1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 32 * $FreeBSD$ 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_netgraph.h" 38 #include "opt_mbuf_profiling.h" 39 #include "opt_rss.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/devctl.h> 44 #include <sys/eventhandler.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/module.h> 50 #include <sys/mbuf.h> 51 #include <sys/proc.h> 52 #include <sys/priv.h> 53 #include <sys/random.h> 54 #include <sys/socket.h> 55 #include <sys/sockio.h> 56 #include <sys/sysctl.h> 57 #include <sys/uuid.h> 58 59 #include <net/ieee_oui.h> 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_arp.h> 63 #include <net/netisr.h> 64 #include <net/route.h> 65 #include <net/if_llc.h> 66 #include <net/if_dl.h> 67 #include <net/if_types.h> 68 #include <net/bpf.h> 69 #include <net/ethernet.h> 70 #include <net/if_bridgevar.h> 71 #include <net/if_vlan_var.h> 72 #include <net/if_llatbl.h> 73 #include <net/pfil.h> 74 #include <net/rss_config.h> 75 #include <net/vnet.h> 76 77 #include <netpfil/pf/pf_mtag.h> 78 79 #if defined(INET) || defined(INET6) 80 #include <netinet/in.h> 81 #include <netinet/in_var.h> 82 #include <netinet/if_ether.h> 83 #include <netinet/ip_carp.h> 84 #include <netinet/ip_var.h> 85 #endif 86 #ifdef INET6 87 #include <netinet6/nd6.h> 88 #endif 89 #include <security/mac/mac_framework.h> 90 91 #include <crypto/sha1.h> 92 93 #ifdef CTASSERT 94 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 95 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 96 #endif 97 98 VNET_DEFINE(pfil_head_t, link_pfil_head); /* Packet filter hooks */ 99 100 /* netgraph node hooks for ng_ether(4) */ 101 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 102 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 103 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 104 void (*ng_ether_attach_p)(struct ifnet *ifp); 105 void (*ng_ether_detach_p)(struct ifnet *ifp); 106 107 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 108 109 /* if_bridge(4) support */ 110 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 111 112 /* if_lagg(4) support */ 113 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *); 114 115 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 116 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 117 118 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 119 struct sockaddr *); 120 #ifdef VIMAGE 121 static void ether_reassign(struct ifnet *, struct vnet *, char *); 122 #endif 123 static int ether_requestencap(struct ifnet *, struct if_encap_req *); 124 125 #define senderr(e) do { error = (e); goto bad;} while (0) 126 127 static void 128 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 129 { 130 int csum_flags = 0; 131 132 if (src->m_pkthdr.csum_flags & CSUM_IP) 133 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 134 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 135 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 136 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 137 csum_flags |= CSUM_SCTP_VALID; 138 dst->m_pkthdr.csum_flags |= csum_flags; 139 if (csum_flags & CSUM_DATA_VALID) 140 dst->m_pkthdr.csum_data = 0xffff; 141 } 142 143 /* 144 * Handle link-layer encapsulation requests. 145 */ 146 static int 147 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) 148 { 149 struct ether_header *eh; 150 struct arphdr *ah; 151 uint16_t etype; 152 const u_char *lladdr; 153 154 if (req->rtype != IFENCAP_LL) 155 return (EOPNOTSUPP); 156 157 if (req->bufsize < ETHER_HDR_LEN) 158 return (ENOMEM); 159 160 eh = (struct ether_header *)req->buf; 161 lladdr = req->lladdr; 162 req->lladdr_off = 0; 163 164 switch (req->family) { 165 case AF_INET: 166 etype = htons(ETHERTYPE_IP); 167 break; 168 case AF_INET6: 169 etype = htons(ETHERTYPE_IPV6); 170 break; 171 case AF_ARP: 172 ah = (struct arphdr *)req->hdata; 173 ah->ar_hrd = htons(ARPHRD_ETHER); 174 175 switch(ntohs(ah->ar_op)) { 176 case ARPOP_REVREQUEST: 177 case ARPOP_REVREPLY: 178 etype = htons(ETHERTYPE_REVARP); 179 break; 180 case ARPOP_REQUEST: 181 case ARPOP_REPLY: 182 default: 183 etype = htons(ETHERTYPE_ARP); 184 break; 185 } 186 187 if (req->flags & IFENCAP_FLAG_BROADCAST) 188 lladdr = ifp->if_broadcastaddr; 189 break; 190 default: 191 return (EAFNOSUPPORT); 192 } 193 194 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 195 memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); 196 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 197 req->bufsize = sizeof(struct ether_header); 198 199 return (0); 200 } 201 202 static int 203 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, 204 const struct sockaddr *dst, struct route *ro, u_char *phdr, 205 uint32_t *pflags, struct llentry **plle) 206 { 207 struct ether_header *eh; 208 uint32_t lleflags = 0; 209 int error = 0; 210 #if defined(INET) || defined(INET6) 211 uint16_t etype; 212 #endif 213 214 if (plle) 215 *plle = NULL; 216 eh = (struct ether_header *)phdr; 217 218 switch (dst->sa_family) { 219 #ifdef INET 220 case AF_INET: 221 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) 