xref: /freebsd/sys/net/if_ethersubr.c (revision 46ac8f2e7d9601311eb9b3cd2fed138ff4a11a66)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
32  * $FreeBSD$
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 #include "opt_netgraph.h"
38 #include "opt_mbuf_profiling.h"
39 #include "opt_rss.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/devctl.h>
44 #include <sys/eventhandler.h>
45 #include <sys/jail.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/module.h>
51 #include <sys/msan.h>
52 #include <sys/proc.h>
53 #include <sys/priv.h>
54 #include <sys/random.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <sys/uuid.h>
59 
60 #include <net/ieee_oui.h>
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_private.h>
64 #include <net/if_arp.h>
65 #include <net/netisr.h>
66 #include <net/route.h>
67 #include <net/if_llc.h>
68 #include <net/if_dl.h>
69 #include <net/if_types.h>
70 #include <net/bpf.h>
71 #include <net/ethernet.h>
72 #include <net/if_bridgevar.h>
73 #include <net/if_vlan_var.h>
74 #include <net/if_llatbl.h>
75 #include <net/pfil.h>
76 #include <net/rss_config.h>
77 #include <net/vnet.h>
78 
79 #include <netpfil/pf/pf_mtag.h>
80 
81 #if defined(INET) || defined(INET6)
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 #include <netinet/if_ether.h>
85 #include <netinet/ip_carp.h>
86 #include <netinet/ip_var.h>
87 #endif
88 #ifdef INET6
89 #include <netinet6/nd6.h>
90 #endif
91 #include <security/mac/mac_framework.h>
92 
93 #include <crypto/sha1.h>
94 
95 #ifdef CTASSERT
96 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
97 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
98 #endif
99 
100 VNET_DEFINE(pfil_head_t, link_pfil_head);	/* Packet filter hooks */
101 
102 /* netgraph node hooks for ng_ether(4) */
103 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
104 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
105 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
106 void	(*ng_ether_attach_p)(struct ifnet *ifp);
107 void	(*ng_ether_detach_p)(struct ifnet *ifp);
108 
109 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
110 
111 /* if_bridge(4) support */
112 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
113 
114 /* if_lagg(4) support */
115 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
116 
117 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
118 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
119 
120 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
121 		struct sockaddr *);
122 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
123 
124 #define senderr(e) do { error = (e); goto bad;} while (0)
125 
126 static void
127 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
128 {
129 	int csum_flags = 0;
130 
131 	if (src->m_pkthdr.csum_flags & CSUM_IP)
132 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
133 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
134 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
135 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
136 		csum_flags |= CSUM_SCTP_VALID;
137 	dst->m_pkthdr.csum_flags |= csum_flags;
138 	if (csum_flags & CSUM_DATA_VALID)
139 		dst->m_pkthdr.csum_data = 0xffff;
140 }
141 
142 /*
143  * Handle link-layer encapsulation requests.
144  */
145 static int
146 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
147 {
148 	struct ether_header *eh;
149 	struct arphdr *ah;
150 	uint16_t etype;
151 	const u_char *lladdr;
152 
153 	if (req->rtype != IFENCAP_LL)
154 		return (EOPNOTSUPP);
155 
156 	if (req->bufsize < ETHER_HDR_LEN)
157 		return (ENOMEM);
158 
159 	eh = (struct ether_header *)req->buf;
160 	lladdr = req->lladdr;
161 	req->lladdr_off = 0;
162 
163 	switch (req->family) {
164 	case AF_INET:
165 		etype = htons(ETHERTYPE_IP);
166 		break;
167 	case AF_INET6:
168 		etype = htons(ETHERTYPE_IPV6);
169 		break;
170 	case AF_ARP:
171 		ah = (struct arphdr *)req->hdata;
172 		ah->ar_hrd = htons(ARPHRD_ETHER);
173 
174 		switch(ntohs(ah->ar_op)) {
175 		case ARPOP_REVREQUEST:
176 		case ARPOP_REVREPLY:
177 			etype = htons(ETHERTYPE_REVARP);
178 			break;
179 		case ARPOP_REQUEST:
180 		case ARPOP_REPLY:
181 		default:
182 			etype = htons(ETHERTYPE_ARP);
183 			break;
184 		}
185 
186 		if (req->flags & IFENCAP_FLAG_BROADCAST)
187 			lladdr = ifp->if_broadcastaddr;
188 		break;
189 	default:
190 		return (EAFNOSUPPORT);
191 	}
192 
193 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
194 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
195 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
196 	req->bufsize = sizeof(struct ether_header);
197 
198 	return (0);
199 }
200 
201 static int
202 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
203 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
204 	uint32_t *pflags, struct llentry **plle)
205 {
206 	uint32_t lleflags = 0;
207 	int error = 0;
208 #if defined(INET) || defined(INET6)
209 	struct ether_header *eh = (struct ether_header *)phdr;
210 	uint16_t etype;
211 #endif
212 
213 	if (plle)
214 		*plle = NULL;
215 
216 	switch (dst->sa_family) {
217 #ifdef INET
218 	case AF_INET:
219 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
220 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
221 			    plle);
222 		else {
223 			if (m->m_flags & M_BCAST)
224 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
225 				    ETHER_ADDR_LEN);
226 			else {
227 				const struct in_addr *a;
228 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
229 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
230 			}
231 			etype = htons(ETHERTYPE_IP);
232 			memcpy(&eh->ether_type, &etype, sizeof(etype));
233 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
234 		}
235 		break;
236 #endif
237 #ifdef INET6
238 	case AF_INET6:
239 		if ((m->m_flags & M_MCAST) == 0) {
240 			int af = RO_GET_FAMILY(ro, dst);
241 			error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr,
242 			    &lleflags, plle);
243 		} else {
244 			const struct in6_addr *a6;
245 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
246 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
247 			etype = htons(ETHERTYPE_IPV6);
248 			memcpy(&eh->ether_type, &etype, sizeof(etype));
249 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
250 		}
251 		break;
252 #endif
253 	default:
254 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
255 		if (m != NULL)
256 			m_freem(m);
257 		return (EAFNOSUPPORT);
258 	}
259 
260 	if (error == EHOSTDOWN) {
261 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
262 			error = EHOSTUNREACH;
263 	}
264 
265 	if (error != 0)
266 		return (error);
267 
268 	*pflags = RT_MAY_LOOP;
269 	if (lleflags & LLE_IFADDR)
270 		*pflags |= RT_L2_ME;
271 
272 	return (0);
273 }
274 
275 /*
276  * Ethernet output routine.
