1 /*- 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 30 * $FreeBSD$ 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_netgraph.h" 36 #include "opt_mbuf_profiling.h" 37 #include "opt_rss.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mbuf.h> 46 #include <sys/random.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/sysctl.h> 50 #include <sys/uuid.h> 51 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_arp.h> 55 #include <net/netisr.h> 56 #include <net/route.h> 57 #include <net/if_llc.h> 58 #include <net/if_dl.h> 59 #include <net/if_types.h> 60 #include <net/bpf.h> 61 #include <net/ethernet.h> 62 #include <net/if_bridgevar.h> 63 #include <net/if_vlan_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/pfil.h> 66 #include <net/rss_config.h> 67 #include <net/vnet.h> 68 69 #include <netpfil/pf/pf_mtag.h> 70 71 #if defined(INET) || defined(INET6) 72 #include <netinet/in.h> 73 #include <netinet/in_var.h> 74 #include <netinet/if_ether.h> 75 #include <netinet/ip_carp.h> 76 #include <netinet/ip_var.h> 77 #endif 78 #ifdef INET6 79 #include <netinet6/nd6.h> 80 #endif 81 #include <security/mac/mac_framework.h> 82 83 #ifdef CTASSERT 84 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 85 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 86 #endif 87 88 VNET_DEFINE(struct pfil_head, link_pfil_hook); /* Packet filter hooks */ 89 90 /* netgraph node hooks for ng_ether(4) */ 91 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 92 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 93 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 94 void (*ng_ether_attach_p)(struct ifnet *ifp); 95 void (*ng_ether_detach_p)(struct ifnet *ifp); 96 97 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 98 99 /* if_bridge(4) support */ 100 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 101 int (*bridge_output_p)(struct ifnet *, struct mbuf *, 102 struct sockaddr *, struct rtentry *); 103 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 104 105 /* if_lagg(4) support */ 106 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 107 108 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 109 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 110 111 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 112 struct sockaddr *); 113 #ifdef VIMAGE 114 static void ether_reassign(struct ifnet *, struct vnet *, char *); 115 #endif 116 static int ether_requestencap(struct ifnet *, struct if_encap_req *); 117 118 #define ETHER_IS_BROADCAST(addr) \ 119 (bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0) 120 121 #define senderr(e) do { error = (e); goto bad;} while (0) 122 123 static void 124 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 125 { 126 int csum_flags = 0; 127 128 if (src->m_pkthdr.csum_flags & CSUM_IP) 129 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 130 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 131 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 132 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 133 csum_flags |= CSUM_SCTP_VALID; 134 dst->m_pkthdr.csum_flags |= csum_flags; 135 if (csum_flags & CSUM_DATA_VALID) 136 dst->m_pkthdr.csum_data = 0xffff; 137 } 138 139 /* 140 * Handle link-layer encapsulation requests. 141 */ 142 static int 143 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) 144 { 145 struct ether_header *eh; 146 struct arphdr *ah; 147 uint16_t etype; 148 const u_char *lladdr; 149 150 if (req->rtype != IFENCAP_LL) 151 return (EOPNOTSUPP); 152 153 if (req->bufsize < ETHER_HDR_LEN) 154 return (ENOMEM); 155 156 eh = (struct ether_header *)req->buf; 157 lladdr = req->lladdr; 158 req->lladdr_off = 0; 159 160 switch (req->family) { 161 case AF_INET: 162 etype = htons(ETHERTYPE_IP); 163 break; 164 case AF_INET6: 165 etype = htons(ETHERTYPE_IPV6); 166 break; 167 case AF_ARP: 168 ah = (struct arphdr *)req->hdata; 169 ah->ar_hrd = htons(ARPHRD_ETHER); 170 171 switch(ntohs(ah->ar_op)) { 172 case ARPOP_REVREQUEST: 173 case ARPOP_REVREPLY: 