1 /*- 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 30 * $FreeBSD$ 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_netgraph.h" 36 #include "opt_mbuf_profiling.h" 37 #include "opt_rss.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mbuf.h> 46 #include <sys/random.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/sysctl.h> 50 #include <sys/uuid.h> 51 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_arp.h> 55 #include <net/netisr.h> 56 #include <net/route.h> 57 #include <net/if_llc.h> 58 #include <net/if_dl.h> 59 #include <net/if_types.h> 60 #include <net/bpf.h> 61 #include <net/ethernet.h> 62 #include <net/if_bridgevar.h> 63 #include <net/if_vlan_var.h> 64 #include <net/if_llatbl.h> 65 #include <net/pfil.h> 66 #include <net/rss_config.h> 67 #include <net/vnet.h> 68 69 #include <netpfil/pf/pf_mtag.h> 70 71 #if defined(INET) || defined(INET6) 72 #include <netinet/in.h> 73 #include <netinet/in_var.h> 74 #include <netinet/if_ether.h> 75 #include <netinet/ip_carp.h> 76 #include <netinet/ip_var.h> 77 #endif 78 #ifdef INET6 79 #include <netinet6/nd6.h> 80 #endif 81 #include <security/mac/mac_framework.h> 82 83 #ifdef CTASSERT 84 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 85 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 86 #endif 87 88 VNET_DEFINE(struct pfil_head, link_pfil_hook); /* Packet filter hooks */ 89 90 /* netgraph node hooks for ng_ether(4) */ 91 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 92 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 93 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 94 void (*ng_ether_attach_p)(struct ifnet *ifp); 95 void (*ng_ether_detach_p)(struct ifnet *ifp); 96 97 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 98 99 /* if_bridge(4) support */ 100 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 101 int (*bridge_output_p)(struct ifnet *, struct mbuf *, 102 struct sockaddr *, struct rtentry *); 103 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 104 105 /* if_lagg(4) support */ 106 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 107 108 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 109 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 110 111 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 112 struct sockaddr *); 113 #ifdef VIMAGE 114 static void ether_reassign(struct ifnet *, struct vnet *, char *); 115 #endif 116 static int ether_requestencap(struct ifnet *, struct if_encap_req *); 117 118 #define ETHER_IS_BROADCAST(addr) \ 119 (bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0) 120 121 #define senderr(e) do { error = (e); goto bad;} while (0) 122 123 static void 124 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 125 { 126 int csum_flags = 0; 127 128 if (src->m_pkthdr.csum_flags & CSUM_IP) 129 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 130 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 131 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 132 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 133 csum_flags |= CSUM_SCTP_VALID; 134 dst->m_pkthdr.csum_flags |= csum_flags; 135 if (csum_flags & CSUM_DATA_VALID) 136 dst->m_pkthdr.csum_data = 0xffff; 137 } 138 139 /* 140 * Handle link-layer encapsulation requests. 141 */ 142 static int 143 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) 144 { 145 struct ether_header *eh; 146 struct arphdr *ah; 147 uint16_t etype; 148 const u_char *lladdr; 149 150 if (req->rtype != IFENCAP_LL) 151 return (EOPNOTSUPP); 152 153 if (req->bufsize < ETHER_HDR_LEN) 154 return (ENOMEM); 155 156 eh = (struct ether_header *)req->buf; 157 lladdr = req->lladdr; 158 req->lladdr_off = 0; 159 160 switch (req->family) { 161 case AF_INET: 162 etype = htons(ETHERTYPE_IP); 163 break; 164 case AF_INET6: 165 etype = htons(ETHERTYPE_IPV6); 166 break; 167 case AF_ARP: 168 ah = (struct arphdr *)req->hdata; 169 ah->ar_hrd = htons(ARPHRD_ETHER); 170 171 switch(ntohs(ah->ar_op)) { 172 case ARPOP_REVREQUEST: 173 case ARPOP_REVREPLY: 174 