xref: /freebsd/sys/net/if_ethersubr.c (revision 1de7b4b805ddbf2429da511c053686ac4591ed89)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
32  * $FreeBSD$
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 #include "opt_netgraph.h"
38 #include "opt_mbuf_profiling.h"
39 #include "opt_rss.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/eventhandler.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/module.h>
49 #include <sys/mbuf.h>
50 #include <sys/random.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/uuid.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_arp.h>
59 #include <net/netisr.h>
60 #include <net/route.h>
61 #include <net/if_llc.h>
62 #include <net/if_dl.h>
63 #include <net/if_types.h>
64 #include <net/bpf.h>
65 #include <net/ethernet.h>
66 #include <net/if_bridgevar.h>
67 #include <net/if_vlan_var.h>
68 #include <net/if_llatbl.h>
69 #include <net/pfil.h>
70 #include <net/rss_config.h>
71 #include <net/vnet.h>
72 
73 #include <netpfil/pf/pf_mtag.h>
74 
75 #if defined(INET) || defined(INET6)
76 #include <netinet/in.h>
77 #include <netinet/in_var.h>
78 #include <netinet/if_ether.h>
79 #include <netinet/ip_carp.h>
80 #include <netinet/ip_var.h>
81 #endif
82 #ifdef INET6
83 #include <netinet6/nd6.h>
84 #endif
85 #include <security/mac/mac_framework.h>
86 
87 #ifdef CTASSERT
88 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
89 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
90 #endif
91 
92 VNET_DEFINE(struct pfil_head, link_pfil_hook);	/* Packet filter hooks */
93 
94 /* netgraph node hooks for ng_ether(4) */
95 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
96 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
97 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
98 void	(*ng_ether_attach_p)(struct ifnet *ifp);
99 void	(*ng_ether_detach_p)(struct ifnet *ifp);
100 
101 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
102 
103 /* if_bridge(4) support */
104 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
105 int	(*bridge_output_p)(struct ifnet *, struct mbuf *,
106 		struct sockaddr *, struct rtentry *);
107 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
108 
109 /* if_lagg(4) support */
110 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *);
111 
112 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
113 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
114 
115 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
116 		struct sockaddr *);
117 #ifdef VIMAGE
118 static	void ether_reassign(struct ifnet *, struct vnet *, char *);
119 #endif
120 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
121 
122 
123 #define senderr(e) do { error = (e); goto bad;} while (0)
124 
125 static void
126 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
127 {
128 	int csum_flags = 0;
129 
130 	if (src->m_pkthdr.csum_flags & CSUM_IP)
131 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
132 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
133 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
134 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
135 		csum_flags |= CSUM_SCTP_VALID;
136 	dst->m_pkthdr.csum_flags |= csum_flags;
137 	if (csum_flags & CSUM_DATA_VALID)
138 		dst->m_pkthdr.csum_data = 0xffff;
139 }
140 
141 /*
142  * Handle link-layer encapsulation requests.
143  */
144 static int
145 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
146 {
147 	struct ether_header *eh;
148 	struct arphdr *ah;
149 	uint16_t etype;
150 	const u_char *lladdr;
151 
152 	if (req->rtype != IFENCAP_LL)
153 		return (EOPNOTSUPP);
154 
155 	if (req->bufsize < ETHER_HDR_LEN)
156 		return (ENOMEM);
157 
158 	eh = (struct ether_header *)req->buf;
159 	lladdr = req->lladdr;
160 	req->lladdr_off = 0;
161 
162 	switch (req->family) {
163 	case AF_INET:
164 		etype = htons(ETHERTYPE_IP);
165 		break;
166 	case AF_INET6:
167 		etype = htons(ETHERTYPE_IPV6);
168 		break;
169 	case AF_ARP:
170 		ah = (struct arphdr *)req->hdata;
171 		ah->ar_hrd = htons(ARPHRD_ETHER);
172 
173 		switch(ntohs(ah->ar_op)) {
174 		case ARPOP_REVREQUEST:
175 		case ARPOP_REVREPLY:
176 			etype = htons(ETHERTYPE_REVARP);
177 			break;
178 		case ARPOP_REQUEST:
179 		case ARPOP_REPLY:
180 		default:
181 			etype = htons(ETHERTYPE_ARP);
182 			break;
183 		}
184 
185 		if (req->flags & IFENCAP_FLAG_BROADCAST)
186 			lladdr = ifp->if_broadcastaddr;
187 		break;
188 	default:
189 		return (EAFNOSUPPORT);
190 	}
191 
192 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
193 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
