1 /*- 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 30 * $FreeBSD$ 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_netgraph.h" 36 #include "opt_mbuf_profiling.h" 37 #include "opt_rss.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mbuf.h> 46 #include <sys/random.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/sysctl.h> 50 #include <sys/uuid.h> 51 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_arp.h> 55 #include <net/netisr.h> 56 #include <net/route.h> 57 #include <net/if_llc.h> 58 #include <net/if_dl.h> 59 #include <net/if_types.h> 60 #include <net/bpf.h> 61 #include <net/ethernet.h> 62 #include <net/if_bridgevar.h> 63 #include <net/if_vlan_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/pfil.h> 66 #include <net/rss_config.h> 67 #include <net/vnet.h> 68 69 #include <netpfil/pf/pf_mtag.h> 70 71 #if defined(INET) || defined(INET6) 72 #include <netinet/in.h> 73 #include <netinet/in_var.h> 74 #include <netinet/if_ether.h> 75 #include <netinet/ip_carp.h> 76 #include <netinet/ip_var.h> 77 #endif 78 #ifdef INET6 79 #include <netinet6/nd6.h> 80 #endif 81 #include <security/mac/mac_framework.h> 82 83 #ifdef CTASSERT 84 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 85 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 86 #endif 87 88 VNET_DEFINE(struct pfil_head, link_pfil_hook); /* Packet filter hooks */ 89 90 /* netgraph node hooks for ng_ether(4) */ 91 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 92 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 93 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 94 void (*ng_ether_attach_p)(struct ifnet *ifp); 95 void (*ng_ether_detach_p)(struct ifnet *ifp); 96 97 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 98 99 /* if_bridge(4) support */ 100 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 101 int (*bridge_output_p)(struct ifnet *, struct mbuf *, 102 struct sockaddr *, struct rtentry *); 103 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 104 105 /* if_lagg(4) support */ 106 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 107 108 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 109 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 110 111 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 112 struct sockaddr *); 113 #ifdef VIMAGE 114 static void ether_reassign(struct ifnet *, struct vnet *, char *); 115 #endif 116 static int ether_requestencap(struct ifnet *, struct if_encap_req *); 117 118 #define ETHER_IS_BROADCAST(addr) \ 119 (bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0) 120 121 #define senderr(e) do { error = (e); goto bad;} while (0) 122 123 static void 124 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 125 { 126 int csum_flags = 0; 127 128 if (src->m_pkthdr.csum_flags & CSUM_IP) 129 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 130 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 131 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 132 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 133 csum_flags |= CSUM_SCTP_VALID; 134 dst->m_pkthdr.csum_flags |= csum_flags; 135 if (csum_flags & CSUM_DATA_VALID) 136 dst->m_pkthdr.csum_data = 0xffff; 137 } 138 139 /* 140 * Handle link-layer encapsulation requests. 141 */ 142 static int 143 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) 144 { 145 struct ether_header *eh; 146 struct arphdr *ah; 147 uint16_t etype; 148 const u_char *lladdr; 149 150 if (req->rtype != IFENCAP_LL) 151 return (EOPNOTSUPP); 152 153 if (req->bufsize < ETHER_HDR_LEN) 154 return (ENOMEM); 155 156 eh = (struct ether_header *)req->buf; 157 lladdr = req->lladdr; 158 req->lladdr_off = 0; 159 160 switch (req->family) { 161 case AF_INET: 162 etype = htons(ETHERTYPE_IP); 163 break; 164 case AF_INET6: 165 etype = htons(ETHERTYPE_IPV6); 166 break; 167 case AF_ARP: 168 ah = (struct arphdr *)req->hdata; 169 ah->ar_hrd = htons(ARPHRD_ETHER); 170 171 switch(ntohs(ah->ar_op)) { 172 case ARPOP_REVREQUEST: 173 case ARPOP_REVREPLY: 174 etype = htons(ETHERTYPE_REVARP); 175 break; 176 case ARPOP_REQUEST: 177 case ARPOP_REPLY: 178 default: 179 etype = htons(ETHERTYPE_ARP); 180 break; 181 } 182 183 if (req->flags & IFENCAP_FLAG_BROADCAST) 184 lladdr = ifp->if_broadcastaddr; 185 break; 186 default: 187 return (EAFNOSUPPORT); 188 } 189 190 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 191 memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); 192 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 193 req->bufsize = sizeof(struct ether_header); 194 195 return (0); 196 } 197 198 199 static int 200 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, 201 const struct sockaddr *dst, struct route *ro, u_char *phdr, 202 uint32_t *pflags) 203 { 204 struct ether_header *eh; 205 struct rtentry *rt; 206 uint32_t lleflags = 0; 207 int error = 0; 208 #if defined(INET) || defined(INET6) 209 uint16_t etype; 210 #endif 211 212 eh = (struct ether_header *)phdr; 213 214 switch (dst->sa_family) { 215 #ifdef INET 216 case AF_INET: 217 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) 218 error = arpresolve(ifp, 0, m, dst, phdr, &lleflags); 219 else { 220 if (m->m_flags & M_BCAST) 221 memcpy(eh->ether_dhost, ifp->if_broadcastaddr, 222 ETHER_ADDR_LEN); 223 else { 224 const struct in_addr *a; 225 a = &(((const struct sockaddr_in *)dst)->sin_addr); 226 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); 227 } 228 etype = htons(ETHERTYPE_IP); 229 memcpy(&eh->ether_type, &etype, sizeof(etype)); 230 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 231 } 232 break; 233 #endif 234 #ifdef INET6 235 case AF_INET6: 236 if ((m->m_flags & M_MCAST) == 0) 237 error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags); 238 else { 239 const struct in6_addr *a6; 240 a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); 241 ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); 242 etype = htons(ETHERTYPE_IPV6); 243 memcpy(&eh->ether_type, &etype, sizeof(etype)); 244 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 245 } 246 break; 247 #endif 248 default: 249 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 250 if (m != NULL) 251 m_freem(m); 252 return (EAFNOSUPPORT); 253 } 254 255 if (error == EHOSTDOWN) { 256 rt = (ro != NULL) ? ro->ro_rt : NULL; 257 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) != 0) 258 error = EHOSTUNREACH; 259 } 260 261 if (error != 0) 262 return (error); 263 264 *pflags = RT_MAY_LOOP; 265 if (lleflags & LLE_IFADDR) 266 *pflags |= RT_L2_ME; 267 268 return (0); 269 } 270 271 /* 272 * Ethernet output routine. 273 * Encapsulate a packet of type family for the local net. 274 * Use trailer local net encapsulation if enough data in first 275 * packet leaves a multiple of 512 bytes of data in remainder. 276 */ 277 int 278 ether_output(struct ifnet *ifp, struct mbuf *m, 279 const struct sockaddr *dst, struct route *ro) 280 { 281 int error = 0; 282 char linkhdr[ETHER_HDR_LEN], *phdr; 283 struct ether_header *eh; 284 struct pf_mtag *t; 285 int loop_copy = 1; 286 int hlen; /* link layer header length */ 287 uint32_t pflags; 288 289 phdr = NULL; 290 pflags = 0; 291 if (ro != NULL) { 292 phdr = ro->ro_prepend; 293 hlen = ro->ro_plen; 294 pflags = ro->ro_flags; 295 } 296 #ifdef MAC 297 error = mac_ifnet_check_transmit(ifp, m); 298 if (error) 299 senderr(error); 300 #endif 301 302 M_PROFILE(m); 303 if (ifp->if_flags & IFF_MONITOR) 304 senderr(ENETDOWN); 305 if (!((ifp->if_flags & IFF_UP) && 306 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 307 senderr(ENETDOWN); 308 309 if (phdr == NULL) { 310 /* No prepend data supplied. Try to calculate ourselves. */ 311 phdr = linkhdr; 312 hlen = ETHER_HDR_LEN; 313 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags); 314 if (error != 0) 315 return (error == EWOULDBLOCK ? 0 : error); 316 } 317 318 if ((pflags & RT_L2_ME) != 0) { 319 update_mbuf_csumflags(m, m); 320 return (if_simloop(ifp, m, dst->sa_family, 0)); 321 } 322 loop_copy = pflags & RT_MAY_LOOP; 323 324 /* 325 * Add local net header. If no space in first mbuf, 326 * allocate another. 