1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 32 * $FreeBSD$ 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_netgraph.h" 38 #include "opt_mbuf_profiling.h" 39 #include "opt_rss.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/bus.h> 44 #include <sys/eventhandler.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/module.h> 49 #include <sys/mbuf.h> 50 #include <sys/priv.h> 51 #include <sys/random.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/sysctl.h> 55 #include <sys/uuid.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_arp.h> 60 #include <net/netisr.h> 61 #include <net/route.h> 62 #include <net/if_llc.h> 63 #include <net/if_dl.h> 64 #include <net/if_types.h> 65 #include <net/bpf.h> 66 #include <net/ethernet.h> 67 #include <net/if_bridgevar.h> 68 #include <net/if_vlan_var.h> 69 #include <net/if_llatbl.h> 70 #include <net/pfil.h> 71 #include <net/rss_config.h> 72 #include <net/vnet.h> 73 74 #include <netpfil/pf/pf_mtag.h> 75 76 #if defined(INET) || defined(INET6) 77 #include <netinet/in.h> 78 #include <netinet/in_var.h> 79 #include <netinet/if_ether.h> 80 #include <netinet/ip_carp.h> 81 #include <netinet/ip_var.h> 82 #endif 83 #ifdef INET6 84 #include <netinet6/nd6.h> 85 #endif 86 #include <security/mac/mac_framework.h> 87 88 #ifdef CTASSERT 89 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); 90 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); 91 #endif 92 93 VNET_DEFINE(pfil_head_t, link_pfil_head); /* Packet filter hooks */ 94 95 /* netgraph node hooks for ng_ether(4) */ 96 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 97 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 98 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 99 void (*ng_ether_attach_p)(struct ifnet *ifp); 100 void (*ng_ether_detach_p)(struct ifnet *ifp); 101 102 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 103 104 /* if_bridge(4) support */ 105 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 106 107 /* if_lagg(4) support */ 108 struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); 109 110 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = 111 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 112 113 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 114 struct sockaddr *); 115 #ifdef VIMAGE 116 static void ether_reassign(struct ifnet *, struct vnet *, char *); 117 #endif 118 static int ether_requestencap(struct ifnet *, struct if_encap_req *); 119 120 121 #define senderr(e) do { error = (e); goto bad;} while (0) 122 123 static void 124 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) 125 { 126 int csum_flags = 0; 127 128 if (src->m_pkthdr.csum_flags & CSUM_IP) 129 csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); 130 if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 131 csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 132 if (src->m_pkthdr.csum_flags & CSUM_SCTP) 133 csum_flags |= CSUM_SCTP_VALID; 134 dst->m_pkthdr.csum_flags |= csum_flags; 135 if (csum_flags & CSUM_DATA_VALID) 136 dst->m_pkthdr.csum_data = 0xffff; 137 } 138 139 /* 140 * Handle link-layer encapsulation requests. 141 */ 142 static int 143 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) 144 { 145 struct ether_header *eh; 146 struct arphdr *ah; 147 uint16_t etype; 148 const u_char *lladdr; 149 150 if (req->rtype != IFENCAP_LL) 151 return (EOPNOTSUPP); 152 153 if (req->bufsize < ETHER_HDR_LEN) 154 return (ENOMEM); 155 156 eh = (struct ether_header *)req->buf; 157 lladdr = req->lladdr; 158 req->lladdr_off = 0; 159 160 switch (req->family) { 161 case AF_INET: 162 etype = htons(ETHERTYPE_IP); 163 break; 164 case AF_INET6: 165 etype = htons(ETHERTYPE_IPV6); 166 break; 167 case AF_ARP: 168 ah = (struct arphdr *)req->hdata; 169 ah->ar_hrd = htons(ARPHRD_ETHER); 170 171 switch(ntohs(ah->ar_op)) { 172 case ARPOP_REVREQUEST: 173 case ARPOP_REVREPLY: 174 etype = htons(ETHERTYPE_REVARP); 175 break; 176 case ARPOP_REQUEST: 177 case ARPOP_REPLY: 178 default: 179 etype = htons(ETHERTYPE_ARP); 180 break; 181 } 182 183 if (req->flags & IFENCAP_FLAG_BROADCAST) 184 lladdr = ifp->if_broadcastaddr; 185 break; 186 default: 187 return (EAFNOSUPPORT); 188 } 189 190 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 191 memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); 192 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 193 req->bufsize = sizeof(struct ether_header); 194 195 return (0); 196 } 197 198 199 static int 200 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, 201 const struct sockaddr *dst, struct route *ro, u_char *phdr, 202 uint32_t *pflags, struct llentry **plle) 203 { 204 struct ether_header *eh; 205 uint32_t lleflags = 0; 206 int error = 0; 207 #if defined(INET) || defined(INET6) 208 uint16_t etype; 