mv;
1223 		mb.m_data = data;
1224 		mb.m_len = dlen;
1225 		bpf_mtap(bp, &mb);
1226 	} else
1227 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1228 	m->m_len += sizeof(struct ether_header);
1229 	m->m_data -= sizeof(struct ether_header);
1230 }
1231 
1232 struct mbuf *
1233 ether_vlanencap(struct mbuf *m, uint16_t tag)
1234 {
1235 	struct ether_vlan_header *evl;
1236 
1237 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1238 	if (m == NULL)
1239 		return (NULL);
1240 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1241 
1242 	if (m->m_len < sizeof(*evl)) {
1243 		m = m_pullup(m, sizeof(*evl));
1244 		if (m == NULL)
1245 			return (NULL);
1246 	}
1247 
1248 	/*
1249 	 * Transform the Ethernet header into an Ethernet header
1250 	 * with 802.1Q encapsulation.
1251 	 */
1252 	evl = mtod(m, struct ether_vlan_header *);
1253 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1254 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1255 	evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1256 	evl->evl_tag = htons(tag);
1257 	return (m);
1258 }
1259 
1260 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1261 MODULE_VERSION(ether, 1);
1262