277  * Encapsulate a packet of type family for the local net.
278  * Use trailer local net encapsulation if enough data in first
279  * packet leaves a multiple of 512 bytes of data in remainder.
280  */
281 int
282 ether_output(struct ifnet *ifp, struct mbuf *m,
283 	const struct sockaddr *dst, struct route *ro)
284 {
285 	int error = 0;
286 	char linkhdr[ETHER_HDR_LEN], *phdr;
287 	struct ether_header *eh;
288 	struct pf_mtag *t;
289 	bool loop_copy;
290 	int hlen;	/* link layer header length */
291 	uint32_t pflags;
292 	struct llentry *lle = NULL;
293 	int addref = 0;
294 
295 	phdr = NULL;
296 	pflags = 0;
297 	if (ro != NULL) {
298 		/* XXX BPF uses ro_prepend */
299 		if (ro->ro_prepend != NULL) {
300 			phdr = ro->ro_prepend;
301 			hlen = ro->ro_plen;
302 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
303 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
304 				lle = ro->ro_lle;
305 				if (lle != NULL &&
306 				    (lle->la_flags & LLE_VALID) == 0) {
307 					LLE_FREE(lle);
308 					lle = NULL;	/* redundant */
309 					ro->ro_lle = NULL;
310 				}
311 				if (lle == NULL) {
312 					/* if we lookup, keep cache */
313 					addref = 1;
314 				} else
315 					/*
316 					 * Notify LLE code that
317 					 * the entry was used
318 					 * by datapath.
319 					 */
320 					llentry_provide_feedback(lle);
321 			}
322 			if (lle != NULL) {
323 				phdr = lle->r_linkdata;
324 				hlen = lle->r_hdrlen;
325 				pflags = lle->r_flags;
326 			}
327 		}
328 	}
329 
330 #ifdef MAC
331 	error = mac_ifnet_check_transmit(ifp, m);
332 	if (error)
333 		senderr(error);
334 #endif
335 
336 	M_PROFILE(m);
337 	if (ifp->if_flags & IFF_MONITOR)
338 		senderr(ENETDOWN);
339 	if (!((ifp->if_flags & IFF_UP) &&
340 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
341 		senderr(ENETDOWN);
342 
343 	if (phdr == NULL) {
344 		/* No prepend data supplied. Try to calculate ourselves. */
345 		phdr = linkhdr;
346 		hlen = ETHER_HDR_LEN;
347 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
348 		    addref ? &lle : NULL);
349 		if (addref && lle != NULL)
350 			ro->ro_lle = lle;
351 		if (error != 0)
352 			return (error == EWOULDBLOCK ? 0 : error);
353 	}
354 
355 	if ((pflags & RT_L2_ME) != 0) {
356 		update_mbuf_csumflags(m, m);
357 		return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0));
358 	}
359 	loop_copy = (pflags & RT_MAY_LOOP) != 0;
360 
361 	/*
362 	 * Add local net header.  If no space in first mbuf,
363 	 * allocate another.
364 	 *
365 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
366 	 * This is done because BPF code shifts m_data pointer
367 	 * to the end of ethernet header prior to calling if_output().
368 	 */
369 	M_PREPEND(m, hlen, M_NOWAIT);
370 	if (m == NULL)
371 		senderr(ENOBUFS);
372 	if ((pflags & RT_HAS_HEADER) == 0) {
373 		eh = mtod(m, struct ether_header *);
374 		memcpy(eh, phdr, hlen);
375 	}
376 
377 	/*
378 	 * If a simplex interface, and the packet is being sent to our
379 	 * Ethernet address or a broadcast address, loopback a copy.
380 	 * XXX To make a simplex device behave exactly like a duplex
381 	 * device, we should copy in the case of sending to our own
382 	 * ethernet address (thus letting the original actually appear
383 	 * on the wire). However, we don't do that here for security
384 	 * reasons and compatibility with the original behavior.
385 	 */
386 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
387 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
388 		struct mbuf *n;
389 
390 		/*
391 		 * Because if_simloop() modifies the packet, we need a
392 		 * writable copy through m_dup() instead of a readonly
393 		 * one as m_copy[m] would give us. The alternative would
394 		 * be to modify if_simloop() to handle the readonly mbuf,
395 		 * but performancewise it is mostly equivalent (trading
396 		 * extra data copying vs. extra locking).
397 		 *
398 		 * XXX This is a local workaround.  A number of less
399 		 * often used kernel parts suffer from the same bug.
400 		 * See PR kern/105943 for a proposed general solution.
401 		 */
402 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
403 			update_mbuf_csumflags(m, n);
404 			(void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen);
405 		} else
406 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
407 	}
408 
409        /*
410 	* Bridges require special output handling.
