1 /*- 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 30 * $FreeBSD$ 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_netgraph.h" 36 #include "opt_mbuf_profiling.h" 37 #include "opt_rss.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mbuf.h> 46 #include <sys/random.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/sysctl.h> 50 #include <sys/uuid.h> 51 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_arp.h> 55 #include <net/netisr.h> 56 #include <net/route.h> 57 #include <net/if_llc.h> 58 #include <net/if_dl.h> 59 #include <net/if_types.h> 60 #include <net/bpf.h> 61 #include <net/ethernet.h> 62 #include <net/if_bridgevar.h> 63 #include <net/if_vlan_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/pfil.h> 66 #include <net/rss_config.h> 67 #include <net/vnet.h> 68 69 #include <netpfil/pf/pf_mtag.h> 70 71 #if defined(INET) || defined(INET6) 72 #include <netinet/in.h> 73 #include <netinet/in_var.h> 74 #include <netinet/if_ether.h> 75 #include <netinet/ip_carp.h> 76 #include <netinet/ip_var.h> 77 #endif 78 #ifdef INET6 79 #include <netinet6/nd6.h> 80 #endif 81 #include <security/mac/mac_framework.h> 82 83 #ifdef CTASSERT 84 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 85 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 86 #endif 87 88 VNET_DEFINE(struct pfil_head, link_pfil_hook); /* Packet filter hooks */ 89 90 /* netgraph node hooks for ng_ether(4) */ 91 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 92 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 93 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 94 void (*ng_ether_attach_p)(struct ifnet *ifp); 95 void (*ng_ether_detach_p)(struct ifnet *ifp); 96 97 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 98 99 /* if_bridge(4) support */ 100 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 101 int (*bridge_output_p)(struct ifnet *, struct mbuf *, 102 struct sockaddr *, struct rtentry *); 103 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 104 105 /* if_lagg(4) support */ 106 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 107 108 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 109 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 110 111 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 112 struct sockaddr *); 113 #ifdef VIMAGE 114 static void ether_reassign(struct ifnet *, struct vnet *, char *); 115 #endif 116 static int ether_requestencap(struct ifnet *, struct if_encap_req *); 117 118 119 #define senderr(e) do { error = (e); goto bad;} while (0) 120 121 static void 122 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 123 { 124 int csum_flags = 0; 125 126 if (src->m_pkthdr.csum_flags & CSUM_IP) 127 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 128 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 129 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 130 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 131 csum_flags |= CSUM_SCTP_VALID; 132 dst->m_pkthdr.csum_flags |= csum_flags; 133 if (csum_flags & CSUM_DATA_VALID) 134 dst->m_pkthdr.csum_data = 0xffff; 135 } 136 137 /* 138 * Handle link-layer encapsulation requests. 139 */ 140 static int 141 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) 142 { 143 struct ether_header *eh; 144 struct arphdr *ah; 145 uint16_t etype; 146 const u_char *lladdr; 147 148 if (req->rtype != IFENCAP_LL) 149 return (EOPNOTSUPP); 150 151 if (req->bufsize < ETHER_HDR_LEN) 152 return (ENOMEM); 153 154 eh = (struct ether_header *)req->buf; 155 lladdr = req->lladdr; 156 req->lladdr_off = 0; 157 158 switch (req->family) { 159 case AF_INET: 160 etype = htons(ETHERTYPE_IP); 161 break; 162 case AF_INET6: 163 etype = htons(ETHERTYPE_IPV6); 164 break; 165 case AF_ARP: 166 ah = (struct arphdr *)req->hdata; 167 ah->ar_hrd = htons(ARPHRD_ETHER); 168 169 switch(ntohs(ah->ar_op)) { 170 case ARPOP_REVREQUEST: 171 case ARPOP_REVREPLY: 172 etype = htons(ETHERTYPE_REVARP); 173 break; 174 case ARPOP_REQUEST: 175 case ARPOP_REPLY: 176 default: 177 etype = htons(ETHERTYPE_ARP); 178 break; 179 } 180 181 if (req->flags & IFENCAP_FLAG_BROADCAST) 182 lladdr = ifp->if_broadcastaddr; 