222 error = arpresolve(ifp, 0, m, dst, phdr, &lleflags, 223 plle); 224 else { 225 if (m->m_flags & M_BCAST) 226 memcpy(eh->ether_dhost, ifp->if_broadcastaddr, 227 ETHER_ADDR_LEN); 228 else { 229 const struct in_addr *a; 230 a = &(((const struct sockaddr_in *)dst)->sin_addr); 231 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); 232 } 233 etype = htons(ETHERTYPE_IP); 234 memcpy(&eh->ether_type, &etype, sizeof(etype)); 235 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 236 } 237 break; 238 #endif 239 #ifdef INET6 240 case AF_INET6: 241 if ((m->m_flags & M_MCAST) == 0) 242 error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags, 243 plle); 244 else { 245 const struct in6_addr *a6; 246 a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); 247 ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); 248 etype = htons(ETHERTYPE_IPV6); 249 memcpy(&eh->ether_type, &etype, sizeof(etype)); 250 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 251 } 252 break; 253 #endif 254 default: 255 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 256 if (m != NULL) 257 m_freem(m); 258 return (EAFNOSUPPORT); 259 } 260 261 if (error == EHOSTDOWN) { 262 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) 263 error = EHOSTUNREACH; 264 } 265 266 if (error != 0) 267 return (error); 268 269 *pflags = RT_MAY_LOOP; 270 if (lleflags & LLE_IFADDR) 271 *pflags |= RT_L2_ME; 272 273 return (0); 274 } 275 276 /* 277 * Ethernet output routine. 278 * Encapsulate a packet of type family for the local net. 279 * Use trailer local net encapsulation if enough data in first 280 * packet leaves a multiple of 512 bytes of data in remainder. 281 */ 282 int 283 ether_output(struct ifnet *ifp, struct mbuf *m, 284 const struct sockaddr *dst, struct route *ro) 285 { 286 int error = 0; 287 char linkhdr[ETHER_HDR_LEN], *phdr; 288 struct ether_header *eh; 289 struct pf_mtag *t; 290 int loop_copy = 1; 291 int hlen; /* link layer header length */ 292 uint32_t pflags; 293 struct llentry *lle = NULL; 294 int addref = 0; 295 296 phdr = NULL; 297 pflags = 0; 298 if (ro != NULL) { 299 /* XXX BPF uses ro_prepend */ 300 if (ro->ro_prepend != NULL) { 301 phdr = ro->ro_prepend; 302 hlen = ro->ro_plen; 303 } else if (!(m->m_flags & (M_BCAST | M_MCAST))) { 304 if ((ro->ro_flags & RT_LLE_CACHE) != 0) { 305 lle = ro->ro_lle; 306 if (lle != NULL && 307 (lle->la_flags & LLE_VALID) == 0) { 308 LLE_FREE(lle); 309 lle = NULL; /* redundant */ 310 ro->ro_lle = NULL; 311 } 312 if (lle == NULL) { 313 /* if we lookup, keep cache */ 314 addref = 1; 315 } else 316 /* 317 * Notify LLE code that 318 * the entry was used 319 * by datapath. 320 */ 321 llentry_mark_used(lle); 322 } 323 if (lle != NULL) { 324 phdr = lle->r_linkdata; 325 hlen = lle->r_hdrlen; 326 pflags = lle->r_flags; 327 } 328 } 329 } 330 331 #ifdef MAC 332 error = mac_ifnet_check_transmit(ifp, m); 333 if (error) 334 senderr(error); 335 #endif 336 337 M_PROFILE(m); 338 if (ifp->if_flags & IFF_MONITOR) 339 senderr(ENETDOWN); 340 if (!((ifp->if_flags & IFF_UP) && 341 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 342 senderr(ENETDOWN); 343 344 if (phdr == NULL) { 345 /* No prepend data supplied. Try to calculate ourselves. */ 346 phdr = linkhdr; 347 hlen = ETHER_HDR_LEN; 348 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags, 349 addref ? &lle : NULL); 350 if (addref && lle != NULL) 351 ro->ro_lle = lle; 352 if (error != 0) 353 return (error == EWOULDBLOCK ? 0 : error); 354 } 355 356 if ((pflags & RT_L2_ME) != 0) { 357 update_mbuf_csumflags(m, m); 358 return (if_simloop(ifp, m, dst->sa_family, 0)); 359 } 360 loop_copy = pflags & RT_MAY_LOOP; 361 362 /* 363 * Add local net header. If no space in first mbuf, 364 * allocate another. 365 * 366 * Note that we do prepend regardless of RT_HAS_HEADER flag. 367 * This is done because BPF code shifts m_data pointer 368 * to the end of ethernet header prior to calling if_output(). 369 */ 370 M_PREPEND(m, hlen, M_NOWAIT); 371 if (m == NULL) 372 senderr(ENOBUFS); 373 if ((pflags & RT_HAS_HEADER) == 0) { 374 eh = mtod(m, struct ether_header *); 375 memcpy(eh, phdr, hlen); 376 } 377 378 /* 379 * If a simplex interface, and the packet is being sent to our 380 * Ethernet address or a broadcast address, loopback a copy. 381 * XXX To make a simplex device behave exactly like a duplex 382 * device, we should copy in the case of sending to our own 383 * ethernet address (thus letting the original actually appear 384 * on the wire). However, we don't do that here for security 385 * reasons and compatibility with the original behavior. 386 */ 387 if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && 388 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 389 struct mbuf *n; 390 391 /* 392 * Because if_simloop() modifies the packet, we need a 393 * writable copy through m_dup() instead of a readonly 394 * one as m_copy[m] would give us. The alternative would 395 * be to modify if_simloop() to handle the readonly mbuf, 396 * but performancewise it is mostly equivalent (trading 397 * extra data copying vs. extra locking). 