327 * 328 * Note that we do prepend regardless of RT_HAS_HEADER flag. 329 * This is done because BPF code shifts m_data pointer 330 * to the end of ethernet header prior to calling if_output(). 331 */ 332 M_PREPEND(m, hlen, M_NOWAIT); 333 if (m == NULL) 334 senderr(ENOBUFS); 335 if ((pflags & RT_HAS_HEADER) == 0) { 336 eh = mtod(m, struct ether_header *); 337 memcpy(eh, phdr, hlen); 338 } 339 340 /* 341 * If a simplex interface, and the packet is being sent to our 342 * Ethernet address or a broadcast address, loopback a copy. 343 * XXX To make a simplex device behave exactly like a duplex 344 * device, we should copy in the case of sending to our own 345 * ethernet address (thus letting the original actually appear 346 * on the wire). However, we don't do that here for security 347 * reasons and compatibility with the original behavior. 348 */ 349 if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && 350 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 351 struct mbuf *n; 352 353 /* 354 * Because if_simloop() modifies the packet, we need a 355 * writable copy through m_dup() instead of a readonly 356 * one as m_copy[m] would give us. The alternative would 357 * be to modify if_simloop() to handle the readonly mbuf, 358 * but performancewise it is mostly equivalent (trading 359 * extra data copying vs. extra locking). 360 * 361 * XXX This is a local workaround. A number of less 362 * often used kernel parts suffer from the same bug. 363 * See PR kern/105943 for a proposed general solution. 364 */ 365 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 366 update_mbuf_csumflags(m, n); 367 (void)if_simloop(ifp, n, dst->sa_family, hlen); 368 } else 369 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 370 } 371 372 /* 373 * Bridges require special output handling. 374 */ 375 if (ifp->if_bridge) { 376 BRIDGE_OUTPUT(ifp, m, error); 377 return (error); 378 } 379 380 #if defined(INET) || defined(INET6) 381 if (ifp->if_carp && 382 (error = (*carp_output_p)(ifp, m, dst))) 383 goto bad; 384 #endif 385 386 /* Handle ng_ether(4) processing, if any */ 387 if (ifp->if_l2com != NULL) { 388 KASSERT(ng_ether_output_p != NULL, 389 ("ng_ether_output_p is NULL")); 390 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 391 bad: if (m != NULL) 392 m_freem(m); 393 return (error); 394 } 395 if (m == NULL) 396 return (0); 397 } 398 399 /* Continue with link-layer output */ 400 return ether_output_frame(ifp, m); 401 } 402 403 /* 404 * Ethernet link layer output routine to send a raw frame to the device. 405 * 406 * This assumes that the 14 byte Ethernet header is present and contiguous 407 * in the first mbuf (if BRIDGE'ing). 408 */ 409 int 410 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 411 { 412 int i; 413 414 if (PFIL_HOOKED(&V_link_pfil_hook)) { 415 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL); 416 417 if (i != 0) 418 return (EACCES); 419 420 if (m == NULL) 421 return (0); 422 } 423 424 /* 425 * Queue message on interface, update output statistics if 426 * successful, and start output if interface not yet active. 427 */ 428 return ((ifp->if_transmit)(ifp, m)); 429 } 430 431 #if defined(INET) || defined(INET6) 432 #endif 433 434 /* 435 * Process a received Ethernet packet; the packet is in the 436 * mbuf chain m with the ethernet header at the front. 437 */ 438 static void 439 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 440 { 441 struct ether_header *eh; 442 u_short etype; 443 444 if ((ifp->if_flags & IFF_UP) == 0) { 445 m_freem(m); 446 return; 447 } 448 #ifdef DIAGNOSTIC 449 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 450 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 451 m_freem(m); 452 return; 453 } 454 #endif 455 if (m->m_len < ETHER_HDR_LEN) { 456 /* XXX maybe should pullup? */ 457 if_printf(ifp, "discard frame w/o leading ethernet " 458 "header (len %u pkt len %u)\n", 459 m->m_len, m->m_pkthdr.len); 460 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 