183 break; 184 default: 185 return (EAFNOSUPPORT); 186 } 187 188 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 189 memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); 190 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 191 req->bufsize = sizeof(struct ether_header); 192 193 return (0); 194 } 195 196 197 static int 198 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, 199 const struct sockaddr *dst, struct route *ro, u_char *phdr, 200 uint32_t *pflags, struct llentry **plle) 201 { 202 struct ether_header *eh; 203 uint32_t lleflags = 0; 204 int error = 0; 205 #if defined(INET) || defined(INET6) 206 uint16_t etype; 207 #endif 208 209 if (plle) 210 *plle = NULL; 211 eh = (struct ether_header *)phdr; 212 213 switch (dst->sa_family) { 214 #ifdef INET 215 case AF_INET: 216 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) 217 error = arpresolve(ifp, 0, m, dst, phdr, &lleflags, 218 plle); 219 else { 220 if (m->m_flags & M_BCAST) 221 memcpy(eh->ether_dhost, ifp->if_broadcastaddr, 222 ETHER_ADDR_LEN); 223 else { 224 const struct in_addr *a; 225 a = &(((const struct sockaddr_in *)dst)->sin_addr); 226 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); 227 } 228 etype = htons(ETHERTYPE_IP); 229 memcpy(&eh->ether_type, &etype, sizeof(etype)); 230 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 231 } 232 break; 233 #endif 234 #ifdef INET6 235 case AF_INET6: 236 if ((m->m_flags & M_MCAST) == 0) 237 error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags, 238 plle); 239 else { 240 const struct in6_addr *a6; 241 a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); 242 ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); 243 etype = htons(ETHERTYPE_IPV6); 244 memcpy(&eh->ether_type, &etype, sizeof(etype)); 245 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 246 } 247 break; 248 #endif 249 default: 250 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 251 if (m != NULL) 252 m_freem(m); 253 return (EAFNOSUPPORT); 254 } 255 256 if (error == EHOSTDOWN) { 257 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) 258 error = EHOSTUNREACH; 259 } 260 261 if (error != 0) 262 return (error); 263 264 *pflags = RT_MAY_LOOP; 265 if (lleflags & LLE_IFADDR) 266 *pflags |= RT_L2_ME; 267 268 return (0); 269 } 270 271 /* 272 * Ethernet output routine. 273 * Encapsulate a packet of type family for the local net. 274 * Use trailer local net encapsulation if enough data in first 275 * packet leaves a multiple of 512 bytes of data in remainder. 276 */ 277 int 278 ether_output(struct ifnet *ifp, struct mbuf *m, 279 const struct sockaddr *dst, struct route *ro) 280 { 281 int error = 0; 282 char linkhdr[ETHER_HDR_LEN], *phdr; 283 struct ether_header *eh; 284 struct pf_mtag *t; 285 int loop_copy = 1; 286 int hlen; /* link layer header length */ 287 uint32_t pflags; 288 struct llentry *lle = NULL; 289 struct rtentry *rt0 = NULL; 290 int addref = 0; 291 292 phdr = NULL; 293 pflags = 0; 294 if (ro != NULL) { 295 /* XXX BPF uses ro_prepend */ 296 if (ro->ro_prepend != NULL) { 297 phdr = ro->ro_prepend; 298 hlen = ro->ro_plen; 299 } else if (!(m->m_flags & (M_BCAST | M_MCAST))) { 300 if ((ro->ro_flags & RT_LLE_CACHE) != 0) { 301 lle = ro->ro_lle; 302 if (lle != NULL && 303 (lle->la_flags & LLE_VALID) == 0) { 304 LLE_FREE(lle); 305 lle = NULL; /* redundant */ 306 ro->ro_lle = NULL; 307 } 308 if (lle == NULL) { 309 /* if we lookup, keep cache */ 310 addref = 1; 311 } 312 } 313 if (lle != NULL) { 314 phdr = lle->r_linkdata; 315 hlen = lle->r_hdrlen; 316 pflags = lle->r_flags; 317 } 318 } 319 rt0 = ro->ro_rt; 320 } 321 322 #ifdef MAC 323 error = mac_ifnet_check_transmit(ifp, m); 324 if (error) 325 senderr(error); 326 #endif 327 328 M_PROFILE(m); 329 if (ifp->if_flags & IFF_MONITOR) 330 senderr(ENETDOWN); 331 if (!((ifp->if_flags & IFF_UP) && 332 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 333 senderr(ENETDOWN); 334 335 if (phdr == NULL) { 336 /* No prepend data supplied. Try to calculate ourselves. */ 337 phdr = linkhdr; 338 hlen = ETHER_HDR_LEN; 339 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags, 340 addref ? &lle : NULL); 341 if (addref && lle != NULL) 342 ro->ro_lle = lle; 343 if (error != 0) 344 return (error == EWOULDBLOCK ? 