1 /* $NetBSD: if_bridge.c,v 1.31 2005/06/01 19:45:34 jdc Exp $ */ 2 3 /* 4 * Copyright 2001 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 1999, 2000 Jason L. Wright (jason@thought.net) 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by Jason L. Wright 53 * 4. The name of the author may not be used to endorse or promote products 54 * derived from this software without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 57 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 58 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 59 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 60 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 61 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 62 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 64 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 65 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 66 * POSSIBILITY OF SUCH DAMAGE. 67 * 68 * OpenBSD: if_bridge.c,v 1.60 2001/06/15 03:38:33 itojun Exp 69 */ 70 71 /* 72 * Network interface bridge support. 73 * 74 * TODO: 75 * 76 * - Currently only supports Ethernet-like interfaces (Ethernet, 77 * 802.11, VLANs on Ethernet, etc.) Figure out a nice way 78 * to bridge other types of interfaces (FDDI-FDDI, and maybe 79 * consider heterogenous bridges). 80 */ 81 82 #include <sys/cdefs.h> 83 __FBSDID("$FreeBSD$"); 84 85 #include "opt_inet.h" 86 #include "opt_inet6.h" 87 #include "opt_carp.h" 88 89 #include <sys/param.h> 90 #include <sys/mbuf.h> 91 #include <sys/malloc.h> 92 #include <sys/protosw.h> 93 #include <sys/systm.h> 94 #include <sys/time.h> 95 #include <sys/socket.h> /* for net/if.h */ 96 #include <sys/sockio.h> 97 #include <sys/ctype.h> /* string functions */ 98 #include <sys/kernel.h> 99 #include <sys/random.h> 100 #include <sys/syslog.h> 101 #include <sys/sysctl.h> 102 #include <vm/uma.h> 103 #include <sys/module.h> 104 #include <sys/priv.h> 105 #include <sys/proc.h> 106 #include <sys/lock.h> 107 #include <sys/mutex.h> 108 109 #include <net/bpf.h> 110 #include <net/if.h> 111 #include <net/if_clone.h> 112 #include <net/if_dl.h> 113 #include <net/if_types.h> 114 #include <net/if_var.h> 115 #include <net/pfil.h> 116 117 #include <netinet/in.h> /* for struct arpcom */ 118 #include <netinet/in_systm.h> 119 #include <netinet/in_var.h> 120 #include <netinet/ip.h> 121 #include <netinet/ip_var.h> 122 #ifdef INET6 123 #include <netinet/ip6.h> 124 #include <netinet6/ip6_var.h> 125 #endif 126 #ifdef DEV_CARP 127 #include <netinet/ip_carp.h> 128 #endif 129 #include <machine/in_cksum.h> 130 #include <netinet/if_ether.h> /* for struct arpcom */ 131 #include <net/bridgestp.h> 132 #include <net/if_bridgevar.h> 133 #include <net/if_llc.h> 134 #include <net/if_vlan_var.h> 135 136 #include <net/route.h> 137 #include <netinet/ip_fw.h> 138 #include <netinet/ip_dummynet.h> 139 140 /* 141 * Size of the route hash table. Must be a power of two. 142 */ 143 #ifndef BRIDGE_RTHASH_SIZE 144 #define BRIDGE_RTHASH_SIZE 1024 145 #endif 146 147 #define BRIDGE_RTHASH_MASK (BRIDGE_RTHASH_SIZE - 1) 148 149 /* 150 * Maximum number of addresses to cache. 151 */ 152 #ifndef BRIDGE_RTABLE_MAX 153 #define BRIDGE_RTABLE_MAX 100 154 #endif 155 156 /* 157 * Timeout (in seconds) for entries learned dynamically. 158 */ 159 #ifndef BRIDGE_RTABLE_TIMEOUT 160 #define BRIDGE_RTABLE_TIMEOUT (20 * 60) /* same as ARP */ 161 #endif 162 163 /* 164 * Number of seconds between walks of the route list. 165 */ 166 #ifndef BRIDGE_RTABLE_PRUNE_PERIOD 167 #define BRIDGE_RTABLE_PRUNE_PERIOD (5 * 60) 168 #endif 169 170 /* 171 * List of capabilities to mask on the member interface. 172 */ 173 #define BRIDGE_IFCAPS_MASK IFCAP_TXCSUM 174 175 /* 176 * Bridge interface list entry. 177 */ 178 struct bridge_iflist { 179 LIST_ENTRY(bridge_iflist) bif_next; 180 struct ifnet *bif_ifp; /* member if */ 181 struct bstp_port bif_stp; /* STP state */ 182 uint32_t bif_flags; /* member if flags */ 183 int bif_mutecap; /* member muted caps */ 184 }; 185 186 /* 187 * Bridge route node. 188 */ 189 struct bridge_rtnode { 190 LIST_ENTRY(bridge_rtnode) brt_hash; /* hash table linkage */ 191 LIST_ENTRY(bridge_rtnode) brt_list; /* list linkage */ 192 struct ifnet *brt_ifp; /* destination if */ 193 unsigned long brt_expire; /* expiration time */ 194 uint8_t brt_flags; /* address flags */ 195 uint8_t brt_addr[ETHER_ADDR_LEN]; 196 uint16_t brt_vlan; /* vlan id */ 197 }; 198 199 /* 200 * Software state for each bridge. 201 */ 202 struct bridge_softc { 203 struct ifnet *sc_ifp; /* make this an interface */ 204 LIST_ENTRY(bridge_softc) sc_list; 205 struct mtx sc_mtx; 206 struct cv sc_cv; 207 uint32_t sc_brtmax; /* max # of addresses */ 208 uint32_t sc_brtcnt; /* cur. # of addresses */ 209 uint32_t sc_brttimeout; /* rt timeout in seconds */ 210 struct callout sc_brcallout; /* bridge callout */ 211 uint32_t sc_iflist_ref; /* refcount for sc_iflist */ 212 uint32_t sc_iflist_xcnt; /* refcount for sc_iflist */ 213 LIST_HEAD(, bridge_iflist) sc_iflist; /* member interface list */ 214 LIST_HEAD(, bridge_rtnode) *sc_rthash; /* our forwarding table */ 215 LIST_HEAD(, bridge_rtnode) sc_rtlist; /* list version of above */ 216 uint32_t sc_rthash_key; /* key for hash */ 217 LIST_HEAD(, bridge_iflist) sc_spanlist; /* span ports list */ 218 struct bstp_state sc_stp; /* STP state */ 219 uint32_t sc_brtexceeded; /* # of cache drops */ 220 }; 221 222 static struct mtx bridge_list_mtx; 223 eventhandler_tag bridge_detach_cookie = NULL; 224 225 int bridge_rtable_prune_period = BRIDGE_RTABLE_PRUNE_PERIOD; 226 227 uma_zone_t bridge_rtnode_zone; 228 229 static int bridge_clone_create(struct if_clone *, int, caddr_t); 230 static void bridge_clone_destroy(struct ifnet *); 231 232 static int bridge_ioctl(struct ifnet *, u_long, caddr_t); 233 static void bridge_mutecaps(struct bridge_iflist *, int); 234 static void bridge_ifdetach(void *arg __unused, struct ifnet *); 235 static void bridge_init(void *); 236 static void bridge_dummynet(struct mbuf *, struct ifnet *); 237 static void bridge_stop(struct ifnet *, int); 238 static void bridge_start(struct ifnet *); 239 static struct mbuf *bridge_input(struct ifnet *, struct mbuf *); 240 static int bridge_output(struct ifnet *, struct mbuf *, struct sockaddr *, 241 struct rtentry *); 242 static void bridge_enqueue(struct bridge_softc *, struct ifnet *, 243 struct mbuf *); 244 static void bridge_rtdelete(struct bridge_softc *, struct ifnet *ifp, int); 245 246 static void bridge_forward(struct bridge_softc *, struct bridge_iflist *, 247 struct mbuf *m); 248 249 static void bridge_timer(void *); 250 251 static void bridge_broadcast(struct bridge_softc *, struct ifnet *, 252 struct mbuf *, int); 253 static void bridge_span(struct bridge_softc *, struct mbuf *); 254 255 static int bridge_rtupdate(struct bridge_softc *, const uint8_t *, 256 uint16_t, struct bridge_iflist *, int, uint8_t); 257 static struct ifnet *bridge_rtlookup(struct bridge_softc *, const uint8_t *, 258 uint16_t); 259 static void bridge_rttrim(struct bridge_softc *); 260 static void bridge_rtage(struct bridge_softc *); 261 static void bridge_rtflush(struct bridge_softc *, int); 262 static int bridge_rtdaddr(struct bridge_softc *, const uint8_t *, 263 uint16_t); 264 265 static int bridge_rtable_init(struct bridge_softc *); 266 static void bridge_rtable_fini(struct bridge_softc *); 267 268 static int bridge_rtnode_addr_cmp(const uint8_t *, const uint8_t *); 269 static struct bridge_rtnode *bridge_rtnode_lookup(struct bridge_softc *, 270 const uint8_t *, uint16_t); 271 static int bridge_rtnode_insert(struct