398 * 399 * XXX This is a local workaround. A number of less 400 * often used kernel parts suffer from the same bug. 401 * See PR kern/105943 for a proposed general solution. 402 */ 403 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 404 update_mbuf_csumflags(m, n); 405 (void)if_simloop(ifp, n, dst->sa_family, hlen); 406 } else 407 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 408 } 409 410 /* 411 * Bridges require special output handling. 412 */ 413 if (ifp->if_bridge) { 414 BRIDGE_OUTPUT(ifp, m, error); 415 return (error); 416 } 417 418 #if defined(INET) || defined(INET6) 419 if (ifp->if_carp && 420 (error = (*carp_output_p)(ifp, m, dst))) 421 goto bad; 422 #endif 423 424 /* Handle ng_ether(4) processing, if any */ 425 if (ifp->if_l2com != NULL) { 426 KASSERT(ng_ether_output_p != NULL, 427 ("ng_ether_output_p is NULL")); 428 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 429 bad: if (m != NULL) 430 m_freem(m); 431 return (error); 432 } 433 if (m == NULL) 434 return (0); 435 } 436 437 /* Continue with link-layer output */ 438 return ether_output_frame(ifp, m); 439 } 440 441 static bool 442 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp) 443 { 444 struct ether_8021q_tag qtag; 445 struct ether_header *eh; 446 447 eh = mtod(*mp, struct ether_header *); 448 if (ntohs(eh->ether_type) == ETHERTYPE_VLAN || 449 ntohs(eh->ether_type) == ETHERTYPE_QINQ) 450 return (true); 451 452 qtag.vid = 0; 453 qtag.pcp = pcp; 454 qtag.proto = ETHERTYPE_VLAN; 455 if (ether_8021q_frame(mp, ifp, ifp, &qtag)) 456 return (true); 457 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 458 return (false); 459 } 460 461 /* 462 * Ethernet link layer output routine to send a raw frame to the device. 463 * 464 * This assumes that the 14 byte Ethernet header is present and contiguous 465 * in the first mbuf (if BRIDGE'ing). 466 */ 467 int 468 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 469 { 470 uint8_t pcp; 471 472 pcp = ifp->if_pcp; 473 if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN && 474 !ether_set_pcp(&m, ifp, pcp)) 475 return (0); 476 477 if (PFIL_HOOKED_OUT(V_link_pfil_head)) 478 switch (pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_OUT, 479 NULL)) { 480 case PFIL_DROPPED: 481 return (EACCES); 482 case PFIL_CONSUMED: 483 return (0); 484 } 485 486 #ifdef EXPERIMENTAL 487 #if defined(INET6) && defined(INET) 488 /* draft-ietf-6man-ipv6only-flag */ 489 /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ 490 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { 491 struct ether_header *eh; 492 493 eh = mtod(m, struct ether_header *); 494 switch (ntohs(eh->ether_type)) { 495 case ETHERTYPE_IP: 496 case ETHERTYPE_ARP: 497 case ETHERTYPE_REVARP: 498 m_freem(m); 499 return (EAFNOSUPPORT); 500 /* NOTREACHED */ 501 break; 502 }; 503 } 504 #endif 505 #endif 506 507 /* 508 * Queue message on interface, update output statistics if 509 * successful, and start output if interface not yet active. 510 */ 511 return ((ifp->if_transmit)(ifp, m)); 512 } 513 514 /* 515 * Process a received Ethernet packet; the packet is in the 516 * mbuf chain m with the ethernet header at the front. 517 */ 518 static void 519 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 520 { 521 struct ether_header *eh; 522 u_short etype; 523 524 if ((ifp->if_flags & IFF_UP) == 0) { 525 m_freem(m); 526 return; 527 } 528 #ifdef DIAGNOSTIC 529 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 530 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 531 m_freem(m); 532 return; 533 } 534 #endif 535 if (m->m_len < ETHER_HDR_LEN) { 536 /* XXX maybe should pullup? */ 537 if_printf(ifp, "discard frame w/o leading ethernet " 538 "header (len %u pkt len %u)\n", 539 m->m_len, m->m_pkthdr.len); 540 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 541 m_freem(m); 542 return; 543 } 544 eh = mtod(m, struct ether_header *); 545 etype = ntohs(eh->ether_type); 546 random_harvest_queue_ether(m, sizeof(*m)); 547 548 #ifdef EXPERIMENTAL 549 #if defined(INET6) && defined(INET) 550 /* draft-ietf-6man-ipv6only-flag */ 551 /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ 552 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { 553 switch (etype) { 554 case ETHERTYPE_IP: 555 case ETHERTYPE_ARP: 556 case ETHERTYPE_REVARP: 557 m_freem(m); 558 return; 559 /* NOTREACHED */ 560 break; 561 }; 562 } 563 #endif 564 #endif 565 566 CURVNET_SET_QUIET(ifp->if_vnet); 567 568 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 569 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 570 m->m_flags |= M_BCAST; 571 else 572 m->m_flags |= M_MCAST; 573 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 574 } 575 576 #ifdef MAC 577 /* 578 * Tag the mbuf with an appropriate MAC label before any other 579 * consumers can get to it. 580 */ 581 mac_ifnet_create_mbuf(ifp, m); 582 #endif 583 584 /* 585 * Give bpf a chance at the packet. 