174 etype = htons(ETHERTYPE_REVARP); 175 break; 176 case ARPOP_REQUEST: 177 case ARPOP_REPLY: 178 default: 179 etype = htons(ETHERTYPE_ARP); 180 break; 181 } 182 183 if (req->flags & IFENCAP_FLAG_BROADCAST) 184 lladdr = ifp->if_broadcastaddr; 185 break; 186 default: 187 return (EAFNOSUPPORT); 188 } 189 190 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 191 memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); 192 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 193 req->bufsize = sizeof(struct ether_header); 194 195 return (0); 196 } 197 198 199 static int 200 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, 201 const struct sockaddr *dst, struct route *ro, u_char *phdr, 202 uint32_t *pflags) 203 { 204 struct ether_header *eh; 205 uint32_t lleflags = 0; 206 int error = 0; 207 #if defined(INET) || defined(INET6) 208 uint16_t etype; 209 #endif 210 211 eh = (struct ether_header *)phdr; 212 213 switch (dst->sa_family) { 214 #ifdef INET 215 case AF_INET: 216 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) 217 error = arpresolve(ifp, 0, m, dst, phdr, &lleflags); 218 else { 219 if (m->m_flags & M_BCAST) 220 memcpy(eh->ether_dhost, ifp->if_broadcastaddr, 221 ETHER_ADDR_LEN); 222 else { 223 const struct in_addr *a; 224 a = &(((const struct sockaddr_in *)dst)->sin_addr); 225 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); 226 } 227 etype = htons(ETHERTYPE_IP); 228 memcpy(&eh->ether_type, &etype, sizeof(etype)); 229 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 230 } 231 break; 232 #endif 233 #ifdef INET6 234 case AF_INET6: 235 if ((m->m_flags & M_MCAST) == 0) 236 error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags); 237 else { 238 const struct in6_addr *a6; 239 a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); 240 ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); 241 etype = htons(ETHERTYPE_IPV6); 242 memcpy(&eh->ether_type, &etype, sizeof(etype)); 243 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 244 } 245 break; 246 #endif 247 default: 248 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 249 if (m != NULL) 250 m_freem(m); 251 return (EAFNOSUPPORT); 252 } 253 254 if (error == EHOSTDOWN) { 255 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) 256 error = EHOSTUNREACH; 257 } 258 259 if (error != 0) 260 return (error); 261 262 *pflags = RT_MAY_LOOP; 263 if (lleflags & LLE_IFADDR) 264 *pflags |= RT_L2_ME; 265 266 return (0); 267 } 268 269 /* 270 * Ethernet output routine. 271 * Encapsulate a packet of type family for the local net. 272 * Use trailer local net encapsulation if enough data in first 273 * packet leaves a multiple of 512 bytes of data in remainder. 274 */ 275 int 276 ether_output(struct ifnet *ifp, struct mbuf *m, 277 const struct sockaddr *dst, struct route *ro) 278 { 279 int error = 0; 280 char linkhdr[ETHER_HDR_LEN], *phdr; 281 struct ether_header *eh; 282 struct pf_mtag *t; 283 int loop_copy = 1; 284 int hlen; /* link layer header length */ 285 uint32_t pflags; 286 287 phdr = NULL; 288 pflags = 0; 289 if (ro != NULL) { 290 phdr = ro->ro_prepend; 291 hlen = ro->ro_plen; 292 pflags = ro->ro_flags; 293 } 294 #ifdef MAC 295 error = mac_ifnet_check_transmit(ifp, m); 296 if (error) 297 senderr(error); 298 #endif 299 300 M_PROFILE(m); 301 if (ifp->if_flags & IFF_MONITOR) 302 senderr(ENETDOWN); 303 if (!((ifp->if_flags & IFF_UP) && 304 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 305 senderr(ENETDOWN); 306 307 if (phdr == NULL) { 308 /* No prepend data supplied. Try to calculate ourselves. */ 309 phdr = linkhdr; 310 hlen = ETHER_HDR_LEN; 311 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags); 312 if (error != 0) 313 return (error == EWOULDBLOCK ? 0 : error); 314 } 315 316 if ((pflags & RT_L2_ME) != 0) { 317 update_mbuf_csumflags(m, m); 318 return (if_simloop(ifp, m, dst->sa_family, 0)); 319 } 320 loop_copy = pflags & RT_MAY_LOOP; 321 322 /* 323 * Add local net header. If no space in first mbuf, 324 * allocate another. 