xref: /freebsd/sys/net/if_ethersubr.c (revision 052d159a8b83f03d7dc5eb31cd9a9b4a6fe3d9da)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
32  * $FreeBSD$
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 #include "opt_netgraph.h"
38 #include "opt_mbuf_profiling.h"
39 #include "opt_rss.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/eventhandler.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/module.h>
49 #include <sys/mbuf.h>
50 #include <sys/priv.h>
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <sys/uuid.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_arp.h>
60 #include <net/netisr.h>
61 #include <net/route.h>
62 #include <net/if_llc.h>
63 #include <net/if_dl.h>
64 #include <net/if_types.h>
65 #include <net/bpf.h>
66 #include <net/ethernet.h>
67 #include <net/if_bridgevar.h>
68 #include <net/if_vlan_var.h>
69 #include <net/if_llatbl.h>
70 #include <net/pfil.h>
71 #include <net/rss_config.h>
72 #include <net/vnet.h>
73 
74 #include <netpfil/pf/pf_mtag.h>
75 
76 #if defined(INET) || defined(INET6)
77 #include <netinet/in.h>
78 #include <netinet/in_var.h>
79 #include <netinet/if_ether.h>
80 #include <netinet/ip_carp.h>
81 #include <netinet/ip_var.h>
82 #endif
83 #ifdef INET6
84 #include <netinet6/nd6.h>
85 #endif
86 #include <security/mac/mac_framework.h>
87 
88 #ifdef CTASSERT
89 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
90 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
91 #endif
92 
93 VNET_DEFINE(pfil_head_t, link_pfil_head);	/* Packet filter hooks */
94 
95 /* netgraph node hooks for ng_ether(4) */
96 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
97 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
98 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
99 void	(*ng_ether_attach_p)(struct ifnet *ifp);
100 void	(*ng_ether_detach_p)(struct ifnet *ifp);
101 
102 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
103 
104 /* if_bridge(4) support */
105 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
106 
107 /* if_lagg(4) support */
108 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *);
109 
110 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
111 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
112 
113 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
114 		struct sockaddr *);
115 #ifdef VIMAGE
116 static	void ether_reassign(struct ifnet *, struct vnet *, char *);
117 #endif
118 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
119 
120 
121 #define senderr(e) do { error = (e); goto bad;} while (0)
122 
123 static void
124 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
125 {
126 	int csum_flags = 0;
127 
128 	if (src->m_pkthdr.csum_flags & CSUM_IP)
129 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
130 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
131 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
132 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
133 		csum_flags |= CSUM_SCTP_VALID;
134 	dst->m_pkthdr.csum_flags |= csum_flags;
135 	if (csum_flags & CSUM_DATA_VALID)
136 		dst->m_pkthdr.csum_data = 0xffff;
137 }
138 
139 /*
140  * Handle link-layer encapsulation requests.
141  */
142 static int
143 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
144 {
145 	struct ether_header *eh;
146 	struct arphdr *ah;
147 	uint16_t etype;
148 	const u_char *lladdr;
149 
150 	if (req->rtype != IFENCAP_LL)
151 		return (EOPNOTSUPP);
152 
153 	if (req->bufsize < ETHER_HDR_LEN)
154 		return (ENOMEM);
155 
156 	eh = (struct ether_header *)req->buf;
157 	lladdr = req->lladdr;
158 	req->lladdr_off = 0;
159 
160 	switch (req->family) {
161 	case AF_INET:
162 		etype = htons(ETHERTYPE_IP);
163 		break;
164 	case AF_INET6:
165 		etype = htons(ETHERTYPE_IPV6);
166 		break;
167 	case AF_ARP:
168 		ah = (struct arphdr *)req->hdata;
169 		ah->ar_hrd = htons(ARPHRD_ETHER);
170 
171 		switch(ntohs(ah->ar_op)) {
172 		case ARPOP_REVREQUEST:
173 		case ARPOP_REVREPLY:
174 			etype = htons(ETHERTYPE_REVARP);
175 			break;
176 		case ARPOP_REQUEST:
177 		case ARPOP_REPLY:
178 		default:
179 			etype = htons(ETHERTYPE_ARP);
180 			break;
181 		}
182 
183 		if (req->flags & IFENCAP_FLAG_BROADCAST)
184 			lladdr = ifp->if_broadcastaddr;
185 		break;
186 	default:
187 		return (EAFNOSUPPORT);
188 	}
189 
190 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
191 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
192 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
193 	req->bufsize = sizeof(struct ether_header);
194 
195 	return (0);
196 }
197 
198 
199 static int
200 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
201 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
202 	uint32_t *pflags, struct llentry **plle)
203 {
204 	struct ether_header *eh;
205 	uint32_t lleflags = 0;
206 	int error = 0;
207 #if defined(INET) || defined(INET6)
208 	uint16_t etype;
209 #endif
210 
211 	if (plle)
212 		*plle = NULL;
213 	eh = (struct ether_header *)phdr;
214 
215 	switch (dst->sa_family) {
216 #ifdef INET
217 	case AF_INET:
218 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
219 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
220 			    plle);
221 		else {
222 			if (m->m_flags & M_BCAST)
223 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
224 				    ETHER_ADDR_LEN);
225 			else {
226 				const struct in_addr *a;
227 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
228 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
229 			}
230 			etype = htons(ETHERTYPE_IP);
231 			memcpy(&eh->ether_type, &etype, sizeof(etype));
232 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
233 		}
234 		break;
235 #endif
236 #ifdef INET6
237 	case AF_INET6:
238 		if ((m->m_flags & M_MCAST) == 0)
239 			error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags,
240 			    plle);
241 		else {
242 			const struct in6_addr *a6;
243 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
244 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
245 			etype = htons(ETHERTYPE_IPV6);
246 			memcpy(&eh->ether_type, &etype, sizeof(etype));
247 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
248 		}
249 		break;
250 #endif
251 	default:
252 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
253 		if (m != NULL)
254 			m_freem(m);
255 		return (EAFNOSUPPORT);
256 	}
257 
258 	if (error == EHOSTDOWN) {
259 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
260 			error = EHOSTUNREACH;
261 	}
262 
263 	if (error != 0)
264 		return (error);
265 
266 	*pflags = RT_MAY_LOOP;
267 	if (lleflags & LLE_IFADDR)
268 		*pflags |= RT_L2_ME;
269 
270 	return (0);
271 }
272 
273 /*
274  * Ethernet output routine.