0 : error); 345 } 346 347 if ((pflags & RT_L2_ME) != 0) { 348 update_mbuf_csumflags(m, m); 349 return (if_simloop(ifp, m, dst->sa_family, 0)); 350 } 351 loop_copy = pflags & RT_MAY_LOOP; 352 353 /* 354 * Add local net header. If no space in first mbuf, 355 * allocate another. 356 * 357 * Note that we do prepend regardless of RT_HAS_HEADER flag. 358 * This is done because BPF code shifts m_data pointer 359 * to the end of ethernet header prior to calling if_output(). 360 */ 361 M_PREPEND(m, hlen, M_NOWAIT); 362 if (m == NULL) 363 senderr(ENOBUFS); 364 if ((pflags & RT_HAS_HEADER) == 0) { 365 eh = mtod(m, struct ether_header *); 366 memcpy(eh, phdr, hlen); 367 } 368 369 /* 370 * If a simplex interface, and the packet is being sent to our 371 * Ethernet address or a broadcast address, loopback a copy. 372 * XXX To make a simplex device behave exactly like a duplex 373 * device, we should copy in the case of sending to our own 374 * ethernet address (thus letting the original actually appear 375 * on the wire). However, we don't do that here for security 376 * reasons and compatibility with the original behavior. 377 */ 378 if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && 379 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 380 struct mbuf *n; 381 382 /* 383 * Because if_simloop() modifies the packet, we need a 384 * writable copy through m_dup() instead of a readonly 385 * one as m_copy[m] would give us. The alternative would 386 * be to modify if_simloop() to handle the readonly mbuf, 387 * but performancewise it is mostly equivalent (trading 388 * extra data copying vs. extra locking). 389 * 390 * XXX This is a local workaround. A number of less 391 * often used kernel parts suffer from the same bug. 392 * See PR kern/105943 for a proposed general solution. 393 */ 394 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 395 update_mbuf_csumflags(m, n); 396 (void)if_simloop(ifp, n, dst->sa_family, hlen); 397 } else 398 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 399 } 400 401 /* 402 * Bridges require special output handling. 403 */ 404 if (ifp->if_bridge) { 405 BRIDGE_OUTPUT(ifp, m, error); 406 return (error); 407 } 408 409 #if defined(INET) || defined(INET6) 410 if (ifp->if_carp && 411 (error = (*carp_output_p)(ifp, m, dst))) 412 goto bad; 413 #endif 414 415 /* Handle ng_ether(4) processing, if any */ 416 if (ifp->if_l2com != NULL) { 417 KASSERT(ng_ether_output_p != NULL, 418 ("ng_ether_output_p is NULL")); 419 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 420 bad: if (m != NULL) 421 m_freem(m); 422 return (error); 423 } 424 if (m == NULL) 425 return (0); 426 } 427 428 /* Continue with link-layer output */ 429 return ether_output_frame(ifp, m); 430 } 431 432 /* 433 * Ethernet link layer output routine to send a raw frame to the device. 434 * 435 * This assumes that the 14 byte Ethernet header is present and contiguous 436 * in the first mbuf (if BRIDGE'ing). 437 */ 438 int 439 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 440 { 441 int i; 442 443 if (PFIL_HOOKED(&V_link_pfil_hook)) { 444 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL); 445 446 if (i != 0) 447 return (EACCES); 448 449 if (m == NULL) 450 return (0); 451 } 452 453 /* 454 * Queue message on interface, update output statistics if 455 * successful, and start output if interface not yet active. 456 */ 457 return ((ifp->if_transmit)(ifp, m)); 458 } 459 460 /* 461 * Process a received Ethernet packet; the packet is in the 462 * mbuf chain m with the ethernet header at the front. 