586 */ 587 ETHER_BPF_MTAP(ifp, m); 588 589 /* 590 * If the CRC is still on the packet, trim it off. We do this once 591 * and once only in case we are re-entered. Nothing else on the 592 * Ethernet receive path expects to see the FCS. 593 */ 594 if (m->m_flags & M_HASFCS) { 595 m_adj(m, -ETHER_CRC_LEN); 596 m->m_flags &= ~M_HASFCS; 597 } 598 599 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 600 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 601 602 /* Allow monitor mode to claim this frame, after stats are updated. */ 603 if (ifp->if_flags & IFF_MONITOR) { 604 m_freem(m); 605 CURVNET_RESTORE(); 606 return; 607 } 608 609 /* Handle input from a lagg(4) port */ 610 if (ifp->if_type == IFT_IEEE8023ADLAG) { 611 KASSERT(lagg_input_ethernet_p != NULL, 612 ("%s: if_lagg not loaded!", __func__)); 613 m = (*lagg_input_ethernet_p)(ifp, m); 614 if (m != NULL) 615 ifp = m->m_pkthdr.rcvif; 616 else { 617 CURVNET_RESTORE(); 618 return; 619 } 620 } 621 622 /* 623 * If the hardware did not process an 802.1Q tag, do this now, 624 * to allow 802.1P priority frames to be passed to the main input 625 * path correctly. 626 */ 627 if ((m->m_flags & M_VLANTAG) == 0 && 628 ((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) { 629 struct ether_vlan_header *evl; 630 631 if (m->m_len < sizeof(*evl) && 632 (m = m_pullup(m, sizeof(*evl))) == NULL) { 633 #ifdef DIAGNOSTIC 634 if_printf(ifp, "cannot pullup VLAN header\n"); 635 #endif 636 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 637 CURVNET_RESTORE(); 638 return; 639 } 640 641 evl = mtod(m, struct ether_vlan_header *); 642 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 643 m->m_flags |= M_VLANTAG; 644 645 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 646 ETHER_HDR_LEN - ETHER_TYPE_LEN); 647 m_adj(m, ETHER_VLAN_ENCAP_LEN); 648 eh = mtod(m, struct ether_header *); 649 } 650 651 M_SETFIB(m, ifp->if_fib); 652 653 /* Allow ng_ether(4) to claim this frame. */ 654 if (ifp->if_l2com != NULL) { 655 KASSERT(ng_ether_input_p != NULL, 656 ("%s: ng_ether_input_p is NULL", __func__)); 657 m->m_flags &= ~M_PROMISC; 658 (*ng_ether_input_p)(ifp, &m); 659 if (m == NULL) { 660 CURVNET_RESTORE(); 661 return; 662 } 663 eh = mtod(m, struct ether_header *); 664 } 665 666 /* 667 * Allow if_bridge(4) to claim this frame. 668 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 669 * and the frame should be delivered locally. 670 */ 671 if (ifp->if_bridge != NULL) { 672 m->m_flags &= ~M_PROMISC; 673 BRIDGE_INPUT(ifp, m); 674 if (m == NULL) { 675 CURVNET_RESTORE(); 676 return; 677 } 678 eh = mtod(m, struct ether_header *); 679 } 680 681 #if defined(INET) || defined(INET6) 682 /* 683 * Clear M_PROMISC on frame so that carp(4) will see it when the 684 * mbuf flows up to Layer 3. 685 * FreeBSD's implementation of carp(4) uses the inprotosw 686 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 687 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 688 * is outside the scope of the M_PROMISC test below. 689 * TODO: Maintain a hash table of ethernet addresses other than 690 * ether_dhost which may be active on this ifp. 691 */ 692 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 693 m->m_flags &= ~M_PROMISC; 694 } else 695 #endif 696 { 697 /* 698 * If the frame received was not for our MAC address, set the 699 * M_PROMISC flag on the mbuf chain. The frame may need to 700 * be seen by the rest of the Ethernet input path in case of 701 * re-entry (e.g. bridge, vlan, netgraph) but should not be 702 * seen by upper protocol layers. 703 */ 704 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 705 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 706 m->m_flags |= M_PROMISC; 707 } 708 709 ether_demux(ifp, m); 710 CURVNET_RESTORE(); 711 } 712 713 /* 714 * Ethernet input dispatch; by default, direct dispatch here regardless of 715 * global configuration. However, if RSS is enabled, hook up RSS affinity 716 * so that when deferred or hybrid dispatch is enabled, we can redistribute 717 * load based on RSS. 718 * 719 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 720 * not it had already done work distribution via multi-queue. Then we could 721 * direct dispatch in the event load balancing was already complete and 722 * handle the case of interfaces with different capabilities better. 723 * 724 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 725 * at multiple layers? 726 * 727 * XXXRW: For now, enable all this only if RSS is compiled in, although it 728 * works fine without RSS. Need to characterise the performance overhead 729 * of the detour through the netisr code in the event the result is always 730 * direct dispatch. 