194 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
195 	req->bufsize = sizeof(struct ether_header);
196 
197 	return (0);
198 }
199 
200 
201 static int
202 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
203 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
204 	uint32_t *pflags, struct llentry **plle)
205 {
206 	struct ether_header *eh;
207 	uint32_t lleflags = 0;
208 	int error = 0;
209 #if defined(INET) || defined(INET6)
210 	uint16_t etype;
211 #endif
212 
213 	if (plle)
214 		*plle = NULL;
215 	eh = (struct ether_header *)phdr;
216 
217 	switch (dst->sa_family) {
218 #ifdef INET
219 	case AF_INET:
220 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
221 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
222 			    plle);
223 		else {
224 			if (m->m_flags & M_BCAST)
225 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
226 				    ETHER_ADDR_LEN);
227 			else {
228 				const struct in_addr *a;
229 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
230 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
231 			}
232 			etype = htons(ETHERTYPE_IP);
233 			memcpy(&eh->ether_type, &etype, sizeof(etype));
234 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
235 		}
236 		break;
237 #endif
238 #ifdef INET6
239 	case AF_INET6:
240 		if ((m->m_flags & M_MCAST) == 0)
241 			error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags,
242 			    plle);
243 		else {
244 			const struct in6_addr *a6;
245 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
246 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
247 			etype = htons(ETHERTYPE_IPV6);
248 			memcpy(&eh->ether_type, &etype, sizeof(etype));
249 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
250 		}
251 		break;
252 #endif
253 	default:
254 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
255 		if (m != NULL)
256 			m_freem(m);
257 		return (EAFNOSUPPORT);
258 	}
259 
260 	if (error == EHOSTDOWN) {
261 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
262 			error = EHOSTUNREACH;
263 	}
264 
265 	if (error != 0)
266 		return (error);
267 
268 	*pflags = RT_MAY_LOOP;
269 	if (lleflags & LLE_IFADDR)
270 		*pflags |= RT_L2_ME;
271 
272 	return (0);
273 }
274 
275 /*
276  * Ethernet output routine.
277  * Encapsulate a packet of type family for the local net.
278  * Use trailer local net encapsulation if enough data in first
279  * packet leaves a multiple of 512 bytes of data in remainder.
280  */
281 int
282 ether_output(struct ifnet *ifp, struct mbuf *m,
283 	const struct sockaddr *dst, struct route *ro)
284 {
285 	int error = 0;
286 	char linkhdr[ETHER_HDR_LEN], *phdr;
287 	struct ether_header *eh;
288 	struct pf_mtag *t;
289 	int loop_copy = 1;
290 	int hlen;	/* link layer header length */
291 	uint32_t pflags;
292 	struct llentry *lle = NULL;
293 	struct rtentry *rt0 = NULL;
294 	int addref = 0;
295 
296 	phdr = NULL;
297 	pflags = 0;
298 	if (ro != NULL) {
299 		/* XXX BPF uses ro_prepend */
300 		if (ro->ro_prepend != NULL) {
301 			phdr = ro->ro_prepend;
302 			hlen = ro->ro_plen;
303 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
304 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
305 				lle = ro->ro_lle;
306 				if (lle != NULL &&
307 				    (lle->la_flags & LLE_VALID) == 0) {
308 					LLE_FREE(lle);
309 					lle = NULL;	/* redundant */
310 					ro->ro_lle = NULL;
311 				}
312 				if (lle == NULL) {
313 					/* if we lookup, keep cache */
314 					addref = 1;
315 				}
316 			}
317 			if (lle != NULL) {
318 				phdr = lle->r_linkdata;
319 				hlen = lle->r_hdrlen;
320 				pflags = lle->r_flags;
321 			}
322 		}
323 		rt0 = ro->ro_rt;
324 	}
325 
326 #ifdef MAC
327 	error = mac_ifnet_check_transmit(ifp, m);
328 	if (error)
329 		senderr(error);
330 #endif
331 
332 	M_PROFILE(m);
333 	if (ifp->if_flags & IFF_MONITOR)
334 		senderr(ENETDOWN);
335 	if (!((ifp->if_flags & IFF_UP) &&
336 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
337 		senderr(ENETDOWN);
338 
339 	if (phdr == NULL) {
340 		/* No prepend data supplied. Try to calculate ourselves. */
341 		phdr = linkhdr;
342 		hlen = ETHER_HDR_LEN;
343 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
344 		    addref ? &lle : NULL);
345 		if (addref && lle != NULL)
346 			ro->ro_lle = lle;
347 		if (error != 0)
348 			return (error == EWOULDBLOCK ? 0 : error);
349 	}
350 
351 	if ((pflags & RT_L2_ME) != 0) {
352 		update_mbuf_csumflags(m, m);
353 		return (if_simloop(ifp, m, dst->sa_family, 0));
354 	}
355 	loop_copy = pflags & RT_MAY_LOOP;
356 
357 	/*
358 	 * Add local net header.  If no space in first mbuf,
359 	 * allocate another.