bridge_softc *, 272 struct bridge_rtnode *); 273 static void bridge_rtnode_destroy(struct bridge_softc *, 274 struct bridge_rtnode *); 275 static void bridge_rtable_expire(struct ifnet *, int); 276 static void bridge_state_change(struct ifnet *, int); 277 278 static struct bridge_iflist *bridge_lookup_member(struct bridge_softc *, 279 const char *name); 280 static struct bridge_iflist *bridge_lookup_member_if(struct bridge_softc *, 281 struct ifnet *ifp); 282 static void bridge_delete_member(struct bridge_softc *, 283 struct bridge_iflist *, int); 284 static void bridge_delete_span(struct bridge_softc *, 285 struct bridge_iflist *); 286 287 static int bridge_ioctl_add(struct bridge_softc *, void *); 288 static int bridge_ioctl_del(struct bridge_softc *, void *); 289 static int bridge_ioctl_gifflags(struct bridge_softc *, void *); 290 static int bridge_ioctl_sifflags(struct bridge_softc *, void *); 291 static int bridge_ioctl_scache(struct bridge_softc *, void *); 292 static int bridge_ioctl_gcache(struct bridge_softc *, void *); 293 static int bridge_ioctl_gifs(struct bridge_softc *, void *); 294 static int bridge_ioctl_rts(struct bridge_softc *, void *); 295 static int bridge_ioctl_saddr(struct bridge_softc *, void *); 296 static int bridge_ioctl_sto(struct bridge_softc *, void *); 297 static int bridge_ioctl_gto(struct bridge_softc *, void *); 298 static int bridge_ioctl_daddr(struct bridge_softc *, void *); 299 static int bridge_ioctl_flush(struct bridge_softc *, void *); 300 static int bridge_ioctl_gpri(struct bridge_softc *, void *); 301 static int bridge_ioctl_spri(struct bridge_softc *, void *); 302 static int bridge_ioctl_ght(struct bridge_softc *, void *); 303 static int bridge_ioctl_sht(struct bridge_softc *, void *); 304 static int bridge_ioctl_gfd(struct bridge_softc *, void *); 305 static int bridge_ioctl_sfd(struct bridge_softc *, void *); 306 static int bridge_ioctl_gma(struct bridge_softc *, void *); 307 static int bridge_ioctl_sma(struct bridge_softc *, void *); 308 static int bridge_ioctl_sifprio(struct bridge_softc *, void *); 309 static int bridge_ioctl_sifcost(struct bridge_softc *, void *); 310 static int bridge_ioctl_addspan(struct bridge_softc *, void *); 311 static int bridge_ioctl_delspan(struct bridge_softc *, void *); 312 static int bridge_ioctl_gbparam(struct bridge_softc *, void *); 313 static int bridge_ioctl_grte(struct bridge_softc *, void *); 314 static int bridge_ioctl_gifsstp(struct bridge_softc *, void *); 315 static int bridge_ioctl_sproto(struct bridge_softc *, void *); 316 static int bridge_ioctl_stxhc(struct bridge_softc *, void *); 317 static int bridge_pfil(struct mbuf **, struct ifnet *, struct ifnet *, 318 int); 319 static int bridge_ip_checkbasic(struct mbuf **mp); 320 #ifdef INET6 321 static int bridge_ip6_checkbasic(struct mbuf **mp); 322 #endif /* INET6 */ 323 static int bridge_fragment(struct ifnet *, struct mbuf *, 324 struct ether_header *, int, struct llc *); 325 326 /* The default bridge vlan is 1 (IEEE 802.1Q-2003 Table 9-2) */ 327 #define VLANTAGOF(_m) \ 328 (_m->m_flags & M_VLANTAG) ? EVL_VLANOFTAG(_m->m_pkthdr.ether_vtag) : 1 329 330 static struct bstp_cb_ops bridge_ops = { 331 .bcb_state = bridge_state_change, 332 .bcb_rtage = bridge_rtable_expire 333 }; 334 335 SYSCTL_DECL(_net_link); 336 SYSCTL_NODE(_net_link, IFT_BRIDGE, bridge, CTLFLAG_RW, 0, "Bridge"); 337 338 static int pfil_onlyip = 1; /* only pass IP[46] packets when pfil is enabled */ 339 static int pfil_bridge = 1; /* run pfil hooks on the bridge interface */ 340 static int pfil_member = 1; /* run pfil hooks on the member interface */ 341 static int pfil_ipfw = 0; /* layer2 filter with ipfw */ 342 static int pfil_ipfw_arp = 0; /* layer2 filter with ipfw */ 343 static int pfil_local_phys = 0; /* run pfil hooks on the physical interface for 344 locally destined packets */ 345 static int log_stp = 0; /* log STP state changes */ 346 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_onlyip, CTLFLAG_RW, 347 &pfil_onlyip, 0, "Only pass IP packets when pfil is enabled"); 348 SYSCTL_INT(_net_link_bridge, OID_AUTO, ipfw_arp, CTLFLAG_RW, 349 &pfil_ipfw_arp, 0, "Filter ARP packets through IPFW layer2"); 350 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_bridge, CTLFLAG_RW, 351 &pfil_bridge, 0, "Packet filter on the bridge interface"); 352 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_member, CTLFLAG_RW, 353 &pfil_member, 0, "Packet filter on the member interface"); 354 SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_local_phys, CTLFLAG_RW, 355 &pfil_local_phys, 0, 356 "Packet filter on the physical interface for locally destined packets"); 357 SYSCTL_INT(_net_link_bridge, OID_AUTO, log_stp, CTLFLAG_RW, 358 &log_stp, 0, "Log STP state changes"); 359 360 struct bridge_control { 361 int (*bc_func)(struct bridge_softc *, void *); 362 int bc_argsize; 363 int bc_flags; 364 }; 365 366 #define BC_F_COPYIN 0x01 /* copy arguments in */ 367 #define BC_F_COPYOUT 0x02 /* copy arguments out */ 368 #define BC_F_SUSER 0x04 /* do super-user check */ 369 370 const struct bridge_control bridge_control_table[] = { 371 { bridge_ioctl_add, sizeof(struct ifbreq), 372 BC_F_COPYIN|BC_F_SUSER }, 373 { bridge_ioctl_del, sizeof(struct ifbreq), 374 BC_F_COPYIN|BC_F_SUSER }, 375 376 { bridge_ioctl_gifflags, sizeof(struct ifbreq), 377 BC_F_COPYIN|BC_F_COPYOUT }, 378 { bridge_ioctl_sifflags, sizeof(struct ifbreq), 379 BC_F_COPYIN|BC_F_SUSER }, 380 381 { bridge_ioctl_scache, sizeof(struct ifbrparam), 382 BC_F_COPYIN|BC_F_SUSER }, 383 { bridge_ioctl_gcache, sizeof(struct ifbrparam), 384 BC_F_COPYOUT }, 385 386 { bridge_ioctl_gifs, sizeof(struct ifbifconf), 387 BC_F_COPYIN|BC_F_COPYOUT }, 388 { bridge_ioctl_rts, sizeof(struct ifbaconf), 389 BC_F_COPYIN|BC_F_COPYOUT }, 390 391 { bridge_ioctl_saddr, sizeof(struct ifbareq), 392 BC_F_COPYIN|BC_F_SUSER }, 393 394 { bridge_ioctl_sto, sizeof(struct ifbrparam), 395 BC_F_COPYIN|BC_F_SUSER }, 396 { bridge_ioctl_gto, sizeof(struct ifbrparam), 397 BC_F_COPYOUT }, 398 399 { bridge_ioctl_daddr, sizeof(struct ifbareq), 400 BC_F_COPYIN|BC_F_SUSER }, 401 402 { bridge_ioctl_flush, sizeof(struct ifbreq), 403 BC_F_COPYIN|BC_F_SUSER }, 404 405 { bridge_ioctl_gpri, sizeof(struct ifbrparam), 406 BC_F_COPYOUT }, 407 { bridge_ioctl_spri, sizeof(struct ifbrparam), 408 BC_F_COPYIN|BC_F_SUSER }, 409 410 { bridge_ioctl_ght, sizeof(struct ifbrparam), 411 BC_F_COPYOUT }, 412 { bridge_ioctl_sht, sizeof(struct ifbrparam), 413 BC_F_COPYIN|BC_F_SUSER }, 414 415 { bridge_ioctl_gfd, sizeof(struct ifbrparam), 416 BC_F_COPYOUT }, 417 { bridge_ioctl_sfd, sizeof(struct ifbrparam), 418 BC_F_COPYIN|BC_F_SUSER }, 419 420 { bridge_ioctl_gma, sizeof(struct ifbrparam), 421 BC_F_COPYOUT }, 422 { bridge_ioctl_sma, sizeof(struct ifbrparam), 423 BC_F_COPYIN|BC_F_SUSER }, 424 425 { bridge_ioctl_sifprio, sizeof(struct ifbreq), 426 BC_F_COPYIN|BC_F_SUSER }, 427 428 { bridge_ioctl_sifcost, sizeof(struct ifbreq), 429 BC_F_COPYIN|BC_F_SUSER }, 430 431 { bridge_ioctl_addspan, sizeof(struct ifbreq), 432 BC_F_COPYIN|BC_F_SUSER }, 433 { bridge_ioctl_delspan, sizeof(struct ifbreq), 434 BC_F_COPYIN|BC_F_SUSER }, 435 436 { bridge_ioctl_gbparam, sizeof(struct ifbropreq), 437 BC_F_COPYOUT }, 438 439 { bridge_ioctl_grte, sizeof(struct ifbrparam), 440 BC_F_COPYOUT }, 441 442 { bridge_ioctl_gifsstp, sizeof(struct ifbpstpconf), 443 BC_F_COPYIN|BC_F_COPYOUT }, 444 445 { bridge_ioctl_sproto, sizeof(struct ifbrparam), 446 BC_F_COPYIN|BC_F_SUSER }, 447 448 { bridge_ioctl_stxhc, sizeof(struct ifbrparam), 449 BC_F_COPYIN|BC_F_SUSER }, 450 }; 451 const int bridge_control_table_size = 452 sizeof(bridge_control_table) / sizeof(bridge_control_table[0]); 453 454 LIST_HEAD(, bridge_softc) bridge_list; 455 456 IFC_SIMPLE_DECLARE(bridge, 0); 457 458 static int 459 bridge_modevent(module_t mod, int type, void *data) 460 { 461 462 switch (type) { 463 case MOD_LOAD: 464 mtx_init(&bridge_list_mtx, "if_bridge list", NULL, MTX_DEF); 465 if_clone_attach(&bridge_cloner); 466 bridge_rtnode_zone = uma_zcreate("bridge_rtnode", 467 sizeof(struct bridge_rtnode), NULL, NULL, NULL, NULL, 468 UMA_ALIGN_PTR, 0); 469 LIST_INIT(&bridge_list); 470 bridge_input_p = bridge_input; 471 bridge_output_p = bridge_output; 472 bridge_dn_p = bridge_dummynet; 473 bridge_detach_cookie = EVENTHANDLER_REGISTER( 474 ifnet_departure_event, bridge_ifdetach, NULL, 475 EVENTHANDLER_PRI_ANY); 476 break; 477 case MOD_UNLOAD: 478 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 479 bridge_detach_cookie); 480 if_clone_detach(&bridge_cloner); 481 uma_zdestroy(bridge_rtnode_zone); 482 bridge_input_p = NULL; 483 bridge_output_p = NULL; 484 bridge_dn_p = NULL; 485 mtx_destroy(&bridge_list_mtx); 486 break; 487 default: 488 return (EOPNOTSUPP); 489 } 490 return (0); 491 } 492 493 static moduledata_t bridge_mod = { 494 "if_bridge", 495 bridge_modevent, 496 0 497 }; 498 499 DECLARE_MODULE(if_bridge, bridge_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 500 MODULE_DEPEND(if_bridge, bridgestp, 1, 1, 1); 501 502 /* 503 * handler for net.link.bridge.pfil_ipfw 504 */ 505 static int 506 sysctl_pfil_ipfw(SYSCTL_HANDLER_ARGS) 507 { 508 int enable = pfil_ipfw; 509 int error; 510 511 error = sysctl_handle_int(oidp, &enable, 0, req); 512 enable = (enable) ? 1 : 0; 513 514 if (enable != pfil_ipfw) { 515 pfil_ipfw = enable; 516 517 /* 518 * Disable pfil so that ipfw doesnt run twice, if the user 519 * really wants both then they can re-enable pfil_bridge and/or 520 * pfil_member. Also allow non-ip packets as ipfw can filter by 521 * layer2 type. 522 */ 523 if (pfil_ipfw) { 524 pfil_onlyip = 0; 525 pfil_bridge = 0; 526 pfil_member = 0; 527 } 528 } 529 530 return (error); 531 } 532 SYSCTL_PROC(_net_link_bridge, OID_AUTO, ipfw, CTLTYPE_INT|CTLFLAG_RW, 533 &pfil_ipfw, 0, &sysctl_pfil_ipfw, "I", "Layer2 filter with IPFW"); 534 535 /* 536 * bridge_clone_create: 537 * 538 * Create a new bridge instance. 539 */ 540 static int 541 bridge_clone_create(struct if_clone *ifc, int unit, caddr_t params) 542 { 543 struct bridge_softc *sc, *sc2; 544 struct ifnet *bifp, *ifp; 545 u_char eaddr[6]; 546 int retry; 547 548 sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK|M_ZERO); 549 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 550 if (ifp == NULL) { 551 free(sc, M_DEVBUF); 552 return (ENOSPC); 553 } 554 555 BRIDGE_LOCK_INIT(sc); 556 sc->sc_brtmax = BRIDGE_RTABLE_MAX; 557 sc->sc_brttimeout = BRIDGE_RTABLE_TIMEOUT; 558 559 /* Initialize our routing table. */ 560 bridge_rtable_init(sc); 561 562 callout_init_mtx(&sc->sc_brcallout, &sc->sc_mtx, 0); 563 564 LIST_INIT(&sc->sc_iflist); 565 LIST_INIT(&sc->sc_spanlist); 566 567 ifp->if_softc = sc; 568 if_initname(ifp, ifc->ifc_name, unit); 569 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 570 ifp->if_ioctl = bridge_ioctl; 571 ifp->if_start = bridge_start; 572 ifp->if_init = bridge_init; 573 ifp->if_type = IFT_BRIDGE; 574 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 575 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 576 IFQ_SET_READY(&ifp->if_snd); 577 578 /* 579 * Generate a random ethernet address with a locally administered 580 * address. 581 * 582 * Since we are using random ethernet addresses for the bridge, it is 583 * possible that we might have address collisions, so make sure that 584 * this hardware address isn't already in use on another bridge. 585 */ 586 for (retry = 1; retry != 0;) { 587 arc4rand(eaddr, ETHER_ADDR_LEN, 1); 588 eaddr[0] &= ~1; /* clear multicast bit */ 589 eaddr[0] |= 2; /* set the LAA bit */ 590 retry = 0; 591 mtx_lock(&bridge_list_mtx); 592 LIST_FOREACH(sc2, &bridge_list, sc_list) { 593 bifp = sc2->sc_ifp; 594 if (memcmp(eaddr, IF_LLADDR(bifp), ETHER_ADDR_LEN) == 0) 595 retry = 1; 596 } 597 mtx_unlock(&bridge_list_mtx); 598 } 599 600 bstp_attach(&sc->sc_stp, &bridge_ops); 601 ether_ifattach(ifp, eaddr); 602 /* Now undo some of the damage... */ 603 ifp->if_baudrate = 0; 604 ifp->if_type = IFT_BRIDGE; 605 606 mtx_lock(&bridge_list_mtx); 607 LIST_INSERT_HEAD(&bridge_list, sc, sc_list); 608 mtx_unlock(&bridge_list_mtx); 609 610 return (0); 611 } 612 613 /* 614 * bridge_clone_destroy: 615 * 616 * Destroy a bridge instance. 617 */ 618 static void 619 bridge_clone_destroy(struct ifnet *ifp) 620 { 621 struct bridge_softc *sc = ifp->if_softc; 622 struct bridge_iflist *bif; 623 624 BRIDGE_LOCK(sc); 625 626 bridge_stop(ifp, 1); 627 ifp->if_flags &= ~IFF_UP; 628 629 while ((bif = LIST_FIRST(&sc->sc_iflist)) != NULL) 630 bridge_delete_member(sc, bif, 0); 631 632 while ((bif = LIST_FIRST(&sc->sc_spanlist)) != NULL) { 633 bridge_delete_span(sc, bif); 634 } 635 636 BRIDGE_UNLOCK(sc); 637 638 callout_drain(&sc->sc_brcallout); 639 640 mtx_lock(&bridge_list_mtx); 641 LIST_REMOVE(sc, sc_list); 642 mtx_unlock(&bridge_list_mtx); 643 644 bstp_detach(&sc->sc_stp); 645 ether_ifdetach(ifp); 646 if_free_type(ifp, IFT_ETHER); 647 648 /* Tear down the routing table. */ 649 bridge_rtable_fini(sc); 650 651 BRIDGE_LOCK_DESTROY(sc); 652 free(sc, M_DEVBUF); 653 } 654 655 /* 656 * bridge_ioctl: 657 * 658 * Handle a control request from the operator. 659 */ 660 static int 661 bridge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 662 { 663 struct bridge_softc *sc = ifp->if_softc; 664 struct thread *td = curthread; 665 union { 666 struct ifbreq ifbreq; 667 struct ifbifconf ifbifconf; 668 struct ifbareq ifbareq; 669 struct ifbaconf ifbaconf; 670 struct ifbrparam ifbrparam; 671 struct ifbropreq ifbropreq; 672 } args; 673 struct ifdrv *ifd = (struct ifdrv *) data; 674 const struct bridge_control *bc; 675 int error = 0; 676 677 switch (cmd) { 678 679 case SIOCADDMULTI: 680 case SIOCDELMULTI: 681 break; 682 683 case SIOCGDRVSPEC: 684 case SIOCSDRVSPEC: 685 if (ifd->ifd_cmd >= bridge_control_table_size) { 686 error = EINVAL; 687 break; 688 } 689 bc = &bridge_control_table[ifd->ifd_cmd]; 690 691 if (cmd == SIOCGDRVSPEC && 692 (bc->bc_flags & BC_F_COPYOUT) == 0) { 693 error = EINVAL; 694 break; 695 } 696 else if (cmd == SIOCSDRVSPEC && 697 (bc->bc_flags & BC_F_COPYOUT) != 0) { 698 error = EINVAL; 699 break; 700 } 701 702 if (bc->bc_flags & BC_F_SUSER) { 703 error = priv_check(td, PRIV_NET_BRIDGE); 704 if (error) 705 break; 706 } 707 708 if (ifd->ifd_len != bc->bc_argsize || 709 ifd->ifd_len > sizeof(args)) { 710 error = EINVAL; 711 break; 712 } 713 714 bzero(&args, sizeof(args)); 715 if (bc->bc_flags & BC_F_COPYIN) { 716 error = copyin(ifd->ifd_data, &args, ifd->ifd_len); 717 if (error) 718 break; 719 } 720 721 BRIDGE_LOCK(sc); 722 error = (*bc->bc_func)(sc, &args); 723 BRIDGE_UNLOCK(sc); 724 if (error) 725 break; 726 727 if (bc->bc_flags & BC_F_COPYOUT) 728 error = copyout(&args, ifd->ifd_data, ifd->ifd_len); 729 730 break; 731 732 case SIOCSIFFLAGS: 733 if (!(ifp->if_flags & IFF_UP) && 734 (ifp->if_drv_flags & IFF_DRV_RUNNING)) { 735 /* 736 * If interface is marked down and it is running, 737 * then stop and disable it. 738 */ 739 BRIDGE_LOCK(sc); 740 bridge_stop(ifp, 1); 741 BRIDGE_UNLOCK(sc); 742 } else if ((ifp->if_flags & IFF_UP) && 743 !