xref: /freebsd/sys/net/if_ethersubr.c (revision 09e32b2fddf5f673f76e2fffa415a73d99a6f309)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_netgraph.h"
37 #include "opt_mbuf_profiling.h"
38 #include "opt_rss.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/devctl.h>
43 #include <sys/eventhandler.h>
44 #include <sys/jail.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/module.h>
50 #include <sys/msan.h>
51 #include <sys/proc.h>
52 #include <sys/priv.h>
53 #include <sys/random.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 #include <sys/uuid.h>
58 #ifdef KDB
59 #include <sys/kdb.h>
60 #endif
61 
62 #include <net/ieee_oui.h>
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_private.h>
66 #include <net/if_arp.h>
67 #include <net/netisr.h>
68 #include <net/route.h>
69 #include <net/if_llc.h>
70 #include <net/if_dl.h>
71 #include <net/if_types.h>
72 #include <net/bpf.h>
73 #include <net/ethernet.h>
74 #include <net/if_bridgevar.h>
75 #include <net/if_vlan_var.h>
76 #include <net/if_llatbl.h>
77 #include <net/pfil.h>
78 #include <net/rss_config.h>
79 #include <net/vnet.h>
80 
81 #include <netpfil/pf/pf_mtag.h>
82 
83 #if defined(INET) || defined(INET6)
84 #include <netinet/in.h>
85 #include <netinet/in_var.h>
86 #include <netinet/if_ether.h>
87 #include <netinet/ip_carp.h>
88 #include <netinet/ip_var.h>
89 #endif
90 #ifdef INET6
91 #include <netinet6/nd6.h>
92 #endif
93 #include <security/mac/mac_framework.h>
94 
95 #include <crypto/sha1.h>
96 
97 #ifdef CTASSERT
98 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
99 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
100 #endif
101 
102 VNET_DEFINE(pfil_head_t, link_pfil_head);	/* Packet filter hooks */
103 
104 /* netgraph node hooks for ng_ether(4) */
105 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
106 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
107 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
108 void	(*ng_ether_attach_p)(struct ifnet *ifp);
109 void	(*ng_ether_detach_p)(struct ifnet *ifp);
110 
111 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
112 
113 /* if_bridge(4) support */
114 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
115 
116 /* if_lagg(4) support */
117 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
118 
119 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
120 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
121 
122 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
123 		struct sockaddr *);
124 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
125 
126 #define senderr(e) do { error = (e); goto bad;} while (0)
127 
128 static void
129 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
130 {
131 	int csum_flags = 0;
132 
133 	if (src->m_pkthdr.csum_flags & CSUM_IP)
134 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
135 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
136 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
137 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
138 		csum_flags |= CSUM_SCTP_VALID;
139 	dst->m_pkthdr.csum_flags |= csum_flags;
140 	if (csum_flags & CSUM_DATA_VALID)
141 		dst->m_pkthdr.csum_data = 0xffff;
142 }
143 
144 /*
145  * Handle link-layer encapsulation requests.
146  */
147 static int
148 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
149 {
150 	struct ether_header *eh;
151 	struct arphdr *ah;
152 	uint16_t etype;
153 	const u_char *lladdr;
154 
155 	if (req->rtype != IFENCAP_LL)
156 		return (EOPNOTSUPP);
157 
158 	if (req->bufsize < ETHER_HDR_LEN)
159 		return (ENOMEM);
160 
161 	eh = (struct ether_header *)req->buf;
162 	lladdr = req->lladdr;
163 	req->lladdr_off = 0;
164 
165 	switch (req->family) {
166 	case AF_INET:
167 		etype = htons(ETHERTYPE_IP);
168 		break;
169 	case AF_INET6:
170 		etype = htons(ETHERTYPE_IPV6);
171 		break;
172 	case AF_ARP:
173 		ah = (struct arphdr *)req->hdata;
174 		ah->ar_hrd = htons(ARPHRD_ETHER);
175 
176 		switch(ntohs(ah->ar_op)) {
177 		case ARPOP_REVREQUEST:
178 		case ARPOP_REVREPLY:
179 			etype = htons(ETHERTYPE_REVARP);
180 			break;
181 		case ARPOP_REQUEST:
182 		case ARPOP_REPLY:
183 		default:
184 			etype = htons(ETHERTYPE_ARP);
185 			break;
186 		}
187 
188 		if (req->flags & IFENCAP_FLAG_BROADCAST)
189 			lladdr = ifp->if_broadcastaddr;
190 		break;
191 	default:
192 		return (EAFNOSUPPORT);
193 	}
194 
195 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
196 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
197 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
198 	req->bufsize = sizeof(struct ether_header);
199 
200 	return (0);
201 }
202 
203 static int
204 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
205 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
206 	uint32_t *pflags, struct llentry **plle)
207 {
208 	uint32_t lleflags = 0;
209 	int error = 0;
210 #if defined(INET) || defined(INET6)
211 	struct ether_header *eh = (struct ether_header *)phdr;
212 	uint16_t etype;
213 #endif
214 
215 	if (plle)
216 		*plle = NULL;
217 
218 	switch (dst->sa_family) {
219 #ifdef INET
220 	case AF_INET:
221 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
222 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
223 			    plle);
224 		else {
225 			if (m->m_flags & M_BCAST)
226 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
227 				    ETHER_ADDR_LEN);
228 			else {
229 				const struct in_addr *a;
230 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
231 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
232 			}
233 			etype = htons(ETHERTYPE_IP);
234 			memcpy(&eh->ether_type, &etype, sizeof(etype));
235 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
236 		}
237 		break;
238 #endif
239 #ifdef INET6
240 	case AF_INET6:
241 		if ((m->m_flags & M_MCAST) == 0) {
242 			int af = RO_GET_FAMILY(ro, dst);
243 			error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr,
244 			    &lleflags, plle);
245 		} else {
246 			const struct in6_addr *a6;
247 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
248 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
249 			etype = htons(ETHERTYPE_IPV6);
250 			memcpy(&eh->ether_type, &etype, sizeof(etype));
251 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
252 		}
253 		break;
254 #endif
255 	default:
256 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
257 		if (m != NULL)
258 			m_freem(m);
259 		return (EAFNOSUPPORT);
260 	}
261 
262 	if (error == EHOSTDOWN) {
263 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
264 			error = EHOSTUNREACH;
265 	}
266 
267 	if (error != 0)
268 		return (error);
269 
270 	*pflags = RT_MAY_LOOP;
271 	if (lleflags & LLE_IFADDR)
272 		*pflags |= RT_L2_ME;
273 
274 	return (0);
275 }
276 
277 /*
278  * Ethernet output routine.