463 */ 464 static void 465 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 466 { 467 struct ether_header *eh; 468 u_short etype; 469 470 if ((ifp->if_flags & IFF_UP) == 0) { 471 m_freem(m); 472 return; 473 } 474 #ifdef DIAGNOSTIC 475 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 476 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 477 m_freem(m); 478 return; 479 } 480 #endif 481 if (m->m_len < ETHER_HDR_LEN) { 482 /* XXX maybe should pullup? */ 483 if_printf(ifp, "discard frame w/o leading ethernet " 484 "header (len %u pkt len %u)\n", 485 m->m_len, m->m_pkthdr.len); 486 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 487 m_freem(m); 488 return; 489 } 490 eh = mtod(m, struct ether_header *); 491 etype = ntohs(eh->ether_type); 492 random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER); 493 494 CURVNET_SET_QUIET(ifp->if_vnet); 495 496 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 497 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 498 m->m_flags |= M_BCAST; 499 else 500 m->m_flags |= M_MCAST; 501 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 502 } 503 504 #ifdef MAC 505 /* 506 * Tag the mbuf with an appropriate MAC label before any other 507 * consumers can get to it. 508 */ 509 mac_ifnet_create_mbuf(ifp, m); 510 #endif 511 512 /* 513 * Give bpf a chance at the packet. 514 */ 515 ETHER_BPF_MTAP(ifp, m); 516 517 /* 518 * If the CRC is still on the packet, trim it off. We do this once 519 * and once only in case we are re-entered. Nothing else on the 520 * Ethernet receive path expects to see the FCS. 521 */ 522 if (m->m_flags & M_HASFCS) { 523 m_adj(m, -ETHER_CRC_LEN); 524 m->m_flags &= ~M_HASFCS; 525 } 526 527 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 528 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 529 530 /* Allow monitor mode to claim this frame, after stats are updated. */ 531 if (ifp->if_flags & IFF_MONITOR) { 532 m_freem(m); 533 CURVNET_RESTORE(); 534 return; 535 } 536 537 /* Handle input from a lagg(4) port */ 538 if (ifp->if_type == IFT_IEEE8023ADLAG) { 539 KASSERT(lagg_input_p != NULL, 540 ("%s: if_lagg not loaded!", __func__)); 541 m = (*lagg_input_p)(ifp, m); 542 if (m != NULL) 543 ifp = m->m_pkthdr.rcvif; 544 else { 545 CURVNET_RESTORE(); 546 return; 547 } 548 } 549 550 /* 551 * If the hardware did not process an 802.1Q tag, do this now, 552 * to allow 802.1P priority frames to be passed to the main input 553 * path correctly. 554 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 555 */ 556 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 557 struct ether_vlan_header *evl; 558 559 if (m->m_len < sizeof(*evl) && 560 (m = m_pullup(m, sizeof(*evl))) == NULL) { 561 #ifdef DIAGNOSTIC 562 if_printf(ifp, "cannot pullup VLAN header\n"); 563 #endif 564 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 565 CURVNET_RESTORE(); 566 return; 567 } 568 569 evl = mtod(m, struct ether_vlan_header *); 570 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 571 m->m_flags |= M_VLANTAG; 572 573 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 574 ETHER_HDR_LEN - ETHER_TYPE_LEN); 575 m_adj(m, ETHER_VLAN_ENCAP_LEN); 576 eh = mtod(m, struct ether_header *); 577 } 578 579 M_SETFIB(m, ifp->if_fib); 580 581 /* Allow ng_ether(4) to claim this frame. */ 582 if (ifp->if_l2com != NULL) { 583 KASSERT(ng_ether_input_p != NULL, 584 ("%s: ng_ether_input_p is NULL", __func__)); 585 m->m_flags &= ~M_PROMISC; 586 (*ng_ether_input_p)(ifp, &m); 587 if (m == NULL) { 588 CURVNET_RESTORE(); 589 return; 590 } 591 eh = mtod(m, struct ether_header *); 592 } 593 594 /* 595 * Allow if_bridge(4) to claim this frame. 596 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 597 * and the frame should be delivered locally. 598 */ 599 if (ifp->if_bridge != NULL) { 600 m->m_flags &= ~M_PROMISC; 601 BRIDGE_INPUT(ifp, m); 602 if (m == NULL) { 603 CURVNET_RESTORE(); 604 return; 605 } 606 eh = mtod(m, struct ether_header *); 607 } 608 609 #if defined(INET) || defined(INET6) 610 /* 611 * Clear M_PROMISC on frame so that carp(4) will see it when the 612 * mbuf flows up to Layer 3. 613 * FreeBSD's implementation of carp(4) uses the inprotosw 614 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 615 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 616 * is outside the scope of the M_PROMISC test below. 617 * TODO: Maintain a hash table of ethernet addresses other than 618 * ether_dhost which may be active on this ifp. 619 */ 620 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 621 m->m_flags &= ~M_PROMISC; 622 } else 623 #endif 624 { 625 /* 626 * If the frame received was not for our MAC address, set the 627 * M_PROMISC flag on the mbuf chain. The frame may need to 628 * be seen by the rest of the Ethernet input path in case of 629 * re-entry (e.g. bridge, vlan, netgraph) but should not be 630 * seen by upper protocol layers. 