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 744 /* 745 * If interface is marked up and it is stopped, then 746 * start it. 747 */ 748 (*ifp->if_init)(sc); 749 } 750 break; 751 752 case SIOCSIFMTU: 753 /* Do not allow the MTU to be changed on the bridge */ 754 error = EINVAL; 755 break; 756 757 default: 758 /* 759 * drop the lock as ether_ioctl() will call bridge_start() and 760 * cause the lock to be recursed. 761 */ 762 error = ether_ioctl(ifp, cmd, data); 763 break; 764 } 765 766 return (error); 767 } 768 769 /* 770 * bridge_mutecaps: 771 * 772 * Clear or restore unwanted capabilities on the member interface 773 */ 774 static void 775 bridge_mutecaps(struct bridge_iflist *bif, int mute) 776 { 777 struct ifnet *ifp = bif->bif_ifp; 778 struct ifreq ifr; 779 int error; 780 781 if (ifp->if_ioctl == NULL) 782 return; 783 784 bzero(&ifr, sizeof(ifr)); 785 ifr.ifr_reqcap = ifp->if_capenable; 786 787 if (mute) { 788 /* mask off and save capabilities */ 789 bif->bif_mutecap = ifr.ifr_reqcap & BRIDGE_IFCAPS_MASK; 790 if (bif->bif_mutecap != 0) 791 ifr.ifr_reqcap &= ~BRIDGE_IFCAPS_MASK; 792 } else 793 /* restore muted capabilities */ 794 ifr.ifr_reqcap |= bif->bif_mutecap; 795 796 797 if (bif->bif_mutecap != 0) { 798 IFF_LOCKGIANT(ifp); 799 error = (*ifp->if_ioctl)(ifp, SIOCSIFCAP, (caddr_t)&ifr); 800 IFF_UNLOCKGIANT(ifp); 801 } 802 } 803 804 /* 805 * bridge_lookup_member: 806 * 807 * Lookup a bridge member interface. 808 */ 809 static struct bridge_iflist * 810 bridge_lookup_member(struct bridge_softc *sc, const char *name) 811 { 812 struct bridge_iflist *bif; 813 struct ifnet *ifp; 814 815 BRIDGE_LOCK_ASSERT(sc); 816 817 LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { 818 ifp = bif->bif_ifp; 819 if (strcmp(ifp->if_xname, name) == 0) 820 return (bif); 821 } 822 823 return (NULL); 824 } 825 826 /* 827 * bridge_lookup_member_if: 828 * 829 * Lookup a bridge member interface by ifnet*. 830 */ 831 static struct bridge_iflist * 832 bridge_lookup_member_if(struct bridge_softc *sc, struct ifnet *member_ifp) 833 { 834 struct bridge_iflist *bif; 835 836 BRIDGE_LOCK_ASSERT(sc); 837 838 LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { 839 if (bif->bif_ifp == member_ifp) 840 return (bif); 841 } 842 843 return (NULL); 844 } 845 846 /* 847 * bridge_delete_member: 848 * 849 * Delete the specified member interface. 850 */ 851 static void 852 bridge_delete_member(struct bridge_softc *sc, struct bridge_iflist *bif, 853 int gone) 854 { 855 struct ifnet *ifs = bif->bif_ifp; 856 857 BRIDGE_LOCK_ASSERT(sc); 858 859 if (!gone) { 860 switch (ifs->if_type) { 861 case IFT_ETHER: 862 case IFT_L2VLAN: 863 /* 864 * Take the interface out of promiscuous mode. 865 */ 866 (void) ifpromisc(ifs, 0); 867 bridge_mutecaps(bif, 0); 868 break; 869 870 case IFT_GIF: 871 break; 872 873 default: 874 #ifdef DIAGNOSTIC 875 panic("bridge_delete_member: impossible"); 876 #endif 877 break; 878 } 879 } 880 881 if (bif->bif_flags & IFBIF_STP) 882 bstp_disable(&bif->bif_stp); 883 884 ifs->if_bridge = NULL; 885 BRIDGE_XLOCK(sc); 886 LIST_REMOVE(bif, bif_next); 887 BRIDGE_XDROP(sc); 888 889 bridge_rtdelete(sc, ifs, IFBF_FLUSHALL); 890 891 BRIDGE_UNLOCK(sc); 892 bstp_destroy(&bif->bif_stp); /* prepare to free */ 893 BRIDGE_LOCK(sc); 894 free(bif, M_DEVBUF); 895 } 896 897 /* 898 * bridge_delete_span: 899 * 900 * Delete the specified span interface. 901 */ 902 static void 903 bridge_delete_span(struct bridge_softc *sc, struct bridge_iflist *bif) 904 { 905 BRIDGE_LOCK_ASSERT(sc); 906 907 KASSERT(bif->bif_ifp->if_bridge == NULL, 908 ("%s: not a span interface", __func__)); 909 910 LIST_REMOVE(bif, bif_next); 911 free(bif, M_DEVBUF); 912 } 913 914 static int 915 bridge_ioctl_add(struct bridge_softc *sc, void *arg) 916 { 917 struct ifbreq *req = arg; 918 struct bridge_iflist *bif = NULL; 919 struct ifnet *ifs; 920 int error = 0; 921 922 ifs = ifunit(req->ifbr_ifsname); 923 if (ifs == NULL) 924 return (ENOENT); 925 926 /* If it's in the span list, it can't be a member. */ 927 LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) 928 if (ifs == bif->bif_ifp) 929 return (EBUSY); 930 931 /* Allow the first Ethernet member to define the MTU */ 932 if (ifs->if_type != IFT_GIF) { 933 if (LIST_EMPTY(&sc->sc_iflist)) 934 sc->sc_ifp->if_mtu = ifs->if_mtu; 935 else if (sc->sc_ifp->if_mtu != ifs->if_mtu) { 936 if_printf(sc->sc_ifp, "invalid MTU for %s\n", 937 ifs->if_xname); 938 return (EINVAL); 939 } 940 } 941 942 if (ifs->if_bridge == sc) 943 return (EEXIST); 944 945 if (ifs->if_bridge != NULL) 946 return (EBUSY); 947 948 bif = malloc(sizeof(*bif), M_DEVBUF, M_NOWAIT|M_ZERO); 949 if (bif == NULL) 950 return (ENOMEM); 951 952 bif->bif_ifp = ifs; 953 bif->bif_flags = IFBIF_LEARNING | IFBIF_DISCOVER; 954 955 switch (ifs->if_type) { 956 case IFT_ETHER: 957 case IFT_L2VLAN: 958 /* 959 * Place the interface into promiscuous mode. 960 */ 961 error = ifpromisc(ifs, 1); 962 if (error) 963 goto out; 964 965 bridge_mutecaps(bif, 1); 966 break; 967 968 case IFT_GIF: 969 break; 970 971 default: 972 error = EINVAL; 973 goto out; 974 } 975 976 ifs->if_bridge = sc; 977 bstp_create(&sc->sc_stp, &bif->bif_stp, bif->bif_ifp); 978 /* 979 * XXX: XLOCK HERE!?! 980 * 981 * NOTE: insert_***HEAD*** should be safe for the traversals. 982 */ 983 LIST_INSERT_HEAD(&sc->sc_iflist, bif, bif_next); 984 985 out: 986 if (error) { 987 if (bif != NULL) 988 free(bif, M_DEVBUF); 989 } 990 return (error); 991 } 992 993 static int 994 bridge_ioctl_del(struct bridge_softc *sc, void *arg) 995 { 996 struct ifbreq *req = arg; 997 struct bridge_iflist *bif; 998 999 bif = bridge_lookup_member(sc, req->ifbr_ifsname); 1000 if (bif == NULL) 1001 return (ENOENT); 1002 1003 bridge_delete_member(sc, bif, 0); 1004 1005 return (0); 1006 } 1007 1008 static int 1009 bridge_ioctl_gifflags(struct bridge_softc *sc, void *arg) 1010 { 1011 struct ifbreq *req = arg; 1012 struct bridge_iflist *bif; 1013 struct bstp_port *bp; 1014 1015 bif = bridge_lookup_member(sc, req->ifbr_ifsname); 1016 if (bif == NULL) 1017 return (ENOENT); 1018 1019 bp = &bif->bif_stp; 1020 req->ifbr_ifsflags = bif->bif_flags; 1021 req->ifbr_state = bp->bp_state; 1022 req->ifbr_priority = bp->bp_priority; 1023 req->ifbr_path_cost = bp->bp_path_cost; 1024 req->ifbr_portno = bif->bif_ifp->if_index & 0xfff; 1025 req->ifbr_proto = bp->bp_protover; 1026 req->ifbr_role = bp->bp_role; 1027 req->ifbr_stpflags = bp->bp_flags; 1028 1029 /* Copy STP state options as flags */ 1030 if (bp->bp_operedge) 1031 req->ifbr_ifsflags |= IFBIF_BSTP_EDGE; 1032 if (bp->bp_flags & BSTP_PORT_AUTOEDGE) 1033 req->ifbr_ifsflags |= IFBIF_BSTP_AUTOEDGE; 1034 if (bp->bp_ptp_link) 1035 req->ifbr_ifsflags |= IFBIF_BSTP_PTP; 1036 if (bp->bp_flags & BSTP_PORT_AUTOPTP) 1037 req->ifbr_ifsflags |= IFBIF_BSTP_AUTOPTP; 1038 if (bp->bp_flags & BSTP_PORT_ADMEDGE) 1039 req->ifbr_ifsflags |= IFBIF_BSTP_ADMEDGE; 1040 if (bp->bp_flags & BSTP_PORT_ADMCOST) 1041 req->ifbr_ifsflags |= IFBIF_BSTP_ADMCOST; 1042 return (0); 1043 } 1044 1045 static int 1046 bridge_ioctl_sifflags(struct bridge_softc *sc, void *arg) 1047 { 1048 struct ifbreq *req = arg; 1049 struct bridge_iflist *bif; 1050 struct bstp_port *bp; 1051 int error; 1052 1053 bif = bridge_lookup_member(sc, req->ifbr_ifsname); 1054 if (bif == NULL) 1055 return (ENOENT); 1056 bp = &bif->bif_stp; 1057 1058 if (req->ifbr_ifsflags & IFBIF_SPAN) 1059 /* SPAN is readonly */ 1060 return (EINVAL); 1061 1062 if (req->ifbr_ifsflags & IFBIF_STP) { 1063 if ((bif->bif_flags & IFBIF_STP) == 0) { 1064 error = bstp_enable(&bif->bif_stp); 1065 if (error) 1066 return (error); 1067 } 1068 } else { 1069 if ((bif->bif_flags & IFBIF_STP) != 0) 1070 bstp_disable(&bif->bif_stp); 1071 } 1072 1073 /* Pass on STP flags */ 1074 bstp_set_edge(bp, req->ifbr_ifsflags & IFBIF_BSTP_EDGE ? 