etype = htons(ETHERTYPE_REVARP); 175 break; 176 case ARPOP_REQUEST: 177 case ARPOP_REPLY: 178 default: 179 etype = htons(ETHERTYPE_ARP); 180 break; 181 } 182 183 if (req->flags & IFENCAP_FLAG_BROADCAST) 184 lladdr = ifp->if_broadcastaddr; 185 break; 186 default: 187 return (EAFNOSUPPORT); 188 } 189 190 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 191 memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); 192 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 193 req->bufsize = sizeof(struct ether_header); 194 195 return (0); 196 } 197 198 199 static int 200 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, 201 const struct sockaddr *dst, struct route *ro, u_char *phdr, 202 uint32_t *pflags) 203 { 204 struct ether_header *eh; 205 uint32_t lleflags = 0; 206 int error = 0; 207 #if defined(INET) || defined(INET6) 208 uint16_t etype; 209 #endif 210 211 eh = (struct ether_header *)phdr; 212 213 switch (dst->sa_family) { 214 #ifdef INET 215 case AF_INET: 216 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) 217 error = arpresolve(ifp, 0, m, dst, phdr, &lleflags); 218 else { 219 if (m->m_flags & M_BCAST) 220 memcpy(eh->ether_dhost, ifp->if_broadcastaddr, 221 ETHER_ADDR_LEN); 222 else { 223 const struct in_addr *a; 224 a = &(((const struct sockaddr_in *)dst)->sin_addr); 225 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); 226 } 227 etype = htons(ETHERTYPE_IP); 228 memcpy(&eh->ether_type, &etype, sizeof(etype)); 229 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 230 } 231 break; 232 #endif 233 #ifdef INET6 234 case AF_INET6: 235 if ((m->m_flags & M_MCAST) == 0) 236 error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags); 237 else { 238 const struct in6_addr *a6; 239 a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); 240 ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); 241 etype = htons(ETHERTYPE_IPV6); 242 memcpy(&eh->ether_type, &etype, sizeof(etype)); 243 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 244 } 245 break; 246 #endif 247 default: 248 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 249 if (m != NULL) 250 m_freem(m); 251 return (EAFNOSUPPORT); 252 } 253 254 if (error == EHOSTDOWN) { 255 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) 256 error = EHOSTUNREACH; 257 } 258 259 if (error != 0) 260 return (error); 261 262 *pflags = RT_MAY_LOOP; 263 if (lleflags & LLE_IFADDR) 264 *pflags |= RT_L2_ME; 265 266 return (0); 267 } 268 269 /* 270 * Ethernet output routine. 271 * Encapsulate a packet of type family for the local net. 272 * Use trailer local net encapsulation if enough data in first 273 * packet leaves a multiple of 512 bytes of data in remainder. 274 */ 275 int 276 ether_output(struct ifnet *ifp, struct mbuf *m, 277 const struct sockaddr *dst, struct route *ro) 278 { 279 int error = 0; 280 char linkhdr[ETHER_HDR_LEN], *phdr; 281 struct ether_header *eh; 282 struct pf_mtag *t; 283 int loop_copy = 1; 284 int hlen; /* link layer header length */ 285 uint32_t pflags; 286 287 phdr = NULL; 288 pflags = 0; 289 if (ro != NULL) { 290 phdr = ro->ro_prepend; 291 hlen = ro->ro_plen; 292 pflags = ro->ro_flags; 293 } 294 #ifdef MAC 295 error = mac_ifnet_check_transmit(ifp, m); 296 if (error) 297 senderr(error); 298 #endif 299 300 M_PROFILE(m); 301 if (ifp->if_flags & IFF_MONITOR) 302 senderr(ENETDOWN); 303 if (!((ifp->if_flags & IFF_UP) && 304 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 305 senderr(ENETDOWN); 306 307 if (phdr == NULL) { 308 /* No prepend data supplied. Try to calculate ourselves. */ 309 phdr = linkhdr; 310 hlen = ETHER_HDR_LEN; 311 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags); 312 if (error != 0) 313 return (error == EWOULDBLOCK ? 0 : error); 314 } 315 316 if ((pflags & RT_L2_ME) != 0) { 317 update_mbuf_csumflags(m, m); 318 return (if_simloop(ifp, m, dst->sa_family, 0)); 319 } 320 loop_copy = pflags & RT_MAY_LOOP; 321 322 /* 323 * Add local net header. If no space in first mbuf, 324 * allocate another. 