1 /*- 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 30 * $FreeBSD$ 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_netgraph.h" 36 #include "opt_mbuf_profiling.h" 37 #include "opt_rss.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mbuf.h> 46 #include <sys/random.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/sysctl.h> 50 #include <sys/uuid.h> 51 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_arp.h> 55 #include <net/netisr.h> 56 #include <net/route.h> 57 #include <net/if_llc.h> 58 #include <net/if_dl.h> 59 #include <net/if_types.h> 60 #include <net/bpf.h> 61 #include <net/ethernet.h> 62 #include <net/if_bridgevar.h> 63 #include <net/if_vlan_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/pfil.h> 66 #include <net/rss_config.h> 67 #include <net/vnet.h> 68 69 #include <netpfil/pf/pf_mtag.h> 70 71 #if defined(INET) || defined(INET6) 72 #include <netinet/in.h> 73 #include <netinet/in_var.h> 74 #include <netinet/if_ether.h> 75 #include <netinet/ip_carp.h> 76 #include <netinet/ip_var.h> 77 #endif 78 #ifdef INET6 79 #include <netinet6/nd6.h> 80 #endif 81 #include <security/mac/mac_framework.h> 82 83 #ifdef CTASSERT 84 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 85 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 86 #endif 87 88 VNET_DEFINE(struct pfil_head, link_pfil_hook); /* Packet filter hooks */ 89 90 /* netgraph node hooks for ng_ether(4) */ 91 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 92 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 93 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 94 void (*ng_ether_attach_p)(struct ifnet *ifp); 95 void (*ng_ether_detach_p)(struct ifnet *ifp); 96 97 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 98 99 /* if_bridge(4) support */ 100 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 101 int (*bridge_output_p)(struct ifnet *, struct mbuf *, 102 struct sockaddr *, struct rtentry *); 103 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 104 105 /* if_lagg(4) support */ 106 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 107 108 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 109 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 110 111 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 112 struct sockaddr *); 113 #ifdef VIMAGE 114 static void ether_reassign(struct ifnet *, struct vnet *, char *); 115 #endif 116 117 #define ETHER_IS_BROADCAST(addr) \ 118 (bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0) 119 120 #define senderr(e) do { error = (e); goto bad;} while (0) 121 122 static void 123 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 124 { 125 int csum_flags = 0; 126 127 if (src->m_pkthdr.csum_flags & CSUM_IP) 128 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 129 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 130 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 131 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 132 csum_flags |= CSUM_SCTP_VALID; 133 dst->m_pkthdr.csum_flags |= csum_flags; 134 if (csum_flags & CSUM_DATA_VALID) 135 dst->m_pkthdr.csum_data = 0xffff; 136 } 137 138 /* 139 * Ethernet output routine. 140 * Encapsulate a packet of type family for the local net. 141 * Use trailer local net encapsulation if enough data in first 142 * packet leaves a multiple of 512 bytes of data in remainder. 143 */ 144 int 145 ether_output(struct ifnet *ifp, struct mbuf *m, 146 const struct sockaddr *dst, struct route *ro) 147 { 148 short type; 149 int error = 0, hdrcmplt = 0; 150 u_char edst[ETHER_ADDR_LEN]; 151 struct llentry *lle = NULL; 152 struct rtentry *rt0 = NULL; 153 struct ether_header *eh; 154 struct pf_mtag *t; 155 int loop_copy = 1; 156 int hlen; /* link layer header length */ 157 int is_gw = 0; 158 uint32_t pflags = 0; 159 160 if (ro != NULL) { 161 if (!