1 : 0); 1075 bstp_set_autoedge(bp, req->ifbr_ifsflags & IFBIF_BSTP_AUTOEDGE ? 1 : 0); 1076 bstp_set_ptp(bp, req->ifbr_ifsflags & IFBIF_BSTP_PTP ? 1 : 0); 1077 bstp_set_autoptp(bp, req->ifbr_ifsflags & IFBIF_BSTP_AUTOPTP ? 1 : 0); 1078 1079 /* Save the bits relating to the bridge */ 1080 bif->bif_flags = req->ifbr_ifsflags & IFBIFMASK; 1081 1082 return (0); 1083 } 1084 1085 static int 1086 bridge_ioctl_scache(struct bridge_softc *sc, void *arg) 1087 { 1088 struct ifbrparam *param = arg; 1089 1090 sc->sc_brtmax = param->ifbrp_csize; 1091 bridge_rttrim(sc); 1092 1093 return (0); 1094 } 1095 1096 static int 1097 bridge_ioctl_gcache(struct bridge_softc *sc, void *arg) 1098 { 1099 struct ifbrparam *param = arg; 1100 1101 param->ifbrp_csize = sc->sc_brtmax; 1102 1103 return (0); 1104 } 1105 1106 static int 1107 bridge_ioctl_gifs(struct bridge_softc *sc, void *arg) 1108 { 1109 struct ifbifconf *bifc = arg; 1110 struct bridge_iflist *bif; 1111 struct ifbreq breq; 1112 char *buf, *outbuf; 1113 int count, buflen, len, error = 0; 1114 1115 count = 0; 1116 LIST_FOREACH(bif, &sc->sc_iflist, bif_next) 1117 count++; 1118 LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) 1119 count++; 1120 1121 buflen = sizeof(breq) * count; 1122 if (bifc->ifbic_len == 0) { 1123 bifc->ifbic_len = buflen; 1124 return (0); 1125 } 1126 BRIDGE_UNLOCK(sc); 1127 outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 1128 BRIDGE_LOCK(sc); 1129 1130 count = 0; 1131 buf = outbuf; 1132 len = min(bifc->ifbic_len, buflen); 1133 bzero(&breq, sizeof(breq)); 1134 LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { 1135 if (len < sizeof(breq)) 1136 break; 1137 1138 strlcpy(breq.ifbr_ifsname, bif->bif_ifp->if_xname, 1139 sizeof(breq.ifbr_ifsname)); 1140 /* Fill in the ifbreq structure */ 1141 error = bridge_ioctl_gifflags(sc, &breq); 1142 if (error) 1143 break; 1144 memcpy(buf, &breq, sizeof(breq)); 1145 count++; 1146 buf += sizeof(breq); 1147 len -= sizeof(breq); 1148 } 1149 LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) { 1150 if (len < sizeof(breq)) 1151 break; 1152 1153 strlcpy(breq.ifbr_ifsname, bif->bif_ifp->if_xname, 1154 sizeof(breq.ifbr_ifsname)); 1155 breq.ifbr_ifsflags = bif->bif_flags; 1156 breq.ifbr_portno = bif->bif_ifp->if_index & 0xfff; 1157 memcpy(buf, &breq, sizeof(breq)); 1158 count++; 1159 buf += sizeof(breq); 1160 len -= sizeof(breq); 1161 } 1162 1163 BRIDGE_UNLOCK(sc); 1164 bifc->ifbic_len = sizeof(breq) * count; 1165 error = copyout(outbuf, bifc->ifbic_req, bifc->ifbic_len); 1166 BRIDGE_LOCK(sc); 1167 free(outbuf, M_TEMP); 1168 return (error); 1169 } 1170 1171 static int 1172 bridge_ioctl_rts(struct bridge_softc *sc, void *arg) 1173 { 1174 struct ifbaconf *bac = arg; 1175 struct bridge_rtnode *brt; 1176 struct ifbareq bareq; 1177 char *buf, *outbuf; 1178 int count, buflen, len, error = 0; 1179 1180 if (bac->ifbac_len == 0) 1181 return (0); 1182 1183 count = 0; 1184 LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) 1185 count++; 1186 buflen = sizeof(bareq) * count; 1187 1188 BRIDGE_UNLOCK(sc); 1189 outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 1190 BRIDGE_LOCK(sc); 1191 1192 count = 0; 1193 buf = outbuf; 1194 len = min(bac->ifbac_len, buflen); 1195 bzero(&bareq, sizeof(bareq)); 1196 LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) { 1197 if (len < sizeof(bareq)) 1198 goto out; 1199 strlcpy(bareq.ifba_ifsname, brt->brt_ifp->if_xname, 1200 sizeof(bareq.ifba_ifsname)); 1201 memcpy(bareq.ifba_dst, brt->brt_addr, sizeof(brt->brt_addr)); 1202 bareq.ifba_vlan = brt->brt_vlan; 1203 if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC && 1204 time_uptime < brt->brt_expire) 1205 bareq.ifba_expire = brt->brt_expire - time_uptime; 1206 else 1207 bareq.ifba_expire = 0; 1208 bareq.ifba_flags = brt->brt_flags; 1209 1210 memcpy(buf, &bareq, sizeof(bareq)); 1211 count++; 1212 buf += sizeof(bareq); 1213 len -= sizeof(bareq); 1214 } 1215 out: 1216 BRIDGE_UNLOCK(sc); 1217 bac->ifbac_len = sizeof(bareq) * count; 1218 error = copyout(outbuf, bac->ifbac_req, bac->ifbac_len); 1219 BRIDGE_LOCK(sc); 1220 free(outbuf, M_TEMP); 1221 return (error); 1222 } 1223 1224 static int 1225 bridge_ioctl_saddr(struct bridge_softc *sc, void *arg) 1226 { 1227 struct ifbareq *req = arg; 1228 struct bridge_iflist *bif; 1229 int error; 1230 1231 bif = bridge_lookup_member(sc, req->ifba_ifsname); 1232 if (bif == NULL) 1233 return (ENOENT); 1234 1235 error = bridge_rtupdate(sc, req->ifba_dst, req->ifba_vlan, bif, 1, 1236 req->ifba_flags); 1237 1238 return (error); 1239 } 1240 1241 static int 1242 bridge_ioctl_sto(struct bridge_softc *sc, void *arg) 1243 { 1244 struct ifbrparam *param = arg; 1245 1246 sc->sc_brttimeout = param->ifbrp_ctime; 1247 return (0); 1248 } 1249 1250 static int 1251 bridge_ioctl_gto(struct bridge_softc *sc, void *arg) 1252 { 1253 struct ifbrparam *param = arg; 1254 1255 param->ifbrp_ctime = sc->sc_brttimeout; 1256 return (0); 1257 } 1258 1259 static int 1260 bridge_ioctl_daddr(struct bridge_softc *sc, void *arg) 1261 { 1262 struct ifbareq *req = arg; 1263 1264 return (bridge_rtdaddr(sc, req->ifba_dst, req->ifba_vlan)); 1265 } 1266 1267 static int 1268 bridge_ioctl_flush(struct bridge_softc *sc, void *arg) 1269 { 1270 struct ifbreq *req = arg; 1271 1272 bridge_rtflush(sc, req->ifbr_ifsflags); 1273 return (0); 1274 } 1275 1276 static int 1277 bridge_ioctl_gpri(struct bridge_softc *sc, void *arg) 1278 { 1279 struct ifbrparam *param = arg; 1280 struct bstp_state *bs = &sc->sc_stp; 1281 1282 param->ifbrp_prio = bs->bs_bridge_priority; 1283 return (0); 1284 } 1285 1286 static int 1287 bridge_ioctl_spri(struct bridge_softc *sc, void *arg) 1288 { 1289 struct ifbrparam *param = arg; 1290 1291 return (bstp_set_priority(&sc->sc_stp, param->ifbrp_prio)); 1292 } 1293 1294 static int 1295 bridge_ioctl_ght(struct bridge_softc *sc, void *arg) 1296 { 1297 struct ifbrparam *param = arg; 1298 struct bstp_state *bs = &sc->sc_stp; 1299 1300 param->ifbrp_hellotime = bs->bs_bridge_htime >> 8; 1301 return (0); 1302 } 1303 1304 static int 1305 bridge_ioctl_sht(struct bridge_softc *sc, void *arg) 1306 { 1307 struct ifbrparam *param = arg; 1308 1309 return (bstp_set_htime(&sc->sc_stp, param->ifbrp_hellotime)); 1310 } 1311 1312 static int 1313 bridge_ioctl_gfd(struct bridge_softc *sc, void *arg) 1314 { 1315 struct ifbrparam *param = arg; 1316 struct bstp_state *bs = &sc->sc_stp; 1317 1318 param->ifbrp_fwddelay = bs->bs_bridge_fdelay >> 8; 1319 return (0); 1320 } 1321 1322 static int 1323 bridge_ioctl_sfd(struct bridge_softc *sc, void *arg) 1324 { 1325 struct ifbrparam *param = arg; 1326 1327 return (bstp_set_fdelay(&sc->sc_stp, param->ifbrp_fwddelay)); 1328 } 1329 1330 static int 1331 bridge_ioctl_gma(struct bridge_softc *sc, void *arg) 1332 { 1333 struct ifbrparam *param = arg; 1334 struct bstp_state *bs = &sc->sc_stp; 1335 1336 param->ifbrp_maxage = bs->bs_bridge_max_age >> 8; 1337 return (0); 1338 } 1339 1340 static int 1341 bridge_ioctl_sma(struct bridge_softc *sc, void *arg) 1342 { 1343 struct ifbrparam *param = arg; 1344 1345 return (bstp_set_maxage(&sc->sc_stp, param->ifbrp_maxage)); 1346 } 1347 1348 static int 1349 bridge_ioctl_sifprio(struct bridge_softc *sc, void *arg) 1350 { 1351 struct ifbreq *req = arg; 1352 struct bridge_iflist *bif; 1353 1354 bif = bridge_lookup_member(sc, req->ifbr_ifsname); 1355 if (bif == NULL) 1356 return (ENOENT); 1357 1358 return (bstp_set_port_priority(&bif->bif_stp, req->ifbr_priority)); 1359 } 1360 1361 static int 1362 