325 * 326 * Note that we do prepend regardless of RT_HAS_HEADER flag. 327 * This is done because BPF code shifts m_data pointer 328 * to the end of ethernet header prior to calling if_output(). 329 */ 330 M_PREPEND(m, hlen, M_NOWAIT); 331 if (m == NULL) 332 senderr(ENOBUFS); 333 if ((pflags & RT_HAS_HEADER) == 0) { 334 eh = mtod(m, struct ether_header *); 335 memcpy(eh, phdr, hlen); 336 } 337 338 /* 339 * If a simplex interface, and the packet is being sent to our 340 * Ethernet address or a broadcast address, loopback a copy. 341 * XXX To make a simplex device behave exactly like a duplex 342 * device, we should copy in the case of sending to our own 343 * ethernet address (thus letting the original actually appear 344 * on the wire). However, we don't do that here for security 345 * reasons and compatibility with the original behavior. 346 */ 347 if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && 348 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 349 struct mbuf *n; 350 351 /* 352 * Because if_simloop() modifies the packet, we need a 353 * writable copy through m_dup() instead of a readonly 354 * one as m_copy[m] would give us. The alternative would 355 * be to modify if_simloop() to handle the readonly mbuf, 356 * but performancewise it is mostly equivalent (trading 357 * extra data copying vs. extra locking). 358 * 359 * XXX This is a local workaround. A number of less 360 * often used kernel parts suffer from the same bug. 361 * See PR kern/105943 for a proposed general solution. 362 */ 363 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 364 update_mbuf_csumflags(m, n); 365 (void)if_simloop(ifp, n, dst->sa_family, hlen); 366 } else 367 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 368 } 369 370 /* 371 * Bridges require special output handling. 372 */ 373 if (ifp->if_bridge) { 374 BRIDGE_OUTPUT(ifp, m, error); 375 return (error); 376 } 377 378 #if defined(INET) || defined(INET6) 379 if (ifp->if_carp && 380 (error = (*carp_output_p)(ifp, m, dst))) 381 goto bad; 382 #endif 383 384 /* Handle ng_ether(4) processing, if any */ 385 if (ifp->if_l2com != NULL) { 386 KASSERT(ng_ether_output_p != NULL, 387 ("ng_ether_output_p is NULL")); 388 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 389 bad: if (m != NULL) 390 m_freem(m); 391 return (error); 392 } 393 if (m == NULL) 394 return (0); 395 } 396 397 /* Continue with link-layer output */ 398 return ether_output_frame(ifp, m); 399 } 400 401 /* 402 * Ethernet link layer output routine to send a raw frame to the device. 403 * 404 * This assumes that the 14 byte Ethernet header is present and contiguous 405 * in the first mbuf (if BRIDGE'ing). 406 */ 407 int 408 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 409 { 410 int i; 411 412 if (PFIL_HOOKED(&V_link_pfil_hook)) { 413 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL); 414 415 if (i != 0) 416 return (EACCES); 417 418 if (m == NULL) 419 return (0); 420 } 421 422 /* 423 * Queue message on interface, update output statistics if 424 * successful, and start output if interface not yet active. 425 */ 426 return ((ifp->if_transmit)(ifp, m)); 427 } 428 429 #if defined(INET) || defined(INET6) 430 #endif 431 432 /* 433 * Process a received Ethernet packet; the packet is in the 434 * mbuf chain m with the ethernet header at the front. 435 */ 436 static void 437 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 438 { 439 struct ether_header *eh; 440 u_short etype; 441 442 if ((ifp->if_flags & IFF_UP) == 0) { 443 m_freem(m); 444 return; 445 } 446 #ifdef DIAGNOSTIC 447 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 448 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 449 m_freem(m); 450 return; 451 } 452 #endif 453 if (m->m_len < ETHER_HDR_LEN) { 454 /* XXX maybe should pullup? */ 455 if_printf(ifp, "discard frame w/o leading ethernet " 456 "header (len %u pkt len %u)\n", 457 m->m_len, m->m_pkthdr.len); 458 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 459 m_freem(m); 460 return; 