461 m_freem(m); 462 return; 463 } 464 eh = mtod(m, struct ether_header *); 465 etype = ntohs(eh->ether_type); 466 random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER); 467 468 CURVNET_SET_QUIET(ifp->if_vnet); 469 470 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 471 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 472 m->m_flags |= M_BCAST; 473 else 474 m->m_flags |= M_MCAST; 475 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 476 } 477 478 #ifdef MAC 479 /* 480 * Tag the mbuf with an appropriate MAC label before any other 481 * consumers can get to it. 482 */ 483 mac_ifnet_create_mbuf(ifp, m); 484 #endif 485 486 /* 487 * Give bpf a chance at the packet. 488 */ 489 ETHER_BPF_MTAP(ifp, m); 490 491 /* 492 * If the CRC is still on the packet, trim it off. We do this once 493 * and once only in case we are re-entered. Nothing else on the 494 * Ethernet receive path expects to see the FCS. 495 */ 496 if (m->m_flags & M_HASFCS) { 497 m_adj(m, -ETHER_CRC_LEN); 498 m->m_flags &= ~M_HASFCS; 499 } 500 501 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 502 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 503 504 /* Allow monitor mode to claim this frame, after stats are updated. */ 505 if (ifp->if_flags & IFF_MONITOR) { 506 m_freem(m); 507 CURVNET_RESTORE(); 508 return; 509 } 510 511 /* Handle input from a lagg(4) port */ 512 if (ifp->if_type == IFT_IEEE8023ADLAG) { 513 KASSERT(lagg_input_p != NULL, 514 ("%s: if_lagg not loaded!", __func__)); 515 m = (*lagg_input_p)(ifp, m); 516 if (m != NULL) 517 ifp = m->m_pkthdr.rcvif; 518 else { 519 CURVNET_RESTORE(); 520 return; 521 } 522 } 523 524 /* 525 * If the hardware did not process an 802.1Q tag, do this now, 526 * to allow 802.1P priority frames to be passed to the main input 527 * path correctly. 528 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 529 */ 530 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 531 struct ether_vlan_header *evl; 532 533 if (m->m_len < sizeof(*evl) && 534 (m = m_pullup(m, sizeof(*evl))) == NULL) { 535 #ifdef DIAGNOSTIC 536 if_printf(ifp, "cannot pullup VLAN header\n"); 537 #endif 538 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 539 CURVNET_RESTORE(); 540 return; 541 } 542 543 evl = mtod(m, struct ether_vlan_header *); 544 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 545 m->m_flags |= M_VLANTAG; 546 547 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 548 ETHER_HDR_LEN - ETHER_TYPE_LEN); 549 m_adj(m, ETHER_VLAN_ENCAP_LEN); 550 eh = mtod(m, struct ether_header *); 551 } 552 553 M_SETFIB(m, ifp->if_fib); 554 555 /* Allow ng_ether(4) to claim this frame. */ 556 if (ifp->if_l2com != NULL) { 557 KASSERT(ng_ether_input_p != NULL, 558 ("%s: ng_ether_input_p is NULL", __func__)); 559 m->m_flags &= ~M_PROMISC; 560 (*ng_ether_input_p)(ifp, &m); 561 if (m == NULL) { 562 CURVNET_RESTORE(); 563 return; 564 } 565 eh = mtod(m, struct ether_header *); 566 } 567 568 /* 569 * Allow if_bridge(4) to claim this frame. 570 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 571 * and the frame should be delivered locally. 572 */ 573 if (ifp->if_bridge != NULL) { 574 m->m_flags &= ~M_PROMISC; 575 BRIDGE_INPUT(ifp, m); 576 if (m == NULL) { 577 CURVNET_RESTORE(); 578 return; 579 } 580 eh = mtod(m, struct ether_header *); 581 } 582 583 #if defined(INET) || defined(INET6) 584 /* 585 * Clear M_PROMISC on frame so that carp(4) will see it when the 586 * mbuf flows up to Layer 3. 587 * FreeBSD's implementation of carp(4) uses the inprotosw 588 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 589 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 590 * is outside the scope of the M_PROMISC test below. 591 * TODO: Maintain a hash table of ethernet addresses other than 592 * ether_dhost which may be active on this ifp. 593 */ 594 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 595 m->m_flags &= ~M_PROMISC; 596 } else 597 #endif 598 { 599 /* 600 * If the frame received was not for our MAC address, set the 601 * M_PROMISC flag on the mbuf chain. The frame may need to 602 * be seen by the rest of the Ethernet input path in case of 603 * re-entry (e.g. bridge, vlan, netgraph) but should not be 604 * seen by upper protocol layers. 