731 */ 732 static void 733 ether_nh_input(struct mbuf *m) 734 { 735 736 M_ASSERTPKTHDR(m); 737 KASSERT(m->m_pkthdr.rcvif != NULL, 738 ("%s: NULL interface pointer", __func__)); 739 ether_input_internal(m->m_pkthdr.rcvif, m); 740 } 741 742 static struct netisr_handler ether_nh = { 743 .nh_name = "ether", 744 .nh_handler = ether_nh_input, 745 .nh_proto = NETISR_ETHER, 746 #ifdef RSS 747 .nh_policy = NETISR_POLICY_CPU, 748 .nh_dispatch = NETISR_DISPATCH_DIRECT, 749 .nh_m2cpuid = rss_m2cpuid, 750 #else 751 .nh_policy = NETISR_POLICY_SOURCE, 752 .nh_dispatch = NETISR_DISPATCH_DIRECT, 753 #endif 754 }; 755 756 static void 757 ether_init(__unused void *arg) 758 { 759 760 netisr_register(ðer_nh); 761 } 762 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 763 764 static void 765 vnet_ether_init(__unused void *arg) 766 { 767 struct pfil_head_args args; 768 769 args.pa_version = PFIL_VERSION; 770 args.pa_flags = PFIL_IN | PFIL_OUT; 771 args.pa_type = PFIL_TYPE_ETHERNET; 772 args.pa_headname = PFIL_ETHER_NAME; 773 V_link_pfil_head = pfil_head_register(&args); 774 775 #ifdef VIMAGE 776 netisr_register_vnet(ðer_nh); 777 #endif 778 } 779 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 780 vnet_ether_init, NULL); 781 782 #ifdef VIMAGE 783 static void 784 vnet_ether_pfil_destroy(__unused void *arg) 785 { 786 787 pfil_head_unregister(V_link_pfil_head); 788 } 789 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY, 790 vnet_ether_pfil_destroy, NULL); 791 792 static void 793 vnet_ether_destroy(__unused void *arg) 794 { 795 796 netisr_unregister_vnet(ðer_nh); 797 } 798 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 799 vnet_ether_destroy, NULL); 800 #endif 801 802 static void 803 ether_input(struct ifnet *ifp, struct mbuf *m) 804 { 805 struct epoch_tracker et; 806 struct mbuf *mn; 807 bool needs_epoch; 808 809 needs_epoch = !(ifp->if_flags & IFF_KNOWSEPOCH); 810 811 /* 812 * The drivers are allowed to pass in a chain of packets linked with 813 * m_nextpkt. We split them up into separate packets here and pass 814 * them up. This allows the drivers to amortize the receive lock. 815 */ 816 CURVNET_SET_QUIET(ifp->if_vnet); 817 if (__predict_false(needs_epoch)) 818 NET_EPOCH_ENTER(et); 819 while (m) { 820 mn = m->m_nextpkt; 821 m->m_nextpkt = NULL; 822 823 /* 824 * We will rely on rcvif being set properly in the deferred 825 * context, so assert it is correct here. 826 */ 827 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 828 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p " 829 "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp)); 830 netisr_dispatch(NETISR_ETHER, m); 831 m = mn; 832 } 833 if (__predict_false(needs_epoch)) 834 NET_EPOCH_EXIT(et); 835 CURVNET_RESTORE(); 836 } 837 838 /* 839 * Upper layer processing for a received Ethernet packet. 840 */ 841 void 842 ether_demux(struct ifnet *ifp, struct mbuf *m) 843 { 844 struct ether_header *eh; 845 int i, isr; 846 u_short ether_type; 847 848 NET_EPOCH_ASSERT(); 849 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 850 851 /* Do not grab PROMISC frames in case we are re-entered. */ 852 if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) { 853 i = pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_IN, NULL); 854 if (i != 0 || m == NULL) 855 return; 856 } 857 858 eh = mtod(m, struct ether_header *); 859 ether_type = ntohs(eh->ether_type); 860 861 /* 862 * If this frame has a VLAN tag other than 0, call vlan_input() 863 * if its module is loaded. Otherwise, drop. 864 */ 865 if ((m->m_flags & M_VLANTAG) && 866 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 867 if (ifp->if_vlantrunk == NULL) { 868 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 869 m_freem(m); 870 return; 871 } 872 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 873 __func__)); 874 /* Clear before possibly re-entering ether_input(). */ 875 m->m_flags &= ~M_PROMISC; 876 (*vlan_input_p)(ifp, m); 877 return; 878 } 879 880 /* 881 * Pass promiscuously received frames to the upper layer if the user 882 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 883 */ 884 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 885 m_freem(m); 886 return; 887 } 888 889 /* 890 * Reset layer specific mbuf flags to avoid confusing upper layers. 891 * Strip off Ethernet header. 892 */ 893 m->m_flags &= ~M_VLANTAG; 894 m_clrprotoflags(m); 895 m_adj(m, ETHER_HDR_LEN); 896 897 /* 898 * Dispatch frame to upper layer. 899 */ 900 switch (ether_type) { 901 #ifdef INET 902 case ETHERTYPE_IP: 903 isr = NETISR_IP; 904 break; 905 906 case ETHERTYPE_ARP: 907 if (ifp->if_flags & IFF_NOARP) { 908 /* Discard packet if ARP is disabled on interface */ 909 m_freem(m); 910 return; 911 } 912 isr = NETISR_ARP; 913 break; 914 #endif 915 #ifdef INET6 916 case ETHERTYPE_IPV6: 917 isr = NETISR_IPV6; 918 break; 919 #endif 920 default: 921 goto discard; 922 } 923 netisr_dispatch(isr, m); 924 return; 925 926 discard: 927 /* 928 * Packet is to be discarded. If netgraph is present, 929 * hand the packet to it for last chance processing; 930 * otherwise dispose of it. 931 */ 932 if (ifp->if_l2com != NULL) { 933 KASSERT(ng_ether_input_orphan_p != NULL, 934 ("ng_ether_input_orphan_p is NULL")); 935 /* 936 * Put back the ethernet header so netgraph has a 937 * consistent view of inbound packets. 938 */ 939 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 940 (*ng_ether_input_orphan_p)(ifp, m); 941 return; 942 } 943 m_freem(m); 944 } 945 946 /* 947 * Convert Ethernet address to printable (loggable) representation. 