360 	 *
361 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
362 	 * This is done because BPF code shifts m_data pointer
363 	 * to the end of ethernet header prior to calling if_output().
364 	 */
365 	M_PREPEND(m, hlen, M_NOWAIT);
366 	if (m == NULL)
367 		senderr(ENOBUFS);
368 	if ((pflags & RT_HAS_HEADER) == 0) {
369 		eh = mtod(m, struct ether_header *);
370 		memcpy(eh, phdr, hlen);
371 	}
372 
373 	/*
374 	 * If a simplex interface, and the packet is being sent to our
375 	 * Ethernet address or a broadcast address, loopback a copy.
376 	 * XXX To make a simplex device behave exactly like a duplex
377 	 * device, we should copy in the case of sending to our own
378 	 * ethernet address (thus letting the original actually appear
379 	 * on the wire). However, we don't do that here for security
380 	 * reasons and compatibility with the original behavior.
381 	 */
382 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
383 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
384 		struct mbuf *n;
385 
386 		/*
387 		 * Because if_simloop() modifies the packet, we need a
388 		 * writable copy through m_dup() instead of a readonly
389 		 * one as m_copy[m] would give us. The alternative would
390 		 * be to modify if_simloop() to handle the readonly mbuf,
391 		 * but performancewise it is mostly equivalent (trading
392 		 * extra data copying vs. extra locking).
393 		 *
394 		 * XXX This is a local workaround.  A number of less
395 		 * often used kernel parts suffer from the same bug.
396 		 * See PR kern/105943 for a proposed general solution.
397 		 */
398 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
399 			update_mbuf_csumflags(m, n);
400 			(void)if_simloop(ifp, n, dst->sa_family, hlen);
401 		} else
402 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
403 	}
404 
405        /*
406 	* Bridges require special output handling.
407 	*/
408 	if (ifp->if_bridge) {
409 		BRIDGE_OUTPUT(ifp, m, error);
410 		return (error);
411 	}
412 
413 #if defined(INET) || defined(INET6)
414 	if (ifp->if_carp &&
415 	    (error = (*carp_output_p)(ifp, m, dst)))
416 		goto bad;
417 #endif
418 
419 	/* Handle ng_ether(4) processing, if any */
420 	if (ifp->if_l2com != NULL) {
421 		KASSERT(ng_ether_output_p != NULL,
422 		    ("ng_ether_output_p is NULL"));
423 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
424 bad:			if (m != NULL)
425 				m_freem(m);
426 			return (error);
427 		}
428 		if (m == NULL)
429 			return (0);
430 	}
431 
432 	/* Continue with link-layer output */
433 	return ether_output_frame(ifp, m);
434 }
435 
436 /*
437  * Ethernet link layer output routine to send a raw frame to the device.
438  *
439  * This assumes that the 14 byte Ethernet header is present and contiguous
440  * in the first mbuf (if BRIDGE'ing).
441  */
442 int
443 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
444 {
445 	int i;
446 
447 	if (PFIL_HOOKED(&V_link_pfil_hook)) {
448 		i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL);
449 
450 		if (i != 0)
451 			return (EACCES);
452 
453 		if (m == NULL)
454 			return (0);
455 	}
456 
457 	/*
458 	 * Queue message on interface, update output statistics if
459 	 * successful, and start output if interface not yet active.
460 	 */
461 	return ((ifp->if_transmit)(ifp, m));
462 }
463 
464 /*
465  * Process a received Ethernet packet; the packet is in the
466  * mbuf chain m with the ethernet header at the front.
467  */
468 static void
469 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
470 {
471 	struct ether_header *eh;
472 	u_short etype;
473 
474 	if ((ifp->if_flags & IFF_UP) == 0) {
475 		m_freem(m);
476 		return;
477 	}
478 #ifdef DIAGNOSTIC
479 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
480 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
481 		m_freem(m);
482 		return;
483 	}
484 #endif
485 	if (m->m_len < ETHER_HDR_LEN) {
486 		/* XXX maybe should pullup? */
487 		if_printf(ifp, "discard frame w/o leading ethernet "
488 				"header (len %u pkt len %u)\n",
489 				m->m_len, m->m_pkthdr.len);
490 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
491 		m_freem(m);
492 		return;
493 	}
494 	eh = mtod(m, struct ether_header *);
495 	etype = ntohs(eh->ether_type);
496 	random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER);
497 
498 	CURVNET_SET_QUIET(ifp->if_vnet);
499 
500 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
501 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
502 			m->m_flags |= M_BCAST;
503 		else
504 			m->m_flags |= M_MCAST;
505 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
506 	}
507 
508 #ifdef MAC
509 	/*
510 	 * Tag the mbuf with an appropriate MAC label before any other
511 	 * consumers can get to it.