461 } 462 eh = mtod(m, struct ether_header *); 463 etype = ntohs(eh->ether_type); 464 random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER); 465 466 CURVNET_SET_QUIET(ifp->if_vnet); 467 468 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 469 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 470 m->m_flags |= M_BCAST; 471 else 472 m->m_flags |= M_MCAST; 473 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 474 } 475 476 #ifdef MAC 477 /* 478 * Tag the mbuf with an appropriate MAC label before any other 479 * consumers can get to it. 480 */ 481 mac_ifnet_create_mbuf(ifp, m); 482 #endif 483 484 /* 485 * Give bpf a chance at the packet. 486 */ 487 ETHER_BPF_MTAP(ifp, m); 488 489 /* 490 * If the CRC is still on the packet, trim it off. We do this once 491 * and once only in case we are re-entered. Nothing else on the 492 * Ethernet receive path expects to see the FCS. 493 */ 494 if (m->m_flags & M_HASFCS) { 495 m_adj(m, -ETHER_CRC_LEN); 496 m->m_flags &= ~M_HASFCS; 497 } 498 499 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 500 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 501 502 /* Allow monitor mode to claim this frame, after stats are updated. */ 503 if (ifp->if_flags & IFF_MONITOR) { 504 m_freem(m); 505 CURVNET_RESTORE(); 506 return; 507 } 508 509 /* Handle input from a lagg(4) port */ 510 if (ifp->if_type == IFT_IEEE8023ADLAG) { 511 KASSERT(lagg_input_p != NULL, 512 ("%s: if_lagg not loaded!", __func__)); 513 m = (*lagg_input_p)(ifp, m); 514 if (m != NULL) 515 ifp = m->m_pkthdr.rcvif; 516 else { 517 CURVNET_RESTORE(); 518 return; 519 } 520 } 521 522 /* 523 * If the hardware did not process an 802.1Q tag, do this now, 524 * to allow 802.1P priority frames to be passed to the main input 525 * path correctly. 526 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 527 */ 528 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 529 struct ether_vlan_header *evl; 530 531 if (m->m_len < sizeof(*evl) && 532 (m = m_pullup(m, sizeof(*evl))) == NULL) { 533 #ifdef DIAGNOSTIC 534 if_printf(ifp, "cannot pullup VLAN header\n"); 535 #endif 536 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 537 CURVNET_RESTORE(); 538 return; 539 } 540 541 evl = mtod(m, struct ether_vlan_header *); 542 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 543 m->m_flags |= M_VLANTAG; 544 545 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 546 ETHER_HDR_LEN - ETHER_TYPE_LEN); 547 m_adj(m, ETHER_VLAN_ENCAP_LEN); 548 eh = mtod(m, struct ether_header *); 549 } 550 551 M_SETFIB(m, ifp->if_fib); 552 553 /* Allow ng_ether(4) to claim this frame. */ 554 if (ifp->if_l2com != NULL) { 555 KASSERT(ng_ether_input_p != NULL, 556 ("%s: ng_ether_input_p is NULL", __func__)); 557 m->m_flags &= ~M_PROMISC; 558 (*ng_ether_input_p)(ifp, &m); 559 if (m == NULL) { 560 CURVNET_RESTORE(); 561 return; 562 } 563 eh = mtod(m, struct ether_header *); 564 } 565 566 /* 567 * Allow if_bridge(4) to claim this frame. 568 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 569 * and the frame should be delivered locally. 570 */ 571 if (ifp->if_bridge != NULL) { 572 m->m_flags &= ~M_PROMISC; 573 BRIDGE_INPUT(ifp, m); 574 if (m == NULL) { 575 CURVNET_RESTORE(); 576 return; 577 } 578 eh = mtod(m, struct ether_header *); 579 } 580 581 #if defined(INET) || defined(INET6) 582 /* 583 * Clear M_PROMISC on frame so that carp(4) will see it when the 584 * mbuf flows up to Layer 3. 585 * FreeBSD's implementation of carp(4) uses the inprotosw 586 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 587 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 588 * is outside the scope of the M_PROMISC test below. 589 * TODO: Maintain a hash table of ethernet addresses other than 590 * ether_dhost which may be active on this ifp. 591 */ 592 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 593 m->m_flags &= ~M_PROMISC; 594 } else 595 #endif 596 { 597 /* 598 * If the frame received was not for our MAC address, set the 599 * M_PROMISC flag on the mbuf chain. The frame may need to 600 * be seen by the rest of the Ethernet input path in case of 601 * re-entry (e.g. bridge, vlan, netgraph) but should not be 602 * seen by upper protocol layers. 