279  * Encapsulate a packet of type family for the local net.
280  * Use trailer local net encapsulation if enough data in first
281  * packet leaves a multiple of 512 bytes of data in remainder.
282  */
283 int
284 ether_output(struct ifnet *ifp, struct mbuf *m,
285 	const struct sockaddr *dst, struct route *ro)
286 {
287 	int error = 0;
288 	char linkhdr[ETHER_HDR_LEN], *phdr;
289 	struct ether_header *eh;
290 	struct pf_mtag *t;
291 	bool loop_copy;
292 	int hlen;	/* link layer header length */
293 	uint32_t pflags;
294 	struct llentry *lle = NULL;
295 	int addref = 0;
296 
297 	phdr = NULL;
298 	pflags = 0;
299 	if (ro != NULL) {
300 		/* XXX BPF uses ro_prepend */
301 		if (ro->ro_prepend != NULL) {
302 			phdr = ro->ro_prepend;
303 			hlen = ro->ro_plen;
304 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
305 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
306 				lle = ro->ro_lle;
307 				if (lle != NULL &&
308 				    (lle->la_flags & LLE_VALID) == 0) {
309 					LLE_FREE(lle);
310 					lle = NULL;	/* redundant */
311 					ro->ro_lle = NULL;
312 				}
313 				if (lle == NULL) {
314 					/* if we lookup, keep cache */
315 					addref = 1;
316 				} else
317 					/*
318 					 * Notify LLE code that
319 					 * the entry was used
320 					 * by datapath.
321 					 */
322 					llentry_provide_feedback(lle);
323 			}
324 			if (lle != NULL) {
325 				phdr = lle->r_linkdata;
326 				hlen = lle->r_hdrlen;
327 				pflags = lle->r_flags;
328 			}
329 		}
330 	}
331 
332 #ifdef MAC
333 	error = mac_ifnet_check_transmit(ifp, m);
334 	if (error)
335 		senderr(error);
336 #endif
337 
338 	M_PROFILE(m);
339 	if (ifp->if_flags & IFF_MONITOR)
340 		senderr(ENETDOWN);
341 	if (!((ifp->if_flags & IFF_UP) &&
342 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
343 		senderr(ENETDOWN);
344 
345 	if (phdr == NULL) {
346 		/* No prepend data supplied. Try to calculate ourselves. */
347 		phdr = linkhdr;
348 		hlen = ETHER_HDR_LEN;
349 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
350 		    addref ? &lle : NULL);
351 		if (addref && lle != NULL)
352 			ro->ro_lle = lle;
353 		if (error != 0)
354 			return (error == EWOULDBLOCK ? 0 : error);
355 	}
356 
357 	if ((pflags & RT_L2_ME) != 0) {
358 		update_mbuf_csumflags(m, m);
359 		return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0));
360 	}
361 	loop_copy = (pflags & RT_MAY_LOOP) != 0;
362 
363 	/*
364 	 * Add local net header.  If no space in first mbuf,
365 	 * allocate another.
366 	 *
367 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
368 	 * This is done because BPF code shifts m_data pointer
369 	 * to the end of ethernet header prior to calling if_output().
370 	 */
371 	M_PREPEND(m, hlen, M_NOWAIT);
372 	if (m == NULL)
373 		senderr(ENOBUFS);
374 	if ((pflags & RT_HAS_HEADER) == 0) {
375 		eh = mtod(m, struct ether_header *);
376 		memcpy(eh, phdr, hlen);
377 	}
378 
379 	/*
380 	 * If a simplex interface, and the packet is being sent to our
381 	 * Ethernet address or a broadcast address, loopback a copy.
382 	 * XXX To make a simplex device behave exactly like a duplex
383 	 * device, we should copy in the case of sending to our own
384 	 * ethernet address (thus letting the original actually appear
385 	 * on the wire). However, we don't do that here for security
386 	 * reasons and compatibility with the original behavior.
387 	 */
388 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
389 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
390 		struct mbuf *n;
391 
392 		/*
393 		 * Because if_simloop() modifies the packet, we need a
394 		 * writable copy through m_dup() instead of a readonly
395 		 * one as m_copy[m] would give us. The alternative would
396 		 * be to modify if_simloop() to handle the readonly mbuf,
397 		 * but performancewise it is mostly equivalent (trading
398 		 * extra data copying vs. extra locking).
399 		 *
400 		 * XXX This is a local workaround.  A number of less
401 		 * often used kernel parts suffer from the same bug.
402 		 * See PR kern/105943 for a proposed general solution.
403 		 */
404 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
405 			update_mbuf_csumflags(m, n);
406 			(void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen);
407 		} else
408 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
409 	}
410 
411        /*
412 	* Bridges require special output handling.