512 	 */
513 	mac_ifnet_create_mbuf(ifp, m);
514 #endif
515 
516 	/*
517 	 * Give bpf a chance at the packet.
518 	 */
519 	ETHER_BPF_MTAP(ifp, m);
520 
521 	/*
522 	 * If the CRC is still on the packet, trim it off. We do this once
523 	 * and once only in case we are re-entered. Nothing else on the
524 	 * Ethernet receive path expects to see the FCS.
525 	 */
526 	if (m->m_flags & M_HASFCS) {
527 		m_adj(m, -ETHER_CRC_LEN);
528 		m->m_flags &= ~M_HASFCS;
529 	}
530 
531 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
532 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
533 
534 	/* Allow monitor mode to claim this frame, after stats are updated. */
535 	if (ifp->if_flags & IFF_MONITOR) {
536 		m_freem(m);
537 		CURVNET_RESTORE();
538 		return;
539 	}
540 
541 	/* Handle input from a lagg(4) port */
542 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
543 		KASSERT(lagg_input_p != NULL,
544 		    ("%s: if_lagg not loaded!", __func__));
545 		m = (*lagg_input_p)(ifp, m);
546 		if (m != NULL)
547 			ifp = m->m_pkthdr.rcvif;
548 		else {
549 			CURVNET_RESTORE();
550 			return;
551 		}
552 	}
553 
554 	/*
555 	 * If the hardware did not process an 802.1Q tag, do this now,
556 	 * to allow 802.1P priority frames to be passed to the main input
557 	 * path correctly.
558 	 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels.
559 	 */
560 	if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) {
561 		struct ether_vlan_header *evl;
562 
563 		if (m->m_len < sizeof(*evl) &&
564 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
565 #ifdef DIAGNOSTIC
566 			if_printf(ifp, "cannot pullup VLAN header\n");
567 #endif
568 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
569 			CURVNET_RESTORE();
570 			return;
571 		}
572 
573 		evl = mtod(m, struct ether_vlan_header *);
574 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
575 		m->m_flags |= M_VLANTAG;
576 
577 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
578 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
579 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
580 		eh = mtod(m, struct ether_header *);
581 	}
582 
583 	M_SETFIB(m, ifp->if_fib);
584 
585 	/* Allow ng_ether(4) to claim this frame. */
586 	if (ifp->if_l2com != NULL) {
587 		KASSERT(ng_ether_input_p != NULL,
588 		    ("%s: ng_ether_input_p is NULL", __func__));
589 		m->m_flags &= ~M_PROMISC;
590 		(*ng_ether_input_p)(ifp, &m);
591 		if (m == NULL) {
592 			CURVNET_RESTORE();
593 			return;
594 		}
595 		eh = mtod(m, struct ether_header *);
596 	}
597 
598 	/*
599 	 * Allow if_bridge(4) to claim this frame.
600 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
601 	 * and the frame should be delivered locally.
602 	 */
603 	if (ifp->if_bridge != NULL) {
604 		m->m_flags &= ~M_PROMISC;
605 		BRIDGE_INPUT(ifp, m);
606 		if (m == NULL) {
607 			CURVNET_RESTORE();
608 			return;
609 		}
610 		eh = mtod(m, struct ether_header *);
611 	}
612 
613 #if defined(INET) || defined(INET6)
614 	/*
615 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
616 	 * mbuf flows up to Layer 3.
617 	 * FreeBSD's implementation of carp(4) uses the inprotosw
618 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
619 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
620 	 * is outside the scope of the M_PROMISC test below.
621 	 * TODO: Maintain a hash table of ethernet addresses other than
622 	 * ether_dhost which may be active on this ifp.
623 	 */
624 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
625 		m->m_flags &= ~M_PROMISC;
626 	} else
627 #endif
628 	{
629 		/*
630 		 * If the frame received was not for our MAC address, set the
631 		 * M_PROMISC flag on the mbuf chain. The frame may need to
632 		 * be seen by the rest of the Ethernet input path in case of
633 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
634 		 * seen by upper protocol layers.