325 * 326 * Note that we do prepend regardless of RT_HAS_HEADER flag. 327 * This is done because BPF code shifts m_data pointer 328 * to the end of ethernet header prior to calling if_output(). 329 */ 330 M_PREPEND(m, hlen, M_NOWAIT); 331 if (m == NULL) 332 senderr(ENOBUFS); 333 if ((pflags & RT_HAS_HEADER) == 0) { 334 eh = mtod(m, struct ether_header *); 335 memcpy(eh, phdr, hlen); 336 } 337 338 /* 339 * If a simplex interface, and the packet is being sent to our 340 * Ethernet address or a broadcast address, loopback a copy. 341 * XXX To make a simplex device behave exactly like a duplex 342 * device, we should copy in the case of sending to our own 343 * ethernet address (thus letting the original actually appear 344 * on the wire). However, we don't do that here for security 345 * reasons and compatibility with the original behavior. 346 */ 347 if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && 348 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 349 struct mbuf *n; 350 351 /* 352 * Because if_simloop() modifies the packet, we need a 353 * writable copy through m_dup() instead of a readonly 354 * one as m_copy[m] would give us. The alternative would 355 * be to modify if_simloop() to handle the readonly mbuf, 356 * but performancewise it is mostly equivalent (trading 357 * extra data copying vs. extra locking). 358 * 359 * XXX This is a local workaround. A number of less 360 * often used kernel parts suffer from the same bug. 361 * See PR kern/105943 for a proposed general solution. 362 */ 363 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 364 update_mbuf_csumflags(m, n); 365 (void)if_simloop(ifp, n, dst->sa_family, hlen); 366 } else 367 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 368 } 369 370 /* 371 * Bridges require special output handling. 372 */ 373 if (ifp->if_bridge) { 374 BRIDGE_OUTPUT(ifp, m, error); 375 return (error); 376 } 377 378 #if defined(INET) || defined(INET6) 379 if (ifp->if_carp && 380 (error = (*carp_output_p)(ifp, m, dst))) 381 goto bad; 382 #endif 383 384 /* Handle ng_ether(4) processing, if any */ 385 if (ifp->if_l2com != NULL) { 386 KASSERT(ng_ether_output_p != NULL, 387 ("ng_ether_output_p is NULL")); 388 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 389 bad: if (m != NULL) 390 m_freem(m); 391 return (error); 392 } 393 if (m == NULL) 394 return (0); 395 } 396 397 /* Continue with link-layer output */ 398 return ether_output_frame(ifp, m); 399 } 400 401 /* 402 * Ethernet link layer output routine to send a raw frame to the device. 403 * 404 * This assumes that the 14 byte Ethernet header is present and contiguous 405 * in the first mbuf (if BRIDGE'ing). 406 */ 407 int 408 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 409 { 410 int i; 411 412 if (PFIL_HOOKED(&V_link_pfil_hook)) { 413 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL); 414 415 if (i != 0) 416 return (EACCES); 417 418 if (m == NULL) 419 return (0); 420 } 421 422 /* 423 * Queue message on interface, update output statistics if 424 * successful, and start output if interface not yet active. 425 */ 426 return ((ifp->if_transmit)(ifp, m)); 427 } 428 429 /* 430 * Process a received Ethernet packet; the packet is in the 431 * mbuf chain m with the ethernet header at the front. 432 */ 433 static void 434 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 435 { 436 struct ether_header *eh; 437 u_short etype; 438 439 if ((ifp->if_flags & IFF_UP) == 0) { 440 m_freem(m); 441 return; 442 } 443 #ifdef DIAGNOSTIC 444 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 445 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 446 m_freem(m); 447 return; 448 } 449 #endif 450 if (m->m_len < ETHER_HDR_LEN) { 451 /* XXX maybe should pullup? */ 452 if_printf(ifp, "discard frame w/o leading ethernet " 453 "header (len %u pkt len %u)\n", 454 m->m_len, m->m_pkthdr.len); 455 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 456 m_freem(m); 457 return; 458 } 459 eh = mtod(m, struct