948 * This routine is for compatibility; it's better to just use 949 * 950 * printf("%6D", <pointer to address>, ":"); 951 * 952 * since there's no static buffer involved. 953 */ 954 char * 955 ether_sprintf(const u_char *ap) 956 { 957 static char etherbuf[18]; 958 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 959 return (etherbuf); 960 } 961 962 /* 963 * Perform common duties while attaching to interface list 964 */ 965 void 966 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 967 { 968 int i; 969 struct ifaddr *ifa; 970 struct sockaddr_dl *sdl; 971 972 ifp->if_addrlen = ETHER_ADDR_LEN; 973 ifp->if_hdrlen = ETHER_HDR_LEN; 974 ifp->if_mtu = ETHERMTU; 975 if_attach(ifp); 976 ifp->if_output = ether_output; 977 ifp->if_input = ether_input; 978 ifp->if_resolvemulti = ether_resolvemulti; 979 ifp->if_requestencap = ether_requestencap; 980 #ifdef VIMAGE 981 ifp->if_reassign = ether_reassign; 982 #endif 983 if (ifp->if_baudrate == 0) 984 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 985 ifp->if_broadcastaddr = etherbroadcastaddr; 986 987 ifa = ifp->if_addr; 988 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 989 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 990 sdl->sdl_type = IFT_ETHER; 991 sdl->sdl_alen = ifp->if_addrlen; 992 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 993 994 if (ifp->if_hw_addr != NULL) 995 bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen); 996 997 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 998 if (ng_ether_attach_p != NULL) 999 (*ng_ether_attach_p)(ifp); 1000 1001 /* Announce Ethernet MAC address if non-zero. */ 1002 for (i = 0; i < ifp->if_addrlen; i++) 1003 if (lla[i] != 0) 1004 break; 1005 if (i != ifp->if_addrlen) 1006 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 1007 1008 uuid_ether_add(LLADDR(sdl)); 1009 1010 /* Add necessary bits are setup; announce it now. */ 1011 EVENTHANDLER_INVOKE(ether_ifattach_event, ifp); 1012 if (IS_DEFAULT_VNET(curvnet)) 1013 devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL); 1014 } 1015 1016 /* 1017 * Perform common duties while detaching an Ethernet interface 1018 */ 1019 void 1020 ether_ifdetach(struct ifnet *ifp) 1021 { 1022 struct sockaddr_dl *sdl; 1023 1024 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 1025 uuid_ether_del(LLADDR(sdl)); 1026 1027 if (ifp->if_l2com != NULL) { 1028 KASSERT(ng_ether_detach_p != NULL, 1029 ("ng_ether_detach_p is NULL")); 1030 (*ng_ether_detach_p)(ifp); 1031 } 1032 1033 bpfdetach(ifp); 1034 if_detach(ifp); 1035 } 1036 1037 #ifdef VIMAGE 1038 void 1039 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 1040 { 1041 1042 if (ifp->if_l2com != NULL) { 1043 KASSERT(ng_ether_detach_p != NULL, 1044 ("ng_ether_detach_p is NULL")); 1045 (*ng_ether_detach_p)(ifp); 1046 } 1047 1048 if (ng_ether_attach_p != NULL) { 1049 CURVNET_SET_QUIET(new_vnet); 1050 (*ng_ether_attach_p)(ifp); 1051 CURVNET_RESTORE(); 1052 } 1053 } 1054 #endif 1055 1056 SYSCTL_DECL(_net_link); 1057 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1058 "Ethernet"); 1059 1060 #if 0 1061 /* 1062 * This is for reference. We have a table-driven version 1063 * of the little-endian crc32 generator, which is faster 1064 * than the double-loop. 1065 */ 1066 uint32_t 1067 ether_crc32_le(const uint8_t *buf, size_t len) 1068 { 1069 size_t i; 1070 uint32_t crc; 1071 int bit; 1072 uint8_t data; 1073 1074 crc = 0xffffffff; /* initial value */ 1075 1076 for (i = 0; i < len; i++) { 1077 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1078 carry = (crc ^ data) & 1; 1079 crc >>= 1; 1080 if (carry) 1081 crc = (crc ^ ETHER_CRC_POLY_LE); 1082 } 1083 } 1084 1085 return (crc); 1086 } 1087 #else 1088 uint32_t 1089 ether_crc32_le(const uint8_t *buf, size_t len) 1090 { 1091 static const uint32_t crctab[] = { 1092 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1093 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1094 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1095 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1096 }; 1097 size_t i; 1098 uint32_t crc; 1099 1100 crc = 0xffffffff; /* initial value */ 1101 1102 for (i = 0; i < len; i++) { 1103 crc ^= buf[i]; 1104 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1105 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1106 } 1107 1108 return (crc); 1109 } 1110 #endif 1111 1112 uint32_t 1113 ether_crc32_be(const uint8_t *buf, size_t len) 1114 { 1115 size_t i; 1116 uint32_t crc, carry; 1117 int bit; 1118 uint8_t data; 1119 1120 crc = 0xffffffff; /* initial value */ 1121 1122 for (i = 0; i < len; i++) { 1123 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1124 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 1125 crc <<= 1; 1126 if (carry) 1127 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1128 } 1129 } 1130 1131 return (crc); 1132 } 1133 1134 int 1135 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1136 { 1137 struct ifaddr *ifa = (struct ifaddr *) data; 1138 struct ifreq *ifr = (struct ifreq *) data; 1139 int error = 0; 1140 1141 switch (command) { 1142 case SIOCSIFADDR: 