635 		 */
636 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
637 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
638 			m->m_flags |= M_PROMISC;
639 	}
640 
641 	ether_demux(ifp, m);
642 	CURVNET_RESTORE();
643 }
644 
645 /*
646  * Ethernet input dispatch; by default, direct dispatch here regardless of
647  * global configuration.  However, if RSS is enabled, hook up RSS affinity
648  * so that when deferred or hybrid dispatch is enabled, we can redistribute
649  * load based on RSS.
650  *
651  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
652  * not it had already done work distribution via multi-queue.  Then we could
653  * direct dispatch in the event load balancing was already complete and
654  * handle the case of interfaces with different capabilities better.
655  *
656  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
657  * at multiple layers?
658  *
659  * XXXRW: For now, enable all this only if RSS is compiled in, although it
660  * works fine without RSS.  Need to characterise the performance overhead
661  * of the detour through the netisr code in the event the result is always
662  * direct dispatch.
663  */
664 static void
665 ether_nh_input(struct mbuf *m)
666 {
667 
668 	M_ASSERTPKTHDR(m);
669 	KASSERT(m->m_pkthdr.rcvif != NULL,
670 	    ("%s: NULL interface pointer", __func__));
671 	ether_input_internal(m->m_pkthdr.rcvif, m);
672 }
673 
674 static struct netisr_handler	ether_nh = {
675 	.nh_name = "ether",
676 	.nh_handler = ether_nh_input,
677 	.nh_proto = NETISR_ETHER,
678 #ifdef RSS
679 	.nh_policy = NETISR_POLICY_CPU,
680 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
681 	.nh_m2cpuid = rss_m2cpuid,
682 #else
683 	.nh_policy = NETISR_POLICY_SOURCE,
684 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
685 #endif
686 };
687 
688 static void
689 ether_init(__unused void *arg)
690 {
691 
692 	netisr_register(&ether_nh);
693 }
694 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
695 
696 static void
697 vnet_ether_init(__unused void *arg)
698 {
699 	int i;
700 
701 	/* Initialize packet filter hooks. */
702 	V_link_pfil_hook.ph_type = PFIL_TYPE_AF;
703 	V_link_pfil_hook.ph_af = AF_LINK;
704 	if ((i = pfil_head_register(&V_link_pfil_hook)) != 0)
705 		printf("%s: WARNING: unable to register pfil link hook, "
706 			"error %d\n", __func__, i);
707 #ifdef VIMAGE
708 	netisr_register_vnet(&ether_nh);
709 #endif
710 }
711 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
712     vnet_ether_init, NULL);
713 
714 #ifdef VIMAGE
715 static void
716 vnet_ether_pfil_destroy(__unused void *arg)
717 {
718 	int i;
719 
720 	if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0)
721 		printf("%s: WARNING: unable to unregister pfil link hook, "
722 			"error %d\n", __func__, i);
723 }
724 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
725     vnet_ether_pfil_destroy, NULL);
726 
727 static void
728 vnet_ether_destroy(__unused void *arg)
729 {
730 
731 	netisr_unregister_vnet(&ether_nh);
732 }
733 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
734     vnet_ether_destroy, NULL);
735 #endif
736 
737 
738 
739 static void
740 ether_input(struct ifnet *ifp, struct mbuf *m)
741 {
742 
743 	struct mbuf *mn;
744 
745 	/*
746 	 * The drivers are allowed to pass in a chain of packets linked with
747 	 * m_nextpkt. We split them up into separate packets here and pass
748 	 * them up. This allows the drivers to amortize the receive lock.
749 	 */
750 	while (m) {
751 		mn = m->m_nextpkt;
752 		m->m_nextpkt = NULL;
753 
754 		/*
755 		 * We will rely on rcvif being set properly in the deferred context,
756 		 * so assert it is correct here.
757 		 */
758 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
759 		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
760 		CURVNET_SET_QUIET(ifp->if_vnet);
761 		netisr_dispatch(NETISR_ETHER, m);
762 		CURVNET_RESTORE();
763 		m = mn;
764 	}
765 }
766 
767 /*
768  * Upper layer processing for a received Ethernet packet.
769  */
770 void
771 ether_demux(struct ifnet *ifp, struct mbuf *m)
772 {
773 	struct ether_header *eh;
774 	int i, isr;
775 	u_short ether_type;
776 
777 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
778 
779 	/* Do not grab PROMISC frames in case we are re-entered. */
780 	if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) {
781 		i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL);
782 
783 		if (i != 0 || m == NULL)
784 			return;
785 	}
786 
787 	eh = mtod(m, struct ether_header *);
788 	ether_type = ntohs(eh->ether_type);
789 
790 	/*
791 	 * If this frame has a VLAN tag other than 0, call vlan_input()
792 	 * if its module is loaded. Otherwise, drop.