209 #endif 210 211 if (plle) 212 *plle = NULL; 213 eh = (struct ether_header *)phdr; 214 215 switch (dst->sa_family) { 216 #ifdef INET 217 case AF_INET: 218 if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) 219 error = arpresolve(ifp, 0, m, dst, phdr, &lleflags, 220 plle); 221 else { 222 if (m->m_flags & M_BCAST) 223 memcpy(eh->ether_dhost, ifp->if_broadcastaddr, 224 ETHER_ADDR_LEN); 225 else { 226 const struct in_addr *a; 227 a = &(((const struct sockaddr_in *)dst)->sin_addr); 228 ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); 229 } 230 etype = htons(ETHERTYPE_IP); 231 memcpy(&eh->ether_type, &etype, sizeof(etype)); 232 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 233 } 234 break; 235 #endif 236 #ifdef INET6 237 case AF_INET6: 238 if ((m->m_flags & M_MCAST) == 0) 239 error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags, 240 plle); 241 else { 242 const struct in6_addr *a6; 243 a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); 244 ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); 245 etype = htons(ETHERTYPE_IPV6); 246 memcpy(&eh->ether_type, &etype, sizeof(etype)); 247 memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); 248 } 249 break; 250 #endif 251 default: 252 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 253 if (m != NULL) 254 m_freem(m); 255 return (EAFNOSUPPORT); 256 } 257 258 if (error == EHOSTDOWN) { 259 if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) 260 error = EHOSTUNREACH; 261 } 262 263 if (error != 0) 264 return (error); 265 266 *pflags = RT_MAY_LOOP; 267 if (lleflags & LLE_IFADDR) 268 *pflags |= RT_L2_ME; 269 270 return (0); 271 } 272 273 /* 274 * Ethernet output routine. 275 * Encapsulate a packet of type family for the local net. 276 * Use trailer local net encapsulation if enough data in first 277 * packet leaves a multiple of 512 bytes of data in remainder. 278 */ 279 int 280 ether_output(struct ifnet *ifp, struct mbuf *m, 281 const struct sockaddr *dst, struct route *ro) 282 { 283 int error = 0; 284 char linkhdr[ETHER_HDR_LEN], *phdr; 285 struct ether_header *eh; 286 struct pf_mtag *t; 287 int loop_copy = 1; 288 int hlen; /* link layer header length */ 289 uint32_t pflags; 290 struct llentry *lle = NULL; 291 int addref = 0; 292 293 phdr = NULL; 294 pflags = 0; 295 if (ro != NULL) { 296 /* XXX BPF uses ro_prepend */ 297 if (ro->ro_prepend != NULL) { 298 phdr = ro->ro_prepend; 299 hlen = ro->ro_plen; 300 } else if (!(m->m_flags & (M_BCAST | M_MCAST))) { 301 if ((ro->ro_flags & RT_LLE_CACHE) != 0) { 302 lle = ro->ro_lle; 303 if (lle != NULL && 304 (lle->la_flags & LLE_VALID) == 0) { 305 LLE_FREE(lle); 306 lle = NULL; /* redundant */ 307 ro->ro_lle = NULL; 308 } 309 if (lle == NULL) { 310 /* if we lookup, keep cache */ 311 addref = 1; 312 } else 313 /* 314 * Notify LLE code that 315 * the entry was used 316 * by datapath. 317 */ 318 llentry_mark_used(lle); 319 } 320 if (lle != NULL) { 321 phdr = lle->r_linkdata; 322 hlen = lle->r_hdrlen; 323 pflags = lle->r_flags; 324 } 325 } 326 } 327 328 #ifdef MAC 329 error = mac_ifnet_check_transmit(ifp, m); 330 if (error) 331 senderr(error); 332 #endif 333 334 M_PROFILE(m); 335 if (ifp->if_flags & IFF_MONITOR) 336 senderr(ENETDOWN); 337 if (!((ifp->if_flags & IFF_UP) && 338 (ifp->if_drv_flags & IFF_DRV_RUNNING))) 339 senderr(ENETDOWN); 340 341 if (phdr == NULL) { 342 /* No prepend data supplied. Try to calculate ourselves. */ 343 phdr = linkhdr; 344 hlen = ETHER_HDR_LEN; 345 error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags, 346 addref ? &lle : NULL); 347 if (addref && lle != NULL) 348 ro->ro_lle = lle; 349 if (error != 0) 350 return (error == EWOULDBLOCK ? 0 : error); 351 } 352 353 if ((pflags & RT_L2_ME) != 0) { 354 update_mbuf_csumflags(m, m); 355 return (if_simloop(ifp, m, dst->sa_family, 0)); 356 } 357 loop_copy = pflags & RT_MAY_LOOP; 358 359 /* 360 * Add local net header. If no space in first mbuf, 361 * allocate another. 362 * 363 * Note that we do prepend regardless of RT_HAS_HEADER flag. 364 * This is done because BPF code shifts m_data pointer 365 * to the end of ethernet header prior to calling if_output(). 366 */ 367 M_PREPEND(m, hlen, M_NOWAIT); 368 if (m == NULL) 369 senderr(ENOBUFS); 370 if ((pflags & RT_HAS_HEADER) == 0) { 371 eh = mtod(m, struct ether_header *); 372 memcpy(eh, phdr, hlen); 373 } 374 375 /* 376 * If a simplex interface, and the packet is being sent to our 377 * Ethernet address or a broadcast address, loopback a copy. 378 * XXX To make a simplex device behave exactly like a duplex 379 * device, we should copy in the case of sending to our own 380 * ethernet address (thus letting the original actually appear 381 * on the wire). However, we don't do that here for security 382 * reasons and compatibility with the original behavior. 