bridge_ioctl_sifcost(struct bridge_softc *sc, void *arg) 1363 { 1364 struct ifbreq *req = arg; 1365 struct bridge_iflist *bif; 1366 1367 bif = bridge_lookup_member(sc, req->ifbr_ifsname); 1368 if (bif == NULL) 1369 return (ENOENT); 1370 1371 return (bstp_set_path_cost(&bif->bif_stp, req->ifbr_path_cost)); 1372 } 1373 1374 static int 1375 bridge_ioctl_addspan(struct bridge_softc *sc, void *arg) 1376 { 1377 struct ifbreq *req = arg; 1378 struct bridge_iflist *bif = NULL; 1379 struct ifnet *ifs; 1380 1381 ifs = ifunit(req->ifbr_ifsname); 1382 if (ifs == NULL) 1383 return (ENOENT); 1384 1385 LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) 1386 if (ifs == bif->bif_ifp) 1387 return (EBUSY); 1388 1389 if (ifs->if_bridge != NULL) 1390 return (EBUSY); 1391 1392 switch (ifs->if_type) { 1393 case IFT_ETHER: 1394 case IFT_GIF: 1395 case IFT_L2VLAN: 1396 break; 1397 default: 1398 return (EINVAL); 1399 } 1400 1401 bif = malloc(sizeof(*bif), M_DEVBUF, M_NOWAIT|M_ZERO); 1402 if (bif == NULL) 1403 return (ENOMEM); 1404 1405 bif->bif_ifp = ifs; 1406 bif->bif_flags = IFBIF_SPAN; 1407 1408 LIST_INSERT_HEAD(&sc->sc_spanlist, bif, bif_next); 1409 1410 return (0); 1411 } 1412 1413 static int 1414 bridge_ioctl_delspan(struct bridge_softc *sc, void *arg) 1415 { 1416 struct ifbreq *req = arg; 1417 struct bridge_iflist *bif; 1418 struct ifnet *ifs; 1419 1420 ifs = ifunit(req->ifbr_ifsname); 1421 if (ifs == NULL) 1422 return (ENOENT); 1423 1424 LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) 1425 if (ifs == bif->bif_ifp) 1426 break; 1427 1428 if (bif == NULL) 1429 return (ENOENT); 1430 1431 bridge_delete_span(sc, bif); 1432 1433 return (0); 1434 } 1435 1436 static int 1437 bridge_ioctl_gbparam(struct bridge_softc *sc, void *arg) 1438 { 1439 struct ifbropreq *req = arg; 1440 struct bstp_state *bs = &sc->sc_stp; 1441 struct bstp_port *root_port; 1442 1443 req->ifbop_maxage = bs->bs_bridge_max_age >> 8; 1444 req->ifbop_hellotime = bs->bs_bridge_htime >> 8; 1445 req->ifbop_fwddelay = bs->bs_bridge_fdelay >> 8; 1446 1447 root_port = bs->bs_root_port; 1448 if (root_port == NULL) 1449 req->ifbop_root_port = 0; 1450 else 1451 req->ifbop_root_port = root_port->bp_ifp->if_index; 1452 1453 req->ifbop_holdcount = bs->bs_txholdcount; 1454 req->ifbop_priority = bs->bs_bridge_priority; 1455 req->ifbop_protocol = bs->bs_protover; 1456 req->ifbop_root_path_cost = bs->bs_root_pv.pv_cost; 1457 req->ifbop_bridgeid = bs->bs_bridge_pv.pv_dbridge_id; 1458 req->ifbop_designated_root = bs->bs_root_pv.pv_root_id; 1459 req->ifbop_designated_bridge = bs->bs_root_pv.pv_dbridge_id; 1460 req->ifbop_last_tc_time.tv_sec = bs->bs_last_tc_time.tv_sec; 1461 req->ifbop_last_tc_time.tv_usec = bs->bs_last_tc_time.tv_usec; 1462 1463 return (0); 1464 } 1465 1466 static int 1467 bridge_ioctl_grte(struct bridge_softc *sc, void *arg) 1468 { 1469 struct ifbrparam *param = arg; 1470 1471 param->ifbrp_cexceeded = sc->sc_brtexceeded; 1472 return (0); 1473 } 1474 1475 static int 1476 bridge_ioctl_gifsstp(struct bridge_softc *sc, void *arg) 1477 { 1478 struct ifbpstpconf *bifstp = arg; 1479 struct bridge_iflist *bif; 1480 struct bstp_port *bp; 1481 struct ifbpstpreq bpreq; 1482 char *buf, *outbuf; 1483 int count, buflen, len, error = 0; 1484 1485 count = 0; 1486 LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { 1487 if ((bif->bif_flags & IFBIF_STP) != 0) 1488 count++; 1489 } 1490 1491 buflen = sizeof(bpreq) * count; 1492 if (bifstp->ifbpstp_len == 0) { 1493 bifstp->ifbpstp_len = buflen; 1494 return (0); 1495 } 1496 1497 BRIDGE_UNLOCK(sc); 1498 outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 1499 BRIDGE_LOCK(sc); 1500 1501 count = 0; 1502 buf = outbuf; 1503 len = min(bifstp->ifbpstp_len, buflen); 1504 bzero(&bpreq, sizeof(bpreq)); 1505 LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { 1506 if (len < sizeof(bpreq)) 1507 break; 1508 1509 if ((bif->bif_flags & IFBIF_STP) == 0) 1510 continue; 1511 1512 bp = &bif->bif_stp; 1513 bpreq.ifbp_portno = bif->bif_ifp->if_index & 0xfff; 1514 bpreq.ifbp_fwd_trans = bp->bp_forward_transitions; 1515 bpreq.ifbp_design_cost = bp->bp_desg_pv.pv_cost; 1516 bpreq.ifbp_design_port = bp->bp_desg_pv.pv_port_id; 1517 bpreq.ifbp_design_bridge = bp->bp_desg_pv.pv_dbridge_id; 1518 bpreq.ifbp_design_root = bp->bp_desg_pv.pv_root_id; 1519 1520 memcpy(buf, &bpreq, sizeof(bpreq)); 1521 count++; 1522 buf += sizeof(bpreq); 1523 len -= sizeof(bpreq); 1524 } 1525 1526 BRIDGE_UNLOCK(sc); 1527 bifstp->ifbpstp_len = sizeof(bpreq) * count; 1528 error = copyout(outbuf, bifstp->ifbpstp_req, bifstp->ifbpstp_len); 1529 BRIDGE_LOCK(sc); 1530 free(outbuf, M_TEMP); 1531 return (error); 1532 } 1533 1534 static int 1535 bridge_ioctl_sproto(struct bridge_softc *sc, void *arg) 1536 { 1537 struct ifbrparam *param = arg; 1538 1539 return (bstp_set_protocol(&sc->sc_stp, param->ifbrp_proto)); 1540 } 1541 1542 static int 1543 bridge_ioctl_stxhc(struct bridge_softc *sc, void *arg) 1544 { 1545 struct ifbrparam *param = arg; 1546 1547 return (bstp_set_holdcount(&sc->sc_stp, param->ifbrp_txhc)); 1548 } 1549 1550 /* 1551 * bridge_ifdetach: 1552 * 1553 * Detach an interface from a bridge. Called when a member 1554 * interface is detaching. 1555 */ 1556 static void 1557 bridge_ifdetach(void *arg __unused, struct ifnet *ifp) 1558 { 1559 struct bridge_softc *sc = ifp->if_bridge; 1560 struct bridge_iflist *bif; 1561 1562 /* Check if the interface is a bridge member */ 1563 if (sc != NULL) { 1564 BRIDGE_LOCK(sc); 1565 1566 bif = bridge_lookup_member_if(sc, ifp); 1567 if (bif != NULL) 1568 bridge_delete_member(sc, bif, 1); 1569 1570 BRIDGE_UNLOCK(sc); 1571 return; 1572 } 1573 1574 /* Check if the interface is a span port */ 1575 mtx_lock(&bridge_list_mtx); 1576 LIST_FOREACH(sc, &bridge_list, sc_list) { 1577 BRIDGE_LOCK(sc); 1578 LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) 1579 if (ifp == bif->bif_ifp) { 1580 bridge_delete_span(sc, bif); 1581 break; 1582 } 1583 1584 BRIDGE_UNLOCK(sc); 1585 } 1586 mtx_unlock(&bridge_list_mtx); 1587 } 1588 1589 /* 1590 * bridge_init: 1591 * 1592 * Initialize a bridge interface. 1593 */ 1594 static void 1595 bridge_init(void *xsc) 1596 { 1597 struct bridge_softc *sc = (struct bridge_softc *)xsc; 1598 struct ifnet *ifp = sc->sc_ifp; 1599 1600 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1601 return; 1602 1603 BRIDGE_LOCK(sc); 1604 callout_reset(&sc->sc_brcallout, bridge_rtable_prune_period * hz, 1605 bridge_timer, sc); 1606 1607 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1608 bstp_init(&sc->sc_stp); /* Initialize Spanning Tree */ 1609 1610 BRIDGE_UNLOCK(sc); 1611 } 1612 1613 /* 1614 * bridge_stop: 1615 * 1616 * Stop the bridge interface. 1617 */ 1618 static void 1619 bridge_stop(struct ifnet *ifp, int disable) 1620 { 1621 struct bridge_softc *sc = ifp->if_softc; 1622 1623 BRIDGE_LOCK_ASSERT(sc); 1624 1625 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1626 return; 1627 1628 callout_stop(&sc->sc_brcallout); 1629 bstp_stop(&sc->sc_stp); 1630 1631 bridge_rtflush(sc, IFBF_FLUSHDYN); 1632 1633 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1634 } 1635 1636 /* 1637 * bridge_enqueue: 1638 * 1639 * Enqueue a packet on a bridge member interface. 