603 */ 604 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 605 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 606 m->m_flags |= M_PROMISC; 607 } 608 609 ether_demux(ifp, m); 610 CURVNET_RESTORE(); 611 } 612 613 /* 614 * Ethernet input dispatch; by default, direct dispatch here regardless of 615 * global configuration. However, if RSS is enabled, hook up RSS affinity 616 * so that when deferred or hybrid dispatch is enabled, we can redistribute 617 * load based on RSS. 618 * 619 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 620 * not it had already done work distribution via multi-queue. Then we could 621 * direct dispatch in the event load balancing was already complete and 622 * handle the case of interfaces with different capabilities better. 623 * 624 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 625 * at multiple layers? 626 * 627 * XXXRW: For now, enable all this only if RSS is compiled in, although it 628 * works fine without RSS. Need to characterise the performance overhead 629 * of the detour through the netisr code in the event the result is always 630 * direct dispatch. 631 */ 632 static void 633 ether_nh_input(struct mbuf *m) 634 { 635 636 M_ASSERTPKTHDR(m); 637 KASSERT(m->m_pkthdr.rcvif != NULL, 638 ("%s: NULL interface pointer", __func__)); 639 ether_input_internal(m->m_pkthdr.rcvif, m); 640 } 641 642 static struct netisr_handler ether_nh = { 643 .nh_name = "ether", 644 .nh_handler = ether_nh_input, 645 .nh_proto = NETISR_ETHER, 646 #ifdef RSS 647 .nh_policy = NETISR_POLICY_CPU, 648 .nh_dispatch = NETISR_DISPATCH_DIRECT, 649 .nh_m2cpuid = rss_m2cpuid, 650 #else 651 .nh_policy = NETISR_POLICY_SOURCE, 652 .nh_dispatch = NETISR_DISPATCH_DIRECT, 653 #endif 654 }; 655 656 static void 657 ether_init(__unused void *arg) 658 { 659 660 netisr_register(ðer_nh); 661 } 662 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 663 664 static void 665 vnet_ether_init(__unused void *arg) 666 { 667 int i; 668 669 /* Initialize packet filter hooks. */ 670 V_link_pfil_hook.ph_type = PFIL_TYPE_AF; 671 V_link_pfil_hook.ph_af = AF_LINK; 672 if ((i = pfil_head_register(&V_link_pfil_hook)) != 0) 673 printf("%s: WARNING: unable to register pfil link hook, " 674 "error %d\n", __func__, i); 675 } 676 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 677 vnet_ether_init, NULL); 678 679 static void 680 vnet_ether_destroy(__unused void *arg) 681 { 682 int i; 683 684 if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0) 685 printf("%s: WARNING: unable to unregister pfil link hook, " 686 "error %d\n", __func__, i); 687 } 688 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 689 vnet_ether_destroy, NULL); 690 691 692 693 static void 694 ether_input(struct ifnet *ifp, struct mbuf *m) 695 { 696 697 struct mbuf *mn; 698 699 /* 700 * The drivers are allowed to pass in a chain of packets linked with 701 * m_nextpkt. We split them up into separate packets here and pass 702 * them up. This allows the drivers to amortize the receive lock. 703 */ 704 while (m) { 705 mn = m->m_nextpkt; 706 m->m_nextpkt = NULL; 707 708 /* 709 * We will rely on rcvif being set properly in the deferred context, 710 * so assert it is correct here. 711 */ 712 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch", __func__)); 713 netisr_dispatch(NETISR_ETHER, m); 714 m = mn; 715 } 716 } 717 718 /* 719 * Upper layer processing for a received Ethernet packet. 