383 */ 384 if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && 385 ((t = pf_find_mtag(m)) == NULL || !t->routed)) { 386 struct mbuf *n; 387 388 /* 389 * Because if_simloop() modifies the packet, we need a 390 * writable copy through m_dup() instead of a readonly 391 * one as m_copy[m] would give us. The alternative would 392 * be to modify if_simloop() to handle the readonly mbuf, 393 * but performancewise it is mostly equivalent (trading 394 * extra data copying vs. extra locking). 395 * 396 * XXX This is a local workaround. A number of less 397 * often used kernel parts suffer from the same bug. 398 * See PR kern/105943 for a proposed general solution. 399 */ 400 if ((n = m_dup(m, M_NOWAIT)) != NULL) { 401 update_mbuf_csumflags(m, n); 402 (void)if_simloop(ifp, n, dst->sa_family, hlen); 403 } else 404 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 405 } 406 407 /* 408 * Bridges require special output handling. 409 */ 410 if (ifp->if_bridge) { 411 BRIDGE_OUTPUT(ifp, m, error); 412 return (error); 413 } 414 415 #if defined(INET) || defined(INET6) 416 if (ifp->if_carp && 417 (error = (*carp_output_p)(ifp, m, dst))) 418 goto bad; 419 #endif 420 421 /* Handle ng_ether(4) processing, if any */ 422 if (ifp->if_l2com != NULL) { 423 KASSERT(ng_ether_output_p != NULL, 424 ("ng_ether_output_p is NULL")); 425 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { 426 bad: if (m != NULL) 427 m_freem(m); 428 return (error); 429 } 430 if (m == NULL) 431 return (0); 432 } 433 434 /* Continue with link-layer output */ 435 return ether_output_frame(ifp, m); 436 } 437 438 static bool 439 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp) 440 { 441 struct ether_header *eh; 442 443 eh = mtod(*mp, struct ether_header *); 444 if (ntohs(eh->ether_type) == ETHERTYPE_VLAN || 445 ether_8021q_frame(mp, ifp, ifp, 0, pcp)) 446 return (true); 447 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 448 return (false); 449 } 450 451 /* 452 * Ethernet link layer output routine to send a raw frame to the device. 453 * 454 * This assumes that the 14 byte Ethernet header is present and contiguous 455 * in the first mbuf (if BRIDGE'ing). 456 */ 457 int 458 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 459 { 460 uint8_t pcp; 461 462 pcp = ifp->if_pcp; 463 if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN && 464 !ether_set_pcp(&m, ifp, pcp)) 465 return (0); 466 467 if (PFIL_HOOKED_OUT(V_link_pfil_head)) 468 switch (pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_OUT, 469 NULL)) { 470 case PFIL_DROPPED: 471 return (EACCES); 472 case PFIL_CONSUMED: 473 return (0); 474 } 475 476 #ifdef EXPERIMENTAL 477 #if defined(INET6) && defined(INET) 478 /* draft-ietf-6man-ipv6only-flag */ 479 /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ 480 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { 481 struct ether_header *eh; 482 483 eh = mtod(m, struct ether_header *); 484 switch (ntohs(eh->ether_type)) { 485 case ETHERTYPE_IP: 486 case ETHERTYPE_ARP: 487 case ETHERTYPE_REVARP: 488 m_freem(m); 489 return (EAFNOSUPPORT); 490 /* NOTREACHED */ 491 break; 492 }; 493 } 494 #endif 495 #endif 496 497 /* 498 * Queue message on interface, update output statistics if 499 * successful, and start output if interface not yet active. 500 */ 501 return ((ifp->if_transmit)(ifp, m)); 502 } 503 504 /* 505 * Process a received Ethernet packet; the packet is in the 506 * mbuf chain m with the ethernet header at the front. 507 */ 508 static void 509 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 510 { 511 struct ether_header *eh; 512 u_short etype; 513 514 if ((ifp->if_flags & IFF_UP) == 0) { 515 m_freem(m); 516 return; 517 } 518 #ifdef DIAGNOSTIC 519 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 520 if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); 521 m_freem(m); 522 return; 523 } 524 #endif 525 if (m->m_len < ETHER_HDR_LEN) { 526 /* XXX maybe should pullup? */ 527 if_printf(ifp, "discard frame w/o leading ethernet " 528 "header (len %u pkt len %u)\n", 529 m->m_len, m->m_pkthdr.len); 530 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 531 m_freem(m); 532 return; 533 } 534 eh = mtod(m, struct ether_header *); 535 etype = ntohs(eh->ether_type); 536 random_harvest_queue_ether(m, sizeof(*m)); 537 538 #ifdef EXPERIMENTAL 539 #if defined(INET6) && defined(INET) 540 /* draft-ietf-6man-ipv6only-flag */ 541 /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ 542 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { 543 544 switch (etype) { 545 case ETHERTYPE_IP: 546 case ETHERTYPE_ARP: 547 case ETHERTYPE_REVARP: 548 m_freem(m); 549 return; 550 /* NOTREACHED */ 551 break; 552 }; 553 } 554 #endif 555 #endif 556 557 CURVNET_SET_QUIET(ifp->if_vnet); 558 559 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 560 if (ETHER_IS_BROADCAST(eh->ether_dhost)) 561 m->m_flags |= M_BCAST; 562 else 563 m->m_flags |= M_MCAST; 564 if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); 565 } 566 567 #ifdef MAC 568 /* 569 * Tag the mbuf with an appropriate MAC label before any other 570 * consumers can get to it. 571 */ 572 mac_ifnet_create_mbuf(ifp, m); 573 #endif 574 575 /* 576 * Give bpf a chance at the packet. 