605 */ 606 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 607 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 608 m->m_flags |= M_PROMISC; 609 } 610 611 ether_demux(ifp, m); 612 CURVNET_RESTORE(); 613 } 614 615 /* 616 * Ethernet input dispatch; by default, direct dispatch here regardless of 617 * global configuration. However, if RSS is enabled, hook up RSS affinity 618 * so that when deferred or hybrid dispatch is enabled, we can redistribute 619 * load based on RSS. 620 * 621 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 622 * not it had already done work distribution via multi-queue. Then we could 623 * direct dispatch in the event load balancing was already complete and 624 * handle the case of interfaces with different capabilities better. 625 * 626 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 627 * at multiple layers? 628 * 629 * XXXRW: For now, enable all this only if RSS is compiled in, although it 630 * works fine without RSS. Need to characterise the performance overhead 631 * of the detour through the netisr code in the event the result is always 632 * direct dispatch. 633 */ 634 static void 635 ether_nh_input(struct mbuf *m) 636 { 637 638 M_ASSERTPKTHDR(m); 639 KASSERT(m->m_pkthdr.rcvif != NULL, 640 ("%s: NULL interface pointer", __func__)); 641 ether_input_internal(m->m_pkthdr.rcvif, m); 642 } 643 644 static struct netisr_handler ether_nh = { 645 .nh_name = "ether", 646 .nh_handler = ether_nh_input, 647 .nh_proto = NETISR_ETHER, 648 #ifdef RSS 649 .nh_policy = NETISR_POLICY_CPU, 650 .nh_dispatch = NETISR_DISPATCH_DIRECT, 651 .nh_m2cpuid = rss_m2cpuid, 652 #else 653 .nh_policy = NETISR_POLICY_SOURCE, 654 .nh_dispatch = NETISR_DISPATCH_DIRECT, 655 #endif 656 }; 657 658 static void 659 ether_init(__unused void *arg) 660 { 661 662 netisr_register(ðer_nh); 663 } 664 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 665 666 static void 667 vnet_ether_init(__unused void *arg) 668 { 669 int i; 670 671 /* Initialize packet filter hooks. */ 672 V_link_pfil_hook.ph_type = PFIL_TYPE_AF; 673 V_link_pfil_hook.ph_af = AF_LINK; 674 if ((i = pfil_head_register(&V_link_pfil_hook)) != 0) 675 printf("%s: WARNING: unable to register pfil link hook, " 676 "error %d\n", __func__, i); 677 } 678 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 679 vnet_ether_init, NULL); 680 681 static void 682 vnet_ether_destroy(__unused void *arg) 683 { 684 int i; 685 686 if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0) 687 printf("%s: WARNING: unable to unregister pfil link hook, " 688 "error %d\n", __func__, i); 689 } 690 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 691 vnet_ether_destroy, NULL); 692 693 694 695 static void 696 ether_input(struct ifnet *ifp, struct mbuf *m) 697 { 698 699 struct mbuf *mn; 700 701 /* 702 * The drivers are allowed to pass in a chain of packets linked with 703 * m_nextpkt. We split them up into separate packets here and pass 704 * them up. This allows the drivers to amortize the receive lock. 705 */ 706 while (m) { 707 mn = m->m_nextpkt; 708 m->m_nextpkt = NULL; 709 710 /* 711 * We will rely on rcvif being set properly in the deferred context, 712 * so assert it is correct here. 713 */ 714 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch", __func__)); 715 netisr_dispatch(NETISR_ETHER, m); 716 m = mn; 717 } 718 } 719 720 /* 721 * Upper layer processing for a received Ethernet packet. 