411 	*/
412 	if (ifp->if_bridge) {
413 		BRIDGE_OUTPUT(ifp, m, error);
414 		return (error);
415 	}
416 
417 #if defined(INET) || defined(INET6)
418 	if (ifp->if_carp &&
419 	    (error = (*carp_output_p)(ifp, m, dst)))
420 		goto bad;
421 #endif
422 
423 	/* Handle ng_ether(4) processing, if any */
424 	if (ifp->if_l2com != NULL) {
425 		KASSERT(ng_ether_output_p != NULL,
426 		    ("ng_ether_output_p is NULL"));
427 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
428 bad:			if (m != NULL)
429 				m_freem(m);
430 			return (error);
431 		}
432 		if (m == NULL)
433 			return (0);
434 	}
435 
436 	/* Continue with link-layer output */
437 	return ether_output_frame(ifp, m);
438 }
439 
440 static bool
441 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
442 {
443 	struct ether_8021q_tag qtag;
444 	struct ether_header *eh;
445 
446 	eh = mtod(*mp, struct ether_header *);
447 	if (ntohs(eh->ether_type) == ETHERTYPE_VLAN ||
448 	    ntohs(eh->ether_type) == ETHERTYPE_QINQ)
449 		return (true);
450 
451 	qtag.vid = 0;
452 	qtag.pcp = pcp;
453 	qtag.proto = ETHERTYPE_VLAN;
454 	if (ether_8021q_frame(mp, ifp, ifp, &qtag))
455 		return (true);
456 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
457 	return (false);
458 }
459 
460 /*
461  * Ethernet link layer output routine to send a raw frame to the device.
462  *
463  * This assumes that the 14 byte Ethernet header is present and contiguous
464  * in the first mbuf (if BRIDGE'ing).
465  */
466 int
467 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
468 {
469 	uint8_t pcp;
470 
471 	pcp = ifp->if_pcp;
472 	if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN &&
473 	    !ether_set_pcp(&m, ifp, pcp))
474 		return (0);
475 
476 	if (PFIL_HOOKED_OUT(V_link_pfil_head))
477 		switch (pfil_mbuf_out(V_link_pfil_head, &m, ifp, NULL)) {
478 		case PFIL_DROPPED:
479 			return (EACCES);
480 		case PFIL_CONSUMED:
481 			return (0);
482 		}
483 
484 #ifdef EXPERIMENTAL
485 #if defined(INET6) && defined(INET)
486 	/* draft-ietf-6man-ipv6only-flag */
487 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
488 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
489 		struct ether_header *eh;
490 
491 		eh = mtod(m, struct ether_header *);
492 		switch (ntohs(eh->ether_type)) {
493 		case ETHERTYPE_IP:
494 		case ETHERTYPE_ARP:
495 		case ETHERTYPE_REVARP:
496 			m_freem(m);
497 			return (EAFNOSUPPORT);
498 			/* NOTREACHED */
499 			break;
500 		};
501 	}
502 #endif
503 #endif
504 
505 	/*
506 	 * Queue message on interface, update output statistics if successful,
507 	 * and start output if interface not yet active.
508 	 *
509 	 * If KMSAN is enabled, use it to verify that the data does not contain
510 	 * any uninitialized bytes.
511 	 */
512 	kmsan_check_mbuf(m, "ether_output");
513 	return ((ifp->if_transmit)(ifp, m));
514 }
515 
516 /*
517  * Process a received Ethernet packet; the packet is in the
518  * mbuf chain m with the ethernet header at the front.
519  */
520 static void
521 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
522 {
523 	struct ether_header *eh;
524 	u_short etype;
525 
526 	if ((ifp->if_flags & IFF_UP) == 0) {
527 		m_freem(m);
528 		return;
529 	}
530 #ifdef DIAGNOSTIC
531 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
532 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
533 		m_freem(m);
534 		return;
535 	}
536 #endif
537 	if (m->m_len < ETHER_HDR_LEN) {
538 		/* XXX maybe should pullup? */
539 		if_printf(ifp, "discard frame w/o leading ethernet "
540 				"header (len %u pkt len %u)\n",
541 				m->m_len, m->m_pkthdr.len);
542 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
543 		m_freem(m);
544 		return;
545 	}
546 	eh = mtod(m, struct ether_header *);
547 	etype = ntohs(eh->ether_type);
548 	random_harvest_queue_ether(m, sizeof(*m));
549 
550 #ifdef EXPERIMENTAL
551 #if defined(INET6) && defined(INET)
552 	/* draft-ietf-6man-ipv6only-flag */
553 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
554 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
555 		switch (etype) {
556 		case ETHERTYPE_IP:
557 		case ETHERTYPE_ARP:
558 		case ETHERTYPE_REVARP:
559 			m_freem(m);
560 			return;
561 			/* NOTREACHED */
562 			break;
563 		};
564 	}
565 #endif
566 #endif
567 
568 	CURVNET_SET_QUIET(ifp->if_vnet);
569 
570 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
571 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
572 			m->m_flags |= M_BCAST;
573 		else
574 			m->m_flags |= M_MCAST;
575 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
576 	}
577 
578 #ifdef MAC
579 	/*
580 	 * Tag the mbuf with an appropriate MAC label before any other
581 	 * consumers can get to it.
582 	 */
583 	mac_ifnet_create_mbuf(ifp, m);
584 #endif
585 
586 	/*
587 	 * Give bpf a chance at the packet.
588 	 */
589 	ETHER_BPF_MTAP(ifp, m);
590 
591 	/*
592 	 * If the CRC is still on the packet, trim it off. We do this once
593 	 * and once only in case we are re-entered. Nothing else on the
594 	 * Ethernet receive path expects to see the FCS.