793 	 */
794 	if ((m->m_flags & M_VLANTAG) &&
795 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
796 		if (ifp->if_vlantrunk == NULL) {
797 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
798 			m_freem(m);
799 			return;
800 		}
801 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
802 		    __func__));
803 		/* Clear before possibly re-entering ether_input(). */
804 		m->m_flags &= ~M_PROMISC;
805 		(*vlan_input_p)(ifp, m);
806 		return;
807 	}
808 
809 	/*
810 	 * Pass promiscuously received frames to the upper layer if the user
811 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
812 	 */
813 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
814 		m_freem(m);
815 		return;
816 	}
817 
818 	/*
819 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
820 	 * Strip off Ethernet header.
821 	 */
822 	m->m_flags &= ~M_VLANTAG;
823 	m_clrprotoflags(m);
824 	m_adj(m, ETHER_HDR_LEN);
825 
826 	/*
827 	 * Dispatch frame to upper layer.
828 	 */
829 	switch (ether_type) {
830 #ifdef INET
831 	case ETHERTYPE_IP:
832 		isr = NETISR_IP;
833 		break;
834 
835 	case ETHERTYPE_ARP:
836 		if (ifp->if_flags & IFF_NOARP) {
837 			/* Discard packet if ARP is disabled on interface */
838 			m_freem(m);
839 			return;
840 		}
841 		isr = NETISR_ARP;
842 		break;
843 #endif
844 #ifdef INET6
845 	case ETHERTYPE_IPV6:
846 		isr = NETISR_IPV6;
847 		break;
848 #endif
849 	default:
850 		goto discard;
851 	}
852 	netisr_dispatch(isr, m);
853 	return;
854 
855 discard:
856 	/*
857 	 * Packet is to be discarded.  If netgraph is present,
858 	 * hand the packet to it for last chance processing;
859 	 * otherwise dispose of it.
860 	 */
861 	if (ifp->if_l2com != NULL) {
862 		KASSERT(ng_ether_input_orphan_p != NULL,
863 		    ("ng_ether_input_orphan_p is NULL"));
864 		/*
865 		 * Put back the ethernet header so netgraph has a
866 		 * consistent view of inbound packets.
867 		 */
868 		M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
869 		(*ng_ether_input_orphan_p)(ifp, m);
870 		return;
871 	}
872 	m_freem(m);
873 }
874 
875 /*
876  * Convert Ethernet address to printable (loggable) representation.
877  * This routine is for compatibility; it's better to just use
878  *
879  *	printf("%6D", <pointer to address>, ":");
880  *
881  * since there's no static buffer involved.
882  */
883 char *
884 ether_sprintf(const u_char *ap)
885 {
886 	static char etherbuf[18];
887 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
888 	return (etherbuf);
889 }
890 
891 /*
892  * Perform common duties while attaching to interface list
893  */
894 void
895 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
896 {
897 	int i;
898 	struct ifaddr *ifa;
899 	struct sockaddr_dl *sdl;
900 
901 	ifp->if_addrlen = ETHER_ADDR_LEN;
902 	ifp->if_hdrlen = ETHER_HDR_LEN;
903 	if_attach(ifp);
904 	ifp->if_mtu = ETHERMTU;
905 	ifp->if_output = ether_output;
906 	ifp->if_input = ether_input;
907 	ifp->if_resolvemulti = ether_resolvemulti;
908 	ifp->if_requestencap = ether_requestencap;
909 #ifdef VIMAGE
910 	ifp->if_reassign = ether_reassign;
911 #endif
912 	if (ifp->if_baudrate == 0)
913 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
914 	ifp->if_broadcastaddr = etherbroadcastaddr;
915 
916 	ifa = ifp->if_addr;
917 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
918 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
919 	sdl->sdl_type = IFT_ETHER;
920 	sdl->sdl_alen = ifp->if_addrlen;
921 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
922 
923 	if (ifp->if_hw_addr != NULL)
924 		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
925 
926 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
927 	if (ng_ether_attach_p != NULL)
928 		(*ng_ether_attach_p)(ifp);
929 
930 	/* Announce Ethernet MAC address if non-zero. */
931 	for (i = 0; i < ifp->if_addrlen; i++)
932 		if (lla[i] != 0)
933 			break;
934 	if (i != ifp->if_addrlen)
935 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
936 
937 	uuid_ether_add(LLADDR(sdl));
938 
939 	/* Add necessary bits are setup; announce it now. */
940 	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
941 	if (IS_DEFAULT_VNET(curvnet))
942 		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
943 }
944 
945 /*
946  * Perform common duties while detaching an Ethernet interface
947  */
948 void
949 ether_ifdetach(struct ifnet *ifp)
950 {
951 	struct sockaddr_dl *sdl;
952 
953 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
954 	uuid_ether_del(LLADDR(sdl));
955 
956 	if (ifp->if_l2com != NULL) {
957 		KASSERT(ng_ether_detach_p != NULL,
958 		    ("ng_ether_detach_p is NULL"));
959 		(*ng_ether_detach_p)(ifp);
960 	}
961 
962 	bpfdetach(ifp);
963 	if_detach(ifp);
964 }
965 
966 #ifdef VIMAGE
967 void
968 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
969 {
970 
971 	if (ifp->if_l2com != NULL) {
972 		KASSERT(ng_ether_detach_p != NULL,
973 		    ("ng_ether_detach_p is NULL"));
974 		(*ng_ether_detach_p)(ifp);
975 	}
976 
977 	if (ng_ether_attach_p != NULL) {
978 		CURVNET_SET_QUIET(new_vnet);
979 		(*ng_ether_attach_p)(ifp);
980 		CURVNET_RESTORE();
981 	}
982 }
983 #endif
984 
985 SYSCTL_DECL(_net_link);
986 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
987 
988 #if 0
989 /*
990  * This is for reference.  We have a table-driven version
991  * of the little-endian crc32 generator, which is faster
992  * than the double-loop.