413 	*/
414 	if (ifp->if_bridge) {
415 		BRIDGE_OUTPUT(ifp, m, error);
416 		return (error);
417 	}
418 
419 #if defined(INET) || defined(INET6)
420 	if (ifp->if_carp &&
421 	    (error = (*carp_output_p)(ifp, m, dst)))
422 		goto bad;
423 #endif
424 
425 	/* Handle ng_ether(4) processing, if any */
426 	if (ifp->if_l2com != NULL) {
427 		KASSERT(ng_ether_output_p != NULL,
428 		    ("ng_ether_output_p is NULL"));
429 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
430 bad:			if (m != NULL)
431 				m_freem(m);
432 			return (error);
433 		}
434 		if (m == NULL)
435 			return (0);
436 	}
437 
438 	/* Continue with link-layer output */
439 	return ether_output_frame(ifp, m);
440 }
441 
442 static bool
443 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
444 {
445 	struct ether_8021q_tag qtag;
446 	struct ether_header *eh;
447 
448 	eh = mtod(*mp, struct ether_header *);
449 	if (eh->ether_type == htons(ETHERTYPE_VLAN) ||
450 	    eh->ether_type == htons(ETHERTYPE_QINQ)) {
451 		(*mp)->m_flags &= ~M_VLANTAG;
452 		return (true);
453 	}
454 
455 	qtag.vid = 0;
456 	qtag.pcp = pcp;
457 	qtag.proto = ETHERTYPE_VLAN;
458 	if (ether_8021q_frame(mp, ifp, ifp, &qtag))
459 		return (true);
460 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
461 	return (false);
462 }
463 
464 /*
465  * Ethernet link layer output routine to send a raw frame to the device.
466  *
467  * This assumes that the 14 byte Ethernet header is present and contiguous
468  * in the first mbuf (if BRIDGE'ing).
469  */
470 int
471 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
472 {
473 	uint8_t pcp;
474 
475 	pcp = ifp->if_pcp;
476 	if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN &&
477 	    !ether_set_pcp(&m, ifp, pcp))
478 		return (0);
479 
480 	if (PFIL_HOOKED_OUT(V_link_pfil_head))
481 		switch (pfil_mbuf_out(V_link_pfil_head, &m, ifp, NULL)) {
482 		case PFIL_DROPPED:
483 			return (EACCES);
484 		case PFIL_CONSUMED:
485 			return (0);
486 		}
487 
488 #ifdef EXPERIMENTAL
489 #if defined(INET6) && defined(INET)
490 	/* draft-ietf-6man-ipv6only-flag */
491 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
492 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
493 		struct ether_header *eh;
494 
495 		eh = mtod(m, struct ether_header *);
496 		switch (ntohs(eh->ether_type)) {
497 		case ETHERTYPE_IP:
498 		case ETHERTYPE_ARP:
499 		case ETHERTYPE_REVARP:
500 			m_freem(m);
501 			return (EAFNOSUPPORT);
502 			/* NOTREACHED */
503 			break;
504 		};
505 	}
506 #endif
507 #endif
508 
509 	/*
510 	 * Queue message on interface, update output statistics if successful,
511 	 * and start output if interface not yet active.
512 	 *
513 	 * If KMSAN is enabled, use it to verify that the data does not contain
514 	 * any uninitialized bytes.
515 	 */
516 	kmsan_check_mbuf(m, "ether_output");
517 	return ((ifp->if_transmit)(ifp, m));
518 }
519 
520 /*
521  * Process a received Ethernet packet; the packet is in the
522  * mbuf chain m with the ethernet header at the front.
523  */
524 static void
525 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
526 {
527 	struct ether_header *eh;
528 	u_short etype;
529 
530 	if ((ifp->if_flags & IFF_UP) == 0) {
531 		m_freem(m);
532 		return;
533 	}
534 #ifdef DIAGNOSTIC
535 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
536 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
537 		m_freem(m);
538 		return;
539 	}
540 #endif
541 	if (m->m_len < ETHER_HDR_LEN) {
542 		/* XXX maybe should pullup? */
543 		if_printf(ifp, "discard frame w/o leading ethernet "
544 				"header (len %u pkt len %u)\n",
545 				m->m_len, m->m_pkthdr.len);
546 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
547 		m_freem(m);
548 		return;
549 	}
550 	eh = mtod(m, struct ether_header *);
551 	etype = ntohs(eh->ether_type);
552 	random_harvest_queue_ether(m, sizeof(*m));
553 
554 #ifdef EXPERIMENTAL
555 #if defined(INET6) && defined(INET)
556 	/* draft-ietf-6man-ipv6only-flag */
557 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
558 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
559 		switch (etype) {
560 		case ETHERTYPE_IP:
561 		case ETHERTYPE_ARP:
562 		case ETHERTYPE_REVARP:
563 			m_freem(m);
564 			return;
565 			/* NOTREACHED */
566 			break;
567 		};
568 	}
569 #endif
570 #endif
571 
572 	CURVNET_SET_QUIET(ifp->if_vnet);
573 
574 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
575 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
576 			m->m_flags |= M_BCAST;
577 		else
578 			m->m_flags |= M_MCAST;
579 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
580 	}
581 
582 #ifdef MAC
583 	/*
584 	 * Tag the mbuf with an appropriate MAC label before any other
585 	 * consumers can get to it.
586 	 */
587 	mac_ifnet_create_mbuf(ifp, m);
588 #endif
589 
590 	/*
591 	 * Give bpf a chance at the packet.
592 	 */
593 	ETHER_BPF_MTAP(ifp, m);
594 
595 	/*
596 	 * If the CRC is still on the packet, trim it off. We do this once
597 	 * and once only in case we are re-entered. Nothing else on the
598 	 * Ethernet receive path expects to see the FCS.