577 */ 578 ETHER_BPF_MTAP(ifp, m); 579 580 /* 581 * If the CRC is still on the packet, trim it off. We do this once 582 * and once only in case we are re-entered. Nothing else on the 583 * Ethernet receive path expects to see the FCS. 584 */ 585 if (m->m_flags & M_HASFCS) { 586 m_adj(m, -ETHER_CRC_LEN); 587 m->m_flags &= ~M_HASFCS; 588 } 589 590 if (!(ifp->if_capenable & IFCAP_HWSTATS)) 591 if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 592 593 /* Allow monitor mode to claim this frame, after stats are updated. */ 594 if (ifp->if_flags & IFF_MONITOR) { 595 m_freem(m); 596 CURVNET_RESTORE(); 597 return; 598 } 599 600 /* Handle input from a lagg(4) port */ 601 if (ifp->if_type == IFT_IEEE8023ADLAG) { 602 KASSERT(lagg_input_p != NULL, 603 ("%s: if_lagg not loaded!", __func__)); 604 m = (*lagg_input_p)(ifp, m); 605 if (m != NULL) 606 ifp = m->m_pkthdr.rcvif; 607 else { 608 CURVNET_RESTORE(); 609 return; 610 } 611 } 612 613 /* 614 * If the hardware did not process an 802.1Q tag, do this now, 615 * to allow 802.1P priority frames to be passed to the main input 616 * path correctly. 617 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. 618 */ 619 if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { 620 struct ether_vlan_header *evl; 621 622 if (m->m_len < sizeof(*evl) && 623 (m = m_pullup(m, sizeof(*evl))) == NULL) { 624 #ifdef DIAGNOSTIC 625 if_printf(ifp, "cannot pullup VLAN header\n"); 626 #endif 627 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 628 CURVNET_RESTORE(); 629 return; 630 } 631 632 evl = mtod(m, struct ether_vlan_header *); 633 m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); 634 m->m_flags |= M_VLANTAG; 635 636 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 637 ETHER_HDR_LEN - ETHER_TYPE_LEN); 638 m_adj(m, ETHER_VLAN_ENCAP_LEN); 639 eh = mtod(m, struct ether_header *); 640 } 641 642 M_SETFIB(m, ifp->if_fib); 643 644 /* Allow ng_ether(4) to claim this frame. */ 645 if (ifp->if_l2com != NULL) { 646 KASSERT(ng_ether_input_p != NULL, 647 ("%s: ng_ether_input_p is NULL", __func__)); 648 m->m_flags &= ~M_PROMISC; 649 (*ng_ether_input_p)(ifp, &m); 650 if (m == NULL) { 651 CURVNET_RESTORE(); 652 return; 653 } 654 eh = mtod(m, struct ether_header *); 655 } 656 657 /* 658 * Allow if_bridge(4) to claim this frame. 659 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it 660 * and the frame should be delivered locally. 661 */ 662 if (ifp->if_bridge != NULL) { 663 m->m_flags &= ~M_PROMISC; 664 BRIDGE_INPUT(ifp, m); 665 if (m == NULL) { 666 CURVNET_RESTORE(); 667 return; 668 } 669 eh = mtod(m, struct ether_header *); 670 } 671 672 #if defined(INET) || defined(INET6) 673 /* 674 * Clear M_PROMISC on frame so that carp(4) will see it when the 675 * mbuf flows up to Layer 3. 676 * FreeBSD's implementation of carp(4) uses the inprotosw 677 * to dispatch IPPROTO_CARP. carp(4) also allocates its own 678 * Ethernet addresses of the form 00:00:5e:00:01:xx, which 679 * is outside the scope of the M_PROMISC test below. 680 * TODO: Maintain a hash table of ethernet addresses other than 681 * ether_dhost which may be active on this ifp. 682 */ 683 if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { 684 m->m_flags &= ~M_PROMISC; 685 } else 686 #endif 687 { 688 /* 689 * If the frame received was not for our MAC address, set the 690 * M_PROMISC flag on the mbuf chain. The frame may need to 691 * be seen by the rest of the Ethernet input path in case of 692 * re-entry (e.g. bridge, vlan, netgraph) but should not be 693 * seen by upper protocol layers. 694 */ 695 if (!ETHER_IS_MULTICAST(eh->ether_dhost) && 696 bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) 697 m->m_flags |= M_PROMISC; 698 } 699 700 ether_demux(ifp, m); 701 CURVNET_RESTORE(); 702 } 703 704 /* 705 * Ethernet input dispatch; by default, direct dispatch here regardless of 706 * global configuration. However, if RSS is enabled, hook up RSS affinity 707 * so that when deferred or hybrid dispatch is enabled, we can redistribute 708 * load based on RSS. 709 * 710 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or 711 * not it had already done work distribution via multi-queue. Then we could 712 * direct dispatch in the event load balancing was already complete and 713 * handle the case of interfaces with different capabilities better. 