993  */
994 uint32_t
995 ether_crc32_le(const uint8_t *buf, size_t len)
996 {
997 	size_t i;
998 	uint32_t crc;
999 	int bit;
1000 	uint8_t data;
1001 
1002 	crc = 0xffffffff;	/* initial value */
1003 
1004 	for (i = 0; i < len; i++) {
1005 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1006 			carry = (crc ^ data) & 1;
1007 			crc >>= 1;
1008 			if (carry)
1009 				crc = (crc ^ ETHER_CRC_POLY_LE);
1010 		}
1011 	}
1012 
1013 	return (crc);
1014 }
1015 #else
1016 uint32_t
1017 ether_crc32_le(const uint8_t *buf, size_t len)
1018 {
1019 	static const uint32_t crctab[] = {
1020 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1021 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1022 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1023 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1024 	};
1025 	size_t i;
1026 	uint32_t crc;
1027 
1028 	crc = 0xffffffff;	/* initial value */
1029 
1030 	for (i = 0; i < len; i++) {
1031 		crc ^= buf[i];
1032 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1033 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1034 	}
1035 
1036 	return (crc);
1037 }
1038 #endif
1039 
1040 uint32_t
1041 ether_crc32_be(const uint8_t *buf, size_t len)
1042 {
1043 	size_t i;
1044 	uint32_t crc, carry;
1045 	int bit;
1046 	uint8_t data;
1047 
1048 	crc = 0xffffffff;	/* initial value */
1049 
1050 	for (i = 0; i < len; i++) {
1051 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1052 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1053 			crc <<= 1;
1054 			if (carry)
1055 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1056 		}
1057 	}
1058 
1059 	return (crc);
1060 }
1061 
1062 int
1063 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1064 {
1065 	struct ifaddr *ifa = (struct ifaddr *) data;
1066 	struct ifreq *ifr = (struct ifreq *) data;
1067 	int error = 0;
1068 
1069 	switch (command) {
1070 	case SIOCSIFADDR:
1071 		ifp->if_flags |= IFF_UP;
1072 
1073 		switch (ifa->ifa_addr->sa_family) {
1074 #ifdef INET
1075 		case AF_INET:
1076 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1077 			arp_ifinit(ifp, ifa);
1078 			break;
1079 #endif
1080 		default:
1081 			ifp->if_init(ifp->if_softc);
1082 			break;
1083 		}
1084 		break;
1085 
1086 	case SIOCGIFADDR:
1087 		{
1088 			struct sockaddr *sa;
1089 
1090 			sa = (struct sockaddr *) & ifr->ifr_data;
1091 			bcopy(IF_LLADDR(ifp),
1092 			      (caddr_t) sa->sa_data, ETHER_ADDR_LEN);
1093 		}
1094 		break;
1095 
1096 	case SIOCSIFMTU:
1097 		/*
1098 		 * Set the interface MTU.
1099 		 */
1100 		if (ifr->ifr_mtu > ETHERMTU) {
1101 			error = EINVAL;
1102 		} else {
1103 			ifp->if_mtu = ifr->ifr_mtu;
1104 		}
1105 		break;
1106 	default:
1107 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1108 		break;
1109 	}
1110 	return (error);
1111 }
1112 
1113 static int
1114 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1115 	struct sockaddr *sa)
1116 {
1117 	struct sockaddr_dl *sdl;
1118 #ifdef INET
1119 	struct sockaddr_in *sin;
1120 #endif
1121 #ifdef INET6
1122 	struct sockaddr_in6 *sin6;
1123 #endif
1124 	u_char *e_addr;
1125 
1126 	switch(sa->sa_family) {
1127 	case AF_LINK:
1128 		/*
1129 		 * No mapping needed. Just check that it's a valid MC address.