599 	 */
600 	if (m->m_flags & M_HASFCS) {
601 		m_adj(m, -ETHER_CRC_LEN);
602 		m->m_flags &= ~M_HASFCS;
603 	}
604 
605 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
606 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
607 
608 	/* Allow monitor mode to claim this frame, after stats are updated. */
609 	if (ifp->if_flags & IFF_MONITOR) {
610 		m_freem(m);
611 		CURVNET_RESTORE();
612 		return;
613 	}
614 
615 	/* Handle input from a lagg(4) port */
616 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
617 		KASSERT(lagg_input_ethernet_p != NULL,
618 		    ("%s: if_lagg not loaded!", __func__));
619 		m = (*lagg_input_ethernet_p)(ifp, m);
620 		if (m != NULL)
621 			ifp = m->m_pkthdr.rcvif;
622 		else {
623 			CURVNET_RESTORE();
624 			return;
625 		}
626 	}
627 
628 	/*
629 	 * If the hardware did not process an 802.1Q tag, do this now,
630 	 * to allow 802.1P priority frames to be passed to the main input
631 	 * path correctly.
632 	 */
633 	if ((m->m_flags & M_VLANTAG) == 0 &&
634 	    ((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) {
635 		struct ether_vlan_header *evl;
636 
637 		if (m->m_len < sizeof(*evl) &&
638 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
639 #ifdef DIAGNOSTIC
640 			if_printf(ifp, "cannot pullup VLAN header\n");
641 #endif
642 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
643 			CURVNET_RESTORE();
644 			return;
645 		}
646 
647 		evl = mtod(m, struct ether_vlan_header *);
648 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
649 		m->m_flags |= M_VLANTAG;
650 
651 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
652 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
653 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
654 		eh = mtod(m, struct ether_header *);
655 	}
656 
657 	M_SETFIB(m, ifp->if_fib);
658 
659 	/* Allow ng_ether(4) to claim this frame. */
660 	if (ifp->if_l2com != NULL) {
661 		KASSERT(ng_ether_input_p != NULL,
662 		    ("%s: ng_ether_input_p is NULL", __func__));
663 		m->m_flags &= ~M_PROMISC;
664 		(*ng_ether_input_p)(ifp, &m);
665 		if (m == NULL) {
666 			CURVNET_RESTORE();
667 			return;
668 		}
669 		eh = mtod(m, struct ether_header *);
670 	}
671 
672 	/*
673 	 * Allow if_bridge(4) to claim this frame.
674 	 *
675 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
676 	 * and the frame should be delivered locally.
677 	 *
678 	 * If M_BRIDGE_INJECT is set, the packet was received directly by the
679 	 * bridge via netmap, so "ifp" is the bridge itself and the packet
680 	 * should be re-examined.
681 	 */
682 	if (ifp->if_bridge != NULL || (m->m_flags & M_BRIDGE_INJECT) != 0) {
683 		m->m_flags &= ~M_PROMISC;
684 		BRIDGE_INPUT(ifp, m);
685 		if (m == NULL) {
686 			CURVNET_RESTORE();
687 			return;
688 		}
689 		eh = mtod(m, struct ether_header *);
690 	}
691 
692 #if defined(INET) || defined(INET6)
693 	/*
694 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
695 	 * mbuf flows up to Layer 3.
696 	 * FreeBSD's implementation of carp(4) uses the inprotosw
697 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
698 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
699 	 * is outside the scope of the M_PROMISC test below.
700 	 * TODO: Maintain a hash table of ethernet addresses other than
701 	 * ether_dhost which may be active on this ifp.
702 	 */
703 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
704 		m->m_flags &= ~M_PROMISC;
705 	} else
706 #endif
707 	{
708 		/*
709 		 * If the frame received was not for our MAC address, set the
710 		 * M_PROMISC flag on the mbuf chain. The frame may need to
711 		 * be seen by the rest of the Ethernet input path in case of
712 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
713 		 * seen by upper protocol layers.
714 		 */
715 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
716 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
717 			m->m_flags |= M_PROMISC;
718 	}
719 
720 	ether_demux(ifp, m);
721 	CURVNET_RESTORE();
722 }
723 
724 /*
725  * Ethernet input dispatch; by default, direct dispatch here regardless of
726  * global configuration.  However, if RSS is enabled, hook up RSS affinity
727  * so that when deferred or hybrid dispatch is enabled, we can redistribute
728  * load based on RSS.
729  *
730  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
731  * not it had already done work distribution via multi-queue.  Then we could
732  * direct dispatch in the event load balancing was already complete and
733  * handle the case of interfaces with different capabilities better.
734  *
735  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
736  * at multiple layers?
737  *
738  * XXXRW: For now, enable all this only if RSS is compiled in, although it
739  * works fine without RSS.  Need to characterise the performance overhead
740  * of the detour through the netisr code in the event the result is always
741  * direct dispatch.
742  */
743 static void
744 ether_nh_input(struct mbuf *m)
745 {
746 
747 	M_ASSERTPKTHDR(m);
748 	KASSERT(m->m_pkthdr.rcvif != NULL,
749 	    ("%s: NULL interface pointer", __func__));
750 	ether_input_internal(m->m_pkthdr.rcvif, m);
751 }
752 
753 static struct netisr_handler	ether_nh = {
754 	.nh_name = "ether",
755 	.nh_handler = ether_nh_input,
756 	.nh_proto = NETISR_ETHER,
757 #ifdef RSS
758 	.nh_policy = NETISR_POLICY_CPU,
759 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
760 	.nh_m2cpuid = rss_m2cpuid,
761 #else
762 	.nh_policy = NETISR_POLICY_SOURCE,
763 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
764 #endif
765 };
766 
767 static void
768 ether_init(__unused void *arg)
769 {
770 
771 	netisr_register(&ether_nh);
772 }
773 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
774 
775 static void
776 vnet_ether_init(__unused void *arg)
777 {
778 	struct pfil_head_args args;
779 
780 	args.pa_version = PFIL_VERSION;
781 	args.pa_flags = PFIL_IN | PFIL_OUT;
782 	args.pa_type = PFIL_TYPE_ETHERNET;
783 	args.pa_headname = PFIL_ETHER_NAME;
784 	V_link_pfil_head = pfil_head_register(&args);
785 
786 #ifdef VIMAGE
787 	netisr_register_vnet(&ether_nh);
788 #endif
789 }
790 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
791     vnet_ether_init, NULL);
792 
793 #ifdef VIMAGE
794 static void
795 vnet_ether_pfil_destroy(__unused void *arg)
796 {
797 
798 	pfil_head_unregister(V_link_pfil_head);
799 }
800 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
801     vnet_ether_pfil_destroy, NULL);
802 
803 static void
804 vnet_ether_destroy(__unused void *arg)
805 {
806 
807 	netisr_unregister_vnet(&ether_nh);
808 }
809 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
810     vnet_ether_destroy, NULL);
811 #endif
812 
813 static void
814 ether_input(struct ifnet *ifp, struct mbuf *m)
815 {
816 	struct epoch_tracker et;
817 	struct mbuf *mn;
818 	bool needs_epoch;
819 
820 	needs_epoch = (ifp->if_flags & IFF_NEEDSEPOCH);
821 #ifdef INVARIANTS
822 	/*
823 	 * This temporary code is here to prevent epoch unaware and unmarked
824 	 * drivers to panic the system.  Once all drivers are taken care of,
825 	 * the whole INVARIANTS block should go away.