1143 ifp->if_flags |= IFF_UP; 1144 1145 switch (ifa->ifa_addr->sa_family) { 1146 #ifdef INET 1147 case AF_INET: 1148 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1149 arp_ifinit(ifp, ifa); 1150 break; 1151 #endif 1152 default: 1153 ifp->if_init(ifp->if_softc); 1154 break; 1155 } 1156 break; 1157 1158 case SIOCGIFADDR: 1159 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 1160 ETHER_ADDR_LEN); 1161 break; 1162 1163 case SIOCSIFMTU: 1164 /* 1165 * Set the interface MTU. 1166 */ 1167 if (ifr->ifr_mtu > ETHERMTU) { 1168 error = EINVAL; 1169 } else { 1170 ifp->if_mtu = ifr->ifr_mtu; 1171 } 1172 break; 1173 1174 case SIOCSLANPCP: 1175 error = priv_check(curthread, PRIV_NET_SETLANPCP); 1176 if (error != 0) 1177 break; 1178 if (ifr->ifr_lan_pcp > 7 && 1179 ifr->ifr_lan_pcp != IFNET_PCP_NONE) { 1180 error = EINVAL; 1181 } else { 1182 ifp->if_pcp = ifr->ifr_lan_pcp; 1183 /* broadcast event about PCP change */ 1184 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 1185 } 1186 break; 1187 1188 case SIOCGLANPCP: 1189 ifr->ifr_lan_pcp = ifp->if_pcp; 1190 break; 1191 1192 default: 1193 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1194 break; 1195 } 1196 return (error); 1197 } 1198 1199 static int 1200 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1201 struct sockaddr *sa) 1202 { 1203 struct sockaddr_dl *sdl; 1204 #ifdef INET 1205 struct sockaddr_in *sin; 1206 #endif 1207 #ifdef INET6 1208 struct sockaddr_in6 *sin6; 1209 #endif 1210 u_char *e_addr; 1211 1212 switch(sa->sa_family) { 1213 case AF_LINK: 1214 /* 1215 * No mapping needed. Just check that it's a valid MC address. 1216 */ 1217 sdl = (struct sockaddr_dl *)sa; 1218 e_addr = LLADDR(sdl); 1219 if (!ETHER_IS_MULTICAST(e_addr)) 1220 return EADDRNOTAVAIL; 1221 *llsa = NULL; 1222 return 0; 1223 1224 #ifdef INET 1225 case AF_INET: 1226 sin = (struct sockaddr_in *)sa; 1227 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1228 return EADDRNOTAVAIL; 1229 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1230 sdl->sdl_alen = ETHER_ADDR_LEN; 1231 e_addr = LLADDR(sdl); 1232 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1233 *llsa = (struct sockaddr *)sdl; 1234 return 0; 1235 #endif 1236 #ifdef INET6 1237 case AF_INET6: 1238 sin6 = (struct sockaddr_in6 *)sa; 1239 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1240 /* 1241 * An IP6 address of 0 means listen to all 1242 * of the Ethernet multicast address used for IP6. 1243 * (This is used for multicast routers.) 1244 */ 1245 ifp->if_flags |= IFF_ALLMULTI; 1246 *llsa = NULL; 1247 return 0; 1248 } 1249 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1250 return EADDRNOTAVAIL; 1251 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1252 sdl->sdl_alen = ETHER_ADDR_LEN; 1253 e_addr = LLADDR(sdl); 1254 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1255 *llsa = (struct sockaddr *)sdl; 1256 return 0; 1257 #endif 1258 1259 default: 1260 /* 1261 * Well, the text isn't quite right, but it's the name 1262 * that counts... 1263 */ 1264 return EAFNOSUPPORT; 1265 } 1266 } 1267 1268 static moduledata_t ether_mod = { 1269 .name = "ether", 1270 }; 1271 1272 void 1273 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1274 { 1275 struct ether_vlan_header vlan; 1276 struct mbuf mv, mb; 1277 1278 KASSERT((m->m_flags & M_VLANTAG) != 0, 1279 ("%s: vlan information not present", __func__)); 1280 KASSERT(m->m_len >= sizeof(struct ether_header), 1281 ("%s: mbuf not large enough for header", __func__)); 1282 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1283 vlan.evl_proto = vlan.evl_encap_proto; 1284 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1285 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1286 m->m_len -= sizeof(struct ether_header); 1287 m->m_data += sizeof(struct ether_header); 1288 /* 1289 * If a data link has been supplied by the caller, then we will need to 1290 * re-create a stack allocated mbuf chain with the following structure: 1291 * 1292 * (1) mbuf #1 will contain the supplied data link 1293 * (2) mbuf #2 will contain the vlan header 1294 * (3) mbuf #3 will contain the original mbuf's packet data 1295 * 1296 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1297 */ 1298 if (data != NULL) { 1299 mv.m_next = m; 1300 mv.m_data = (caddr_t)&vlan; 1301 mv.m_len = sizeof(vlan); 1302 mb.m_next = &mv; 1303 mb.m_data = data; 1304 mb.m_len = dlen; 1305 bpf_mtap(bp, &mb); 1306 } else 1307 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1308 m->m_len += sizeof(struct ether_header); 1309 m->m_data -= sizeof(struct ether_header); 1310 } 1311 1312 struct mbuf * 1313 ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto) 1314 { 1315 struct ether_vlan_header *evl; 1316 1317 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1318 if (m == NULL) 1319 return (NULL); 1320 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1321 1322 if (m->m_len < sizeof(*evl)) { 1323 m = m_pullup(m, sizeof(*evl)); 1324 if (m == NULL) 1325 return (NULL); 1326 } 1327 1328 /* 1329 * Transform the Ethernet header into an Ethernet header 1330 * with 802.1Q encapsulation. 