714 * 715 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions 716 * at multiple layers? 717 * 718 * XXXRW: For now, enable all this only if RSS is compiled in, although it 719 * works fine without RSS. Need to characterise the performance overhead 720 * of the detour through the netisr code in the event the result is always 721 * direct dispatch. 722 */ 723 static void 724 ether_nh_input(struct mbuf *m) 725 { 726 727 M_ASSERTPKTHDR(m); 728 KASSERT(m->m_pkthdr.rcvif != NULL, 729 ("%s: NULL interface pointer", __func__)); 730 ether_input_internal(m->m_pkthdr.rcvif, m); 731 } 732 733 static struct netisr_handler ether_nh = { 734 .nh_name = "ether", 735 .nh_handler = ether_nh_input, 736 .nh_proto = NETISR_ETHER, 737 #ifdef RSS 738 .nh_policy = NETISR_POLICY_CPU, 739 .nh_dispatch = NETISR_DISPATCH_DIRECT, 740 .nh_m2cpuid = rss_m2cpuid, 741 #else 742 .nh_policy = NETISR_POLICY_SOURCE, 743 .nh_dispatch = NETISR_DISPATCH_DIRECT, 744 #endif 745 }; 746 747 static void 748 ether_init(__unused void *arg) 749 { 750 751 netisr_register(ðer_nh); 752 } 753 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); 754 755 static void 756 vnet_ether_init(__unused void *arg) 757 { 758 struct pfil_head_args args; 759 760 args.pa_version = PFIL_VERSION; 761 args.pa_flags = PFIL_IN | PFIL_OUT; 762 args.pa_type = PFIL_TYPE_ETHERNET; 763 args.pa_headname = PFIL_ETHER_NAME; 764 V_link_pfil_head = pfil_head_register(&args); 765 766 #ifdef VIMAGE 767 netisr_register_vnet(ðer_nh); 768 #endif 769 } 770 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, 771 vnet_ether_init, NULL); 772 773 #ifdef VIMAGE 774 static void 775 vnet_ether_pfil_destroy(__unused void *arg) 776 { 777 778 pfil_head_unregister(V_link_pfil_head); 779 } 780 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY, 781 vnet_ether_pfil_destroy, NULL); 782 783 static void 784 vnet_ether_destroy(__unused void *arg) 785 { 786 787 netisr_unregister_vnet(ðer_nh); 788 } 789 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, 790 vnet_ether_destroy, NULL); 791 #endif 792 793 794 795 static void 796 ether_input(struct ifnet *ifp, struct mbuf *m) 797 { 798 799 struct mbuf *mn; 800 801 /* 802 * The drivers are allowed to pass in a chain of packets linked with 803 * m_nextpkt. We split them up into separate packets here and pass 804 * them up. This allows the drivers to amortize the receive lock. 805 */ 806 while (m) { 807 mn = m->m_nextpkt; 808 m->m_nextpkt = NULL; 809 810 /* 811 * We will rely on rcvif being set properly in the deferred context, 812 * so assert it is correct here. 813 */ 814 KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p " 815 "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp)); 816 CURVNET_SET_QUIET(ifp->if_vnet); 817 netisr_dispatch(NETISR_ETHER, m); 818 CURVNET_RESTORE(); 819 m = mn; 820 } 821 } 822 823 /* 824 * Upper layer processing for a received Ethernet packet. 825 */ 826 void 827 ether_demux(struct ifnet *ifp, struct mbuf *m) 828 { 829 struct ether_header *eh; 830 int i, isr; 831 u_short ether_type; 832 833 KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); 834 835 /* Do not grab PROMISC frames in case we are re-entered. */ 836 if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) { 837 i = pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_IN, NULL); 838 if (i != 0 || m == NULL) 839 return; 840 } 841 842 eh = mtod(m, struct ether_header *); 843 ether_type = ntohs(eh->ether_type); 844 845 /* 846 * If this frame has a VLAN tag other than 0, call vlan_input() 847 * if its module is loaded. Otherwise, drop. 848 */ 849 if ((m->m_flags & M_VLANTAG) && 850 EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { 851 if (ifp->if_vlantrunk == NULL) { 852 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 853 m_freem(m); 854 return; 855 } 856 KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", 857 __func__)); 858 /* Clear before possibly re-entering ether_input(). */ 859 m->m_flags &= ~M_PROMISC; 860 (*vlan_input_p)(ifp, m); 861 return; 862 } 863 864 /* 865 * Pass promiscuously received frames to the upper layer if the user 866 * requested this by setting IFF_PPROMISC. Otherwise, drop them. 867 */ 868 if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { 869 m_freem(m); 870 return; 871 } 872 873 /* 874 * Reset layer specific mbuf flags to avoid confusing upper layers. 875 * Strip off Ethernet header. 876 */ 877 m->m_flags &= ~M_VLANTAG; 878 m_clrprotoflags(m); 879 m_adj(m, ETHER_HDR_LEN); 880 881 /* 882 * Dispatch frame to upper layer. 