722 */ 723 void 724 ether_demux(struct ifnet *ifp, struct mbuf *m) 725 { 726 struct ether_header *eh; 727 int i, isr; 728 u_short ether_type; 729 730 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 731 732 /* Do not grab PROMISC frames in case we are re-entered. */ 733 if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) { 734 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL); 735 736 if (i != 0 || m == NULL) 737 return; 738 } 739 740 eh = mtod(m, struct ether_header *); 741 ether_type = ntohs(eh->ether_type); 742 743 /* 744 * If this frame has a VLAN tag other than 0, call vlan_input() 745 * if its module is loaded. Otherwise, drop. 746 */ 747 if ((m->m_flags & M_VLANTAG) && 748 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 749 if (ifp->if_vlantrunk == NULL) { 750 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 751 m_freem(m); 752 return; 753 } 754 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 755 __func__)); 756 /* Clear before possibly re-entering ether_input(). */ 757 m->m_flags &= ~M_PROMISC; 758 (*vlan_input_p)(ifp, m); 759 return; 760 } 761 762 /* 763 * Pass promiscuously received frames to the upper layer if the user 764 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 765 */ 766 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 767 m_freem(m); 768 return; 769 } 770 771 /* 772 * Reset layer specific mbuf flags to avoid confusing upper layers. 773 * Strip off Ethernet header. 774 */ 775 m->m_flags &= ~M_VLANTAG; 776 m_clrprotoflags(m); 777 m_adj(m, ETHER_HDR_LEN); 778 779 /* 780 * Dispatch frame to upper layer. 781 */ 782 switch (ether_type) { 783 #ifdef INET 784 case ETHERTYPE_IP: 785 isr = NETISR_IP; 786 break; 787 788 case ETHERTYPE_ARP: 789 if (ifp->if_flags & IFF_NOARP) { 790 /* Discard packet if ARP is disabled on interface */ 791 m_freem(m); 792 return; 793 } 794 isr = NETISR_ARP; 795 break; 796 #endif 797 #ifdef INET6 798 case ETHERTYPE_IPV6: 799 isr = NETISR_IPV6; 800 break; 801 #endif 802 default: 803 goto discard; 804 } 805 netisr_dispatch(isr, m); 806 return; 807 808 discard: 809 /* 810 * Packet is to be discarded. If netgraph is present, 811 * hand the packet to it for last chance processing; 812 * otherwise dispose of it. 813 */ 814 if (ifp->if_l2com != NULL) { 815 KASSERT(ng_ether_input_orphan_p != NULL, 816 ("ng_ether_input_orphan_p is NULL")); 817 /* 818 * Put back the ethernet header so netgraph has a 819 * consistent view of inbound packets. 820 */ 821 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 822 (*ng_ether_input_orphan_p)(ifp, m); 823 return; 824 } 825 m_freem(m); 826 } 827 828 /* 829 * Convert Ethernet address to printable (loggable) representation. 830 * This routine is for compatibility; it's better to just use 831 * 832 * printf("%6D", <pointer to address>, ":"); 833 * 834 * since there's no static buffer involved. 835 */ 836 char * 837 ether_sprintf(const u_char *ap) 838 { 839 static char etherbuf[18]; 840 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 841 return (etherbuf); 842 } 843 844 /* 845 * Perform common duties while attaching to interface list 846 */ 847 void 848 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 849 { 850 int i; 851 struct ifaddr *ifa; 852 struct sockaddr_dl *sdl; 853 854 ifp->if_addrlen = ETHER_ADDR_LEN; 855 ifp->if_hdrlen = ETHER_HDR_LEN; 856 if_attach(ifp); 857 ifp->if_mtu = ETHERMTU; 858 ifp->if_output = ether_output; 859 ifp->if_input = ether_input; 860 ifp->if_resolvemulti = ether_resolvemulti; 861 ifp->if_requestencap = ether_requestencap; 862 #ifdef VIMAGE 863 ifp->if_reassign = ether_reassign; 864 #endif 865 if (ifp->if_baudrate == 0) 866 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 867 ifp->if_broadcastaddr = etherbroadcastaddr; 868 869 ifa = ifp->if_addr; 870 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 871 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 872 sdl->sdl_type = IFT_ETHER; 873 sdl->sdl_alen = ifp->if_addrlen; 874 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 875 876 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 877 if (ng_ether_attach_p != NULL) 878 (*ng_ether_attach_p)(ifp); 879 880 /* Announce Ethernet MAC address if non-zero. */ 881 for (i = 0; i < ifp->if_addrlen; i++) 882 if (lla[i] != 0) 883 break; 884 if (i != ifp->if_addrlen) 885 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 