1130 		 */
1131 		sdl = (struct sockaddr_dl *)sa;
1132 		e_addr = LLADDR(sdl);
1133 		if (!ETHER_IS_MULTICAST(e_addr))
1134 			return EADDRNOTAVAIL;
1135 		*llsa = NULL;
1136 		return 0;
1137 
1138 #ifdef INET
1139 	case AF_INET:
1140 		sin = (struct sockaddr_in *)sa;
1141 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1142 			return EADDRNOTAVAIL;
1143 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1144 		sdl->sdl_alen = ETHER_ADDR_LEN;
1145 		e_addr = LLADDR(sdl);
1146 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1147 		*llsa = (struct sockaddr *)sdl;
1148 		return 0;
1149 #endif
1150 #ifdef INET6
1151 	case AF_INET6:
1152 		sin6 = (struct sockaddr_in6 *)sa;
1153 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1154 			/*
1155 			 * An IP6 address of 0 means listen to all
1156 			 * of the Ethernet multicast address used for IP6.
1157 			 * (This is used for multicast routers.)
1158 			 */
1159 			ifp->if_flags |= IFF_ALLMULTI;
1160 			*llsa = NULL;
1161 			return 0;
1162 		}
1163 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1164 			return EADDRNOTAVAIL;
1165 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1166 		sdl->sdl_alen = ETHER_ADDR_LEN;
1167 		e_addr = LLADDR(sdl);
1168 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1169 		*llsa = (struct sockaddr *)sdl;
1170 		return 0;
1171 #endif
1172 
1173 	default:
1174 		/*
1175 		 * Well, the text isn't quite right, but it's the name
1176 		 * that counts...
1177 		 */
1178 		return EAFNOSUPPORT;
1179 	}
1180 }
1181 
1182 static moduledata_t ether_mod = {
1183 	.name = "ether",
1184 };
1185 
1186 void
1187 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1188 {
1189 	struct ether_vlan_header vlan;
1190 	struct mbuf mv, mb;
1191 
1192 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1193 	    ("%s: vlan information not present", __func__));
1194 	KASSERT(m->m_len >= sizeof(struct ether_header),
1195 	    ("%s: mbuf not large enough for header", __func__));
1196 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1197 	vlan.evl_proto = vlan.evl_encap_proto;
1198 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1199 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1200 	m->m_len -= sizeof(struct ether_header);
1201 	m->m_data += sizeof(struct ether_header);
1202 	/*
1203 	 * If a data link has been supplied by the caller, then we will need to
1204 	 * re-create a stack allocated mbuf chain with the following structure:
1205 	 *
1206 	 * (1) mbuf #1 will contain the supplied data link
1207 	 * (2) mbuf #2 will contain the vlan header
1208 	 * (3) mbuf #3 will contain the original mbuf's packet data
1209 	 *
1210 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1211 	 */
1212 	if (data != NULL) {
1213 		mv.m_next = m;
1214 		mv.m_data = (caddr_t)&vlan;
1215 		mv.m_len = sizeof(vlan);
1216 		mb.m_next = &mv;
1217 		mb.m_data = data;
1218 		mb.m_len = dlen;
1219 		bpf_mtap(bp, &mb);
1220 	} else
1221 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1222 	m->m_len += sizeof(struct ether_header);
1223 	m->m_data -= sizeof(struct ether_header);
1224 }
1225 
1226 struct mbuf *
1227 ether_vlanencap(struct mbuf *m, uint16_t tag)
1228 {
1229 	struct ether_vlan_header *evl;
1230 
1231 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1232 	if (m == NULL)
1233 		return (NULL);
1234 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1235 
1236 	if (m->m_len < sizeof(*evl)) {
1237 		m = m_pullup(m, sizeof(*evl));
1238 		if (m == NULL)
1239 			return (NULL);
1240 	}
1241 
1242 	/*
1243 	 * Transform the Ethernet header into an Ethernet header
1244 	 * with 802.1Q encapsulation.
1245 	 */
1246 	evl = mtod(m, struct ether_vlan_header *);
1247 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1248 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1249 	evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1250 	evl->evl_tag = htons(tag);
1251 	return (m);
1252 }
1253 
1254 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1255 MODULE_VERSION(ether, 1);
1256