826 	 */
827 	if (!needs_epoch && !in_epoch(net_epoch_preempt)) {
828 		static bool printedonce;
829 
830 		needs_epoch = true;
831 		if (!printedonce) {
832 			printedonce = true;
833 			if_printf(ifp, "called %s w/o net epoch! "
834 			    "PLEASE file a bug report.", __func__);
835 #ifdef KDB
836 			kdb_backtrace();
837 #endif
838 		}
839 	}
840 #endif
841 
842 	/*
843 	 * The drivers are allowed to pass in a chain of packets linked with
844 	 * m_nextpkt. We split them up into separate packets here and pass
845 	 * them up. This allows the drivers to amortize the receive lock.
846 	 */
847 	CURVNET_SET_QUIET(ifp->if_vnet);
848 	if (__predict_false(needs_epoch))
849 		NET_EPOCH_ENTER(et);
850 	while (m) {
851 		mn = m->m_nextpkt;
852 		m->m_nextpkt = NULL;
853 
854 		/*
855 		 * We will rely on rcvif being set properly in the deferred
856 		 * context, so assert it is correct here.
857 		 */
858 		MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
859 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
860 		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
861 		netisr_dispatch(NETISR_ETHER, m);
862 		m = mn;
863 	}
864 	if (__predict_false(needs_epoch))
865 		NET_EPOCH_EXIT(et);
866 	CURVNET_RESTORE();
867 }
868 
869 /*
870  * Upper layer processing for a received Ethernet packet.
871  */
872 void
873 ether_demux(struct ifnet *ifp, struct mbuf *m)
874 {
875 	struct ether_header *eh;
876 	int i, isr;
877 	u_short ether_type;
878 
879 	NET_EPOCH_ASSERT();
880 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
881 
882 	/* Do not grab PROMISC frames in case we are re-entered. */
883 	if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
884 		i = pfil_mbuf_in(V_link_pfil_head, &m, ifp, NULL);
885 		if (i != 0 || m == NULL)
886 			return;
887 	}
888 
889 	eh = mtod(m, struct ether_header *);
890 	ether_type = ntohs(eh->ether_type);
891 
892 	/*
893 	 * If this frame has a VLAN tag other than 0, call vlan_input()
894 	 * if its module is loaded. Otherwise, drop.
895 	 */
896 	if ((m->m_flags & M_VLANTAG) &&
897 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
898 		if (ifp->if_vlantrunk == NULL) {
899 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
900 			m_freem(m);
901 			return;
902 		}
903 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
904 		    __func__));
905 		/* Clear before possibly re-entering ether_input(). */
906 		m->m_flags &= ~M_PROMISC;
907 		(*vlan_input_p)(ifp, m);
908 		return;
909 	}
910 
911 	/*
912 	 * Pass promiscuously received frames to the upper layer if the user
913 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
914 	 */
915 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
916 		m_freem(m);
917 		return;
918 	}
919 
920 	/*
921 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
922 	 */
923 	m->m_flags &= ~M_VLANTAG;
924 	m_clrprotoflags(m);
925 
926 	/*
927 	 * Dispatch frame to upper layer.
928 	 */
929 	switch (ether_type) {
930 #ifdef INET
931 	case ETHERTYPE_IP:
932 		isr = NETISR_IP;
933 		break;
934 
935 	case ETHERTYPE_ARP:
936 		if (ifp->if_flags & IFF_NOARP) {
937 			/* Discard packet if ARP is disabled on interface */
938 			m_freem(m);
939 			return;
940 		}
941 		isr = NETISR_ARP;
942 		break;
943 #endif
944 #ifdef INET6
945 	case ETHERTYPE_IPV6:
946 		isr = NETISR_IPV6;
947 		break;
948 #endif
949 	default:
950 		goto discard;
951 	}
952 
953 	/* Strip off Ethernet header. */
954 	m_adj(m, ETHER_HDR_LEN);
955 
956 	netisr_dispatch(isr, m);
957 	return;
958 
959 discard:
960 	/*
961 	 * Packet is to be discarded.  If netgraph is present,
962 	 * hand the packet to it for last chance processing;
963 	 * otherwise dispose of it.
964 	 */
965 	if (ifp->if_l2com != NULL) {
966 		KASSERT(ng_ether_input_orphan_p != NULL,
967 		    ("ng_ether_input_orphan_p is NULL"));
968 		(*ng_ether_input_orphan_p)(ifp, m);
969 		return;
970 	}
971 	m_freem(m);
972 }
973 
974 /*
975  * Convert Ethernet address to printable (loggable) representation.
976  * This routine is for compatibility; it's better to just use
977  *
978  *	printf("%6D", <pointer to address>, ":");
979  *
980  * since there's no static buffer involved.