(m->m_flags & (M_BCAST | M_MCAST))) { 162 lle = ro->ro_lle; 163 if (lle != NULL) 164 pflags = lle->la_flags; 165 } 166 rt0 = ro->ro_rt; 167 if (rt0 != NULL && (rt0->rt_flags & RTF_GATEWAY) != 0) 168 is_gw = 1; 169 } 170 #ifdef MAC 171 error = mac_ifnet_check_transmit(ifp, m); 172 if (error) 173 senderr(error); 174 #endif 175 176 M_PROFILE(m); 177 if (ifp->if_flags & IFF_MONITOR) 178 senderr(ENETDOWN); 179 if (!((ifp->if_flags & IFF_UP) && 180 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 181 senderr(ENETDOWN); 182 183 hlen = ETHER_HDR_LEN; 184 switch (dst->sa_family) { 185 #ifdef INET 186 case AF_INET: 187 if (lle != NULL && (pflags & LLE_VALID) != 0) 188 memcpy(edst, &lle->ll_addr.mac16, sizeof(edst)); 189 else 190 error = arpresolve(ifp, is_gw, m, dst, edst, &pflags); 191 if (error) 192 return (error == EWOULDBLOCK ? 0 : error); 193 type = htons(ETHERTYPE_IP); 194 break; 195 case AF_ARP: 196 { 197 struct arphdr *ah; 198 ah = mtod(m, struct arphdr *); 199 ah->ar_hrd = htons(ARPHRD_ETHER); 200 201 loop_copy = 0; /* if this is for us, don't do it */ 202 203 switch(ntohs(ah->ar_op)) { 204 case ARPOP_REVREQUEST: 205 case ARPOP_REVREPLY: 206 type = htons(ETHERTYPE_REVARP); 207 break; 208 case ARPOP_REQUEST: 209 case ARPOP_REPLY: 210 default: 211 type = htons(ETHERTYPE_ARP); 212 break; 213 } 214 215 if (m->m_flags & M_BCAST) 216 bcopy(ifp->if_broadcastaddr, edst, ETHER_ADDR_LEN); 217 else 218 bcopy(ar_tha(ah), edst, ETHER_ADDR_LEN); 219 220 } 221 break; 222 #endif 223 #ifdef INET6 224 case AF_INET6: 225 if (lle != NULL && (pflags & LLE_VALID)) 226 memcpy(edst, &lle->ll_addr.mac16, sizeof(edst)); 227 else 228 error = nd6_resolve(ifp, is_gw, m, dst, (u_char *)edst, 229 &pflags); 230 if (error) 231 return (error == EWOULDBLOCK ? 0 : error); 232 type = htons(ETHERTYPE_IPV6); 233 break; 234 #endif 235 case pseudo_AF_HDRCMPLT: 236 { 237 const struct ether_header *eh; 238 239 hdrcmplt = 1; 240 /* FALLTHROUGH */ 241 242 case AF_UNSPEC: 243 loop_copy = 0; /* if this is for us, don't do it */ 244 eh = (const struct ether_header *)dst->sa_data; 245 (void)memcpy(edst, eh->ether_dhost, sizeof (edst)); 246 type = eh->ether_type; 247 break; 248 } 249 default: 250 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 251 senderr(EAFNOSUPPORT); 252 } 253 254 if ((pflags & LLE_IFADDR) != 0) { 255 update_mbuf_csumflags(m, m); 256 return (if_simloop(ifp, m, dst->sa_family, 0)); 257 } 258 259 /* 260 * Add local net header. If no space in first mbuf, 261 * allocate another. 262 */ 263 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 264 if (m == NULL) 265 senderr(ENOBUFS); 266 eh = mtod(m, struct ether_header *); 267 if (hdrcmplt == 0) { 268 memcpy(&eh->ether_type, &type, sizeof(eh->ether_type)); 269 memcpy(eh->ether_dhost, edst, sizeof (edst)); 270 memcpy(eh->ether_shost, IF_LLADDR(ifp),sizeof(eh->ether_shost)); 271 } 272 273 /* 274 * If a simplex interface, and the packet is being sent to our 275 * Ethernet address or a broadcast address, loopback a copy. 276 * XXX To make a simplex device behave exactly like a duplex 277 * device, we should copy in the case of sending to our own 278 * ethernet address (thus letting the original actually appear 279 * on the wire). However, we don't do that here for security 280 * reasons and compatibility with the original behavior. 281 */ 282 if ((ifp->if_flags & IFF_SIMPLEX) && loop_copy && 283 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 284 if (m->m_flags & M_BCAST) { 285 struct mbuf *n; 286 287 /* 288 * Because if_simloop() modifies the packet, we need a 289 * writable copy through m_dup() instead of a readonly 290 * one as m_copy[m] would give us. The alternative would 291 * be to modify if_simloop() to handle the readonly mbuf, 292 * but performancewise it is mostly equivalent (trading 293 * extra data copying vs. extra locking). 