275  * Encapsulate a packet of type family for the local net.
276  * Use trailer local net encapsulation if enough data in first
277  * packet leaves a multiple of 512 bytes of data in remainder.
278  */
279 int
280 ether_output(struct ifnet *ifp, struct mbuf *m,
281 	const struct sockaddr *dst, struct route *ro)
282 {
283 	int error = 0;
284 	char linkhdr[ETHER_HDR_LEN], *phdr;
285 	struct ether_header *eh;
286 	struct pf_mtag *t;
287 	int loop_copy = 1;
288 	int hlen;	/* link layer header length */
289 	uint32_t pflags;
290 	struct llentry *lle = NULL;
291 	int addref = 0;
292 
293 	phdr = NULL;
294 	pflags = 0;
295 	if (ro != NULL) {
296 		/* XXX BPF uses ro_prepend */
297 		if (ro->ro_prepend != NULL) {
298 			phdr = ro->ro_prepend;
299 			hlen = ro->ro_plen;
300 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
301 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
302 				lle = ro->ro_lle;
303 				if (lle != NULL &&
304 				    (lle->la_flags & LLE_VALID) == 0) {
305 					LLE_FREE(lle);
306 					lle = NULL;	/* redundant */
307 					ro->ro_lle = NULL;
308 				}
309 				if (lle == NULL) {
310 					/* if we lookup, keep cache */
311 					addref = 1;
312 				} else
313 					/*
314 					 * Notify LLE code that
315 					 * the entry was used
316 					 * by datapath.
317 					 */
318 					llentry_mark_used(lle);
319 			}
320 			if (lle != NULL) {
321 				phdr = lle->r_linkdata;
322 				hlen = lle->r_hdrlen;
323 				pflags = lle->r_flags;
324 			}
325 		}
326 	}
327 
328 #ifdef MAC
329 	error = mac_ifnet_check_transmit(ifp, m);
330 	if (error)
331 		senderr(error);
332 #endif
333 
334 	M_PROFILE(m);
335 	if (ifp->if_flags & IFF_MONITOR)
336 		senderr(ENETDOWN);
337 	if (!((ifp->if_flags & IFF_UP) &&
338 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
339 		senderr(ENETDOWN);
340 
341 	if (phdr == NULL) {
342 		/* No prepend data supplied. Try to calculate ourselves. */
343 		phdr = linkhdr;
344 		hlen = ETHER_HDR_LEN;
345 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
346 		    addref ? &lle : NULL);
347 		if (addref && lle != NULL)
348 			ro->ro_lle = lle;
349 		if (error != 0)
350 			return (error == EWOULDBLOCK ? 0 : error);
351 	}
352 
353 	if ((pflags & RT_L2_ME) != 0) {
354 		update_mbuf_csumflags(m, m);
355 		return (if_simloop(ifp, m, dst->sa_family, 0));
356 	}
357 	loop_copy = pflags & RT_MAY_LOOP;
358 
359 	/*
360 	 * Add local net header.  If no space in first mbuf,
361 	 * allocate another.
362 	 *
363 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
364 	 * This is done because BPF code shifts m_data pointer
365 	 * to the end of ethernet header prior to calling if_output().
366 	 */
367 	M_PREPEND(m, hlen, M_NOWAIT);
368 	if (m == NULL)
369 		senderr(ENOBUFS);
370 	if ((pflags & RT_HAS_HEADER) == 0) {
371 		eh = mtod(m, struct ether_header *);
372 		memcpy(eh, phdr, hlen);
373 	}
374 
375 	/*
376 	 * If a simplex interface, and the packet is being sent to our
377 	 * Ethernet address or a broadcast address, loopback a copy.
378 	 * XXX To make a simplex device behave exactly like a duplex
379 	 * device, we should copy in the case of sending to our own
380 	 * ethernet address (thus letting the original actually appear
381 	 * on the wire). However, we don't do that here for security
382 	 * reasons and compatibility with the original behavior.