ether_header *); 460 etype = ntohs(eh->ether_type); 461 random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER); 462 463 CURVNET_SET_QUIET(ifp->if_vnet); 464 465 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 466 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 467 m->m_flags |= M_BCAST; 468 else 469 m->m_flags |= M_MCAST; 470 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 471 } 472 473 #ifdef MAC 474 /* 475 * Tag the mbuf with an appropriate MAC label before any other 476 * consumers can get to it. 477 */ 478 mac_ifnet_create_mbuf(ifp, m); 479 #endif 480 481 /* 482 * Give bpf a chance at the packet. 483 */ 484 ETHER_BPF_MTAP(ifp, m); 485 486 /* 487 * If the CRC is still on the packet, trim it off. We do this once 488 * and once only in case we are re-entered. Nothing else on the 489 * Ethernet receive path expects to see the FCS. 490 */ 491 if (m->m_flags & M_HASFCS) { 492 m_adj(m, -ETHER_CRC_LEN); 493 m->m_flags &= ~M_HASFCS; 494 } 495 496 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 497 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 498 499 /* Allow monitor mode to claim this frame, after stats are updated. */ 500 if (ifp->if_flags & IFF_MONITOR) { 501 m_freem(m); 502 CURVNET_RESTORE(); 503 return; 504 } 505 506 /* Handle input from a lagg(4) port */ 507 if (ifp->if_type == IFT_IEEE8023ADLAG) { 508 KASSERT(lagg_input_p != NULL, 509 ("%s: if_lagg not loaded!", __func__)); 510 m = (*lagg_input_p)(ifp, m); 511 if (m != NULL) 512 ifp = m->m_pkthdr.rcvif; 513 else { 514 CURVNET_RESTORE(); 515 return; 516 } 517 } 518 519 /* 520 * If the hardware did not process an 802.1Q tag, do this now, 521 * to allow 802.1P priority frames to be passed to the main input 522 * path correctly. 523 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 524 */ 525 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 526 struct ether_vlan_header *evl; 527 528 if (m->m_len < sizeof(*evl) && 529 (m = m_pullup(m, sizeof(*evl))) == NULL) { 530 #ifdef DIAGNOSTIC 531 if_printf(ifp, "cannot pullup VLAN header\n"); 532 #endif 533 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 534 CURVNET_RESTORE(); 535 return; 536 } 537 538 evl = mtod(m, struct ether_vlan_header *); 539 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 540 m->m_flags |= M_VLANTAG; 541 542 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 543 ETHER_HDR_LEN - ETHER_TYPE_LEN); 544 m_adj(m, ETHER_VLAN_ENCAP_LEN); 545 eh = mtod(m, struct ether_header *); 546 } 547 548 M_SETFIB(m, ifp->if_fib); 549 550 /* Allow ng_ether(4) to claim this frame. */ 551 if (ifp->if_l2com != NULL) { 552 KASSERT(ng_ether_input_p != NULL, 553 ("%s: ng_ether_input_p is NULL", __func__)); 554 m->m_flags &= ~M_PROMISC; 555 (*ng_ether_input_p)(ifp, &m); 556 if (m == NULL) { 557 CURVNET_RESTORE(); 558 return; 559 } 560 eh = mtod(m, struct ether_header *); 561 } 562 563 /* 564 * Allow if_bridge(4) to claim this frame. 565 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 566 * and the frame should be delivered locally. 567 */ 568 if (ifp->if_bridge != NULL) { 569 m->m_flags &= ~M_PROMISC; 570 BRIDGE_INPUT(ifp, m); 571 if (m == NULL) { 572 CURVNET_RESTORE(); 573 return; 574 } 575 eh = mtod(m, struct ether_header *); 576 } 577 578 #if defined(INET) || defined(INET6) 579 /* 580 * Clear M_PROMISC on frame so that carp(4) will see it when the 581 * mbuf flows up to Layer 3. 582 * FreeBSD's implementation of carp(4) uses the inprotosw 583 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 584 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 585 * is outside the scope of the M_PROMISC test below. 586 * TODO: Maintain a hash table of ethernet addresses other than 587 * ether_dhost which may be active on this ifp. 588 */ 589 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 590 m->m_flags &= ~M_PROMISC; 591 } else 592 #endif 593 { 594 /* 595 * If the frame received was not for our MAC address, set the 596 * M_PROMISC flag on the mbuf chain. The frame may need to 597 * be seen by the rest of the Ethernet input path in case of 598 * re-entry (e.g. bridge, vlan, netgraph) but should not be 599 * seen by upper protocol layers. 