981  */
982 char *
983 ether_sprintf(const u_char *ap)
984 {
985 	static char etherbuf[18];
986 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
987 	return (etherbuf);
988 }
989 
990 /*
991  * Perform common duties while attaching to interface list
992  */
993 void
994 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
995 {
996 	int i;
997 	struct ifaddr *ifa;
998 	struct sockaddr_dl *sdl;
999 
1000 	ifp->if_addrlen = ETHER_ADDR_LEN;
1001 	ifp->if_hdrlen = ETHER_HDR_LEN;
1002 	ifp->if_mtu = ETHERMTU;
1003 	if_attach(ifp);
1004 	ifp->if_output = ether_output;
1005 	ifp->if_input = ether_input;
1006 	ifp->if_resolvemulti = ether_resolvemulti;
1007 	ifp->if_requestencap = ether_requestencap;
1008 #ifdef VIMAGE
1009 	ifp->if_reassign = ether_reassign;
1010 #endif
1011 	if (ifp->if_baudrate == 0)
1012 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
1013 	ifp->if_broadcastaddr = etherbroadcastaddr;
1014 
1015 	ifa = ifp->if_addr;
1016 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
1017 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1018 	sdl->sdl_type = IFT_ETHER;
1019 	sdl->sdl_alen = ifp->if_addrlen;
1020 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
1021 
1022 	if (ifp->if_hw_addr != NULL)
1023 		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
1024 
1025 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
1026 	if (ng_ether_attach_p != NULL)
1027 		(*ng_ether_attach_p)(ifp);
1028 
1029 	/* Announce Ethernet MAC address if non-zero. */
1030 	for (i = 0; i < ifp->if_addrlen; i++)
1031 		if (lla[i] != 0)
1032 			break;
1033 	if (i != ifp->if_addrlen)
1034 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
1035 
1036 	uuid_ether_add(LLADDR(sdl));
1037 
1038 	/* Add necessary bits are setup; announce it now. */
1039 	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
1040 	if (IS_DEFAULT_VNET(curvnet))
1041 		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
1042 }
1043 
1044 /*
1045  * Perform common duties while detaching an Ethernet interface
1046  */
1047 void
1048 ether_ifdetach(struct ifnet *ifp)
1049 {
1050 	struct sockaddr_dl *sdl;
1051 
1052 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1053 	uuid_ether_del(LLADDR(sdl));
1054 
1055 	if (ifp->if_l2com != NULL) {
1056 		KASSERT(ng_ether_detach_p != NULL,
1057 		    ("ng_ether_detach_p is NULL"));
1058 		(*ng_ether_detach_p)(ifp);
1059 	}
1060 
1061 	bpfdetach(ifp);
1062 	if_detach(ifp);
1063 }
1064 
1065 #ifdef VIMAGE
1066 void
1067 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
1068 {
1069 
1070 	if (ifp->if_l2com != NULL) {
1071 		KASSERT(ng_ether_detach_p != NULL,
1072 		    ("ng_ether_detach_p is NULL"));
1073 		(*ng_ether_detach_p)(ifp);
1074 	}
1075 
1076 	if (ng_ether_attach_p != NULL) {
1077 		CURVNET_SET_QUIET(new_vnet);
1078 		(*ng_ether_attach_p)(ifp);
1079 		CURVNET_RESTORE();
1080 	}
1081 }
1082 #endif
1083 
1084 SYSCTL_DECL(_net_link);
1085 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1086     "Ethernet");
1087 
1088 #if 0
1089 /*
1090  * This is for reference.  We have a table-driven version
1091  * of the little-endian crc32 generator, which is faster
1092  * than the double-loop.
1093  */
1094 uint32_t
1095 ether_crc32_le(const uint8_t *buf, size_t len)
1096 {
1097 	size_t i;
1098 	uint32_t crc;
1099 	int bit;
1100 	uint8_t data;
1101 
1102 	crc = 0xffffffff;	/* initial value */
1103 
1104 	for (i = 0; i < len; i++) {
1105 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1106 			carry = (crc ^ data) & 1;
1107 			crc >>= 1;
1108 			if (carry)
1109 				crc = (crc ^ ETHER_CRC_POLY_LE);
1110 		}
1111 	}
1112 
1113 	return (crc);
1114 }
1115 #else
1116 uint32_t
1117 ether_crc32_le(const uint8_t *buf, size_t len)
1118 {
1119 	static const uint32_t crctab[] = {
1120 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1121 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1122 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1123 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1124 	};
1125 	size_t i;
1126 	uint32_t crc;
1127 
1128 	crc = 0xffffffff;	/* initial value */
1129 
1130 	for (i = 0; i < len; i++) {
1131 		crc ^= buf[i];
1132 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1133 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1134 	}
1135 
1136 	return (crc);
1137 }
1138 #endif
1139 
1140 uint32_t
1141 ether_crc32_be(const uint8_t *buf, size_t len)
1142 {
1143 	size_t i;
1144 	uint32_t crc, carry;
1145 	int bit;
1146 	uint8_t data;
1147 
1148 	crc = 0xffffffff;	/* initial value */
1149 
1150 	for (i = 0; i < len; i++) {
1151 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1152 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1153 			crc <<= 1;
1154 			if (carry)
1155 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1156 		}
1157 	}
1158 
1159 	return (crc);
1160 }
1161 
1162 int
1163 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1164 {
1165 	struct ifaddr *ifa = (struct ifaddr *) data;
1166 	struct ifreq *ifr = (struct ifreq *) data;
1167 	int error = 0;
1168 
1169 	switch (command) {
1170 	case SIOCSIFADDR:
1171 		ifp->if_flags |= IFF_UP;
1172 
1173 		switch (ifa->ifa_addr->sa_family) {
1174 #ifdef INET
1175 		case AF_INET:
1176 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1177 			arp_ifinit(ifp, ifa);
1178 			break;
1179 #endif
1180 		default:
1181 			ifp->if_init(ifp->if_softc);
1182 			break;
1183 		}
1184 		break;
1185 
1186 	case SIOCGIFADDR:
1187 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1188 		    ETHER_ADDR_LEN);
1189 		break;
1190 
1191 	case SIOCSIFMTU:
1192 		/*
1193 		 * Set the interface MTU.