294 * 295 * XXX This is a local workaround. A number of less 296 * often used kernel parts suffer from the same bug. 297 * See PR kern/105943 for a proposed general solution. 298 */ 299 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 300 update_mbuf_csumflags(m, n); 301 (void)if_simloop(ifp, n, dst->sa_family, hlen); 302 } else 303 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 304 } else if (bcmp(eh->ether_dhost, eh->ether_shost, 305 ETHER_ADDR_LEN) == 0) { 306 update_mbuf_csumflags(m, m); 307 (void) if_simloop(ifp, m, dst->sa_family, hlen); 308 return (0); /* XXX */ 309 } 310 } 311 312 /* 313 * Bridges require special output handling. 314 */ 315 if (ifp->if_bridge) { 316 BRIDGE_OUTPUT(ifp, m, error); 317 return (error); 318 } 319 320 #if defined(INET) || defined(INET6) 321 if (ifp->if_carp && 322 (error = (*carp_output_p)(ifp, m, dst))) 323 goto bad; 324 #endif 325 326 /* Handle ng_ether(4) processing, if any */ 327 if (ifp->if_l2com != NULL) { 328 KASSERT(ng_ether_output_p != NULL, 329 ("ng_ether_output_p is NULL")); 330 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 331 bad: if (m != NULL) 332 m_freem(m); 333 return (error); 334 } 335 if (m == NULL) 336 return (0); 337 } 338 339 /* Continue with link-layer output */ 340 return ether_output_frame(ifp, m); 341 } 342 343 /* 344 * Ethernet link layer output routine to send a raw frame to the device. 345 * 346 * This assumes that the 14 byte Ethernet header is present and contiguous 347 * in the first mbuf (if BRIDGE'ing). 348 */ 349 int 350 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 351 { 352 int i; 353 354 if (PFIL_HOOKED(&V_link_pfil_hook)) { 355 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL); 356 357 if (i != 0) 358 return (EACCES); 359 360 if (m == NULL) 361 return (0); 362 } 363 364 /* 365 * Queue message on interface, update output statistics if 366 * successful, and start output if interface not yet active. 367 */ 368 return ((ifp->if_transmit)(ifp, m)); 369 } 370 371 #if defined(INET) || defined(INET6) 372 #endif 373 374 /* 375 * Process a received Ethernet packet; the packet is in the 376 * mbuf chain m with the ethernet header at the front. 377 */ 378 static void 379 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 380 { 381 struct ether_header *eh; 382 u_short etype; 383 384 if ((ifp->if_flags & IFF_UP) == 0) { 385 m_freem(m); 386 return; 387 } 388 #ifdef DIAGNOSTIC 389 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 390 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 391 m_freem(m); 392 return; 393 } 394 #endif 395 if (m->m_len < ETHER_HDR_LEN) { 396 /* XXX maybe should pullup? */ 397 if_printf(ifp, "discard frame w/o leading ethernet " 398 "header (len %u pkt len %u)\n", 399 m->m_len, m->m_pkthdr.len); 400 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 401 m_freem(m); 402 return; 403 } 404 eh = mtod(m, struct ether_header *); 405 etype = ntohs(eh->ether_type); 406 random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER); 407 408 CURVNET_SET_QUIET(ifp->if_vnet); 409 410 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 411 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 412 m->m_flags |= M_BCAST; 413 else 414 m->m_flags |= M_MCAST; 415 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 416 } 417 418 #ifdef MAC 419 /* 420 * Tag the mbuf with an appropriate MAC label before any other 421 * consumers can get to it. 422 */ 423 mac_ifnet_create_mbuf(ifp, m); 424 #endif 425 426 /* 427 * Give bpf a chance at the packet. 