600 */ 601 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 602 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 603 m->m_flags |= M_PROMISC; 604 } 605 606 ether_demux(ifp, m); 607 CURVNET_RESTORE(); 608 } 609 610 /* 611 * Ethernet input dispatch; by default, direct dispatch here regardless of 612 * global configuration. However, if RSS is enabled, hook up RSS affinity 613 * so that when deferred or hybrid dispatch is enabled, we can redistribute 614 * load based on RSS. 615 * 616 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 617 * not it had already done work distribution via multi-queue. Then we could 618 * direct dispatch in the event load balancing was already complete and 619 * handle the case of interfaces with different capabilities better. 620 * 621 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 622 * at multiple layers? 623 * 624 * XXXRW: For now, enable all this only if RSS is compiled in, although it 625 * works fine without RSS. Need to characterise the performance overhead 626 * of the detour through the netisr code in the event the result is always 627 * direct dispatch. 628 */ 629 static void 630 ether_nh_input(struct mbuf *m) 631 { 632 633 M_ASSERTPKTHDR(m); 634 KASSERT(m->m_pkthdr.rcvif != NULL, 635 ("%s: NULL interface pointer", __func__)); 636 ether_input_internal(m->m_pkthdr.rcvif, m); 637 } 638 639 static struct netisr_handler ether_nh = { 640 .nh_name = "ether", 641 .nh_handler = ether_nh_input, 642 .nh_proto = NETISR_ETHER, 643 #ifdef RSS 644 .nh_policy = NETISR_POLICY_CPU, 645 .nh_dispatch = NETISR_DISPATCH_DIRECT, 646 .nh_m2cpuid = rss_m2cpuid, 647 #else 648 .nh_policy = NETISR_POLICY_SOURCE, 649 .nh_dispatch = NETISR_DISPATCH_DIRECT, 650 #endif 651 }; 652 653 static void 654 ether_init(__unused void *arg) 655 { 656 657 netisr_register(ðer_nh); 658 } 659 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 660 661 static void 662 vnet_ether_init(__unused void *arg) 663 { 664 int i; 665 666 /* Initialize packet filter hooks. */ 667 V_link_pfil_hook.ph_type = PFIL_TYPE_AF; 668 V_link_pfil_hook.ph_af = AF_LINK; 669 if ((i = pfil_head_register(&V_link_pfil_hook)) != 0) 670 printf("%s: WARNING: unable to register pfil link hook, " 671 "error %d\n", __func__, i); 672 } 673 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 674 vnet_ether_init, NULL); 675 676 static void 677 vnet_ether_destroy(__unused void *arg) 678 { 679 int i; 680 681 if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0) 682 printf("%s: WARNING: unable to unregister pfil link hook, " 683 "error %d\n", __func__, i); 684 } 685 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 686 vnet_ether_destroy, NULL); 687 688 689 690 static void 691 ether_input(struct ifnet *ifp, struct mbuf *m) 692 { 693 694 struct mbuf *mn; 695 696 /* 697 * The drivers are allowed to pass in a chain of packets linked with 698 * m_nextpkt. We split them up into separate packets here and pass 699 * them up. This allows the drivers to amortize the receive lock. 700 */ 701 while (m) { 702 mn = m->m_nextpkt; 703 m->m_nextpkt = NULL; 704 705 /* 706 * We will rely on rcvif being set properly in the deferred context, 707 * so assert it is correct here. 708 */ 709 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch", __func__)); 710 netisr_dispatch(NETISR_ETHER, m); 711 m = mn; 712 } 713 } 714 715 /* 716 * Upper layer processing for a received Ethernet packet. 