383 	 */
384 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
385 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
386 		struct mbuf *n;
387 
388 		/*
389 		 * Because if_simloop() modifies the packet, we need a
390 		 * writable copy through m_dup() instead of a readonly
391 		 * one as m_copy[m] would give us. The alternative would
392 		 * be to modify if_simloop() to handle the readonly mbuf,
393 		 * but performancewise it is mostly equivalent (trading
394 		 * extra data copying vs. extra locking).
395 		 *
396 		 * XXX This is a local workaround.  A number of less
397 		 * often used kernel parts suffer from the same bug.
398 		 * See PR kern/105943 for a proposed general solution.
399 		 */
400 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
401 			update_mbuf_csumflags(m, n);
402 			(void)if_simloop(ifp, n, dst->sa_family, hlen);
403 		} else
404 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
405 	}
406 
407        /*
408 	* Bridges require special output handling.
409 	*/
410 	if (ifp->if_bridge) {
411 		BRIDGE_OUTPUT(ifp, m, error);
412 		return (error);
413 	}
414 
415 #if defined(INET) || defined(INET6)
416 	if (ifp->if_carp &&
417 	    (error = (*carp_output_p)(ifp, m, dst)))
418 		goto bad;
419 #endif
420 
421 	/* Handle ng_ether(4) processing, if any */
422 	if (ifp->if_l2com != NULL) {
423 		KASSERT(ng_ether_output_p != NULL,
424 		    ("ng_ether_output_p is NULL"));
425 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
426 bad:			if (m != NULL)
427 				m_freem(m);
428 			return (error);
429 		}
430 		if (m == NULL)
431 			return (0);
432 	}
433 
434 	/* Continue with link-layer output */
435 	return ether_output_frame(ifp, m);
436 }
437 
438 static bool
439 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
440 {
441 	struct ether_header *eh;
442 
443 	eh = mtod(*mp, struct ether_header *);
444 	if (ntohs(eh->ether_type) == ETHERTYPE_VLAN ||
445 	    ether_8021q_frame(mp, ifp, ifp, 0, pcp))
446 		return (true);
447 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
448 	return (false);
449 }
450 
451 /*
452  * Ethernet link layer output routine to send a raw frame to the device.
453  *
454  * This assumes that the 14 byte Ethernet header is present and contiguous
455  * in the first mbuf (if BRIDGE'ing).
456  */
457 int
458 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
459 {
460 	uint8_t pcp;
461 
462 	pcp = ifp->if_pcp;
463 	if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN &&
464 	    !ether_set_pcp(&m, ifp, pcp))
465 		return (0);
466 
467 	if (PFIL_HOOKED_OUT(V_link_pfil_head))
468 		switch (pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_OUT,
469 		    NULL)) {
470 		case PFIL_DROPPED:
471 			return (EACCES);
472 		case PFIL_CONSUMED:
473 			return (0);
474 		}
475 
476 #ifdef EXPERIMENTAL
477 #if defined(INET6) && defined(INET)
478 	/* draft-ietf-6man-ipv6only-flag */
479 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
480 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
481 		struct ether_header *eh;
482 
483 		eh = mtod(m, struct ether_header *);
484 		switch (ntohs(eh->ether_type)) {
485 		case ETHERTYPE_IP:
486 		case ETHERTYPE_ARP:
487 		case ETHERTYPE_REVARP:
488 			m_freem(m);
489 			return (EAFNOSUPPORT);
490 			/* NOTREACHED */
491 			break;
492 		};
493 	}
494 #endif
495 #endif
496 
497 	/*
498 	 * Queue message on interface, update output statistics if
499 	 * successful, and start output if interface not yet active.
500 	 */
501 	return ((ifp->if_transmit)(ifp, m));
502 }
503 
504 /*
505  * Process a received Ethernet packet; the packet is in the
506  * mbuf chain m with the ethernet header at the front.
507  */
508 static void
509 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
510 {
511 	struct ether_header *eh;
512 	u_short etype;
513 
514 	if ((ifp->if_flags & IFF_UP) == 0) {
515 		m_freem(m);
516 		return;
517 	}
518 #ifdef DIAGNOSTIC
519 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
520 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
521 		m_freem(m);
522 		return;
523 	}
524 #endif
525 	if (m->m_len < ETHER_HDR_LEN) {
526 		/* XXX maybe should pullup? */
527 		if_printf(ifp, "discard frame w/o leading ethernet "
528 				"header (len %u pkt len %u)\n",
529 				m->m_len, m->m_pkthdr.len);
530 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
531 		m_freem(m);
532 		return;
533 	}
534 	eh = mtod(m, struct ether_header *);
535 	etype = ntohs(eh->ether_type);
536 	random_harvest_queue_ether(m, sizeof(*m));
537 
538 #ifdef EXPERIMENTAL
539 #if defined(INET6) && defined(INET)
540 	/* draft-ietf-6man-ipv6only-flag */
541 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
542 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
543 
544 		switch (etype) {
545 		case ETHERTYPE_IP:
546 		case ETHERTYPE_ARP:
547 		case ETHERTYPE_REVARP:
548 			m_freem(m);
549 			return;
550 			/* NOTREACHED */
551 			break;
552 		};
553 	}
554 #endif
555 #endif
556 
557 	CURVNET_SET_QUIET(ifp->if_vnet);
558 
559 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
560 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
561 			m->m_flags |= M_BCAST;
562 		else
563 			m->m_flags |= M_MCAST;
564 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
565 	}
566 
567 #ifdef MAC
568 	/*
569 	 * Tag the mbuf with an appropriate MAC label before any other
570 	 * consumers can get to it.