1194 		 */
1195 		if (ifr->ifr_mtu > ETHERMTU) {
1196 			error = EINVAL;
1197 		} else {
1198 			ifp->if_mtu = ifr->ifr_mtu;
1199 		}
1200 		break;
1201 
1202 	case SIOCSLANPCP:
1203 		error = priv_check(curthread, PRIV_NET_SETLANPCP);
1204 		if (error != 0)
1205 			break;
1206 		if (ifr->ifr_lan_pcp > 7 &&
1207 		    ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1208 			error = EINVAL;
1209 		} else {
1210 			ifp->if_pcp = ifr->ifr_lan_pcp;
1211 			/* broadcast event about PCP change */
1212 			EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1213 		}
1214 		break;
1215 
1216 	case SIOCGLANPCP:
1217 		ifr->ifr_lan_pcp = ifp->if_pcp;
1218 		break;
1219 
1220 	default:
1221 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1222 		break;
1223 	}
1224 	return (error);
1225 }
1226 
1227 static int
1228 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1229 	struct sockaddr *sa)
1230 {
1231 	struct sockaddr_dl *sdl;
1232 #ifdef INET
1233 	struct sockaddr_in *sin;
1234 #endif
1235 #ifdef INET6
1236 	struct sockaddr_in6 *sin6;
1237 #endif
1238 	u_char *e_addr;
1239 
1240 	switch(sa->sa_family) {
1241 	case AF_LINK:
1242 		/*
1243 		 * No mapping needed. Just check that it's a valid MC address.
1244 		 */
1245 		sdl = (struct sockaddr_dl *)sa;
1246 		e_addr = LLADDR(sdl);
1247 		if (!ETHER_IS_MULTICAST(e_addr))
1248 			return EADDRNOTAVAIL;
1249 		*llsa = NULL;
1250 		return 0;
1251 
1252 #ifdef INET
1253 	case AF_INET:
1254 		sin = (struct sockaddr_in *)sa;
1255 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1256 			return EADDRNOTAVAIL;
1257 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1258 		sdl->sdl_alen = ETHER_ADDR_LEN;
1259 		e_addr = LLADDR(sdl);
1260 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1261 		*llsa = (struct sockaddr *)sdl;
1262 		return 0;
1263 #endif
1264 #ifdef INET6
1265 	case AF_INET6:
1266 		sin6 = (struct sockaddr_in6 *)sa;
1267 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1268 			/*
1269 			 * An IP6 address of 0 means listen to all
1270 			 * of the Ethernet multicast address used for IP6.
1271 			 * (This is used for multicast routers.)
1272 			 */
1273 			ifp->if_flags |= IFF_ALLMULTI;
1274 			*llsa = NULL;
1275 			return 0;
1276 		}
1277 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1278 			return EADDRNOTAVAIL;
1279 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1280 		sdl->sdl_alen = ETHER_ADDR_LEN;
1281 		e_addr = LLADDR(sdl);
1282 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1283 		*llsa = (struct sockaddr *)sdl;
1284 		return 0;
1285 #endif
1286 
1287 	default:
1288 		/*
1289 		 * Well, the text isn't quite right, but it's the name
1290 		 * that counts...
1291 		 */
1292 		return EAFNOSUPPORT;
1293 	}
1294 }
1295 
1296 static moduledata_t ether_mod = {
1297 	.name = "ether",
1298 };
1299 
1300 void
1301 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1302 {
1303 	struct ether_vlan_header vlan;
1304 	struct mbuf mv, mb;
1305 
1306 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1307 	    ("%s: vlan information not present", __func__));
1308 	KASSERT(m->m_len >= sizeof(struct ether_header),
1309 	    ("%s: mbuf not large enough for header", __func__));
1310 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1311 	vlan.evl_proto = vlan.evl_encap_proto;
1312 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1313 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1314 	m->m_len -= sizeof(struct ether_header);
1315 	m->m_data += sizeof(struct ether_header);
1316 	/*
1317 	 * If a data link has been supplied by the caller, then we will need to
1318 	 * re-create a stack allocated mbuf chain with the following structure:
1319 	 *
1320 	 * (1) mbuf #1 will contain the supplied data link
1321 	 * (2) mbuf #2 will contain the vlan header
1322 	 * (3) mbuf #3 will contain the original mbuf's packet data
1323 	 *
1324 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1325 	 */
1326 	if (data != NULL) {
1327 		mv.m_next = m;
1328 		mv.m_data = (caddr_t)&vlan;
1329 		mv.m_len = sizeof(vlan);
1330 		mb.m_next = &mv;
1331 		mb.m_data = data;
1332 		mb.m_len = dlen;
1333 		bpf_mtap(bp, &mb);
1334 	} else
1335 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1336 	m->m_len += sizeof(struct ether_header);
1337 	m->m_data -= sizeof(struct ether_header);
1338 }
1339 
1340 struct mbuf *
1341 ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto)
1342 {
1343 	struct ether_vlan_header *evl;
1344 
1345 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1346 	if (m == NULL)
1347 		return (NULL);
1348 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1349 
1350 	if (m->m_len < sizeof(*evl)) {
1351 		m = m_pullup(m, sizeof(*evl));
1352 		if (m == NULL)
1353 			return (NULL);
1354 	}
1355 
1356 	/*
1357 	 * Transform the Ethernet header into an Ethernet header
1358 	 * with 802.1Q encapsulation.