1331 */ 1332 evl = mtod(m, struct ether_vlan_header *); 1333 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1334 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1335 evl->evl_encap_proto = htons(proto); 1336 evl->evl_tag = htons(tag); 1337 return (m); 1338 } 1339 1340 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1341 "IEEE 802.1Q VLAN"); 1342 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, 1343 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1344 "for consistency"); 1345 1346 VNET_DEFINE_STATIC(int, soft_pad); 1347 #define V_soft_pad VNET(soft_pad) 1348 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET, 1349 &VNET_NAME(soft_pad), 0, 1350 "pad short frames before tagging"); 1351 1352 /* 1353 * For now, make preserving PCP via an mbuf tag optional, as it increases 1354 * per-packet memory allocations and frees. In the future, it would be 1355 * preferable to reuse ether_vtag for this, or similar. 1356 */ 1357 int vlan_mtag_pcp = 0; 1358 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW, 1359 &vlan_mtag_pcp, 0, 1360 "Retain VLAN PCP information as packets are passed up the stack"); 1361 1362 bool 1363 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p, 1364 struct ether_8021q_tag *qtag) 1365 { 1366 struct m_tag *mtag; 1367 int n; 1368 uint16_t tag; 1369 static const char pad[8]; /* just zeros */ 1370 1371 /* 1372 * Pad the frame to the minimum size allowed if told to. 1373 * This option is in accord with IEEE Std 802.1Q, 2003 Ed., 1374 * paragraph C.4.4.3.b. It can help to work around buggy 1375 * bridges that violate paragraph C.4.4.3.a from the same 1376 * document, i.e., fail to pad short frames after untagging. 1377 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but 1378 * untagging it will produce a 62-byte frame, which is a runt 1379 * and requires padding. There are VLAN-enabled network 1380 * devices that just discard such runts instead or mishandle 1381 * them somehow. 1382 */ 1383 if (V_soft_pad && p->if_type == IFT_ETHER) { 1384 for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len; 1385 n > 0; n -= sizeof(pad)) { 1386 if (!m_append(*mp, min(n, sizeof(pad)), pad)) 1387 break; 1388 } 1389 if (n > 0) { 1390 m_freem(*mp); 1391 *mp = NULL; 1392 if_printf(ife, "cannot pad short frame"); 1393 return (false); 1394 } 1395 } 1396 1397 /* 1398 * If PCP is set in mbuf, use it 1399 */ 1400 if ((*mp)->m_flags & M_VLANTAG) { 1401 qtag->pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag); 1402 } 1403 1404 /* 1405 * If underlying interface can do VLAN tag insertion itself, 1406 * just pass the packet along. However, we need some way to 1407 * tell the interface where the packet came from so that it 1408 * knows how to find the VLAN tag to use, so we attach a 1409 * packet tag that holds it. 1410 */ 1411 if (vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q, 1412 MTAG_8021Q_PCP_OUT, NULL)) != NULL) 1413 tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0); 1414 else 1415 tag = EVL_MAKETAG(qtag->vid, qtag->pcp, 0); 1416 if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) && 1417 (qtag->proto == ETHERTYPE_VLAN)) { 1418 (*mp)->m_pkthdr.ether_vtag = tag; 1419 (*mp)->m_flags |= M_VLANTAG; 1420 } else { 1421 *mp = ether_vlanencap_proto(*mp, tag, qtag->proto); 1422 if (*mp == NULL) { 1423 if_printf(ife, "unable to prepend 802.1Q header"); 1424 return (false); 1425 } 1426 } 1427 return (true); 1428 } 1429 1430 /* 1431 * Allocate an address from the FreeBSD Foundation OUI. This uses a 1432 * cryptographic hash function on the containing jail's name, UUID and the 1433 * interface name to attempt to provide a unique but stable address. 1434 * Pseudo-interfaces which require a MAC address should use this function to 1435 * allocate non-locally-administered addresses. 1436 */ 1437 void 1438 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr) 1439 { 1440 SHA1_CTX ctx; 1441 char *buf; 1442 char uuid[HOSTUUIDLEN + 1]; 1443 uint64_t addr; 1444 int i, sz; 1445 char digest[SHA1_RESULTLEN]; 1446 char jailname[MAXHOSTNAMELEN]; 1447 1448 getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid)); 1449 /* If each (vnet) jail would also have a unique hostuuid this would not 1450 * be necessary. */ 1451 getjailname(curthread->td_ucred, jailname, sizeof(jailname)); 1452 sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp), 1453 jailname); 1454 if (sz < 0) { 1455 /* Fall back to a random mac address. */ 1456 arc4rand(hwaddr, sizeof(*hwaddr), 0); 1457 hwaddr->octet[0] = 0x02; 1458 return; 1459 } 1460 1461 SHA1Init(&ctx); 1462 SHA1Update(&ctx, buf, sz); 1463 SHA1Final(digest, &ctx); 1464 free(buf, M_TEMP); 1465 1466 addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) & 1467 OUI_FREEBSD_GENERATED_MASK; 1468 addr = OUI_FREEBSD(addr); 1469 for (i = 0; i < ETHER_ADDR_LEN; ++i) { 1470 hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) & 1471 0xFF; 1472 } 1473 } 1474 1475 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1476 MODULE_VERSION(ether, 1); 1477