886 887 uuid_ether_add(LLADDR(sdl)); 888 } 889 890 /* 891 * Perform common duties while detaching an Ethernet interface 892 */ 893 void 894 ether_ifdetach(struct ifnet *ifp) 895 { 896 struct sockaddr_dl *sdl; 897 898 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 899 uuid_ether_del(LLADDR(sdl)); 900 901 if (ifp->if_l2com != NULL) { 902 KASSERT(ng_ether_detach_p != NULL, 903 ("ng_ether_detach_p is NULL")); 904 (*ng_ether_detach_p)(ifp); 905 } 906 907 bpfdetach(ifp); 908 if_detach(ifp); 909 } 910 911 #ifdef VIMAGE 912 void 913 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 914 { 915 916 if (ifp->if_l2com != NULL) { 917 KASSERT(ng_ether_detach_p != NULL, 918 ("ng_ether_detach_p is NULL")); 919 (*ng_ether_detach_p)(ifp); 920 } 921 922 if (ng_ether_attach_p != NULL) { 923 CURVNET_SET_QUIET(new_vnet); 924 (*ng_ether_attach_p)(ifp); 925 CURVNET_RESTORE(); 926 } 927 } 928 #endif 929 930 SYSCTL_DECL(_net_link); 931 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 932 933 #if 0 934 /* 935 * This is for reference. We have a table-driven version 936 * of the little-endian crc32 generator, which is faster 937 * than the double-loop. 938 */ 939 uint32_t 940 ether_crc32_le(const uint8_t *buf, size_t len) 941 { 942 size_t i; 943 uint32_t crc; 944 int bit; 945 uint8_t data; 946 947 crc = 0xffffffff; /* initial value */ 948 949 for (i = 0; i < len; i++) { 950 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 951 carry = (crc ^ data) & 1; 952 crc >>= 1; 953 if (carry) 954 crc = (crc ^ ETHER_CRC_POLY_LE); 955 } 956 } 957 958 return (crc); 959 } 960 #else 961 uint32_t 962 ether_crc32_le(const uint8_t *buf, size_t len) 963 { 964 static const uint32_t crctab[] = { 965 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 966 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 967 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 968 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 969 }; 970 size_t i; 971 uint32_t crc; 972 973 crc = 0xffffffff; /* initial value */ 974 975 for (i = 0; i < len; i++) { 976 crc ^= buf[i]; 977 crc = (crc >> 4) ^ crctab[crc & 0xf]; 978 crc = (crc >> 4) ^ crctab[crc & 0xf]; 979 } 980 981 return (crc); 982 } 983 #endif 984 985 uint32_t 986 ether_crc32_be(const uint8_t *buf, size_t len) 987 { 988 size_t i; 989 uint32_t crc, carry; 990 int bit; 991 uint8_t data; 992 993 crc = 0xffffffff; /* initial value */ 994 995 for (i = 0; i < len; i++) { 996 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 997 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 998 crc <<= 1; 999 if (carry) 1000 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1001 } 1002 } 1003 1004 return (crc); 1005 } 1006 1007 int 1008 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1009 { 1010 struct ifaddr *ifa = (struct ifaddr *) data; 1011 struct ifreq *ifr = (struct ifreq *) data; 1012 int error = 0; 1013 1014 switch (command) { 1015 case SIOCSIFADDR: 1016 ifp->if_flags |= IFF_UP; 1017 1018 switch (ifa->ifa_addr->sa_family) { 1019 #ifdef INET 1020 case AF_INET: 1021 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1022 arp_ifinit(ifp, ifa); 1023 break; 1024 #endif 1025 default: 1026 ifp->if_init(ifp->if_softc); 1027 break; 1028 } 1029 break; 1030 1031 case SIOCGIFADDR: 1032 { 1033 struct sockaddr *sa; 1034 1035 sa = (struct sockaddr *) & ifr->ifr_data; 1036 bcopy(IF_LLADDR(ifp), 1037 (caddr_t) sa->sa_data, ETHER_ADDR_LEN); 1038 } 1039 break; 1040 1041 case SIOCSIFMTU: 1042 /* 1043 * Set the interface MTU. 1044 */ 1045 if (ifr->ifr_mtu > ETHERMTU) { 1046 error = EINVAL; 1047 } else { 1048 ifp->if_mtu = ifr->ifr_mtu; 1049 } 1050 break; 1051 default: 1052 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1053 break; 1054 } 1055 return (error); 1056 } 1057 1058 static int 1059 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1060 struct sockaddr *sa) 1061 { 1062 struct sockaddr_dl *sdl; 1063 #ifdef INET 1064 struct sockaddr_in *sin; 1065 #endif 1066 #ifdef INET6 1067 struct sockaddr_in6 *sin6; 1068 #endif 1069 u_char *e_addr; 1070 1071 switch(sa->sa_family) { 1072 case AF_LINK: 1073 /* 1074 * No mapping needed. Just check that it's a valid MC address. 