1640 * 1641 */ 1642 static void 1643 bridge_enqueue(struct bridge_softc *sc, struct ifnet *dst_ifp, struct mbuf *m) 1644 { 1645 int len, err = 0; 1646 short mflags; 1647 struct mbuf *m0; 1648 1649 len = m->m_pkthdr.len; 1650 mflags = m->m_flags; 1651 1652 /* We may be sending a fragment so traverse the mbuf */ 1653 for (; m; m = m0) { 1654 m0 = m->m_nextpkt; 1655 m->m_nextpkt = NULL; 1656 1657 if (err == 0) 1658 IFQ_ENQUEUE(&dst_ifp->if_snd, m, err); 1659 } 1660 1661 if (err == 0) { 1662 1663 sc->sc_ifp->if_opackets++; 1664 sc->sc_ifp->if_obytes += len; 1665 1666 dst_ifp->if_obytes += len; 1667 1668 if (mflags & M_MCAST) { 1669 sc->sc_ifp->if_omcasts++; 1670 dst_ifp->if_omcasts++; 1671 } 1672 } 1673 1674 if ((dst_ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) 1675 (*dst_ifp->if_start)(dst_ifp); 1676 } 1677 1678 /* 1679 * bridge_dummynet: 1680 * 1681 * Receive a queued packet from dummynet and pass it on to the output 1682 * interface. 1683 * 1684 * The mbuf has the Ethernet header already attached. 1685 */ 1686 static void 1687 bridge_dummynet(struct mbuf *m, struct ifnet *ifp) 1688 { 1689 struct bridge_softc *sc; 1690 1691 sc = ifp->if_bridge; 1692 1693 /* 1694 * The packet didnt originate from a member interface. This should only 1695 * ever happen if a member interface is removed while packets are 1696 * queued for it. 1697 */ 1698 if (sc == NULL) { 1699 m_freem(m); 1700 return; 1701 } 1702 1703 if (PFIL_HOOKED(&inet_pfil_hook) 1704 #ifdef INET6 1705 || PFIL_HOOKED(&inet6_pfil_hook) 1706 #endif 1707 ) { 1708 if (bridge_pfil(&m, sc->sc_ifp, ifp, PFIL_OUT) != 0) 1709 return; 1710 if (m == NULL) 1711 return; 1712 } 1713 1714 bridge_enqueue(sc, ifp, m); 1715 } 1716 1717 /* 1718 * bridge_output: 1719 * 1720 * Send output from a bridge member interface. This 1721 * performs the bridging function for locally originated 1722 * packets. 1723 * 1724 * The mbuf has the Ethernet header already attached. We must 1725 * enqueue or free the mbuf before returning. 1726 */ 1727 static int 1728 bridge_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa, 1729 struct rtentry *rt) 1730 { 1731 struct ether_header *eh; 1732 struct ifnet *dst_if; 1733 struct bridge_softc *sc; 1734 uint16_t vlan; 1735 1736 if (m->m_len < ETHER_HDR_LEN) { 1737 m = m_pullup(m, ETHER_HDR_LEN); 1738 if (m == NULL) 1739 return (0); 1740 } 1741 1742 eh = mtod(m, struct ether_header *); 1743 sc = ifp->if_bridge; 1744 vlan = VLANTAGOF(m); 1745 1746 BRIDGE_LOCK(sc); 1747 1748 /* 1749 * If bridge is down, but the original output interface is up, 1750 * go ahead and send out that interface. Otherwise, the packet 1751 * is dropped below. 1752 */ 1753 if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1754 dst_if = ifp; 1755 goto sendunicast; 1756 } 1757 1758 /* 1759 * If the packet is a multicast, or we don't know a better way to 1760 * get there, send to all interfaces. 1761 */ 1762 if (ETHER_IS_MULTICAST(eh->ether_dhost)) 1763 dst_if = NULL; 1764 else 1765 dst_if = bridge_rtlookup(sc, eh->ether_dhost, vlan); 1766 if (dst_if == NULL) { 1767 struct bridge_iflist *bif; 1768 struct mbuf *mc; 1769 int error = 0, used = 0; 1770 1771 bridge_span(sc, m); 1772 1773 BRIDGE_LOCK2REF(sc, error); 1774 if (error) { 1775 m_freem(m); 1776 return (0); 1777 } 1778 1779 LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { 1780 dst_if = bif->bif_ifp; 1781 1782 if (dst_if->if_type == IFT_GIF) 1783 continue; 1784 if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) 1785 continue; 1786 1787 /* 1788 * If this is not the original output interface, 1789 * and the interface is participating in spanning 1790 * tree, make sure the port is in a state that 1791 * allows forwarding. 1792 */ 1793 if (dst_if != ifp && (bif->bif_flags & IFBIF_STP) && 1794 bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) 1795 continue; 1796 1797 if (LIST_NEXT(bif, bif_next) == NULL) { 1798 used = 1; 1799 mc = m; 1800 } else { 1801 mc = m_copypacket(m, M_DONTWAIT); 1802 if (mc == NULL) { 1803 sc->sc_ifp->if_oerrors++; 1804 continue; 1805 } 1806 } 1807 1808 bridge_enqueue(sc, dst_if, mc); 1809 } 1810 if (used == 0) 1811 m_freem(m); 1812 BRIDGE_UNREF(sc); 1813 return (0); 1814 } 1815 1816 sendunicast: 1817 /* 1818 * XXX Spanning tree consideration here? 1819 */ 1820 1821 bridge_span(sc, m); 1822 if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1823 m_freem(m); 1824 BRIDGE_UNLOCK(sc); 1825 return (0); 1826 } 1827 1828 BRIDGE_UNLOCK(sc); 1829 bridge_enqueue(sc, dst_if, m); 1830 return (0); 1831 } 1832 1833 /* 1834 * bridge_start: 1835 * 1836 * Start output on a bridge. 1837 * 1838 */ 1839 static void 1840 bridge_start(struct ifnet *ifp) 1841 { 1842 struct bridge_softc *sc; 1843 struct mbuf *m; 1844 struct ether_header *eh; 1845 struct ifnet *dst_if; 1846 1847 sc = ifp->if_softc; 1848 1849 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1850 for (;;) { 1851 IFQ_DEQUEUE(&ifp->if_snd, m); 1852 if (m == 0) 1853 break; 1854 BPF_MTAP(ifp, m); 1855 1856 eh = mtod(m, struct ether_header *); 1857 dst_if = NULL; 1858 1859 BRIDGE_LOCK(sc); 1860 if ((m->m_flags & (M_BCAST|M_MCAST)) == 0) { 1861 dst_if = bridge_rtlookup(sc, eh->ether_dhost, 1); 1862 } 1863 1864 if (dst_if == NULL) 1865 bridge_broadcast(sc, ifp, m, 0); 1866 else { 1867 BRIDGE_UNLOCK(sc); 1868 bridge_enqueue(sc, dst_if, m); 1869 } 1870 } 1871 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1872 } 1873 1874 /* 1875 * bridge_forward: 1876 * 1877 * The forwarding function of the bridge. 1878 * 1879 * NOTE: Releases the lock on return. 1880 */ 1881 static void 1882 bridge_forward(struct bridge_softc *sc, struct bridge_iflist *sbif, 1883 struct mbuf *m) 1884 { 1885 struct bridge_iflist *dbif; 1886 struct ifnet *src_if, *dst_if, *ifp; 1887 struct ether_header *eh; 1888 uint16_t vlan; 1889 1890 src_if = m->m_pkthdr.rcvif; 1891 ifp = sc->sc_ifp; 1892 1893 sc->sc_ifp->if_ipackets++; 1894 sc->sc_ifp->if_ibytes += m->m_pkthdr.len; 1895 vlan = VLANTAGOF(m); 1896 1897 if ((sbif->bif_flags & IFBIF_STP) && 1898 sbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) { 1899 BRIDGE_UNLOCK(sc); 1900 m_freem(m); 1901 return; 1902 } 1903 1904 eh = mtod(m, struct ether_header *); 1905 1906 /* 1907 * If the interface is learning, and the source 1908 * address is valid and not multicast, record 1909 * the address. 1910 */ 1911 if ((sbif->bif_flags & IFBIF_LEARNING) != 0 && 1912 ETHER_IS_MULTICAST(eh->ether_shost) == 0 && 1913 (eh->ether_shost[0] == 0 && 1914 eh->ether_shost[1] == 0 && 1915 eh->ether_shost[2] == 0 && 1916 eh->ether_shost[3] == 0 && 1917 eh->ether_shost[4] == 0 && 1918 eh->ether_shost[5] == 0) == 0) { 1919 (void) bridge_rtupdate(sc, eh->ether_shost, vlan, 1920 sbif, 0, IFBAF_DYNAMIC); 1921 } 1922 1923 if ((sbif->bif_flags & IFBIF_STP) != 0 && 1924 sbif->bif_stp.bp_state == BSTP_IFSTATE_LEARNING) { 1925 m_freem(m); 1926 BRIDGE_UNLOCK(sc); 1927 return; 1928 } 1929 1930 /* 1931 * At this point, the port either doesn't participate 1932 * in spanning tree or it is in the forwarding state. 1933 */ 1934 1935 /* 1936 * If the packet is unicast, destined for someone on 1937 * "this" side of the bridge, drop it. 1938 */ 1939 if ((m->m_flags & (M_BCAST|M_MCAST)) == 0) { 1940 dst_if = bridge_rtlookup(sc, eh->ether_dhost, vlan); 1941 if (src_if == dst_if) { 1942 BRIDGE_UNLOCK(sc); 1943 m_freem(m); 1944 return; 1945 } 1946 } else { 1947 /* ...forward it to all interfaces. */ 1948 sc->sc_ifp->if_imcasts++; 1949 dst_if = NULL; 1950 } 1951 1952 /* 1953 * If we have a destination interface which is a member of our bridge, 1954 * OR this is a unicast packet, push it through the bpf(4) machinery. 1955 * For broadcast or multicast packets, don't bother because it will 1956 * be reinjected into ether_input. We do this before we pass the packets 1957 * through the pfil(9) framework, as it is possible that pfil(9) will 1958 * drop the packet, or possibly modify it, making it difficult to debug 1959 * firewall issues on the bridge. 