571 	 */
572 	mac_ifnet_create_mbuf(ifp, m);
573 #endif
574 
575 	/*
576 	 * Give bpf a chance at the packet.
577 	 */
578 	ETHER_BPF_MTAP(ifp, m);
579 
580 	/*
581 	 * If the CRC is still on the packet, trim it off. We do this once
582 	 * and once only in case we are re-entered. Nothing else on the
583 	 * Ethernet receive path expects to see the FCS.
584 	 */
585 	if (m->m_flags & M_HASFCS) {
586 		m_adj(m, -ETHER_CRC_LEN);
587 		m->m_flags &= ~M_HASFCS;
588 	}
589 
590 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
591 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
592 
593 	/* Allow monitor mode to claim this frame, after stats are updated. */
594 	if (ifp->if_flags & IFF_MONITOR) {
595 		m_freem(m);
596 		CURVNET_RESTORE();
597 		return;
598 	}
599 
600 	/* Handle input from a lagg(4) port */
601 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
602 		KASSERT(lagg_input_p != NULL,
603 		    ("%s: if_lagg not loaded!", __func__));
604 		m = (*lagg_input_p)(ifp, m);
605 		if (m != NULL)
606 			ifp = m->m_pkthdr.rcvif;
607 		else {
608 			CURVNET_RESTORE();
609 			return;
610 		}
611 	}
612 
613 	/*
614 	 * If the hardware did not process an 802.1Q tag, do this now,
615 	 * to allow 802.1P priority frames to be passed to the main input
616 	 * path correctly.
617 	 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels.
618 	 */
619 	if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) {
620 		struct ether_vlan_header *evl;
621 
622 		if (m->m_len < sizeof(*evl) &&
623 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
624 #ifdef DIAGNOSTIC
625 			if_printf(ifp, "cannot pullup VLAN header\n");
626 #endif
627 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
628 			CURVNET_RESTORE();
629 			return;
630 		}
631 
632 		evl = mtod(m, struct ether_vlan_header *);
633 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
634 		m->m_flags |= M_VLANTAG;
635 
636 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
637 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
638 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
639 		eh = mtod(m, struct ether_header *);
640 	}
641 
642 	M_SETFIB(m, ifp->if_fib);
643 
644 	/* Allow ng_ether(4) to claim this frame. */
645 	if (ifp->if_l2com != NULL) {
646 		KASSERT(ng_ether_input_p != NULL,
647 		    ("%s: ng_ether_input_p is NULL", __func__));
648 		m->m_flags &= ~M_PROMISC;
649 		(*ng_ether_input_p)(ifp, &m);
650 		if (m == NULL) {
651 			CURVNET_RESTORE();
652 			return;
653 		}
654 		eh = mtod(m, struct ether_header *);
655 	}
656 
657 	/*
658 	 * Allow if_bridge(4) to claim this frame.
659 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
660 	 * and the frame should be delivered locally.
661 	 */
662 	if (ifp->if_bridge != NULL) {
663 		m->m_flags &= ~M_PROMISC;
664 		BRIDGE_INPUT(ifp, m);
665 		if (m == NULL) {
666 			CURVNET_RESTORE();
667 			return;
668 		}
669 		eh = mtod(m, struct ether_header *);
670 	}
671 
672 #if defined(INET) || defined(INET6)
673 	/*
674 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
675 	 * mbuf flows up to Layer 3.
676 	 * FreeBSD's implementation of carp(4) uses the inprotosw
677 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
678 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
679 	 * is outside the scope of the M_PROMISC test below.
680 	 * TODO: Maintain a hash table of ethernet addresses other than
681 	 * ether_dhost which may be active on this ifp.
682 	 */
683 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
684 		m->m_flags &= ~M_PROMISC;
685 	} else
686 #endif
687 	{
688 		/*
689 		 * If the frame received was not for our MAC address, set the
690 		 * M_PROMISC flag on the mbuf chain. The frame may need to
691 		 * be seen by the rest of the Ethernet input path in case of
692 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
693 		 * seen by upper protocol layers.
694 		 */
695 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
696 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
697 			m->m_flags |= M_PROMISC;
698 	}
699 
700 	ether_demux(ifp, m);
701 	CURVNET_RESTORE();
702 }
703 
704 /*
705  * Ethernet input dispatch; by default, direct dispatch here regardless of
706  * global configuration.  However, if RSS is enabled, hook up RSS affinity
707  * so that when deferred or hybrid dispatch is enabled, we can redistribute
708  * load based on RSS.
709  *
710  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
711  * not it had already done work distribution via multi-queue.  Then we could
712  * direct dispatch in the event load balancing was already complete and
713  * handle the case of interfaces with different capabilities better.
714  *
715  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
716  * at multiple layers?
717  *
718  * XXXRW: For now, enable all this only if RSS is compiled in, although it
719  * works fine without RSS.  Need to characterise the performance overhead
720  * of the detour through the netisr code in the event the result is always
721  * direct dispatch.