631 */ 632 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 633 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 634 m->m_flags |= M_PROMISC; 635 } 636 637 ether_demux(ifp, m); 638 CURVNET_RESTORE(); 639 } 640 641 /* 642 * Ethernet input dispatch; by default, direct dispatch here regardless of 643 * global configuration. However, if RSS is enabled, hook up RSS affinity 644 * so that when deferred or hybrid dispatch is enabled, we can redistribute 645 * load based on RSS. 646 * 647 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 648 * not it had already done work distribution via multi-queue. Then we could 649 * direct dispatch in the event load balancing was already complete and 650 * handle the case of interfaces with different capabilities better. 651 * 652 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 653 * at multiple layers? 654 * 655 * XXXRW: For now, enable all this only if RSS is compiled in, although it 656 * works fine without RSS. Need to characterise the performance overhead 657 * of the detour through the netisr code in the event the result is always 658 * direct dispatch. 659 */ 660 static void 661 ether_nh_input(struct mbuf *m) 662 { 663 664 M_ASSERTPKTHDR(m); 665 KASSERT(m->m_pkthdr.rcvif != NULL, 666 ("%s: NULL interface pointer", __func__)); 667 ether_input_internal(m->m_pkthdr.rcvif, m); 668 } 669 670 static struct netisr_handler ether_nh = { 671 .nh_name = "ether", 672 .nh_handler = ether_nh_input, 673 .nh_proto = NETISR_ETHER, 674 #ifdef RSS 675 .nh_policy = NETISR_POLICY_CPU, 676 .nh_dispatch = NETISR_DISPATCH_DIRECT, 677 .nh_m2cpuid = rss_m2cpuid, 678 #else 679 .nh_policy = NETISR_POLICY_SOURCE, 680 .nh_dispatch = NETISR_DISPATCH_DIRECT, 681 #endif 682 }; 683 684 static void 685 ether_init(__unused void *arg) 686 { 687 688 netisr_register(ðer_nh); 689 } 690 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 691 692 static void 693 vnet_ether_init(__unused void *arg) 694 { 695 int i; 696 697 /* Initialize packet filter hooks. */ 698 V_link_pfil_hook.ph_type = PFIL_TYPE_AF; 699 V_link_pfil_hook.ph_af = AF_LINK; 700 if ((i = pfil_head_register(&V_link_pfil_hook)) != 0) 701 printf("%s: WARNING: unable to register pfil link hook, " 702 "error %d\n", __func__, i); 703 #ifdef VIMAGE 704 netisr_register_vnet(ðer_nh); 705 #endif 706 } 707 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 708 vnet_ether_init, NULL); 709 710 #ifdef VIMAGE 711 static void 712 vnet_ether_pfil_destroy(__unused void *arg) 713 { 714 int i; 715 716 if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0) 717 printf("%s: WARNING: unable to unregister pfil link hook, " 718 "error %d\n", __func__, i); 719 } 720 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY, 721 vnet_ether_pfil_destroy, NULL); 722 723 static void 724 vnet_ether_destroy(__unused void *arg) 725 { 726 727 netisr_unregister_vnet(ðer_nh); 728 } 729 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 730 vnet_ether_destroy, NULL); 731 #endif 732 733 734 735 static void 736 ether_input(struct ifnet *ifp, struct mbuf *m) 737 { 738 739 struct mbuf *mn; 740 741 /* 742 * The drivers are allowed to pass in a chain of packets linked with 743 * m_nextpkt. We split them up into separate packets here and pass 744 * them up. This allows the drivers to amortize the receive lock. 745 */ 746 while (m) { 747 mn = m->m_nextpkt; 748 m->m_nextpkt = NULL; 749 750 /* 751 * We will rely on rcvif being set properly in the deferred context, 752 * so assert it is correct here. 753 */ 754 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p " 755 "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp)); 756 CURVNET_SET_QUIET(ifp->if_vnet); 757 netisr_dispatch(NETISR_ETHER, m); 758 CURVNET_RESTORE(); 759 m = mn; 760 } 761 } 762 763 /* 764 * Upper layer processing for a received Ethernet packet. 