883 */ 884 switch (ether_type) { 885 #ifdef INET 886 case ETHERTYPE_IP: 887 isr = NETISR_IP; 888 break; 889 890 case ETHERTYPE_ARP: 891 if (ifp->if_flags & IFF_NOARP) { 892 /* Discard packet if ARP is disabled on interface */ 893 m_freem(m); 894 return; 895 } 896 isr = NETISR_ARP; 897 break; 898 #endif 899 #ifdef INET6 900 case ETHERTYPE_IPV6: 901 isr = NETISR_IPV6; 902 break; 903 #endif 904 default: 905 goto discard; 906 } 907 netisr_dispatch(isr, m); 908 return; 909 910 discard: 911 /* 912 * Packet is to be discarded. If netgraph is present, 913 * hand the packet to it for last chance processing; 914 * otherwise dispose of it. 915 */ 916 if (ifp->if_l2com != NULL) { 917 KASSERT(ng_ether_input_orphan_p != NULL, 918 ("ng_ether_input_orphan_p is NULL")); 919 /* 920 * Put back the ethernet header so netgraph has a 921 * consistent view of inbound packets. 922 */ 923 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 924 (*ng_ether_input_orphan_p)(ifp, m); 925 return; 926 } 927 m_freem(m); 928 } 929 930 /* 931 * Convert Ethernet address to printable (loggable) representation. 932 * This routine is for compatibility; it's better to just use 933 * 934 * printf("%6D", <pointer to address>, ":"); 935 * 936 * since there's no static buffer involved. 937 */ 938 char * 939 ether_sprintf(const u_char *ap) 940 { 941 static char etherbuf[18]; 942 snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); 943 return (etherbuf); 944 } 945 946 /* 947 * Perform common duties while attaching to interface list 948 */ 949 void 950 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) 951 { 952 int i; 953 struct ifaddr *ifa; 954 struct sockaddr_dl *sdl; 955 956 ifp->if_addrlen = ETHER_ADDR_LEN; 957 ifp->if_hdrlen = ETHER_HDR_LEN; 958 if_attach(ifp); 959 ifp->if_mtu = ETHERMTU; 960 ifp->if_output = ether_output; 961 ifp->if_input = ether_input; 962 ifp->if_resolvemulti = ether_resolvemulti; 963 ifp->if_requestencap = ether_requestencap; 964 #ifdef VIMAGE 965 ifp->if_reassign = ether_reassign; 966 #endif 967 if (ifp->if_baudrate == 0) 968 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 969 ifp->if_broadcastaddr = etherbroadcastaddr; 970 971 ifa = ifp->if_addr; 972 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 973 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 974 sdl->sdl_type = IFT_ETHER; 975 sdl->sdl_alen = ifp->if_addrlen; 976 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 977 978 if (ifp->if_hw_addr != NULL) 979 bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen); 980 981 bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); 982 if (ng_ether_attach_p != NULL) 983 (*ng_ether_attach_p)(ifp); 984 985 /* Announce Ethernet MAC address if non-zero. */ 986 for (i = 0; i < ifp->if_addrlen; i++) 987 if (lla[i] != 0) 988 break; 989 if (i != ifp->if_addrlen) 990 if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); 991 992 uuid_ether_add(LLADDR(sdl)); 993 994 /* Add necessary bits are setup; announce it now. */ 995 EVENTHANDLER_INVOKE(ether_ifattach_event, ifp); 996 if (IS_DEFAULT_VNET(curvnet)) 997 devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL); 998 } 999 1000 /* 1001 * Perform common duties while detaching an Ethernet interface 1002 */ 1003 void 1004 ether_ifdetach(struct ifnet *ifp) 1005 { 1006 struct sockaddr_dl *sdl; 1007 1008 sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); 1009 uuid_ether_del(LLADDR(sdl)); 1010 1011 if (ifp->if_l2com != NULL) { 1012 KASSERT(ng_ether_detach_p != NULL, 1013 ("ng_ether_detach_p is NULL")); 1014 (*ng_ether_detach_p)(ifp); 1015 } 1016 1017 bpfdetach(ifp); 1018 if_detach(ifp); 1019 } 1020 1021 #ifdef VIMAGE 1022 void 1023 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) 1024 { 1025 1026 if (ifp->if_l2com != NULL) { 1027 KASSERT(ng_ether_detach_p != NULL, 1028 ("ng_ether_detach_p is NULL")); 1029 (*ng_ether_detach_p)(ifp); 1030 } 1031 1032 if (ng_ether_attach_p != NULL) { 1033 CURVNET_SET_QUIET(new_vnet); 1034 (*ng_ether_attach_p)(ifp); 1035 CURVNET_RESTORE(); 1036 } 1037 } 1038 #endif 1039 1040 SYSCTL_DECL(_net_link); 1041 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 1042 1043 #if 0 1044 /* 1045 * This is for reference. We have a table-driven version 1046 * of the little-endian crc32 generator, which is faster 1047 * than the double-loop. 1048 */ 1049 uint32_t 1050 ether_crc32_le(const uint8_t *buf, size_t len) 1051 { 1052 size_t i; 1053 uint32_t crc; 1054 int bit; 1055 uint8_t data; 1056 1057 crc = 0xffffffff; /* initial value */ 1058 1059 for (i = 0; i < len; i++) { 1060 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1061 carry = (crc ^ data) & 1; 1062 crc >>= 1; 1063 if (carry) 1064 crc = (crc ^ ETHER_CRC_POLY_LE); 1065 } 1066 } 1067 1068 return (crc); 1069 } 1070 #else 1071 uint32_t 1072 ether_crc32_le(const uint8_t *buf, size_t len) 1073 { 1074 static const uint32_t crctab[] = { 1075 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1076 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1077 