717 */ 718 void 719 ether_demux(struct ifnet *ifp, struct mbuf *m) 720 { 721 struct ether_header *eh; 722 int i, isr; 723 u_short ether_type; 724 725 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 726 727 /* Do not grab PROMISC frames in case we are re-entered. */ 728 if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) { 729 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL); 730 731 if (i != 0 || m == NULL) 732 return; 733 } 734 735 eh = mtod(m, struct ether_header *); 736 ether_type = ntohs(eh->ether_type); 737 738 /* 739 * If this frame has a VLAN tag other than 0, call vlan_input() 740 * if its module is loaded. Otherwise, drop. 741 */ 742 if ((m->m_flags & M_VLANTAG) && 743 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 744 if (ifp->if_vlantrunk == NULL) { 745 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 746 m_freem(m); 747 return; 748 } 749 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 750 __func__)); 751 /* Clear before possibly re-entering ether_input(). */ 752 m->m_flags &= ~M_PROMISC; 753 (*vlan_input_p)(ifp, m); 754 return; 755 } 756 757 /* 758 * Pass promiscuously received frames to the upper layer if the user 759 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 760 */ 761 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 762 m_freem(m); 763 return; 764 } 765 766 /* 767 * Reset layer specific mbuf flags to avoid confusing upper layers. 768 * Strip off Ethernet header. 769 */ 770 m->m_flags &= ~M_VLANTAG; 771 m_clrprotoflags(m); 772 m_adj(m, ETHER_HDR_LEN); 773 774 /* 775 * Dispatch frame to upper layer. 776 */ 777 switch (ether_type) { 778 #ifdef INET 779 case ETHERTYPE_IP: 780 isr = NETISR_IP; 781 break; 782 783 case ETHERTYPE_ARP: 784 if (ifp->if_flags & IFF_NOARP) { 785 /* Discard packet if ARP is disabled on interface */ 786 m_freem(m); 787 return; 788 } 789 isr = NETISR_ARP; 790 break; 791 #endif 792 #ifdef INET6 793 case ETHERTYPE_IPV6: 794 isr = NETISR_IPV6; 795 break; 796 #endif 797 default: 798 goto discard; 799 } 800 netisr_dispatch(isr, m); 801 return; 802 803 discard: 804 /* 805 * Packet is to be discarded. If netgraph is present, 806 * hand the packet to it for last chance processing; 807 * otherwise dispose of it. 808 */ 809 if (ifp->if_l2com != NULL) { 810 KASSERT(ng_ether_input_orphan_p != NULL, 811 ("ng_ether_input_orphan_p is NULL")); 812 /* 813 * Put back the ethernet header so netgraph has a 814 * consistent view of inbound packets. 815 */ 816 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 817 (*ng_ether_input_orphan_p)(ifp, m); 818 return; 819 } 820 m_freem(m); 821 } 822 823 /* 824 * Convert Ethernet address to printable (loggable) representation. 825 * This routine is for compatibility; it's better to just use 826 * 827 * printf("%6D", <pointer to address>, ":"); 828 * 829 * since there's no static buffer involved. 830 */ 831 char * 832 ether_sprintf(const u_char *ap) 833 { 834 static char etherbuf[18]; 835 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 836 return (etherbuf); 837 } 838 839 /* 840 * Perform common duties while attaching to interface list 841 */ 842 void 843 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 844 { 845 int i; 846 struct ifaddr *ifa; 847 struct sockaddr_dl *sdl; 848 849 ifp->if_addrlen = ETHER_ADDR_LEN; 850 ifp->if_hdrlen = ETHER_HDR_LEN; 851 if_attach(ifp); 852 ifp->if_mtu = ETHERMTU; 853 ifp->if_output = ether_output; 854 ifp->if_input = ether_input; 855 ifp->if_resolvemulti = ether_resolvemulti; 856 ifp->if_requestencap = ether_requestencap; 857 #ifdef VIMAGE 858 ifp->if_reassign = ether_reassign; 859 #endif 860 if (ifp->if_baudrate == 0) 861 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 862 ifp->if_broadcastaddr = etherbroadcastaddr; 863 864 ifa = ifp->if_addr; 865 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 866 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 867 sdl->sdl_type = IFT_ETHER; 868 sdl->sdl_alen = ifp->if_addrlen; 869 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 870 871 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 872 if (ng_ether_attach_p != NULL) 873 (*ng_ether_attach_p)(ifp); 874 875 /* Announce Ethernet MAC address if non-zero. */ 876 for (i = 0; i < ifp->if_addrlen; i++) 877 if (lla[i] != 0) 878 break; 879 if (i != ifp->if_addrlen) 880 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 881 882 