720 */ 721 void 722 ether_demux(struct ifnet *ifp, struct mbuf *m) 723 { 724 struct ether_header *eh; 725 int i, isr; 726 u_short ether_type; 727 728 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 729 730 /* Do not grab PROMISC frames in case we are re-entered. */ 731 if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) { 732 i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL); 733 734 if (i != 0 || m == NULL) 735 return; 736 } 737 738 eh = mtod(m, struct ether_header *); 739 ether_type = ntohs(eh->ether_type); 740 741 /* 742 * If this frame has a VLAN tag other than 0, call vlan_input() 743 * if its module is loaded. Otherwise, drop. 744 */ 745 if ((m->m_flags & M_VLANTAG) && 746 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 747 if (ifp->if_vlantrunk == NULL) { 748 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 749 m_freem(m); 750 return; 751 } 752 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 753 __func__)); 754 /* Clear before possibly re-entering ether_input(). */ 755 m->m_flags &= ~M_PROMISC; 756 (*vlan_input_p)(ifp, m); 757 return; 758 } 759 760 /* 761 * Pass promiscuously received frames to the upper layer if the user 762 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 763 */ 764 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 765 m_freem(m); 766 return; 767 } 768 769 /* 770 * Reset layer specific mbuf flags to avoid confusing upper layers. 771 * Strip off Ethernet header. 772 */ 773 m->m_flags &= ~M_VLANTAG; 774 m_clrprotoflags(m); 775 m_adj(m, ETHER_HDR_LEN); 776 777 /* 778 * Dispatch frame to upper layer. 779 */ 780 switch (ether_type) { 781 #ifdef INET 782 case ETHERTYPE_IP: 783 isr = NETISR_IP; 784 break; 785 786 case ETHERTYPE_ARP: 787 if (ifp->if_flags & IFF_NOARP) { 788 /* Discard packet if ARP is disabled on interface */ 789 m_freem(m); 790 return; 791 } 792 isr = NETISR_ARP; 793 break; 794 #endif 795 #ifdef INET6 796 case ETHERTYPE_IPV6: 797 isr = NETISR_IPV6; 798 break; 799 #endif 800 default: 801 goto discard; 802 } 803 netisr_dispatch(isr, m); 804 return; 805 806 discard: 807 /* 808 * Packet is to be discarded. If netgraph is present, 809 * hand the packet to it for last chance processing; 810 * otherwise dispose of it. 811 */ 812 if (ifp->if_l2com != NULL) { 813 KASSERT(ng_ether_input_orphan_p != NULL, 814 ("ng_ether_input_orphan_p is NULL")); 815 /* 816 * Put back the ethernet header so netgraph has a 817 * consistent view of inbound packets. 818 */ 819 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 820 (*ng_ether_input_orphan_p)(ifp, m); 821 return; 822 } 823 m_freem(m); 824 } 825 826 /* 827 * Convert Ethernet address to printable (loggable) representation. 828 * This routine is for compatibility; it's better to just use 829 * 830 * printf("%6D", <pointer to address>, ":"); 831 * 832 * since there's no static buffer involved. 833 */ 834 char * 835 ether_sprintf(const u_char *ap) 836 { 837 static char etherbuf[18]; 838 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 839 return (etherbuf); 840 } 841 842 /* 843 * Perform common duties while attaching to interface list 844 */ 845 void 846 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 847 { 848 int i; 849 struct ifaddr *ifa; 850 struct sockaddr_dl *sdl; 851 852 ifp->if_addrlen = ETHER_ADDR_LEN; 853 ifp->if_hdrlen = ETHER_HDR_LEN; 854 if_attach(ifp); 855 ifp->if_mtu = ETHERMTU; 856 ifp->if_output = ether_output; 857 ifp->if_input = ether_input; 858 ifp->if_resolvemulti = ether_resolvemulti; 859 ifp->if_requestencap = ether_requestencap; 860 #ifdef VIMAGE 861 ifp->if_reassign = ether_reassign; 862 #endif 863 if (ifp->if_baudrate == 0) 864 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 865 ifp->if_broadcastaddr = etherbroadcastaddr; 866 867 ifa = ifp->if_addr; 868 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 869 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 870 sdl->sdl_type = IFT_ETHER; 871 sdl->sdl_alen = ifp->if_addrlen; 872 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 873 874 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 875 if (ng_ether_attach_p != NULL) 876 (*ng_ether_attach_p)(ifp); 877 878 /* Announce Ethernet MAC address if non-zero. */ 879 for (i = 0; i < ifp->if_addrlen; i++) 880 if (lla[i] != 0) 881 break; 882 if (i != ifp->if_addrlen) 883 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 884 