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1078 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1079 }; 1080 size_t i; 1081 uint32_t crc; 1082 1083 crc = 0xffffffff; /* initial value */ 1084 1085 for (i = 0; i < len; i++) { 1086 crc ^= buf[i]; 1087 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1088 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1089 } 1090 1091 return (crc); 1092 } 1093 #endif 1094 1095 uint32_t 1096 ether_crc32_be(const uint8_t *buf, size_t len) 1097 { 1098 size_t i; 1099 uint32_t crc, carry; 1100 int bit; 1101 uint8_t data; 1102 1103 crc = 0xffffffff; /* initial value */ 1104 1105 for (i = 0; i < len; i++) { 1106 for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { 1107 carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); 1108 crc <<= 1; 1109 if (carry) 1110 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1111 } 1112 } 1113 1114 return (crc); 1115 } 1116 1117 int 1118 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1119 { 1120 struct ifaddr *ifa = (struct ifaddr *) data; 1121 struct ifreq *ifr = (struct ifreq *) data; 1122 int error = 0; 1123 1124 switch (command) { 1125 case SIOCSIFADDR: 1126 ifp->if_flags |= IFF_UP; 1127 1128 switch (ifa->ifa_addr->sa_family) { 1129 #ifdef INET 1130 case AF_INET: 1131 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 1132 arp_ifinit(ifp, ifa); 1133 break; 1134 #endif 1135 default: 1136 ifp->if_init(ifp->if_softc); 1137 break; 1138 } 1139 break; 1140 1141 case SIOCGIFADDR: 1142 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 1143 ETHER_ADDR_LEN); 1144 break; 1145 1146 case SIOCSIFMTU: 1147 /* 1148 * Set the interface MTU. 1149 */ 1150 if (ifr->ifr_mtu > ETHERMTU) { 1151 error = EINVAL; 1152 } else { 1153 ifp->if_mtu = ifr->ifr_mtu; 1154 } 1155 break; 1156 1157 case SIOCSLANPCP: 1158 error = priv_check(curthread, PRIV_NET_SETLANPCP); 1159 if (error != 0) 1160 break; 1161 if (ifr->ifr_lan_pcp > 7 && 1162 ifr->ifr_lan_pcp != IFNET_PCP_NONE) { 1163 error = EINVAL; 1164 } else { 1165 ifp->if_pcp = ifr->ifr_lan_pcp; 1166 /* broadcast event about PCP change */ 1167 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 1168 } 1169 break; 1170 1171 case SIOCGLANPCP: 1172 ifr->ifr_lan_pcp = ifp->if_pcp; 1173 break; 1174 1175 default: 1176 error = EINVAL; /* XXX netbsd has ENOTTY??? */ 1177 break; 1178 } 1179 return (error); 1180 } 1181 1182 static int 1183 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, 1184 struct sockaddr *sa) 1185 { 1186 struct sockaddr_dl *sdl; 1187 #ifdef INET 1188 struct sockaddr_in *sin; 1189 #endif 1190 #ifdef INET6 1191 struct sockaddr_in6 *sin6; 1192 #endif 1193 u_char *e_addr; 1194 1195 switch(sa->sa_family) { 1196 case AF_LINK: 1197 /* 1198 * No mapping needed. Just check that it's a valid MC address. 1199 */ 1200 sdl = (struct sockaddr_dl *)sa; 1201 e_addr = LLADDR(sdl); 1202 if (!ETHER_IS_MULTICAST(e_addr)) 1203 return EADDRNOTAVAIL; 1204 *llsa = NULL; 1205 return 0; 1206 1207 #ifdef INET 1208 case AF_INET: 1209 sin = (struct sockaddr_in *)sa; 1210 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1211 return EADDRNOTAVAIL; 1212 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1213 sdl->sdl_alen = ETHER_ADDR_LEN; 1214 e_addr = LLADDR(sdl); 1215 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1216 *llsa = (struct sockaddr *)sdl; 1217 return 0; 1218 #endif 1219 #ifdef INET6 1220 case AF_INET6: 1221 sin6 = (struct sockaddr_in6 *)sa; 1222 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1223 /* 1224 * An IP6 address of 0 means listen to all 1225 * of the Ethernet multicast address used for IP6. 1226 * (This is used for multicast routers.) 1227 */ 1228 ifp->if_flags |= IFF_ALLMULTI; 1229 *llsa = NULL; 1230 return 0; 1231 } 1232 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1233 return EADDRNOTAVAIL; 1234 sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); 1235 sdl->sdl_alen = ETHER_ADDR_LEN; 1236 e_addr = LLADDR(sdl); 1237 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1238 *llsa = (struct sockaddr *)sdl; 1239 return 0; 1240 #endif 1241 1242 default: 1243 /* 1244 * Well, the text isn't quite right, but it's the name 1245 * that counts... 