765 */ 766 void 767 ether_demux(struct ifnet *ifp, struct mbuf *m) 768 { 769 struct ether_header *eh; 770 int i, isr; 771 u_short ether_type; 772 773 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 774 775 /* Do not grab PROMISC frames in case we are re-entered. */ 776 if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) { 777 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL); 778 779 if (i != 0 || m == NULL) 780 return; 781 } 782 783 eh = mtod(m, struct ether_header *); 784 ether_type = ntohs(eh->ether_type); 785 786 /* 787 * If this frame has a VLAN tag other than 0, call vlan_input() 788 * if its module is loaded. Otherwise, drop. 789 */ 790 if ((m->m_flags & M_VLANTAG) && 791 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 792 if (ifp->if_vlantrunk == NULL) { 793 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 794 m_freem(m); 795 return; 796 } 797 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 798 __func__)); 799 /* Clear before possibly re-entering ether_input(). */ 800 m->m_flags &= ~M_PROMISC; 801 (*vlan_input_p)(ifp, m); 802 return; 803 } 804 805 /* 806 * Pass promiscuously received frames to the upper layer if the user 807 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 808 */ 809 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 810 m_freem(m); 811 return; 812 } 813 814 /* 815 * Reset layer specific mbuf flags to avoid confusing upper layers. 816 * Strip off Ethernet header. 817 */ 818 m->m_flags &= ~M_VLANTAG; 819 m_clrprotoflags(m); 820 m_adj(m, ETHER_HDR_LEN); 821 822 /* 823 * Dispatch frame to upper layer. 824 */ 825 switch (ether_type) { 826 #ifdef INET 827 case ETHERTYPE_IP: 828 isr = NETISR_IP; 829 break; 830 831 case ETHERTYPE_ARP: 832 if (ifp->if_flags & IFF_NOARP) { 833 /* Discard packet if ARP is disabled on interface */ 834 m_freem(m); 835 return; 836 } 837 isr = NETISR_ARP; 838 break; 839 #endif 840 #ifdef INET6 841 case ETHERTYPE_IPV6: 842 isr = NETISR_IPV6; 843 break; 844 #endif 845 default: 846 goto discard; 847 } 848 netisr_dispatch(isr, m); 849 return; 850 851 discard: 852 /* 853 * Packet is to be discarded. If netgraph is present, 854 * hand the packet to it for last chance processing; 855 * otherwise dispose of it. 856 */ 857 if (ifp->if_l2com != NULL) { 858 KASSERT(ng_ether_input_orphan_p != NULL, 859 ("ng_ether_input_orphan_p is NULL")); 860 /* 861 * Put back the ethernet header so netgraph has a 862 * consistent view of inbound packets. 863 */ 864 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 865 (*ng_ether_input_orphan_p)(ifp, m); 866 return; 867 } 868 m_freem(m); 869 } 870 871 /* 872 * Convert Ethernet address to printable (loggable) representation. 873 * This routine is for compatibility; it's better to just use 874 * 875 * printf("%6D", <pointer to address>, ":"); 876 * 877 * since there's no static buffer involved. 878 */ 879 char * 880 ether_sprintf(const u_char *ap) 881 { 882 static char etherbuf[18]; 883 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 884 return (etherbuf); 885 } 886 887 /* 888 * Perform common duties while attaching to interface list 889 */ 890 void 891 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 892 { 893 int i; 894 struct ifaddr *ifa; 895 struct sockaddr_dl *sdl; 896 897 ifp->if_addrlen = ETHER_ADDR_LEN; 898 ifp->if_hdrlen = ETHER_HDR_LEN; 899 if_attach(ifp); 900 ifp->if_mtu = ETHERMTU; 901 ifp->if_output = ether_output; 902 ifp->if_input = ether_input; 903 ifp->if_resolvemulti = ether_resolvemulti; 904 ifp->if_requestencap = ether_requestencap; 905 #ifdef VIMAGE 906 ifp->if_reassign = ether_reassign; 907 #endif 908 if (ifp->if_baudrate == 0) 909 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 910 ifp->if_broadcastaddr = etherbroadcastaddr; 911 912 ifa = ifp->if_addr; 913 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 914 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 915 sdl->sdl_type = IFT_ETHER; 916 sdl->sdl_alen = ifp->if_addrlen; 917 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 918 919 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 920 if (ng_ether_attach_p != NULL) 921 (*ng_ether_attach_p)(ifp); 922 923 /* Announce