595 	 */
596 	if (m->m_flags & M_HASFCS) {
597 		m_adj(m, -ETHER_CRC_LEN);
598 		m->m_flags &= ~M_HASFCS;
599 	}
600 
601 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
602 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
603 
604 	/* Allow monitor mode to claim this frame, after stats are updated. */
605 	if (ifp->if_flags & IFF_MONITOR) {
606 		m_freem(m);
607 		CURVNET_RESTORE();
608 		return;
609 	}
610 
611 	/* Handle input from a lagg(4) port */
612 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
613 		KASSERT(lagg_input_ethernet_p != NULL,
614 		    ("%s: if_lagg not loaded!", __func__));
615 		m = (*lagg_input_ethernet_p)(ifp, m);
616 		if (m != NULL)
617 			ifp = m->m_pkthdr.rcvif;
618 		else {
619 			CURVNET_RESTORE();
620 			return;
621 		}
622 	}
623 
624 	/*
625 	 * If the hardware did not process an 802.1Q tag, do this now,
626 	 * to allow 802.1P priority frames to be passed to the main input
627 	 * path correctly.
628 	 */
629 	if ((m->m_flags & M_VLANTAG) == 0 &&
630 	    ((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) {
631 		struct ether_vlan_header *evl;
632 
633 		if (m->m_len < sizeof(*evl) &&
634 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
635 #ifdef DIAGNOSTIC
636 			if_printf(ifp, "cannot pullup VLAN header\n");
637 #endif
638 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
639 			CURVNET_RESTORE();
640 			return;
641 		}
642 
643 		evl = mtod(m, struct ether_vlan_header *);
644 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
645 		m->m_flags |= M_VLANTAG;
646 
647 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
648 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
649 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
650 		eh = mtod(m, struct ether_header *);
651 	}
652 
653 	M_SETFIB(m, ifp->if_fib);
654 
655 	/* Allow ng_ether(4) to claim this frame. */
656 	if (ifp->if_l2com != NULL) {
657 		KASSERT(ng_ether_input_p != NULL,
658 		    ("%s: ng_ether_input_p is NULL", __func__));
659 		m->m_flags &= ~M_PROMISC;
660 		(*ng_ether_input_p)(ifp, &m);
661 		if (m == NULL) {
662 			CURVNET_RESTORE();
663 			return;
664 		}
665 		eh = mtod(m, struct ether_header *);
666 	}
667 
668 	/*
669 	 * Allow if_bridge(4) to claim this frame.
670 	 *
671 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
672 	 * and the frame should be delivered locally.
673 	 *
674 	 * If M_BRIDGE_INJECT is set, the packet was received directly by the
675 	 * bridge via netmap, so "ifp" is the bridge itself and the packet
676 	 * should be re-examined.
677 	 */
678 	if (ifp->if_bridge != NULL || (m->m_flags & M_BRIDGE_INJECT) != 0) {
679 		m->m_flags &= ~M_PROMISC;
680 		BRIDGE_INPUT(ifp, m);
681 		if (m == NULL) {
682 			CURVNET_RESTORE();
683 			return;
684 		}
685 		eh = mtod(m, struct ether_header *);
686 	}
687 
688 #if defined(INET) || defined(INET6)
689 	/*
690 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
691 	 * mbuf flows up to Layer 3.
692 	 * FreeBSD's implementation of carp(4) uses the inprotosw
693 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
694 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
695 	 * is outside the scope of the M_PROMISC test below.
696 	 * TODO: Maintain a hash table of ethernet addresses other than
697 	 * ether_dhost which may be active on this ifp.
698 	 */
699 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
700 		m->m_flags &= ~M_PROMISC;
701 	} else
702 #endif
703 	{
704 		/*
705 		 * If the frame received was not for our MAC address, set the
706 		 * M_PROMISC flag on the mbuf chain. The frame may need to
707 		 * be seen by the rest of the Ethernet input path in case of
708 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
709 		 * seen by upper protocol layers.
710 		 */
711 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
712 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
713 			m->m_flags |= M_PROMISC;
714 	}
715 
716 	ether_demux(ifp, m);
717 	CURVNET_RESTORE();
718 }
719 
720 /*
721  * Ethernet input dispatch; by default, direct dispatch here regardless of
722  * global configuration.  However, if RSS is enabled, hook up RSS affinity
723  * so that when deferred or hybrid dispatch is enabled, we can redistribute
724  * load based on RSS.
725  *
726  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
727  * not it had already done work distribution via multi-queue.  Then we could
728  * direct dispatch in the event load balancing was already complete and
729  * handle the case of interfaces with different capabilities better.
730  *
731  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
732  * at multiple layers?
733  *
734  * XXXRW: For now, enable all this only if RSS is compiled in, although it
735  * works fine without RSS.  Need to characterise the performance overhead
736  * of the detour through the netisr code in the event the result is always
737  * direct dispatch.