428 */ 429 ETHER_BPF_MTAP(ifp, m); 430 431 /* 432 * If the CRC is still on the packet, trim it off. We do this once 433 * and once only in case we are re-entered. Nothing else on the 434 * Ethernet receive path expects to see the FCS. 435 */ 436 if (m->m_flags & M_HASFCS) { 437 m_adj(m, -ETHER_CRC_LEN); 438 m->m_flags &= ~M_HASFCS; 439 } 440 441 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 442 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 443 444 /* Allow monitor mode to claim this frame, after stats are updated. */ 445 if (ifp->if_flags & IFF_MONITOR) { 446 m_freem(m); 447 CURVNET_RESTORE(); 448 return; 449 } 450 451 /* Handle input from a lagg(4) port */ 452 if (ifp->if_type == IFT_IEEE8023ADLAG) { 453 KASSERT(lagg_input_p != NULL, 454 ("%s: if_lagg not loaded!", __func__)); 455 m = (*lagg_input_p)(ifp, m); 456 if (m != NULL) 457 ifp = m->m_pkthdr.rcvif; 458 else { 459 CURVNET_RESTORE(); 460 return; 461 } 462 } 463 464 /* 465 * If the hardware did not process an 802.1Q tag, do this now, 466 * to allow 802.1P priority frames to be passed to the main input 467 * path correctly. 468 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 469 */ 470 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 471 struct ether_vlan_header *evl; 472 473 if (m->m_len < sizeof(*evl) && 474 (m = m_pullup(m, sizeof(*evl))) == NULL) { 475 #ifdef DIAGNOSTIC 476 if_printf(ifp, "cannot pullup VLAN header\n"); 477 #endif 478 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 479 CURVNET_RESTORE(); 480 return; 481 } 482 483 evl = mtod(m, struct ether_vlan_header *); 484 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 485 m->m_flags |= M_VLANTAG; 486 487 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 488 ETHER_HDR_LEN - ETHER_TYPE_LEN); 489 m_adj(m, ETHER_VLAN_ENCAP_LEN); 490 eh = mtod(m, struct ether_header *); 491 } 492 493 M_SETFIB(m, ifp->if_fib); 494 495 /* Allow ng_ether(4) to claim this frame. */ 496 if (ifp->if_l2com != NULL) { 497 KASSERT(ng_ether_input_p != NULL, 498 ("%s: ng_ether_input_p is NULL", __func__)); 499 m->m_flags &= ~M_PROMISC; 500 (*ng_ether_input_p)(ifp, &m); 501 if (m == NULL) { 502 CURVNET_RESTORE(); 503 return; 504 } 505 eh = mtod(m, struct ether_header *); 506 } 507 508 /* 509 * Allow if_bridge(4) to claim this frame. 510 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 511 * and the frame should be delivered locally. 512 */ 513 if (ifp->if_bridge != NULL) { 514 m->m_flags &= ~M_PROMISC; 515 BRIDGE_INPUT(ifp, m); 516 if (m == NULL) { 517 CURVNET_RESTORE(); 518 return; 519 } 520 eh = mtod(m, struct ether_header *); 521 } 522 523 #if defined(INET) || defined(INET6) 524 /* 525 * Clear M_PROMISC on frame so that carp(4) will see it when the 526 * mbuf flows up to Layer 3. 527 * FreeBSD's implementation of carp(4) uses the inprotosw 528 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 529 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 530 * is outside the scope of the M_PROMISC test below. 531 * TODO: Maintain a hash table of ethernet addresses other than 532 * ether_dhost which may be active on this ifp. 533 */ 534 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 535 m->m_flags &= ~M_PROMISC; 536 } else 537 #endif 538 { 539 /* 540 * If the frame received was not for our MAC address, set the 541 * M_PROMISC flag on the mbuf chain. The frame may need to 542 * be seen by the rest of the Ethernet input path in case of 543 * re-entry (e.g. bridge, vlan, netgraph) but should not be 544 * seen by upper protocol layers. 545 */ 546 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 547 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 548 m->m_flags |= M_PROMISC; 549 } 550 551 ether_demux(ifp, m); 552 CURVNET_RESTORE(); 553 } 554 555 /* 556 * Ethernet input dispatch; by default, direct dispatch here regardless of 557 * global configuration. However, if RSS is enabled, hook up RSS affinity 558 * so that when deferred or hybrid dispatch is enabled, we can redistribute 559 * load based on RSS. 560 * 561 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 562 * not it had already done work distribution via multi-queue. Then we could 563 * direct dispatch in the event load balancing was already complete and 564 * handle the case of interfaces with different capabilities better. 