Ethernet MAC address if non-zero. */ 924 for (i = 0; i < ifp->if_addrlen; i++) 925 if (lla[i] != 0) 926 break; 927 if (i != ifp->if_addrlen) 928 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 929 930 uuid_ether_add(LLADDR(sdl)); 931 } 932 933 /* 934 * Perform common duties while detaching an Ethernet interface 935 */ 936 void 937 ether_ifdetach(struct ifnet *ifp) 938 { 939 struct sockaddr_dl *sdl; 940 941 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 942 uuid_ether_del(LLADDR(sdl)); 943 944 if (ifp->if_l2com != NULL) { 945 KASSERT(ng_ether_detach_p != NULL, 946 ("ng_ether_detach_p is NULL")); 947 (*ng_ether_detach_p)(ifp); 948 } 949 950 bpfdetach(ifp); 951 if_detach(ifp); 952 } 953 954 #ifdef VIMAGE 955 void 956 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 957 { 958 959 if (ifp->if_l2com != NULL) { 960 KASSERT(ng_ether_detach_p != NULL, 961 ("ng_ether_detach_p is NULL")); 962 (*ng_ether_detach_p)(ifp); 963 } 964 965 if (ng_ether_attach_p != NULL) { 966 CURVNET_SET_QUIET(new_vnet); 967 (*ng_ether_attach_p)(ifp); 968 CURVNET_RESTORE(); 969 } 970 } 971 #endif 972 973 SYSCTL_DECL(_net_link); 974 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 975 976 #if 0 977 /* 978 * This is for reference. We have a table-driven version 979 * of the little-endian crc32 generator, which is faster 980 * than the double-loop. 981 */ 982 uint32_t 983 ether_crc32_le(const uint8_t *buf, size_t len) 984 { 985 size_t i; 986 uint32_t crc; 987 int bit; 988 uint8_t data; 989 990 crc = 0xffffffff; /* initial value */ 991 992 for (i = 0; i < len; i++) { 993 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 994 carry = (crc ^ data) & 1; 995 crc >>= 1; 996 if (carry) 997 crc = (crc ^ ETHER_CRC_POLY_LE); 998 } 999 } 1000 1001 return (crc); 1002 } 1003 #else 1004 uint32_t 1005 ether_crc32_le(const uint8_t *buf, size_t len) 1006 { 1007 static const uint32_t crctab[] = { 1008 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1009 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1010 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1011 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1012 }; 1013 size_t i; 1014 uint32_t crc; 1015 1016 crc = 0xffffffff; /* initial value */ 1017 1018 for (i = 0; i < len; i++) { 1019 crc ^= buf[i]; 1020 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1021 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1022 } 1023 1024 return (crc); 1025 } 1026 #endif 1027 1028 uint32_t 1029 ether_crc32_be(const uint8_t *buf, size_t len) 1030 { 1031 size_t i; 1032 uint32_t crc, carry; 1033 int bit; 1034 uint8_t data; 1035 1036 crc = 0xffffffff; /* initial value */ 1037 1038 for (i = 0; i < len; i++) { 1039 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1040 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 1041 crc <<= 1; 1042 if (carry) 1043 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1044 } 1045 } 1046 1047 return (crc); 1048 } 1049 1050 int 1051 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1052 { 1053 struct ifaddr *ifa = (struct ifaddr *) data; 1054 struct ifreq *ifr = (struct ifreq *) data; 1055 int error = 0; 1056 1057 switch (command) { 1058 case SIOCSIFADDR: 1059 ifp->if_flags |= IFF_UP; 1060 1061 switch (ifa->ifa_addr->sa_family) { 1062 #ifdef INET 1063 case AF_INET: 1064 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1065 arp_ifinit(ifp, ifa); 1066 break; 1067 #endif 1068 default: 1069 ifp->if_init(ifp->if_softc); 1070 break; 1071 } 1072 break; 1073 1074 case SIOCGIFADDR: 1075 { 1076 struct sockaddr *sa; 1077 1078 sa = (struct sockaddr *) & ifr->ifr_data; 1079 bcopy(IF_LLADDR(ifp), 1080 (caddr_t) sa->sa_data, ETHER_ADDR_LEN); 1081 } 1082 break; 1083 1084 case SIOCSIFMTU: 1085 /* 1086 * Set the interface MTU. 1087 */ 1088 if (ifr->ifr_mtu > ETHERMTU) { 1089 error = EINVAL; 1090 } else { 1091 ifp->if_mtu = ifr->ifr_mtu; 1092 } 1093 break; 1094 default: 1095 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1096 break; 1097 } 1098 return (error); 1099 } 1100 1101 static int 1102 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1103 struct sockaddr *sa) 1104 { 1105 struct sockaddr_dl *sdl; 1106 #ifdef INET 1107 struct sockaddr_in *sin; 1108 #endif 1109 #ifdef INET6 1110 struct sockaddr_in6 *sin6; 1111 #endif 1112 u_char *e_addr; 1113 1114 switch(sa->sa_family) { 1115 case AF_LINK: 1116 /* 1117 * No mapping needed. Just check that it's a valid MC address. 