738  */
739 static void
740 ether_nh_input(struct mbuf *m)
741 {
742 
743 	M_ASSERTPKTHDR(m);
744 	KASSERT(m->m_pkthdr.rcvif != NULL,
745 	    ("%s: NULL interface pointer", __func__));
746 	ether_input_internal(m->m_pkthdr.rcvif, m);
747 }
748 
749 static struct netisr_handler	ether_nh = {
750 	.nh_name = "ether",
751 	.nh_handler = ether_nh_input,
752 	.nh_proto = NETISR_ETHER,
753 #ifdef RSS
754 	.nh_policy = NETISR_POLICY_CPU,
755 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
756 	.nh_m2cpuid = rss_m2cpuid,
757 #else
758 	.nh_policy = NETISR_POLICY_SOURCE,
759 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
760 #endif
761 };
762 
763 static void
764 ether_init(__unused void *arg)
765 {
766 
767 	netisr_register(&ether_nh);
768 }
769 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
770 
771 static void
772 vnet_ether_init(__unused void *arg)
773 {
774 	struct pfil_head_args args;
775 
776 	args.pa_version = PFIL_VERSION;
777 	args.pa_flags = PFIL_IN | PFIL_OUT;
778 	args.pa_type = PFIL_TYPE_ETHERNET;
779 	args.pa_headname = PFIL_ETHER_NAME;
780 	V_link_pfil_head = pfil_head_register(&args);
781 
782 #ifdef VIMAGE
783 	netisr_register_vnet(&ether_nh);
784 #endif
785 }
786 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
787     vnet_ether_init, NULL);
788 
789 #ifdef VIMAGE
790 static void
791 vnet_ether_pfil_destroy(__unused void *arg)
792 {
793 
794 	pfil_head_unregister(V_link_pfil_head);
795 }
796 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
797     vnet_ether_pfil_destroy, NULL);
798 
799 static void
800 vnet_ether_destroy(__unused void *arg)
801 {
802 
803 	netisr_unregister_vnet(&ether_nh);
804 }
805 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
806     vnet_ether_destroy, NULL);
807 #endif
808 
809 static void
810 ether_input(struct ifnet *ifp, struct mbuf *m)
811 {
812 	struct epoch_tracker et;
813 	struct mbuf *mn;
814 	bool needs_epoch;
815 
816 	needs_epoch = !(ifp->if_flags & IFF_KNOWSEPOCH);
817 
818 	/*
819 	 * The drivers are allowed to pass in a chain of packets linked with
820 	 * m_nextpkt. We split them up into separate packets here and pass
821 	 * them up. This allows the drivers to amortize the receive lock.
822 	 */
823 	CURVNET_SET_QUIET(ifp->if_vnet);
824 	if (__predict_false(needs_epoch))
825 		NET_EPOCH_ENTER(et);
826 	while (m) {
827 		mn = m->m_nextpkt;
828 		m->m_nextpkt = NULL;
829 
830 		/*
831 		 * We will rely on rcvif being set properly in the deferred
832 		 * context, so assert it is correct here.
833 		 */
834 		MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
835 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
836 		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
837 		netisr_dispatch(NETISR_ETHER, m);
838 		m = mn;
839 	}
840 	if (__predict_false(needs_epoch))
841 		NET_EPOCH_EXIT(et);
842 	CURVNET_RESTORE();
843 }
844 
845 /*
846  * Upper layer processing for a received Ethernet packet.
847  */
848 void
849 ether_demux(struct ifnet *ifp, struct mbuf *m)
850 {
851 	struct ether_header *eh;
852 	int i, isr;
853 	u_short ether_type;
854 
855 	NET_EPOCH_ASSERT();
856 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
857 
858 	/* Do not grab PROMISC frames in case we are re-entered. */
859 	if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
860 		i = pfil_mbuf_in(V_link_pfil_head, &m, ifp, NULL);
861 		if (i != 0 || m == NULL)
862 			return;
863 	}
864 
865 	eh = mtod(m, struct ether_header *);
866 	ether_type = ntohs(eh->ether_type);
867 
868 	/*
869 	 * If this frame has a VLAN tag other than 0, call vlan_input()
870 	 * if its module is loaded. Otherwise, drop.
871 	 */
872 	if ((m->m_flags & M_VLANTAG) &&
873 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
874 		if (ifp->if_vlantrunk == NULL) {
875 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
876 			m_freem(m);
877 			return;
878 		}
879 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
880 		    __func__));
881 		/* Clear before possibly re-entering ether_input(). */
882 		m->m_flags &= ~M_PROMISC;
883 		(*vlan_input_p)(ifp, m);
884 		return;
885 	}
886 
887 	/*
888 	 * Pass promiscuously received frames to the upper layer if the user
889 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
890 	 */
891 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
892 		m_freem(m);
893 		return;
894 	}
895 
896 	/*
897 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
898 	 */
899 	m->m_flags &= ~M_VLANTAG;
900 	m_clrprotoflags(m);
901 
902 	/*
903 	 * Dispatch frame to upper layer.
904 	 */
905 	switch (ether_type) {
906 #ifdef INET
907 	case ETHERTYPE_IP:
908 		isr = NETISR_IP;
909 		break;
910 
911 	case ETHERTYPE_ARP:
912 		if (ifp->if_flags & IFF_NOARP) {
913 			/* Discard packet if ARP is disabled on interface */
914 			m_freem(m);
915 			return;
916 		}
917 		isr = NETISR_ARP;
918 		break;
919 #endif
920 #ifdef INET6
921 	case ETHERTYPE_IPV6:
922 		isr = NETISR_IPV6;
923 		break;
924 #endif
925 	default:
926 		goto discard;
927 	}
928 
929 	/* Strip off Ethernet header. */
930 	m_adj(m, ETHER_HDR_LEN);
931 
932 	netisr_dispatch(isr, m);
933 	return;
934 
935 discard:
936 	/*
937 	 * Packet is to be discarded.  If netgraph is present,
938 	 * hand the packet to it for last chance processing;
939 	 * otherwise dispose of it.
940 	 */
941 	if (ifp->if_l2com != NULL) {
942 		KASSERT(ng_ether_input_orphan_p != NULL,
943 		    ("ng_ether_input_orphan_p is NULL"));
944 		(*ng_ether_input_orphan_p)(ifp, m);
945 		return;
946 	}
947 	m_freem(m);
948 }
949 
950 /*
951  * Convert Ethernet address to printable (loggable) representation.
952  * This routine is for compatibility; it's better to just use
953  *
954  *	printf("%6D", <pointer to address>, ":");
955  *
956  * since there's no static buffer involved.