722  */
723 static void
724 ether_nh_input(struct mbuf *m)
725 {
726 
727 	M_ASSERTPKTHDR(m);
728 	KASSERT(m->m_pkthdr.rcvif != NULL,
729 	    ("%s: NULL interface pointer", __func__));
730 	ether_input_internal(m->m_pkthdr.rcvif, m);
731 }
732 
733 static struct netisr_handler	ether_nh = {
734 	.nh_name = "ether",
735 	.nh_handler = ether_nh_input,
736 	.nh_proto = NETISR_ETHER,
737 #ifdef RSS
738 	.nh_policy = NETISR_POLICY_CPU,
739 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
740 	.nh_m2cpuid = rss_m2cpuid,
741 #else
742 	.nh_policy = NETISR_POLICY_SOURCE,
743 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
744 #endif
745 };
746 
747 static void
748 ether_init(__unused void *arg)
749 {
750 
751 	netisr_register(&ether_nh);
752 }
753 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
754 
755 static void
756 vnet_ether_init(__unused void *arg)
757 {
758 	struct pfil_head_args args;
759 
760 	args.pa_version = PFIL_VERSION;
761 	args.pa_flags = PFIL_IN | PFIL_OUT;
762 	args.pa_type = PFIL_TYPE_ETHERNET;
763 	args.pa_headname = PFIL_ETHER_NAME;
764 	V_link_pfil_head = pfil_head_register(&args);
765 
766 #ifdef VIMAGE
767 	netisr_register_vnet(&ether_nh);
768 #endif
769 }
770 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
771     vnet_ether_init, NULL);
772 
773 #ifdef VIMAGE
774 static void
775 vnet_ether_pfil_destroy(__unused void *arg)
776 {
777 
778 	pfil_head_unregister(V_link_pfil_head);
779 }
780 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
781     vnet_ether_pfil_destroy, NULL);
782 
783 static void
784 vnet_ether_destroy(__unused void *arg)
785 {
786 
787 	netisr_unregister_vnet(&ether_nh);
788 }
789 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
790     vnet_ether_destroy, NULL);
791 #endif
792 
793 
794 
795 static void
796 ether_input(struct ifnet *ifp, struct mbuf *m)
797 {
798 
799 	struct mbuf *mn;
800 
801 	/*
802 	 * The drivers are allowed to pass in a chain of packets linked with
803 	 * m_nextpkt. We split them up into separate packets here and pass
804 	 * them up. This allows the drivers to amortize the receive lock.
805 	 */
806 	while (m) {
807 		mn = m->m_nextpkt;
808 		m->m_nextpkt = NULL;
809 
810 		/*
811 		 * We will rely on rcvif being set properly in the deferred context,
812 		 * so assert it is correct here.
813 		 */
814 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
815 		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
816 		CURVNET_SET_QUIET(ifp->if_vnet);
817 		netisr_dispatch(NETISR_ETHER, m);
818 		CURVNET_RESTORE();
819 		m = mn;
820 	}
821 }
822 
823 /*
824  * Upper layer processing for a received Ethernet packet.
825  */
826 void
827 ether_demux(struct ifnet *ifp, struct mbuf *m)
828 {
829 	struct ether_header *eh;
830 	int i, isr;
831 	u_short ether_type;
832 
833 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
834 
835 	/* Do not grab PROMISC frames in case we are re-entered. */
836 	if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
837 		i = pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_IN, NULL);
838 		if (i != 0 || m == NULL)
839 			return;
840 	}
841 
842 	eh = mtod(m, struct ether_header *);
843 	ether_type = ntohs(eh->ether_type);
844 
845 	/*
846 	 * If this frame has a VLAN tag other than 0, call vlan_input()
847 	 * if its module is loaded. Otherwise, drop.
848 	 */
849 	if ((m->m_flags & M_VLANTAG) &&
850 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
851 		if (ifp->if_vlantrunk == NULL) {
852 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
853 			m_freem(m);
854 			return;
855 		}
856 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
857 		    __func__));
858 		/* Clear before possibly re-entering ether_input(). */
859 		m->m_flags &= ~M_PROMISC;
860 		(*vlan_input_p)(ifp, m);
861 		return;
862 	}
863 
864 	/*
865 	 * Pass promiscuously received frames to the upper layer if the user
866 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
867 	 */
868 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
869 		m_freem(m);
870 		return;
871 	}
872 
873 	/*
874 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
875 	 * Strip off Ethernet header.
876 	 */
877 	m->m_flags &= ~M_VLANTAG;
878 	m_clrprotoflags(m);
879 	m_adj(m, ETHER_HDR_LEN);
880 
881 	/*
882 	 * Dispatch frame to upper layer.
883 	 */
884 	switch (ether_type) {
885 #ifdef INET
886 	case ETHERTYPE_IP:
887 		isr = NETISR_IP;
888 		break;
889 
890 	case ETHERTYPE_ARP:
891 		if (ifp->if_flags & IFF_NOARP) {
892 			/* Discard packet if ARP is disabled on interface */
893 			m_freem(m);
894 			return;
895 		}
896 		isr = NETISR_ARP;
897 		break;
898 #endif
899 #ifdef INET6
900 	case ETHERTYPE_IPV6:
901 		isr = NETISR_IPV6;
902 		break;
903 #endif
904 	default:
905 		goto discard;
906 	}
907 	netisr_dispatch(isr, m);
908 	return;
909 
910 discard:
911 	/*
912 	 * Packet is to be discarded.  If netgraph is present,
913 	 * hand the packet to it for last chance processing;
914 	 * otherwise dispose of it.