565 * 566 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 567 * at multiple layers? 568 * 569 * XXXRW: For now, enable all this only if RSS is compiled in, although it 570 * works fine without RSS. Need to characterise the performance overhead 571 * of the detour through the netisr code in the event the result is always 572 * direct dispatch. 573 */ 574 static void 575 ether_nh_input(struct mbuf *m) 576 { 577 578 M_ASSERTPKTHDR(m); 579 KASSERT(m->m_pkthdr.rcvif != NULL, 580 ("%s: NULL interface pointer", __func__)); 581 ether_input_internal(m->m_pkthdr.rcvif, m); 582 } 583 584 static struct netisr_handler ether_nh = { 585 .nh_name = "ether", 586 .nh_handler = ether_nh_input, 587 .nh_proto = NETISR_ETHER, 588 #ifdef RSS 589 .nh_policy = NETISR_POLICY_CPU, 590 .nh_dispatch = NETISR_DISPATCH_DIRECT, 591 .nh_m2cpuid = rss_m2cpuid, 592 #else 593 .nh_policy = NETISR_POLICY_SOURCE, 594 .nh_dispatch = NETISR_DISPATCH_DIRECT, 595 #endif 596 }; 597 598 static void 599 ether_init(__unused void *arg) 600 { 601 602 netisr_register(ðer_nh); 603 } 604 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 605 606 static void 607 vnet_ether_init(__unused void *arg) 608 { 609 int i; 610 611 /* Initialize packet filter hooks. */ 612 V_link_pfil_hook.ph_type = PFIL_TYPE_AF; 613 V_link_pfil_hook.ph_af = AF_LINK; 614 if ((i = pfil_head_register(&V_link_pfil_hook)) != 0) 615 printf("%s: WARNING: unable to register pfil link hook, " 616 "error %d\n", __func__, i); 617 } 618 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 619 vnet_ether_init, NULL); 620 621 static void 622 vnet_ether_destroy(__unused void *arg) 623 { 624 int i; 625 626 if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0) 627 printf("%s: WARNING: unable to unregister pfil link hook, " 628 "error %d\n", __func__, i); 629 } 630 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 631 vnet_ether_destroy, NULL); 632 633 634 635 static void 636 ether_input(struct ifnet *ifp, struct mbuf *m) 637 { 638 639 struct mbuf *mn; 640 641 /* 642 * The drivers are allowed to pass in a chain of packets linked with 643 * m_nextpkt. We split them up into separate packets here and pass 644 * them up. This allows the drivers to amortize the receive lock. 645 */ 646 while (m) { 647 mn = m->m_nextpkt; 648 m->m_nextpkt = NULL; 649 650 /* 651 * We will rely on rcvif being set properly in the deferred context, 652 * so assert it is correct here. 653 */ 654 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch", __func__)); 655 netisr_dispatch(NETISR_ETHER, m); 656 m = mn; 657 } 658 } 659 660 /* 661 * Upper layer processing for a received Ethernet packet. 662 */ 663 void 664 ether_demux(struct ifnet *ifp, struct mbuf *m) 665 { 666 struct ether_header *eh; 667 int i, isr; 668 u_short ether_type; 669 670 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 671 672 /* Do not grab PROMISC frames in case we are re-entered. */ 673 if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) { 674 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL); 675 676 if (i != 0 || m == NULL) 677 return; 678 } 679 680 eh = mtod(m, struct ether_header *); 681 ether_type = ntohs(eh->ether_type); 682 683 /* 684 * If this frame has a VLAN tag other than 0, call vlan_input() 685 * if its module is loaded. Otherwise, drop. 686 */ 687 if ((m->m_flags & M_VLANTAG) && 688 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 689 if (ifp->if_vlantrunk == NULL) { 690 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 691 m_freem(m); 692 return; 693 } 694 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 695 __func__)); 696 /* Clear before possibly re-entering ether_input(). */ 697 m->m_flags &= ~M_PROMISC; 698 (*vlan_input_p)(ifp, m); 699 return; 700 } 701 702 /* 703 * Pass promiscuously received frames to the upper layer if the user 704 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 705 */ 706 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 707 m_freem(m); 708 return; 709 } 710 711 /* 712 * Reset layer specific mbuf flags to avoid confusing upper layers. 