957  */
958 char *
959 ether_sprintf(const u_char *ap)
960 {
961 	static char etherbuf[18];
962 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
963 	return (etherbuf);
964 }
965 
966 /*
967  * Perform common duties while attaching to interface list
968  */
969 void
970 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
971 {
972 	int i;
973 	struct ifaddr *ifa;
974 	struct sockaddr_dl *sdl;
975 
976 	ifp->if_addrlen = ETHER_ADDR_LEN;
977 	ifp->if_hdrlen = ETHER_HDR_LEN;
978 	ifp->if_mtu = ETHERMTU;
979 	if_attach(ifp);
980 	ifp->if_output = ether_output;
981 	ifp->if_input = ether_input;
982 	ifp->if_resolvemulti = ether_resolvemulti;
983 	ifp->if_requestencap = ether_requestencap;
984 #ifdef VIMAGE
985 	ifp->if_reassign = ether_reassign;
986 #endif
987 	if (ifp->if_baudrate == 0)
988 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
989 	ifp->if_broadcastaddr = etherbroadcastaddr;
990 
991 	ifa = ifp->if_addr;
992 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
993 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
994 	sdl->sdl_type = IFT_ETHER;
995 	sdl->sdl_alen = ifp->if_addrlen;
996 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
997 
998 	if (ifp->if_hw_addr != NULL)
999 		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
1000 
1001 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
1002 	if (ng_ether_attach_p != NULL)
1003 		(*ng_ether_attach_p)(ifp);
1004 
1005 	/* Announce Ethernet MAC address if non-zero. */
1006 	for (i = 0; i < ifp->if_addrlen; i++)
1007 		if (lla[i] != 0)
1008 			break;
1009 	if (i != ifp->if_addrlen)
1010 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
1011 
1012 	uuid_ether_add(LLADDR(sdl));
1013 
1014 	/* Add necessary bits are setup; announce it now. */
1015 	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
1016 	if (IS_DEFAULT_VNET(curvnet))
1017 		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
1018 }
1019 
1020 /*
1021  * Perform common duties while detaching an Ethernet interface
1022  */
1023 void
1024 ether_ifdetach(struct ifnet *ifp)
1025 {
1026 	struct sockaddr_dl *sdl;
1027 
1028 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1029 	uuid_ether_del(LLADDR(sdl));
1030 
1031 	if (ifp->if_l2com != NULL) {
1032 		KASSERT(ng_ether_detach_p != NULL,
1033 		    ("ng_ether_detach_p is NULL"));
1034 		(*ng_ether_detach_p)(ifp);
1035 	}
1036 
1037 	bpfdetach(ifp);
1038 	if_detach(ifp);
1039 }
1040 
1041 #ifdef VIMAGE
1042 void
1043 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
1044 {
1045 
1046 	if (ifp->if_l2com != NULL) {
1047 		KASSERT(ng_ether_detach_p != NULL,
1048 		    ("ng_ether_detach_p is NULL"));
1049 		(*ng_ether_detach_p)(ifp);
1050 	}
1051 
1052 	if (ng_ether_attach_p != NULL) {
1053 		CURVNET_SET_QUIET(new_vnet);
1054 		(*ng_ether_attach_p)(ifp);
1055 		CURVNET_RESTORE();
1056 	}
1057 }
1058 #endif
1059 
1060 SYSCTL_DECL(_net_link);
1061 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1062     "Ethernet");
1063 
1064 #if 0
1065 /*
1066  * This is for reference.  We have a table-driven version
1067  * of the little-endian crc32 generator, which is faster
1068  * than the double-loop.
1069  */
1070 uint32_t
1071 ether_crc32_le(const uint8_t *buf, size_t len)
1072 {
1073 	size_t i;
1074 	uint32_t crc;
1075 	int bit;
1076 	uint8_t data;
1077 
1078 	crc = 0xffffffff;	/* initial value */
1079 
1080 	for (i = 0; i < len; i++) {
1081 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1082 			carry = (crc ^ data) & 1;
1083 			crc >>= 1;
1084 			if (carry)
1085 				crc = (crc ^ ETHER_CRC_POLY_LE);
1086 		}
1087 	}
1088 
1089 	return (crc);
1090 }
1091 #else
1092 uint32_t
1093 ether_crc32_le(const uint8_t *buf, size_t len)
1094 {
1095 	static const uint32_t crctab[] = {
1096 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1097 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1098 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1099 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1100 	};
1101 	size_t i;
1102 	uint32_t crc;
1103 
1104 	crc = 0xffffffff;	/* initial value */
1105 
1106 	for (i = 0; i < len; i++) {
1107 		crc ^= buf[i];
1108 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1109 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1110 	}
1111 
1112 	return (crc);
1113 }
1114 #endif
1115 
1116 uint32_t
1117 ether_crc32_be(const uint8_t *buf, size_t len)
1118 {
1119 	size_t i;
1120 	uint32_t crc, carry;
1121 	int bit;
1122 	uint8_t data;
1123 
1124 	crc = 0xffffffff;	/* initial value */
1125 
1126 	for (i = 0; i < len; i++) {
1127 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1128 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1129 			crc <<= 1;
1130 			if (carry)
1131 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1132 		}
1133 	}
1134 
1135 	return (crc);
1136 }
1137 
1138 int
1139 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1140 {
1141 	struct ifaddr *ifa = (struct ifaddr *) data;
1142 	struct ifreq *ifr = (struct ifreq *) data;
1143 	int error = 0;
1144 
1145 	switch (command) {
1146 	case SIOCSIFADDR:
1147 		ifp->if_flags |= IFF_UP;
1148 
1149 		switch (ifa->ifa_addr->sa_family) {
1150 #ifdef INET
1151 		case AF_INET:
1152 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1153 			arp_ifinit(ifp, ifa);
1154 			break;
1155 #endif
1156 		default:
1157 			ifp->if_init(ifp->if_softc);
1158 			break;
1159 		}
1160 		break;
1161 
1162 	case SIOCGIFADDR:
1163 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1164 		    ETHER_ADDR_LEN);
1165 		break;
1166 
1167 	case SIOCSIFMTU:
1168 		/*
1169 		 * Set the interface MTU.