915 	 */
916 	if (ifp->if_l2com != NULL) {
917 		KASSERT(ng_ether_input_orphan_p != NULL,
918 		    ("ng_ether_input_orphan_p is NULL"));
919 		/*
920 		 * Put back the ethernet header so netgraph has a
921 		 * consistent view of inbound packets.
922 		 */
923 		M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
924 		(*ng_ether_input_orphan_p)(ifp, m);
925 		return;
926 	}
927 	m_freem(m);
928 }
929 
930 /*
931  * Convert Ethernet address to printable (loggable) representation.
932  * This routine is for compatibility; it's better to just use
933  *
934  *	printf("%6D", <pointer to address>, ":");
935  *
936  * since there's no static buffer involved.
937  */
938 char *
939 ether_sprintf(const u_char *ap)
940 {
941 	static char etherbuf[18];
942 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
943 	return (etherbuf);
944 }
945 
946 /*
947  * Perform common duties while attaching to interface list
948  */
949 void
950 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
951 {
952 	int i;
953 	struct ifaddr *ifa;
954 	struct sockaddr_dl *sdl;
955 
956 	ifp->if_addrlen = ETHER_ADDR_LEN;
957 	ifp->if_hdrlen = ETHER_HDR_LEN;
958 	if_attach(ifp);
959 	ifp->if_mtu = ETHERMTU;
960 	ifp->if_output = ether_output;
961 	ifp->if_input = ether_input;
962 	ifp->if_resolvemulti = ether_resolvemulti;
963 	ifp->if_requestencap = ether_requestencap;
964 #ifdef VIMAGE
965 	ifp->if_reassign = ether_reassign;
966 #endif
967 	if (ifp->if_baudrate == 0)
968 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
969 	ifp->if_broadcastaddr = etherbroadcastaddr;
970 
971 	ifa = ifp->if_addr;
972 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
973 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
974 	sdl->sdl_type = IFT_ETHER;
975 	sdl->sdl_alen = ifp->if_addrlen;
976 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
977 
978 	if (ifp->if_hw_addr != NULL)
979 		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
980 
981 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
982 	if (ng_ether_attach_p != NULL)
983 		(*ng_ether_attach_p)(ifp);
984 
985 	/* Announce Ethernet MAC address if non-zero. */
986 	for (i = 0; i < ifp->if_addrlen; i++)
987 		if (lla[i] != 0)
988 			break;
989 	if (i != ifp->if_addrlen)
990 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
991 
992 	uuid_ether_add(LLADDR(sdl));
993 
994 	/* Add necessary bits are setup; announce it now. */
995 	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
996 	if (IS_DEFAULT_VNET(curvnet))
997 		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
998 }
999 
1000 /*
1001  * Perform common duties while detaching an Ethernet interface
1002  */
1003 void
1004 ether_ifdetach(struct ifnet *ifp)
1005 {
1006 	struct sockaddr_dl *sdl;
1007 
1008 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1009 	uuid_ether_del(LLADDR(sdl));
1010 
1011 	if (ifp->if_l2com != NULL) {
1012 		KASSERT(ng_ether_detach_p != NULL,
1013 		    ("ng_ether_detach_p is NULL"));
1014 		(*ng_ether_detach_p)(ifp);
1015 	}
1016 
1017 	bpfdetach(ifp);
1018 	if_detach(ifp);
1019 }
1020 
1021 #ifdef VIMAGE
1022 void
1023 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
1024 {
1025 
1026 	if (ifp->if_l2com != NULL) {
1027 		KASSERT(ng_ether_detach_p != NULL,
1028 		    ("ng_ether_detach_p is NULL"));
1029 		(*ng_ether_detach_p)(ifp);
1030 	}
1031 
1032 	if (ng_ether_attach_p != NULL) {
1033 		CURVNET_SET_QUIET(new_vnet);
1034 		(*ng_ether_attach_p)(ifp);
1035 		CURVNET_RESTORE();
1036 	}
1037 }
1038 #endif
1039 
1040 SYSCTL_DECL(_net_link);
1041 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
1042 
1043 #if 0
1044 /*
1045  * This is for reference.  We have a table-driven version
1046  * of the little-endian crc32 generator, which is faster
1047  * than the double-loop.