713 * Strip off Ethernet header. 714 */ 715 m->m_flags &= ~M_VLANTAG; 716 m_clrprotoflags(m); 717 m_adj(m, ETHER_HDR_LEN); 718 719 /* 720 * Dispatch frame to upper layer. 721 */ 722 switch (ether_type) { 723 #ifdef INET 724 case ETHERTYPE_IP: 725 isr = NETISR_IP; 726 break; 727 728 case ETHERTYPE_ARP: 729 if (ifp->if_flags & IFF_NOARP) { 730 /* Discard packet if ARP is disabled on interface */ 731 m_freem(m); 732 return; 733 } 734 isr = NETISR_ARP; 735 break; 736 #endif 737 #ifdef INET6 738 case ETHERTYPE_IPV6: 739 isr = NETISR_IPV6; 740 break; 741 #endif 742 default: 743 goto discard; 744 } 745 netisr_dispatch(isr, m); 746 return; 747 748 discard: 749 /* 750 * Packet is to be discarded. If netgraph is present, 751 * hand the packet to it for last chance processing; 752 * otherwise dispose of it. 753 */ 754 if (ifp->if_l2com != NULL) { 755 KASSERT(ng_ether_input_orphan_p != NULL, 756 ("ng_ether_input_orphan_p is NULL")); 757 /* 758 * Put back the ethernet header so netgraph has a 759 * consistent view of inbound packets. 760 */ 761 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 762 (*ng_ether_input_orphan_p)(ifp, m); 763 return; 764 } 765 m_freem(m); 766 } 767 768 /* 769 * Convert Ethernet address to printable (loggable) representation. 770 * This routine is for compatibility; it's better to just use 771 * 772 * printf("%6D", <pointer to address>, ":"); 773 * 774 * since there's no static buffer involved. 775 */ 776 char * 777 ether_sprintf(const u_char *ap) 778 { 779 static char etherbuf[18]; 780 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 781 return (etherbuf); 782 } 783 784 /* 785 * Perform common duties while attaching to interface list 786 */ 787 void 788 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 789 { 790 int i; 791 struct ifaddr *ifa; 792 struct sockaddr_dl *sdl; 793 794 ifp->if_addrlen = ETHER_ADDR_LEN; 795 ifp->if_hdrlen = ETHER_HDR_LEN; 796 if_attach(ifp); 797 ifp->if_mtu = ETHERMTU; 798 ifp->if_output = ether_output; 799 ifp->if_input = ether_input; 800 ifp->if_resolvemulti = ether_resolvemulti; 801 #ifdef VIMAGE 802 ifp->if_reassign = ether_reassign; 803 #endif 804 if (ifp->if_baudrate == 0) 805 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 806 ifp->if_broadcastaddr = etherbroadcastaddr; 807 808 ifa = ifp->if_addr; 809 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 810 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 811 sdl->sdl_type = IFT_ETHER; 812 sdl->sdl_alen = ifp->if_addrlen; 813 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 814 815 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 816 if (ng_ether_attach_p != NULL) 817 (*ng_ether_attach_p)(ifp); 818 819 /* Announce Ethernet MAC address if non-zero. */ 820 for (i = 0; i < ifp->if_addrlen; i++) 821 if (lla[i] != 0) 822 break; 823 if (i != ifp->if_addrlen) 824 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 825 826 uuid_ether_add(LLADDR(sdl)); 827 } 828 829 /* 830 * Perform common duties while detaching an Ethernet interface 831 */ 832 void 833 ether_ifdetach(struct ifnet *ifp) 834 { 835 struct sockaddr_dl *sdl; 836 837 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 838 uuid_ether_del(LLADDR(sdl)); 839 840 if (ifp->if_l2com != NULL) { 841 