1170 		 */
1171 		if (ifr->ifr_mtu > ETHERMTU) {
1172 			error = EINVAL;
1173 		} else {
1174 			ifp->if_mtu = ifr->ifr_mtu;
1175 		}
1176 		break;
1177 
1178 	case SIOCSLANPCP:
1179 		error = priv_check(curthread, PRIV_NET_SETLANPCP);
1180 		if (error != 0)
1181 			break;
1182 		if (ifr->ifr_lan_pcp > 7 &&
1183 		    ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1184 			error = EINVAL;
1185 		} else {
1186 			ifp->if_pcp = ifr->ifr_lan_pcp;
1187 			/* broadcast event about PCP change */
1188 			EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1189 		}
1190 		break;
1191 
1192 	case SIOCGLANPCP:
1193 		ifr->ifr_lan_pcp = ifp->if_pcp;
1194 		break;
1195 
1196 	default:
1197 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1198 		break;
1199 	}
1200 	return (error);
1201 }
1202 
1203 static int
1204 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1205 	struct sockaddr *sa)
1206 {
1207 	struct sockaddr_dl *sdl;
1208 #ifdef INET
1209 	struct sockaddr_in *sin;
1210 #endif
1211 #ifdef INET6
1212 	struct sockaddr_in6 *sin6;
1213 #endif
1214 	u_char *e_addr;
1215 
1216 	switch(sa->sa_family) {
1217 	case AF_LINK:
1218 		/*
1219 		 * No mapping needed. Just check that it's a valid MC address.
1220 		 */
1221 		sdl = (struct sockaddr_dl *)sa;
1222 		e_addr = LLADDR(sdl);
1223 		if (!ETHER_IS_MULTICAST(e_addr))
1224 			return EADDRNOTAVAIL;
1225 		*llsa = NULL;
1226 		return 0;
1227 
1228 #ifdef INET
1229 	case AF_INET:
1230 		sin = (struct sockaddr_in *)sa;
1231 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1232 			return EADDRNOTAVAIL;
1233 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1234 		sdl->sdl_alen = ETHER_ADDR_LEN;
1235 		e_addr = LLADDR(sdl);
1236 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1237 		*llsa = (struct sockaddr *)sdl;
1238 		return 0;
1239 #endif
1240 #ifdef INET6
1241 	case AF_INET6:
1242 		sin6 = (struct sockaddr_in6 *)sa;
1243 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1244 			/*
1245 			 * An IP6 address of 0 means listen to all
1246 			 * of the Ethernet multicast address used for IP6.
1247 			 * (This is used for multicast routers.)
1248 			 */
1249 			ifp->if_flags |= IFF_ALLMULTI;
1250 			*llsa = NULL;
1251 			return 0;
1252 		}
1253 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1254 			return EADDRNOTAVAIL;
1255 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1256 		sdl->sdl_alen = ETHER_ADDR_LEN;
1257 		e_addr = LLADDR(sdl);
1258 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1259 		*llsa = (struct sockaddr *)sdl;
1260 		return 0;
1261 #endif
1262 
1263 	default:
1264 		/*
1265 		 * Well, the text isn't quite right, but it's the name
1266 		 * that counts...
1267 		 */
1268 		return EAFNOSUPPORT;
1269 	}
1270 }
1271 
1272 static moduledata_t ether_mod = {
1273 	.name = "ether",
1274 };
1275 
1276 void
1277 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1278 {
1279 	struct ether_vlan_header vlan;
1280 	struct mbuf mv, mb;
1281 
1282 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1283 	    ("%s: vlan information not present", __func__));
1284 	KASSERT(m->m_len >= sizeof(struct ether_header),
1285 	    ("%s: mbuf not large enough for header", __func__));
1286 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1287 	vlan.evl_proto = vlan.evl_encap_proto;
1288 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1289 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1290 	m->m_len -= sizeof(struct ether_header);
1291 	m->m_data += sizeof(struct ether_header);
1292 	/*
1293 	 * If a data link has been supplied by the caller, then we will need to
1294 	 * re-create a stack allocated mbuf chain with the following structure:
1295 	 *
1296 	 * (1) mbuf #1 will contain the supplied data link
1297 	 * (2) mbuf #2 will contain the vlan header
1298 	 * (3) mbuf #3 will contain the original mbuf's packet data
1299 	 *
1300 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1301 	 */
1302 	if (data != NULL) {
1303 		mv.m_next = m;
1304 		mv.m_data = (caddr_t)&vlan;
1305 		mv.m_len = sizeof(vlan);
1306 		mb.m_next = &mv;
1307 		mb.m_data = data;
1308 		mb.m_len = dlen;
1309 		bpf_mtap(bp, &mb);
1310 	} else
1311 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1312 	m->m_len += sizeof(struct ether_header);
1313 	m->m_data -= sizeof(struct ether_header);
1314 }
1315 
1316 struct mbuf *
1317 ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto)
1318 {
1319 	struct ether_vlan_header *evl;
1320 
1321 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1322 	if (m == NULL)
1323 		return (NULL);
1324 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1325 
1326 	if (m->m_len < sizeof(*evl)) {
1327 		m = m_pullup(m, sizeof(*evl));
1328 		if (m == NULL)
1329 			return (NULL);
1330 	}
1331 
1332 	/*
1333 	 * Transform the Ethernet header into an Ethernet header
1334 	 * with 802.1Q encapsulation.