1048  */
1049 uint32_t
1050 ether_crc32_le(const uint8_t *buf, size_t len)
1051 {
1052 	size_t i;
1053 	uint32_t crc;
1054 	int bit;
1055 	uint8_t data;
1056 
1057 	crc = 0xffffffff;	/* initial value */
1058 
1059 	for (i = 0; i < len; i++) {
1060 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1061 			carry = (crc ^ data) & 1;
1062 			crc >>= 1;
1063 			if (carry)
1064 				crc = (crc ^ ETHER_CRC_POLY_LE);
1065 		}
1066 	}
1067 
1068 	return (crc);
1069 }
1070 #else
1071 uint32_t
1072 ether_crc32_le(const uint8_t *buf, size_t len)
1073 {
1074 	static const uint32_t crctab[] = {
1075 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1076 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1077 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1078 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1079 	};
1080 	size_t i;
1081 	uint32_t crc;
1082 
1083 	crc = 0xffffffff;	/* initial value */
1084 
1085 	for (i = 0; i < len; i++) {
1086 		crc ^= buf[i];
1087 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1088 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1089 	}
1090 
1091 	return (crc);
1092 }
1093 #endif
1094 
1095 uint32_t
1096 ether_crc32_be(const uint8_t *buf, size_t len)
1097 {
1098 	size_t i;
1099 	uint32_t crc, carry;
1100 	int bit;
1101 	uint8_t data;
1102 
1103 	crc = 0xffffffff;	/* initial value */
1104 
1105 	for (i = 0; i < len; i++) {
1106 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1107 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1108 			crc <<= 1;
1109 			if (carry)
1110 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1111 		}
1112 	}
1113 
1114 	return (crc);
1115 }
1116 
1117 int
1118 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1119 {
1120 	struct ifaddr *ifa = (struct ifaddr *) data;
1121 	struct ifreq *ifr = (struct ifreq *) data;
1122 	int error = 0;
1123 
1124 	switch (command) {
1125 	case SIOCSIFADDR:
1126 		ifp->if_flags |= IFF_UP;
1127 
1128 		switch (ifa->ifa_addr->sa_family) {
1129 #ifdef INET
1130 		case AF_INET:
1131 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1132 			arp_ifinit(ifp, ifa);
1133 			break;
1134 #endif
1135 		default:
1136 			ifp->if_init(ifp->if_softc);
1137 			break;
1138 		}
1139 		break;
1140 
1141 	case SIOCGIFADDR:
1142 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1143 		    ETHER_ADDR_LEN);
1144 		break;
1145 
1146 	case SIOCSIFMTU:
1147 		/*
1148 		 * Set the interface MTU.
1149 		 */
1150 		if (ifr->ifr_mtu > ETHERMTU) {
1151 			error = EINVAL;
1152 		} else {
1153 			ifp->if_mtu = ifr->ifr_mtu;
1154 		}
1155 		break;
1156 
1157 	case SIOCSLANPCP:
1158 		error = priv_check(curthread, PRIV_NET_SETLANPCP);
1159 		if (error != 0)
1160 			break;
1161 		if (ifr->ifr_lan_pcp > 7 &&
1162 		    ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1163 			error = EINVAL;
1164 		} else {
1165 			ifp->if_pcp = ifr->ifr_lan_pcp;
1166 			/* broadcast event about PCP change */
1167 			EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1168 		}
1169 		break;
1170 
1171 	case SIOCGLANPCP:
1172 		ifr->ifr_lan_pcp = ifp->if_pcp;
1173 		break;
1174 
1175 	default:
1176 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1177 		break;
1178 	}
1179 	return (error);
1180 }
1181 
1182 static int
1183 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1184 	struct sockaddr *sa)
1185 {
1186 	struct sockaddr_dl *sdl;
1187 #ifdef INET
1188 	struct sockaddr_in *sin;
1189 #endif
1190 #ifdef INET6
1191 	struct sockaddr_in6 *sin6;
1192 #endif
1193 	u_char *e_addr;
1194 
1195 	switch(sa->sa_family) {
1196 	case AF_LINK:
1197 		/*
1198 		 * No mapping needed. Just check that it's a valid MC address.
1199 		 */
1200 		sdl = (struct sockaddr_dl *)sa;
1201 		e_addr = LLADDR(sdl);
1202 		if (!ETHER_IS_MULTICAST(e_addr))
1203 			return EADDRNOTAVAIL;
1204 		*llsa = NULL;
1205 		return 0;
1206 
1207 #ifdef INET
1208 	case AF_INET:
1209 		sin = (struct sockaddr_in *)sa;
1210 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1211 			return EADDRNOTAVAIL;
1212 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1213 		sdl->sdl_alen = ETHER_ADDR_LEN;
1214 		e_addr = LLADDR(sdl);
1215 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1216 		*llsa = (struct sockaddr *)sdl;
1217 		return 0;
1218 #endif
1219 #ifdef INET6
1220 	case AF_INET6:
1221 		sin6 = (struct sockaddr_in6 *)sa;
1222 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1223 			/*
1224 			 * An IP6 address of 0 means listen to all
1225 			 * of the Ethernet multicast address used for IP6.
1226 			 * (This is used for multicast routers.)
1227 			 */
1228 			ifp->if_flags |= IFF_ALLMULTI;
1229 			*llsa = NULL;
1230 			return 0;
1231 		}
1232 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1233 			return EADDRNOTAVAIL;
1234 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1235 		sdl->sdl_alen = ETHER_ADDR_LEN;
1236 		e_addr = LLADDR(sdl);
1237 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1238 		*llsa = (struct sockaddr *)sdl;
1239 		return 0;
1240 #endif
1241 
1242 	default:
1243 		/*
1244 		 * Well, the text isn't quite right, but it's the name
1245 		 * that counts...