1246 */ 1247 return EAFNOSUPPORT; 1248 } 1249 } 1250 1251 static moduledata_t ether_mod = { 1252 .name = "ether", 1253 }; 1254 1255 void 1256 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) 1257 { 1258 struct ether_vlan_header vlan; 1259 struct mbuf mv, mb; 1260 1261 KASSERT((m->m_flags & M_VLANTAG) != 0, 1262 ("%s: vlan information not present", __func__)); 1263 KASSERT(m->m_len >= sizeof(struct ether_header), 1264 ("%s: mbuf not large enough for header", __func__)); 1265 bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); 1266 vlan.evl_proto = vlan.evl_encap_proto; 1267 vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); 1268 vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); 1269 m->m_len -= sizeof(struct ether_header); 1270 m->m_data += sizeof(struct ether_header); 1271 /* 1272 * If a data link has been supplied by the caller, then we will need to 1273 * re-create a stack allocated mbuf chain with the following structure: 1274 * 1275 * (1) mbuf #1 will contain the supplied data link 1276 * (2) mbuf #2 will contain the vlan header 1277 * (3) mbuf #3 will contain the original mbuf's packet data 1278 * 1279 * Otherwise, submit the packet and vlan header via bpf_mtap2(). 1280 */ 1281 if (data != NULL) { 1282 mv.m_next = m; 1283 mv.m_data = (caddr_t)&vlan; 1284 mv.m_len = sizeof(vlan); 1285 mb.m_next = &mv; 1286 mb.m_data = data; 1287 mb.m_len = dlen; 1288 bpf_mtap(bp, &mb); 1289 } else 1290 bpf_mtap2(bp, &vlan, sizeof(vlan), m); 1291 m->m_len += sizeof(struct ether_header); 1292 m->m_data -= sizeof(struct ether_header); 1293 } 1294 1295 struct mbuf * 1296 ether_vlanencap(struct mbuf *m, uint16_t tag) 1297 { 1298 struct ether_vlan_header *evl; 1299 1300 M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); 1301 if (m == NULL) 1302 return (NULL); 1303 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ 1304 1305 if (m->m_len < sizeof(*evl)) { 1306 m = m_pullup(m, sizeof(*evl)); 1307 if (m == NULL) 1308 return (NULL); 1309 } 1310 1311 /* 1312 * Transform the Ethernet header into an Ethernet header 1313 * with 802.1Q encapsulation. 1314 */ 1315 evl = mtod(m, struct ether_vlan_header *); 1316 bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, 1317 (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); 1318 evl->evl_encap_proto = htons(ETHERTYPE_VLAN); 1319 evl->evl_tag = htons(tag); 1320 return (m); 1321 } 1322 1323 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, 1324 "IEEE 802.1Q VLAN"); 1325 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, 1326 "for consistency"); 1327 1328 VNET_DEFINE_STATIC(int, soft_pad); 1329 #define V_soft_pad VNET(soft_pad) 1330 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET, 1331 &VNET_NAME(soft_pad), 0, 1332 "pad short frames before tagging"); 1333 1334 /* 1335 * For now, make preserving PCP via an mbuf tag optional, as it increases 1336 * per-packet memory allocations and frees. In the future, it would be 1337 * preferable to reuse ether_vtag for this, or similar. 1338 */ 1339 int vlan_mtag_pcp = 0; 1340 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW, 1341 &vlan_mtag_pcp, 0, 1342 "Retain VLAN PCP information as packets are passed up the stack"); 1343 1344 bool 1345 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p, 1346 uint16_t vid, uint8_t pcp) 1347 { 1348 struct m_tag *mtag; 1349 int n; 1350 uint16_t tag; 1351 static const char pad[8]; /* just zeros */ 1352 1353 /* 1354 * Pad the frame to the minimum size allowed if told to. 1355 * This option is in accord with IEEE Std 802.1Q, 2003 Ed., 1356 * paragraph C.4.4.3.b. It can help to work around buggy 1357 * bridges that violate paragraph C.4.4.3.a from the same 1358 * document, i.e., fail to pad short frames after untagging. 1359 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but 1360 * untagging it will produce a 62-byte frame, which is a runt 1361 * and requires padding. There are VLAN-enabled network 1362 * devices that just discard such runts instead or mishandle 1363 * them somehow. 1364 */ 1365 if (V_soft_pad && p->if_type == IFT_ETHER) { 1366 for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len; 1367 n > 0; n -= sizeof(pad)) { 1368 if (!m_append(*mp, min(n, sizeof(pad)), pad)) 1369 break; 1370 } 1371 if (n > 0) { 1372 m_freem(*mp); 1373 *mp = NULL; 1374 if_printf(ife, "cannot pad short frame"); 1375 return (false); 1376 } 1377 } 1378 1379 /* 1380 * If underlying interface can do VLAN tag insertion itself, 1381 * just pass the packet along. However, we need some way to 1382 * tell the interface where the packet came from so that it 1383 * knows how to find the VLAN tag to use, so we attach a 1384 * packet tag that holds it. 1385 */ 1386 if (vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q, 1387 MTAG_8021Q_PCP_OUT, NULL)) != NULL) 1388 tag = EVL_MAKETAG(vid, *(uint8_t *)(mtag + 1), 0); 1389 else 1390 tag = EVL_MAKETAG(vid, pcp, 0); 1391 if (p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1392 (*mp)->m_pkthdr.ether_vtag = tag; 1393 (*mp)->m_flags |= M_VLANTAG; 1394 } else { 1395 *mp = ether_vlanencap(*mp, tag); 1396 if (*mp == NULL) { 1397 if_printf(ife, "unable to prepend 802.1Q header"); 1398 return (false); 1399 } 1400 } 1401 return (true); 1402 } 1403 1404 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); 1405 MODULE_VERSION(ether, 1); 1406