1335 	 */
1336 	evl = mtod(m, struct ether_vlan_header *);
1337 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1338 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1339 	evl->evl_encap_proto = htons(proto);
1340 	evl->evl_tag = htons(tag);
1341 	return (m);
1342 }
1343 
1344 void
1345 ether_bpf_mtap_if(struct ifnet *ifp, struct mbuf *m)
1346 {
1347 	if (bpf_peers_present(ifp->if_bpf)) {
1348 		M_ASSERTVALID(m);
1349 		if ((m->m_flags & M_VLANTAG) != 0)
1350 			ether_vlan_mtap(ifp->if_bpf, m, NULL, 0);
1351 		else
1352 			bpf_mtap(ifp->if_bpf, m);
1353 	}
1354 }
1355 
1356 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1357     "IEEE 802.1Q VLAN");
1358 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
1359     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1360     "for consistency");
1361 
1362 VNET_DEFINE_STATIC(int, soft_pad);
1363 #define	V_soft_pad	VNET(soft_pad)
1364 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1365     &VNET_NAME(soft_pad), 0,
1366     "pad short frames before tagging");
1367 
1368 /*
1369  * For now, make preserving PCP via an mbuf tag optional, as it increases
1370  * per-packet memory allocations and frees.  In the future, it would be
1371  * preferable to reuse ether_vtag for this, or similar.
1372  */
1373 VNET_DEFINE(int, vlan_mtag_pcp) = 0;
1374 #define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
1375 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET,
1376     &VNET_NAME(vlan_mtag_pcp), 0,
1377     "Retain VLAN PCP information as packets are passed up the stack");
1378 
1379 bool
1380 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1381     struct ether_8021q_tag *qtag)
1382 {
1383 	struct m_tag *mtag;
1384 	int n;
1385 	uint16_t tag;
1386 	static const char pad[8];	/* just zeros */
1387 
1388 	/*
1389 	 * Pad the frame to the minimum size allowed if told to.
1390 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1391 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1392 	 * bridges that violate paragraph C.4.4.3.a from the same
1393 	 * document, i.e., fail to pad short frames after untagging.
1394 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1395 	 * untagging it will produce a 62-byte frame, which is a runt
1396 	 * and requires padding.  There are VLAN-enabled network
1397 	 * devices that just discard such runts instead or mishandle
1398 	 * them somehow.
1399 	 */
1400 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1401 		for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1402 		     n > 0; n -= sizeof(pad)) {
1403 			if (!m_append(*mp, min(n, sizeof(pad)), pad))
1404 				break;
1405 		}
1406 		if (n > 0) {
1407 			m_freem(*mp);
1408 			*mp = NULL;
1409 			if_printf(ife, "cannot pad short frame");
1410 			return (false);
1411 		}
1412 	}
1413 
1414 	/*
1415 	 * If PCP is set in mbuf, use it
1416 	 */
1417 	if ((*mp)->m_flags & M_VLANTAG) {
1418 		qtag->pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
1419 	}
1420 
1421 	/*
1422 	 * If underlying interface can do VLAN tag insertion itself,
1423 	 * just pass the packet along. However, we need some way to
1424 	 * tell the interface where the packet came from so that it
1425 	 * knows how to find the VLAN tag to use, so we attach a
1426 	 * packet tag that holds it.
1427 	 */
1428 	if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1429 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1430 		tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0);
1431 	else
1432 		tag = EVL_MAKETAG(qtag->vid, qtag->pcp, 0);
1433 	if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) &&
1434 	    (qtag->proto == ETHERTYPE_VLAN)) {
1435 		(*mp)->m_pkthdr.ether_vtag = tag;
1436 		(*mp)->m_flags |= M_VLANTAG;
1437 	} else {
1438 		*mp = ether_vlanencap_proto(*mp, tag, qtag->proto);
1439 		if (*mp == NULL) {
1440 			if_printf(ife, "unable to prepend 802.1Q header");
1441 			return (false);
1442 		}
1443 	}
1444 	return (true);
1445 }
1446 
1447 /*
1448  * Allocate an address from the FreeBSD Foundation OUI.  This uses a
1449  * cryptographic hash function on the containing jail's name, UUID and the
1450  * interface name to attempt to provide a unique but stable address.
1451  * Pseudo-interfaces which require a MAC address should use this function to
1452  * allocate non-locally-administered addresses.
1453  */
1454 void
1455 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1456 {
1457 	SHA1_CTX ctx;
1458 	char *buf;
1459 	char uuid[HOSTUUIDLEN + 1];
1460 	uint64_t addr;
1461 	int i, sz;
1462 	char digest[SHA1_RESULTLEN];
1463 	char jailname[MAXHOSTNAMELEN];
1464 
1465 	getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1466 	if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) {
1467 		/* Fall back to a random mac address. */
1468 		goto rando;
1469 	}
1470 
1471 	/* If each (vnet) jail would also have a unique hostuuid this would not
1472 	 * be necessary. */
1473 	getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1474 	sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp),
1475 	    jailname);
1476 	if (sz < 0) {
1477 		/* Fall back to a random mac address. */
1478 		goto rando;
1479 	}
1480 
1481 	SHA1Init(&ctx);
1482 	SHA1Update(&ctx, buf, sz);
1483 	SHA1Final(digest, &ctx);
1484 	free(buf, M_TEMP);
1485 
1486 	addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
1487 	    OUI_FREEBSD_GENERATED_MASK;
1488 	addr = OUI_FREEBSD(addr);
1489 	for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1490 		hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1491 		    0xFF;
1492 	}
1493 
1494 	return;
1495 rando:
1496 	arc4rand(hwaddr, sizeof(*hwaddr), 0);
1497 	/* Unicast */
1498 	hwaddr->octet[0] &= 0xFE;
1499 	/* Locally administered. */
1500 	hwaddr->octet[0] |= 0x02;
1501 }
1502 
1503 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1504 MODULE_VERSION(ether, 1);
1505