1118 */ 1119 sdl = (struct sockaddr_dl *)sa; 1120 e_addr = LLADDR(sdl); 1121 if (!ETHER_IS_MULTICAST(e_addr)) 1122 return EADDRNOTAVAIL; 1123 *llsa = NULL; 1124 return 0; 1125 1126 #ifdef INET 1127 case AF_INET: 1128 sin = (struct sockaddr_in *)sa; 1129 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1130 return EADDRNOTAVAIL; 1131 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1132 sdl->sdl_alen = ETHER_ADDR_LEN; 1133 e_addr = LLADDR(sdl); 1134 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1135 *llsa = (struct sockaddr *)sdl; 1136 return 0; 1137 #endif 1138 #ifdef INET6 1139 case AF_INET6: 1140 sin6 = (struct sockaddr_in6 *)sa; 1141 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1142 /* 1143 * An IP6 address of 0 means listen to all 1144 * of the Ethernet multicast address used for IP6. 1145 * (This is used for multicast routers.) 1146 */ 1147 ifp->if_flags |= IFF_ALLMULTI; 1148 *llsa = NULL; 1149 return 0; 1150 } 1151 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1152 return EADDRNOTAVAIL; 1153 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1154 sdl->sdl_alen = ETHER_ADDR_LEN; 1155 e_addr = LLADDR(sdl); 1156 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1157 *llsa = (struct sockaddr *)sdl; 1158 return 0; 1159 #endif 1160 1161 default: 1162 /* 1163 * Well, the text isn't quite right, but it's the name 1164 * that counts... 1165 */ 1166 return EAFNOSUPPORT; 1167 } 1168 } 1169 1170 static moduledata_t ether_mod = { 1171 .name = "ether", 1172 }; 1173 1174 void 1175 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1176 { 1177 struct ether_vlan_header vlan; 1178 struct mbuf mv, mb; 1179 1180 KASSERT((m->m_flags & M_VLANTAG) != 0, 1181 ("%s: vlan information not present", __func__)); 1182 KASSERT(m->m_len >= sizeof(struct ether_header), 1183 ("%s: mbuf not large enough for header", __func__)); 1184 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1185 vlan.evl_proto = vlan.evl_encap_proto; 1186 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1187 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1188 m->m_len -= sizeof(struct ether_header); 1189 m->m_data += sizeof(struct ether_header); 1190 /* 1191 * If a data link has been supplied by the caller, then we will need to 1192 * re-create a stack allocated mbuf chain with the following structure: 1193 * 1194 * (1) mbuf #1 will contain the supplied data link 1195 * (2) mbuf #2 will contain the vlan header 1196 * (3) mbuf #3 will contain the original mbuf's packet data 1197 * 1198 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1199 */ 1200 if (data != NULL) { 1201 mv.m_next = m; 1202 mv.m_data = (caddr_t)&vlan; 1203 mv.m_len = sizeof(vlan); 1204 mb.m_next = &mv; 1205 mb.m_data = data; 1206 mb.m_len = dlen; 1207 bpf_mtap(bp, &mb); 1208 } else 1209 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1210 m->m_len += sizeof(struct ether_header); 1211 m->m_data -= sizeof(struct ether_header); 1212 } 1213 1214 struct mbuf * 1215 ether_vlanencap(struct mbuf *m, uint16_t tag) 1216 { 1217 struct ether_vlan_header *evl; 1218 1219 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1220 if (m == NULL) 1221 return (NULL); 1222 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1223 1224 if (m->m_len < sizeof(*evl)) { 1225 m = m_pullup(m, sizeof(*evl)); 1226 if (m == NULL) 1227 return (NULL); 1228 } 1229 1230 /* 1231 * Transform the Ethernet header into an Ethernet header 1232 * with 802.1Q encapsulation. 1233 */ 1234 evl = mtod(m, struct ether_vlan_header *); 1235 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1236 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1237 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1238 evl->evl_tag = htons(tag); 1239 return (m); 1240 } 1241 1242 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1243 MODULE_VERSION(ether, 1); 1244