uuid_ether_add(LLADDR(sdl)); 883 } 884 885 /* 886 * Perform common duties while detaching an Ethernet interface 887 */ 888 void 889 ether_ifdetach(struct ifnet *ifp) 890 { 891 struct sockaddr_dl *sdl; 892 893 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 894 uuid_ether_del(LLADDR(sdl)); 895 896 if (ifp->if_l2com != NULL) { 897 KASSERT(ng_ether_detach_p != NULL, 898 ("ng_ether_detach_p is NULL")); 899 (*ng_ether_detach_p)(ifp); 900 } 901 902 bpfdetach(ifp); 903 if_detach(ifp); 904 } 905 906 #ifdef VIMAGE 907 void 908 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 909 { 910 911 if (ifp->if_l2com != NULL) { 912 KASSERT(ng_ether_detach_p != NULL, 913 ("ng_ether_detach_p is NULL")); 914 (*ng_ether_detach_p)(ifp); 915 } 916 917 if (ng_ether_attach_p != NULL) { 918 CURVNET_SET_QUIET(new_vnet); 919 (*ng_ether_attach_p)(ifp); 920 CURVNET_RESTORE(); 921 } 922 } 923 #endif 924 925 SYSCTL_DECL(_net_link); 926 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 927 928 #if 0 929 /* 930 * This is for reference. We have a table-driven version 931 * of the little-endian crc32 generator, which is faster 932 * than the double-loop. 933 */ 934 uint32_t 935 ether_crc32_le(const uint8_t *buf, size_t len) 936 { 937 size_t i; 938 uint32_t crc; 939 int bit; 940 uint8_t data; 941 942 crc = 0xffffffff; /* initial value */ 943 944 for (i = 0; i < len; i++) { 945 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 946 carry = (crc ^ data) & 1; 947 crc >>= 1; 948 if (carry) 949 crc = (crc ^ ETHER_CRC_POLY_LE); 950 } 951 } 952 953 return (crc); 954 } 955 #else 956 uint32_t 957 ether_crc32_le(const uint8_t *buf, size_t len) 958 { 959 static const uint32_t crctab[] = { 960 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 961 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 962 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 963 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 964 }; 965 size_t i; 966 uint32_t crc; 967 968 crc = 0xffffffff; /* initial value */ 969 970 for (i = 0; i < len; i++) { 971 crc ^= buf[i]; 972 crc = (crc >> 4) ^ crctab[crc & 0xf]; 973 crc = (crc >> 4) ^ crctab[crc & 0xf]; 974 } 975 976 return (crc); 977 } 978 #endif 979 980 uint32_t 981 ether_crc32_be(const uint8_t *buf, size_t len) 982 { 983 size_t i; 984 uint32_t crc, carry; 985 int bit; 986 uint8_t data; 987 988 crc = 0xffffffff; /* initial value */ 989 990 for (i = 0; i < len; i++) { 991 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 992 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 993 crc <<= 1; 994 if (carry) 995 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 996 } 997 } 998 999 return (crc); 1000 } 1001 1002 int 1003 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1004 { 1005 struct ifaddr *ifa = (struct ifaddr *) data; 1006 struct ifreq *ifr = (struct ifreq *) data; 1007 int error = 0; 1008 1009 switch (command) { 1010 case SIOCSIFADDR: 1011 ifp->if_flags |= IFF_UP; 1012 1013 switch (ifa->ifa_addr->sa_family) { 1014 #ifdef INET 1015 case AF_INET: 1016 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1017 arp_ifinit(ifp, ifa); 1018 break; 1019 #endif 1020 default: 1021 ifp->if_init(ifp->if_softc); 1022 break; 1023 } 1024 break; 1025 1026 case SIOCGIFADDR: 1027 { 1028 struct sockaddr *sa; 1029 1030 sa = (struct sockaddr *) & ifr->ifr_data; 1031 bcopy(IF_LLADDR(ifp), 1032 (caddr_t) sa->sa_data, ETHER_ADDR_LEN); 1033 } 1034 break; 1035 1036 case SIOCSIFMTU: 1037 /* 1038 * Set the interface MTU. 1039 */ 1040 if (ifr->ifr_mtu > ETHERMTU) { 1041 error = EINVAL; 1042 } else { 1043 ifp->if_mtu = ifr->ifr_mtu; 1044 } 1045 break; 1046 default: 1047 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1048 break; 1049 } 1050 return (error); 1051 } 1052 1053 static int 1054 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1055 struct sockaddr *sa) 1056 { 1057 struct sockaddr_dl *sdl; 1058 #ifdef INET 1059 struct sockaddr_in *sin; 1060 #endif 1061 #ifdef INET6 1062 struct sockaddr_in6 *sin6; 1063 #endif 1064 u_char *e_addr; 1065 1066 switch(sa->sa_family) { 1067 case AF_LINK: 1068 /* 1069 * No mapping needed. Just check that it's a valid MC address. 