KASSERT(ng_ether_detach_p != NULL, 842 ("ng_ether_detach_p is NULL")); 843 (*ng_ether_detach_p)(ifp); 844 } 845 846 bpfdetach(ifp); 847 if_detach(ifp); 848 } 849 850 #ifdef VIMAGE 851 void 852 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 853 { 854 855 if (ifp->if_l2com != NULL) { 856 KASSERT(ng_ether_detach_p != NULL, 857 ("ng_ether_detach_p is NULL")); 858 (*ng_ether_detach_p)(ifp); 859 } 860 861 if (ng_ether_attach_p != NULL) { 862 CURVNET_SET_QUIET(new_vnet); 863 (*ng_ether_attach_p)(ifp); 864 CURVNET_RESTORE(); 865 } 866 } 867 #endif 868 869 SYSCTL_DECL(_net_link); 870 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 871 872 #if 0 873 /* 874 * This is for reference. We have a table-driven version 875 * of the little-endian crc32 generator, which is faster 876 * than the double-loop. 877 */ 878 uint32_t 879 ether_crc32_le(const uint8_t *buf, size_t len) 880 { 881 size_t i; 882 uint32_t crc; 883 int bit; 884 uint8_t data; 885 886 crc = 0xffffffff; /* initial value */ 887 888 for (i = 0; i < len; i++) { 889 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 890 carry = (crc ^ data) & 1; 891 crc >>= 1; 892 if (carry) 893 crc = (crc ^ ETHER_CRC_POLY_LE); 894 } 895 } 896 897 return (crc); 898 } 899 #else 900 uint32_t 901 ether_crc32_le(const uint8_t *buf, size_t len) 902 { 903 static const uint32_t crctab[] = { 904 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 905 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 906 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 907 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 908 }; 909 size_t i; 910 uint32_t crc; 911 912 crc = 0xffffffff; /* initial value */ 913 914 for (i = 0; i < len; i++) { 915 crc ^= buf[i]; 916 crc = (crc >> 4) ^ crctab[crc & 0xf]; 917 crc = (crc >> 4) ^ crctab[crc & 0xf]; 918 } 919 920 return (crc); 921 } 922 #endif 923 924 uint32_t 925 ether_crc32_be(const uint8_t *buf, size_t len) 926 { 927 size_t i; 928 uint32_t crc, carry; 929 int bit; 930 uint8_t data; 931 932 crc = 0xffffffff; /* initial value */ 933 934 for (i = 0; i < len; i++) { 935 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 936 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 937 crc <<= 1; 938 if (carry) 939 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 940 } 941 } 942 943 return (crc); 944 } 945 946 int 947 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 948 { 949 struct ifaddr *ifa = (struct ifaddr *) data; 950 struct ifreq *ifr = (struct ifreq *) data; 951 int error = 0; 952 953 switch (command) { 954 case SIOCSIFADDR: 955 ifp->if_flags |= IFF_UP; 956 957 switch (ifa->ifa_addr->sa_family) { 958 #ifdef INET 959 case AF_INET: 960 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 961 arp_ifinit(ifp, ifa); 962 break; 963 #endif 964 default: 965 ifp->if_init(ifp->if_softc); 966 break; 967 } 968 break; 969 970 case SIOCGIFADDR: 971 { 972 struct sockaddr *sa; 973 974 sa = (struct sockaddr *) & ifr->ifr_data; 975 bcopy(IF_LLADDR(ifp), 976 (caddr_t) sa->sa_data, ETHER_ADDR_LEN); 977 } 978 break; 979 980 case SIOCSIFMTU: 981 /* 982 * Set the interface MTU. 983 */ 984 if (ifr->ifr_mtu > ETHERMTU) { 985 error = EINVAL; 986 } else { 987 ifp->if_mtu = ifr->ifr_mtu; 988 } 989 break; 990 default: 991 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 992 break; 993 } 994 return (error); 995 } 996 997 static int 998 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 999 struct sockaddr *sa) 1000 { 1001 struct sockaddr_dl *sdl; 1002 #ifdef INET 1003 struct sockaddr_in *sin; 1004 #endif 1005 #ifdef INET6 1006 struct sockaddr_in6 *sin6; 1007 #endif 1008 u_char *e_addr; 1009 1010 switch(sa->sa_family) { 1011 case AF_LINK: 1012 /* 1013 * No mapping needed. Just check that it's a valid MC address. 