1359 	 */
1360 	evl = mtod(m, struct ether_vlan_header *);
1361 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1362 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1363 	evl->evl_encap_proto = htons(proto);
1364 	evl->evl_tag = htons(tag);
1365 	return (m);
1366 }
1367 
1368 void
1369 ether_bpf_mtap_if(struct ifnet *ifp, struct mbuf *m)
1370 {
1371 	if (bpf_peers_present(ifp->if_bpf)) {
1372 		M_ASSERTVALID(m);
1373 		if ((m->m_flags & M_VLANTAG) != 0)
1374 			ether_vlan_mtap(ifp->if_bpf, m, NULL, 0);
1375 		else
1376 			bpf_mtap(ifp->if_bpf, m);
1377 	}
1378 }
1379 
1380 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1381     "IEEE 802.1Q VLAN");
1382 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
1383     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1384     "for consistency");
1385 
1386 VNET_DEFINE_STATIC(int, soft_pad);
1387 #define	V_soft_pad	VNET(soft_pad)
1388 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1389     &VNET_NAME(soft_pad), 0,
1390     "pad short frames before tagging");
1391 
1392 /*
1393  * For now, make preserving PCP via an mbuf tag optional, as it increases
1394  * per-packet memory allocations and frees.  In the future, it would be
1395  * preferable to reuse ether_vtag for this, or similar.
1396  */
1397 VNET_DEFINE(int, vlan_mtag_pcp) = 0;
1398 #define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
1399 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET,
1400     &VNET_NAME(vlan_mtag_pcp), 0,
1401     "Retain VLAN PCP information as packets are passed up the stack");
1402 
1403 bool
1404 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1405     const struct ether_8021q_tag *qtag)
1406 {
1407 	struct m_tag *mtag;
1408 	int n;
1409 	uint16_t tag;
1410 	uint8_t pcp = qtag->pcp;
1411 	static const char pad[8];	/* just zeros */
1412 
1413 	/*
1414 	 * Pad the frame to the minimum size allowed if told to.
1415 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1416 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1417 	 * bridges that violate paragraph C.4.4.3.a from the same
1418 	 * document, i.e., fail to pad short frames after untagging.
1419 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1420 	 * untagging it will produce a 62-byte frame, which is a runt
1421 	 * and requires padding.  There are VLAN-enabled network
1422 	 * devices that just discard such runts instead or mishandle
1423 	 * them somehow.
1424 	 */
1425 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1426 		for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1427 		     n > 0; n -= sizeof(pad)) {
1428 			if (!m_append(*mp, min(n, sizeof(pad)), pad))
1429 				break;
1430 		}
1431 		if (n > 0) {
1432 			m_freem(*mp);
1433 			*mp = NULL;
1434 			if_printf(ife, "cannot pad short frame");
1435 			return (false);
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * If PCP is set in mbuf, use it
1441 	 */
1442 	if ((*mp)->m_flags & M_VLANTAG) {
1443 		pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
1444 	}
1445 
1446 	/*
1447 	 * If underlying interface can do VLAN tag insertion itself,
1448 	 * just pass the packet along. However, we need some way to
1449 	 * tell the interface where the packet came from so that it
1450 	 * knows how to find the VLAN tag to use, so we attach a
1451 	 * packet tag that holds it.
1452 	 */
1453 	if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1454 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1455 		tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0);
1456 	else
1457 		tag = EVL_MAKETAG(qtag->vid, pcp, 0);
1458 	if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) &&
1459 	    (qtag->proto == ETHERTYPE_VLAN)) {
1460 		(*mp)->m_pkthdr.ether_vtag = tag;
1461 		(*mp)->m_flags |= M_VLANTAG;
1462 	} else {
1463 		*mp = ether_vlanencap_proto(*mp, tag, qtag->proto);
1464 		if (*mp == NULL) {
1465 			if_printf(ife, "unable to prepend 802.1Q header");
1466 			return (false);
1467 		}
1468 		(*mp)->m_flags &= ~M_VLANTAG;
1469 	}
1470 	return (true);
1471 }
1472 
1473 /*
1474  * Allocate an address from the FreeBSD Foundation OUI.  This uses a
1475  * cryptographic hash function on the containing jail's name, UUID and the
1476  * interface name to attempt to provide a unique but stable address.
1477  * Pseudo-interfaces which require a MAC address should use this function to
1478  * allocate non-locally-administered addresses.
1479  */
1480 void
1481 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1482 {
1483 	SHA1_CTX ctx;
1484 	char *buf;
1485 	char uuid[HOSTUUIDLEN + 1];
1486 	uint64_t addr;
1487 	int i, sz;
1488 	char digest[SHA1_RESULTLEN];
1489 	char jailname[MAXHOSTNAMELEN];
1490 
1491 	getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1492 	if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) {
1493 		/* Fall back to a random mac address. */
1494 		goto rando;
1495 	}
1496 
1497 	/* If each (vnet) jail would also have a unique hostuuid this would not
1498 	 * be necessary. */
1499 	getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1500 	sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp),
1501 	    jailname);
1502 	if (sz < 0) {
1503 		/* Fall back to a random mac address. */
1504 		goto rando;
1505 	}
1506 
1507 	SHA1Init(&ctx);
1508 	SHA1Update(&ctx, buf, sz);
1509 	SHA1Final(digest, &ctx);
1510 	free(buf, M_TEMP);
1511 
1512 	addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
1513 	    OUI_FREEBSD_GENERATED_MASK;
1514 	addr = OUI_FREEBSD(addr);
1515 	for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1516 		hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1517 		    0xFF;
1518 	}
1519 
1520 	return;
1521 rando:
1522 	arc4rand(hwaddr, sizeof(*hwaddr), 0);
1523 	/* Unicast */
1524 	hwaddr->octet[0] &= 0xFE;
1525 	/* Locally administered. */
1526 	hwaddr->octet[0] |= 0x02;
1527 }
1528 
1529 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1530 MODULE_VERSION(ether, 1);
1531