1070 */ 1071 sdl = (struct sockaddr_dl *)sa; 1072 e_addr = LLADDR(sdl); 1073 if (!ETHER_IS_MULTICAST(e_addr)) 1074 return EADDRNOTAVAIL; 1075 *llsa = NULL; 1076 return 0; 1077 1078 #ifdef INET 1079 case AF_INET: 1080 sin = (struct sockaddr_in *)sa; 1081 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1082 return EADDRNOTAVAIL; 1083 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1084 sdl->sdl_alen = ETHER_ADDR_LEN; 1085 e_addr = LLADDR(sdl); 1086 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1087 *llsa = (struct sockaddr *)sdl; 1088 return 0; 1089 #endif 1090 #ifdef INET6 1091 case AF_INET6: 1092 sin6 = (struct sockaddr_in6 *)sa; 1093 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1094 /* 1095 * An IP6 address of 0 means listen to all 1096 * of the Ethernet multicast address used for IP6. 1097 * (This is used for multicast routers.) 1098 */ 1099 ifp->if_flags |= IFF_ALLMULTI; 1100 *llsa = NULL; 1101 return 0; 1102 } 1103 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1104 return EADDRNOTAVAIL; 1105 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1106 sdl->sdl_alen = ETHER_ADDR_LEN; 1107 e_addr = LLADDR(sdl); 1108 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1109 *llsa = (struct sockaddr *)sdl; 1110 return 0; 1111 #endif 1112 1113 default: 1114 /* 1115 * Well, the text isn't quite right, but it's the name 1116 * that counts... 1117 */ 1118 return EAFNOSUPPORT; 1119 } 1120 } 1121 1122 static moduledata_t ether_mod = { 1123 .name = "ether", 1124 }; 1125 1126 void 1127 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1128 { 1129 struct ether_vlan_header vlan; 1130 struct mbuf mv, mb; 1131 1132 KASSERT((m->m_flags & M_VLANTAG) != 0, 1133 ("%s: vlan information not present", __func__)); 1134 KASSERT(m->m_len >= sizeof(struct ether_header), 1135 ("%s: mbuf not large enough for header", __func__)); 1136 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1137 vlan.evl_proto = vlan.evl_encap_proto; 1138 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1139 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1140 m->m_len -= sizeof(struct ether_header); 1141 m->m_data += sizeof(struct ether_header); 1142 /* 1143 * If a data link has been supplied by the caller, then we will need to 1144 * re-create a stack allocated mbuf chain with the following structure: 1145 * 1146 * (1) mbuf #1 will contain the supplied data link 1147 * (2) mbuf #2 will contain the vlan header 1148 * (3) mbuf #3 will contain the original mbuf's packet data 1149 * 1150 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1151 */ 1152 if (data != NULL) { 1153 mv.m_next = m; 1154 mv.m_data = (caddr_t)&vlan; 1155 mv.m_len = sizeof(vlan); 1156 mb.m_next = &mv; 1157 mb.m_data = data; 1158 mb.m_len = dlen; 1159 bpf_mtap(bp, &mb); 1160 } else 1161 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1162 m->m_len += sizeof(struct ether_header); 1163 m->m_data -= sizeof(struct ether_header); 1164 } 1165 1166 struct mbuf * 1167 ether_vlanencap(struct mbuf *m, uint16_t tag) 1168 { 1169 struct ether_vlan_header *evl; 1170 1171 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1172 if (m == NULL) 1173 return (NULL); 1174 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1175 1176 if (m->m_len < sizeof(*evl)) { 1177 m = m_pullup(m, sizeof(*evl)); 1178 if (m == NULL) 1179 return (NULL); 1180 } 1181 1182 /* 1183 * Transform the Ethernet header into an Ethernet header 1184 * with 802.1Q encapsulation. 1185 */ 1186 evl = mtod(m, struct ether_vlan_header *); 1187 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1188 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1189 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1190 evl->evl_tag = htons(tag); 1191 return (m); 1192 } 1193 1194 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1195 MODULE_VERSION(ether, 1); 1196