1014 */ 1015 sdl = (struct sockaddr_dl *)sa; 1016 e_addr = LLADDR(sdl); 1017 if (!ETHER_IS_MULTICAST(e_addr)) 1018 return EADDRNOTAVAIL; 1019 *llsa = 0; 1020 return 0; 1021 1022 #ifdef INET 1023 case AF_INET: 1024 sin = (struct sockaddr_in *)sa; 1025 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1026 return EADDRNOTAVAIL; 1027 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1028 sdl->sdl_alen = ETHER_ADDR_LEN; 1029 e_addr = LLADDR(sdl); 1030 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1031 *llsa = (struct sockaddr *)sdl; 1032 return 0; 1033 #endif 1034 #ifdef INET6 1035 case AF_INET6: 1036 sin6 = (struct sockaddr_in6 *)sa; 1037 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1038 /* 1039 * An IP6 address of 0 means listen to all 1040 * of the Ethernet multicast address used for IP6. 1041 * (This is used for multicast routers.) 1042 */ 1043 ifp->if_flags |= IFF_ALLMULTI; 1044 *llsa = 0; 1045 return 0; 1046 } 1047 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1048 return EADDRNOTAVAIL; 1049 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1050 sdl->sdl_alen = ETHER_ADDR_LEN; 1051 e_addr = LLADDR(sdl); 1052 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1053 *llsa = (struct sockaddr *)sdl; 1054 return 0; 1055 #endif 1056 1057 default: 1058 /* 1059 * Well, the text isn't quite right, but it's the name 1060 * that counts... 1061 */ 1062 return EAFNOSUPPORT; 1063 } 1064 } 1065 1066 static moduledata_t ether_mod = { 1067 .name = "ether", 1068 }; 1069 1070 void 1071 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1072 { 1073 struct ether_vlan_header vlan; 1074 struct mbuf mv, mb; 1075 1076 KASSERT((m->m_flags & M_VLANTAG) != 0, 1077 ("%s: vlan information not present", __func__)); 1078 KASSERT(m->m_len >= sizeof(struct ether_header), 1079 ("%s: mbuf not large enough for header", __func__)); 1080 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1081 vlan.evl_proto = vlan.evl_encap_proto; 1082 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1083 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1084 m->m_len -= sizeof(struct ether_header); 1085 m->m_data += sizeof(struct ether_header); 1086 /* 1087 * If a data link has been supplied by the caller, then we will need to 1088 * re-create a stack allocated mbuf chain with the following structure: 1089 * 1090 * (1) mbuf #1 will contain the supplied data link 1091 * (2) mbuf #2 will contain the vlan header 1092 * (3) mbuf #3 will contain the original mbuf's packet data 1093 * 1094 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1095 */ 1096 if (data != NULL) { 1097 mv.m_next = m; 1098 mv.m_data = (caddr_t)&vlan; 1099 mv.m_len = sizeof(vlan); 1100 mb.m_next = &mv; 1101 mb.m_data = data; 1102 mb.m_len = dlen; 1103 bpf_mtap(bp, &mb); 1104 } else 1105 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1106 m->m_len += sizeof(struct ether_header); 1107 m->m_data -= sizeof(struct ether_header); 1108 } 1109 1110 struct mbuf * 1111 ether_vlanencap(struct mbuf *m, uint16_t tag) 1112 { 1113 struct ether_vlan_header *evl; 1114 1115 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1116 if (m == NULL) 1117 return (NULL); 1118 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1119 1120 if (m->m_len < sizeof(*evl)) { 1121 m = m_pullup(m, sizeof(*evl)); 1122 if (m == NULL) 1123 return (NULL); 1124 } 1125 1126 /* 1127 * Transform the Ethernet header into an Ethernet header 1128 * with 802.1Q encapsulation. 1129 */ 1130 evl = mtod(m, struct ether_vlan_header *); 1131 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1132 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1133 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1134 evl->evl_tag = htons(tag); 1135 return (m); 1136 } 1137 1138 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1139 MODULE_VERSION(ether, 1); 1140