1075 */ 1076 sdl = (struct sockaddr_dl *)sa; 1077 e_addr = LLADDR(sdl); 1078 if (!ETHER_IS_MULTICAST(e_addr)) 1079 return EADDRNOTAVAIL; 1080 *llsa = 0; 1081 return 0; 1082 1083 #ifdef INET 1084 case AF_INET: 1085 sin = (struct sockaddr_in *)sa; 1086 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1087 return EADDRNOTAVAIL; 1088 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1089 sdl->sdl_alen = ETHER_ADDR_LEN; 1090 e_addr = LLADDR(sdl); 1091 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1092 *llsa = (struct sockaddr *)sdl; 1093 return 0; 1094 #endif 1095 #ifdef INET6 1096 case AF_INET6: 1097 sin6 = (struct sockaddr_in6 *)sa; 1098 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1099 /* 1100 * An IP6 address of 0 means listen to all 1101 * of the Ethernet multicast address used for IP6. 1102 * (This is used for multicast routers.) 1103 */ 1104 ifp->if_flags |= IFF_ALLMULTI; 1105 *llsa = 0; 1106 return 0; 1107 } 1108 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1109 return EADDRNOTAVAIL; 1110 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1111 sdl->sdl_alen = ETHER_ADDR_LEN; 1112 e_addr = LLADDR(sdl); 1113 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1114 *llsa = (struct sockaddr *)sdl; 1115 return 0; 1116 #endif 1117 1118 default: 1119 /* 1120 * Well, the text isn't quite right, but it's the name 1121 * that counts... 1122 */ 1123 return EAFNOSUPPORT; 1124 } 1125 } 1126 1127 static moduledata_t ether_mod = { 1128 .name = "ether", 1129 }; 1130 1131 void 1132 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1133 { 1134 struct ether_vlan_header vlan; 1135 struct mbuf mv, mb; 1136 1137 KASSERT((m->m_flags & M_VLANTAG) != 0, 1138 ("%s: vlan information not present", __func__)); 1139 KASSERT(m->m_len >= sizeof(struct ether_header), 1140 ("%s: mbuf not large enough for header", __func__)); 1141 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1142 vlan.evl_proto = vlan.evl_encap_proto; 1143 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1144 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1145 m->m_len -= sizeof(struct ether_header); 1146 m->m_data += sizeof(struct ether_header); 1147 /* 1148 * If a data link has been supplied by the caller, then we will need to 1149 * re-create a stack allocated mbuf chain with the following structure: 1150 * 1151 * (1) mbuf #1 will contain the supplied data link 1152 * (2) mbuf #2 will contain the vlan header 1153 * (3) mbuf #3 will contain the original mbuf's packet data 1154 * 1155 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1156 */ 1157 if (data != NULL) { 1158 mv.m_next = m; 1159 mv.m_data = (caddr_t)&vlan; 1160 mv.m_len = sizeof(vlan); 1161 mb.m_next = &mv; 1162 mb.m_data = data; 1163 mb.m_len = dlen; 1164 bpf_mtap(bp, &mb); 1165 } else 1166 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1167 m->m_len += sizeof(struct ether_header); 1168 m->m_data -= sizeof(struct ether_header); 1169 } 1170 1171 struct mbuf * 1172 ether_vlanencap(struct mbuf *m, uint16_t tag) 1173 { 1174 struct ether_vlan_header *evl; 1175 1176 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1177 if (m == NULL) 1178 return (NULL); 1179 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1180 1181 if (m->m_len < sizeof(*evl)) { 1182 m = m_pullup(m, sizeof(*evl)); 1183 if (m == NULL) 1184 return (NULL); 1185 } 1186 1187 /* 1188 * Transform the Ethernet header into an Ethernet header 1189 * with 802.1Q encapsulation. 1190 */ 1191 evl = mtod(m, struct ether_vlan_header *); 1192 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1193 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1194 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1195 evl->evl_tag = htons(tag); 1196 return (m); 1197 } 1198 1199 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1200 MODULE_VERSION(ether, 1); 1201