885 uuid_ether_add(LLADDR(sdl)); 886 } 887 888 /* 889 * Perform common duties while detaching an Ethernet interface 890 */ 891 void 892 ether_ifdetach(struct ifnet *ifp) 893 { 894 struct sockaddr_dl *sdl; 895 896 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 897 uuid_ether_del(LLADDR(sdl)); 898 899 if (ifp->if_l2com != NULL) { 900 KASSERT(ng_ether_detach_p != NULL, 901 ("ng_ether_detach_p is NULL")); 902 (*ng_ether_detach_p)(ifp); 903 } 904 905 bpfdetach(ifp); 906 if_detach(ifp); 907 } 908 909 #ifdef VIMAGE 910 void 911 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 912 { 913 914 if (ifp->if_l2com != NULL) { 915 KASSERT(ng_ether_detach_p != NULL, 916 ("ng_ether_detach_p is NULL")); 917 (*ng_ether_detach_p)(ifp); 918 } 919 920 if (ng_ether_attach_p != NULL) { 921 CURVNET_SET_QUIET(new_vnet); 922 (*ng_ether_attach_p)(ifp); 923 CURVNET_RESTORE(); 924 } 925 } 926 #endif 927 928 SYSCTL_DECL(_net_link); 929 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 930 931 #if 0 932 /* 933 * This is for reference. We have a table-driven version 934 * of the little-endian crc32 generator, which is faster 935 * than the double-loop. 936 */ 937 uint32_t 938 ether_crc32_le(const uint8_t *buf, size_t len) 939 { 940 size_t i; 941 uint32_t crc; 942 int bit; 943 uint8_t data; 944 945 crc = 0xffffffff; /* initial value */ 946 947 for (i = 0; i < len; i++) { 948 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 949 carry = (crc ^ data) & 1; 950 crc >>= 1; 951 if (carry) 952 crc = (crc ^ ETHER_CRC_POLY_LE); 953 } 954 } 955 956 return (crc); 957 } 958 #else 959 uint32_t 960 ether_crc32_le(const uint8_t *buf, size_t len) 961 { 962 static const uint32_t crctab[] = { 963 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 964 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 965 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 966 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 967 }; 968 size_t i; 969 uint32_t crc; 970 971 crc = 0xffffffff; /* initial value */ 972 973 for (i = 0; i < len; i++) { 974 crc ^= buf[i]; 975 crc = (crc >> 4) ^ crctab[crc & 0xf]; 976 crc = (crc >> 4) ^ crctab[crc & 0xf]; 977 } 978 979 return (crc); 980 } 981 #endif 982 983 uint32_t 984 ether_crc32_be(const uint8_t *buf, size_t len) 985 { 986 size_t i; 987 uint32_t crc, carry; 988 int bit; 989 uint8_t data; 990 991 crc = 0xffffffff; /* initial value */ 992 993 for (i = 0; i < len; i++) { 994 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 995 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 996 crc <<= 1; 997 if (carry) 998 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 999 } 1000 } 1001 1002 return (crc); 1003 } 1004 1005 int 1006 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1007 { 1008 struct ifaddr *ifa = (struct ifaddr *) data; 1009 struct ifreq *ifr = (struct ifreq *) data; 1010 int error = 0; 1011 1012 switch (command) { 1013 case SIOCSIFADDR: 1014 ifp->if_flags |= IFF_UP; 1015 1016 switch (ifa->ifa_addr->sa_family) { 1017 #ifdef INET 1018 case AF_INET: 1019 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1020 arp_ifinit(ifp, ifa); 1021 break; 1022 #endif 1023 default: 1024 ifp->if_init(ifp->if_softc); 1025 break; 1026 } 1027 break; 1028 1029 case SIOCGIFADDR: 1030 { 1031 struct sockaddr *sa; 1032 1033 sa = (struct sockaddr *) & ifr->ifr_data; 1034 bcopy(IF_LLADDR(ifp), 1035 (caddr_t) sa->sa_data, ETHER_ADDR_LEN); 1036 } 1037 break; 1038 1039 case SIOCSIFMTU: 1040 /* 1041 * Set the interface MTU. 1042 */ 1043 if (ifr->ifr_mtu > ETHERMTU) { 1044 error = EINVAL; 1045 } else { 1046 ifp->if_mtu = ifr->ifr_mtu; 1047 } 1048 break; 1049 default: 1050 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1051 break; 1052 } 1053 return (error); 1054 } 1055 1056 static int 1057 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1058 struct sockaddr *sa) 1059 { 1060 struct sockaddr_dl *sdl; 1061 #ifdef INET 1062 struct sockaddr_in *sin; 1063 #endif 1064 #ifdef INET6 1065 struct sockaddr_in6 *sin6; 1066 #endif 1067 u_char *e_addr; 1068 1069 switch(sa->sa_family) { 1070 case AF_LINK: 1071 /* 1072 * No mapping needed. Just check that it's a valid MC address. 