1246 		 */
1247 		return EAFNOSUPPORT;
1248 	}
1249 }
1250 
1251 static moduledata_t ether_mod = {
1252 	.name = "ether",
1253 };
1254 
1255 void
1256 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1257 {
1258 	struct ether_vlan_header vlan;
1259 	struct mbuf mv, mb;
1260 
1261 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1262 	    ("%s: vlan information not present", __func__));
1263 	KASSERT(m->m_len >= sizeof(struct ether_header),
1264 	    ("%s: mbuf not large enough for header", __func__));
1265 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1266 	vlan.evl_proto = vlan.evl_encap_proto;
1267 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1268 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1269 	m->m_len -= sizeof(struct ether_header);
1270 	m->m_data += sizeof(struct ether_header);
1271 	/*
1272 	 * If a data link has been supplied by the caller, then we will need to
1273 	 * re-create a stack allocated mbuf chain with the following structure:
1274 	 *
1275 	 * (1) mbuf #1 will contain the supplied data link
1276 	 * (2) mbuf #2 will contain the vlan header
1277 	 * (3) mbuf #3 will contain the original mbuf's packet data
1278 	 *
1279 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1280 	 */
1281 	if (data != NULL) {
1282 		mv.m_next = m;
1283 		mv.m_data = (caddr_t)&vlan;
1284 		mv.m_len = sizeof(vlan);
1285 		mb.m_next = &mv;
1286 		mb.m_data = data;
1287 		mb.m_len = dlen;
1288 		bpf_mtap(bp, &mb);
1289 	} else
1290 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1291 	m->m_len += sizeof(struct ether_header);
1292 	m->m_data -= sizeof(struct ether_header);
1293 }
1294 
1295 struct mbuf *
1296 ether_vlanencap(struct mbuf *m, uint16_t tag)
1297 {
1298 	struct ether_vlan_header *evl;
1299 
1300 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1301 	if (m == NULL)
1302 		return (NULL);
1303 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1304 
1305 	if (m->m_len < sizeof(*evl)) {
1306 		m = m_pullup(m, sizeof(*evl));
1307 		if (m == NULL)
1308 			return (NULL);
1309 	}
1310 
1311 	/*
1312 	 * Transform the Ethernet header into an Ethernet header
1313 	 * with 802.1Q encapsulation.
1314 	 */
1315 	evl = mtod(m, struct ether_vlan_header *);
1316 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1317 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1318 	evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1319 	evl->evl_tag = htons(tag);
1320 	return (m);
1321 }
1322 
1323 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0,
1324     "IEEE 802.1Q VLAN");
1325 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0,
1326     "for consistency");
1327 
1328 VNET_DEFINE_STATIC(int, soft_pad);
1329 #define	V_soft_pad	VNET(soft_pad)
1330 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1331     &VNET_NAME(soft_pad), 0,
1332     "pad short frames before tagging");
1333 
1334 /*
1335  * For now, make preserving PCP via an mbuf tag optional, as it increases
1336  * per-packet memory allocations and frees.  In the future, it would be
1337  * preferable to reuse ether_vtag for this, or similar.
1338  */
1339 int vlan_mtag_pcp = 0;
1340 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW,
1341     &vlan_mtag_pcp, 0,
1342     "Retain VLAN PCP information as packets are passed up the stack");
1343 
1344 bool
1345 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1346     uint16_t vid, uint8_t pcp)
1347 {
1348 	struct m_tag *mtag;
1349 	int n;
1350 	uint16_t tag;
1351 	static const char pad[8];	/* just zeros */
1352 
1353 	/*
1354 	 * Pad the frame to the minimum size allowed if told to.
1355 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1356 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1357 	 * bridges that violate paragraph C.4.4.3.a from the same
1358 	 * document, i.e., fail to pad short frames after untagging.
1359 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1360 	 * untagging it will produce a 62-byte frame, which is a runt
1361 	 * and requires padding.  There are VLAN-enabled network
1362 	 * devices that just discard such runts instead or mishandle
1363 	 * them somehow.
1364 	 */
1365 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1366 		for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1367 		     n > 0; n -= sizeof(pad)) {
1368 			if (!m_append(*mp, min(n, sizeof(pad)), pad))
1369 				break;
1370 		}
1371 		if (n > 0) {
1372 			m_freem(*mp);
1373 			*mp = NULL;
1374 			if_printf(ife, "cannot pad short frame");
1375 			return (false);
1376 		}
1377 	}
1378 
1379 	/*
1380 	 * If underlying interface can do VLAN tag insertion itself,
1381 	 * just pass the packet along. However, we need some way to
1382 	 * tell the interface where the packet came from so that it
1383 	 * knows how to find the VLAN tag to use, so we attach a
1384 	 * packet tag that holds it.
1385 	 */
1386 	if (vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1387 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1388 		tag = EVL_MAKETAG(vid, *(uint8_t *)(mtag + 1), 0);
1389 	else
1390 		tag = EVL_MAKETAG(vid, pcp, 0);
1391 	if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1392 		(*mp)->m_pkthdr.ether_vtag = tag;
1393 		(*mp)->m_flags |= M_VLANTAG;
1394 	} else {
1395 		*mp = ether_vlanencap(*mp, tag);
1396 		if (*mp == NULL) {
1397 			if_printf(ife, "unable to prepend 802.1Q header");
1398 			return (false);
1399 		}
1400 	}
1401 	return (true);
1402 }
1403 
1404 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1405 MODULE_VERSION(ether, 1);
1406