1073 */ 1074 sdl = (struct sockaddr_dl *)sa; 1075 e_addr = LLADDR(sdl); 1076 if (!ETHER_IS_MULTICAST(e_addr)) 1077 return EADDRNOTAVAIL; 1078 *llsa = 0; 1079 return 0; 1080 1081 #ifdef INET 1082 case AF_INET: 1083 sin = (struct sockaddr_in *)sa; 1084 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1085 return EADDRNOTAVAIL; 1086 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1087 sdl->sdl_alen = ETHER_ADDR_LEN; 1088 e_addr = LLADDR(sdl); 1089 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1090 *llsa = (struct sockaddr *)sdl; 1091 return 0; 1092 #endif 1093 #ifdef INET6 1094 case AF_INET6: 1095 sin6 = (struct sockaddr_in6 *)sa; 1096 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1097 /* 1098 * An IP6 address of 0 means listen to all 1099 * of the Ethernet multicast address used for IP6. 1100 * (This is used for multicast routers.) 1101 */ 1102 ifp->if_flags |= IFF_ALLMULTI; 1103 *llsa = 0; 1104 return 0; 1105 } 1106 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1107 return EADDRNOTAVAIL; 1108 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1109 sdl->sdl_alen = ETHER_ADDR_LEN; 1110 e_addr = LLADDR(sdl); 1111 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1112 *llsa = (struct sockaddr *)sdl; 1113 return 0; 1114 #endif 1115 1116 default: 1117 /* 1118 * Well, the text isn't quite right, but it's the name 1119 * that counts... 1120 */ 1121 return EAFNOSUPPORT; 1122 } 1123 } 1124 1125 static moduledata_t ether_mod = { 1126 .name = "ether", 1127 }; 1128 1129 void 1130 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1131 { 1132 struct ether_vlan_header vlan; 1133 struct mbuf mv, mb; 1134 1135 KASSERT((m->m_flags & M_VLANTAG) != 0, 1136 ("%s: vlan information not present", __func__)); 1137 KASSERT(m->m_len >= sizeof(struct ether_header), 1138 ("%s: mbuf not large enough for header", __func__)); 1139 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1140 vlan.evl_proto = vlan.evl_encap_proto; 1141 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1142 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1143 m->m_len -= sizeof(struct ether_header); 1144 m->m_data += sizeof(struct ether_header); 1145 /* 1146 * If a data link has been supplied by the caller, then we will need to 1147 * re-create a stack allocated mbuf chain with the following structure: 1148 * 1149 * (1) mbuf #1 will contain the supplied data link 1150 * (2) mbuf #2 will contain the vlan header 1151 * (3) mbuf #3 will contain the original mbuf's packet data 1152 * 1153 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1154 */ 1155 if (data != NULL) { 1156 mv.m_next = m; 1157 mv.m_data = (caddr_t)&vlan; 1158 mv.m_len = sizeof(vlan); 1159 mb.m_next = &mv; 1160 mb.m_data = data; 1161 mb.m_len = dlen; 1162 bpf_mtap(bp, &mb); 1163 } else 1164 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1165 m->m_len += sizeof(struct ether_header); 1166 m->m_data -= sizeof(struct ether_header); 1167 } 1168 1169 struct mbuf * 1170 ether_vlanencap(struct mbuf *m, uint16_t tag) 1171 { 1172 struct ether_vlan_header *evl; 1173 1174 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1175 if (m == NULL) 1176 return (NULL); 1177 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1178 1179 if (m->m_len < sizeof(*evl)) { 1180 m = m_pullup(m, sizeof(*evl)); 1181 if (m == NULL) 1182 return (NULL); 1183 } 1184 1185 /* 1186 * Transform the Ethernet header into an Ethernet header 1187 * with 802.1Q encapsulation. 1188 */ 1189 evl = mtod(m, struct ether_vlan_header *); 1190 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1191 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1192 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1193 evl->evl_tag = htons(tag); 1194 return (m); 1195 } 1196 1197 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1198 MODULE_VERSION(ether, 1); 1199