1960 */ 1961 if (dst_if != NULL || (m->m_flags & (M_BCAST | M_MCAST)) == 0) 1962 BPF_MTAP(ifp, m); 1963 1964 /* run the packet filter */ 1965 if (PFIL_HOOKED(&inet_pfil_hook) 1966 #ifdef INET6 1967 || PFIL_HOOKED(&inet6_pfil_hook) 1968 #endif 1969 ) { 1970 BRIDGE_UNLOCK(sc); 1971 if (bridge_pfil(&m, ifp, src_if, PFIL_IN) != 0) 1972 return; 1973 if (m == NULL) 1974 return; 1975 BRIDGE_LOCK(sc); 1976 } 1977 1978 if (dst_if == NULL) { 1979 bridge_broadcast(sc, src_if, m, 1); 1980 return; 1981 } 1982 1983 /* 1984 * At this point, we're dealing with a unicast frame 1985 * going to a different interface. 1986 */ 1987 if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1988 BRIDGE_UNLOCK(sc); 1989 m_freem(m); 1990 return; 1991 } 1992 dbif = bridge_lookup_member_if(sc, dst_if); 1993 if (dbif == NULL) { 1994 /* Not a member of the bridge (anymore?) */ 1995 BRIDGE_UNLOCK(sc); 1996 m_freem(m); 1997 return; 1998 } 1999 2000 /* Private segments can not talk to each other */ 2001 if (sbif->bif_flags & dbif->bif_flags & IFBIF_PRIVATE) { 2002 BRIDGE_UNLOCK(sc); 2003 m_freem(m); 2004 return; 2005 } 2006 2007 if ((dbif->bif_flags & IFBIF_STP) && 2008 dbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) { 2009 BRIDGE_UNLOCK(sc); 2010 m_freem(m); 2011 return; 2012 } 2013 2014 BRIDGE_UNLOCK(sc); 2015 2016 if (PFIL_HOOKED(&inet_pfil_hook) 2017 #ifdef INET6 2018 || PFIL_HOOKED(&inet6_pfil_hook) 2019 #endif 2020 ) { 2021 if (bridge_pfil(&m, sc->sc_ifp, dst_if, PFIL_OUT) != 0) 2022 return; 2023 if (m == NULL) 2024 return; 2025 } 2026 2027 bridge_enqueue(sc, dst_if, m); 2028 } 2029 2030 /* 2031 * bridge_input: 2032 * 2033 * Receive input from a member interface. Queue the packet for 2034 * bridging if it is not for us. 2035 */ 2036 static struct mbuf * 2037 bridge_input(struct ifnet *ifp, struct mbuf *m) 2038 { 2039 struct bridge_softc *sc = ifp->if_bridge; 2040 struct bridge_iflist *bif, *bif2; 2041 struct ifnet *bifp; 2042 struct ether_header *eh; 2043 struct mbuf *mc, *mc2; 2044 uint16_t vlan; 2045 2046 if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2047 return (m); 2048 2049 bifp = sc->sc_ifp; 2050 vlan = VLANTAGOF(m); 2051 2052 /* 2053 * Implement support for bridge monitoring. If this flag has been 2054 * set on this interface, discard the packet once we push it through 2055 * the bpf(4) machinery, but before we do, increment the byte and 2056 * packet counters associated with this interface. 2057 */ 2058 if ((bifp->if_flags & IFF_MONITOR) != 0) { 2059 m->m_pkthdr.rcvif = bifp; 2060 BPF_MTAP(bifp, m); 2061 bifp->if_ipackets++; 2062 bifp->if_ibytes += m->m_pkthdr.len; 2063 m_freem(m); 2064 return (NULL); 2065 } 2066 BRIDGE_LOCK(sc); 2067 bif = bridge_lookup_member_if(sc, ifp); 2068 if (bif == NULL) { 2069 BRIDGE_UNLOCK(sc); 2070 return (m); 2071 } 2072 2073 eh = mtod(m, struct ether_header *); 2074 2075 if (memcmp(eh->ether_dhost, IF_LLADDR(bifp), 2076 ETHER_ADDR_LEN) == 0) { 2077 /* 2078 * Filter on the physical interface. 2079 */ 2080 if (pfil_local_phys && (PFIL_HOOKED(&inet_pfil_hook) 2081 #ifdef INET6 2082 || PFIL_HOOKED(&inet6_pfil_hook) 2083 #endif 2084 )) { 2085 if (bridge_pfil(&m, NULL, ifp, PFIL_IN) != 0 || 2086 m == NULL) { 2087 BRIDGE_UNLOCK(sc); 2088 return (NULL); 2089 } 2090 } 2091 2092 /* 2093 * If the packet is for us, set the packets source as the 2094 * bridge, and return the packet back to ether_input for 2095 * local processing. 2096 */ 2097 2098 /* Note where to send the reply to */ 2099 if (bif->bif_flags & IFBIF_LEARNING) 2100 (void) bridge_rtupdate(sc, 2101 eh->ether_shost, vlan, bif, 0, IFBAF_DYNAMIC); 2102 2103 /* Mark the packet as arriving on the bridge interface */ 2104 m->m_pkthdr.rcvif = bifp; 2105 BPF_MTAP(bifp, m); 2106 bifp->if_ipackets++; 2107 2108 BRIDGE_UNLOCK(sc); 2109 return (m); 2110 } 2111 2112 bridge_span(sc, m); 2113 2114 if (m->m_flags & (M_BCAST|M_MCAST)) { 2115 /* Tap off 802.1D packets; they do not get forwarded. */ 2116 if (memcmp(eh->ether_dhost, bstp_etheraddr, 2117 ETHER_ADDR_LEN) == 0) { 2118 m = bstp_input(&bif->bif_stp, ifp, m); 2119 if (m == NULL) { 2120 BRIDGE_UNLOCK(sc); 2121 return (NULL); 2122 } 2123 } 2124 2125 if ((bif->bif_flags & IFBIF_STP) && 2126 bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) { 2127 BRIDGE_UNLOCK(sc); 2128 return (m); 2129 } 2130 2131 /* 2132 * Make a deep copy of the packet and enqueue the copy 2133 * for bridge processing; return the original packet for 2134 * local processing. 2135 */ 2136 mc = m_dup(m, M_DONTWAIT); 2137 if (mc == NULL) { 2138 BRIDGE_UNLOCK(sc); 2139 return (m); 2140 } 2141 2142 /* Perform the bridge forwarding function with the copy. */ 2143 bridge_forward(sc, bif, mc); 2144 2145 /* 2146 * Reinject the mbuf as arriving on the bridge so we have a 2147 * chance at claiming multicast packets. We can not loop back 2148 * here from ether_input as a bridge is never a member of a 2149 * bridge. 2150 */ 2151 KASSERT(bifp->if_bridge == NULL, 2152 ("loop created in bridge_input")); 2153 mc2 = m_dup(m, M_DONTWAIT); 2154 if (mc2 != NULL) { 2155 /* Keep the layer3 header aligned */ 2156 int i = min(mc2->m_pkthdr.len, max_protohdr); 2157 mc2 = m_copyup(mc2, i, ETHER_ALIGN); 2158 } 2159 if (mc2 != NULL) { 2160 mc2->m_pkthdr.rcvif = bifp; 2161 (*bifp->if_input)(bifp, mc2); 2162 } 2163 2164 /* Return the original packet for local processing. */ 2165 return (m); 2166 } 2167 2168 if ((bif->bif_flags & IFBIF_STP) && 2169 bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) { 2170 BRIDGE_UNLOCK(sc); 2171 return (m); 2172 } 2173 2174 #ifdef DEV_CARP 2175 # define OR_CARP_CHECK_WE_ARE_DST(iface) \ 2176 || ((iface)->if_carp \ 2177 && carp_forus((iface)->if_carp, eh->ether_dhost)) 2178 # define OR_CARP_CHECK_WE_ARE_SRC(iface) \ 2179 || ((iface)->if_carp \ 2180 && carp_forus((iface)->if_carp, eh->ether_shost)) 2181 #else 2182 # define OR_CARP_CHECK_WE_ARE_DST(iface) 2183 # define OR_CARP_CHECK_WE_ARE_SRC(iface) 2184 #endif 2185 2186 #define GRAB_OUR_PACKETS(iface) \ 2187 if ((iface)->if_type == IFT_GIF) \ 2188 continue; \ 2189 /* It is destined for us. */ \ 2190 if (memcmp(IF_LLADDR((iface)), eh->ether_dhost, ETHER_ADDR_LEN) == 0 \ 2191 OR_CARP_CHECK_WE_ARE_DST((iface)) \ 2192 ) { \ 2193 if (bif->bif_flags & IFBIF_LEARNING) \ 2194 (void) bridge_rtupdate(sc, eh->ether_shost, \ 2195 vlan, bif, 0, IFBAF_DYNAMIC); \ 2196 m->m_pkthdr.rcvif = iface; \ 2197 BRIDGE_UNLOCK(sc); \ 2198 return (m); \ 2199 } \ 2200 \ 2201 /* We just received a packet that we sent out. */ \ 2202 if (memcmp(IF_LLADDR((iface)), eh->ether_shost, ETHER_ADDR_LEN) == 0 \ 2203 OR_CARP_CHECK_WE_ARE_SRC((iface)) \ 2204 ) { \ 2205 BRIDGE_UNLOCK(sc); \ 2206 m_freem(m); \ 2207 return (NULL); \ 2208 } 2209 2210 /* 2211 * Unicast. Make sure it's not for us. 2212 * 2213 * Give a chance for ifp at first priority. This will help when the 2214 * packet comes through the interface like VLAN's with the same MACs 2215 * on several interfaces from the same bridge. This also will save 2216 * some CPU cycles in case the destination interface and the input 2217 * interface (eq ifp) are the same. 2218 */ 2219 do { GRAB_OUR_PACKETS(ifp) } while (0); 2220 2221 /* Now check the all bridge members. */ 2222 LIST_FOREACH(bif2, &sc->sc_iflist, bif_next) { 2223 GRAB_OUR_PACKETS(bif2->bif_ifp) 2224 } 2225 2226 #undef OR_CARP_CHECK_WE_ARE_DST 2227 #undef OR_CARP_CHECK_WE_ARE_SRC 2228 #undef GRAB_OUR_PACKETS 2229 2230 /* Perform the bridge forwarding function. */ 2231 bridge_forward(sc, bif, m); 2232 2233 return (NULL); 2234 } 2235 2236 /* 2237 * bridge_broadcast: 2238 * 2239 * Send a frame to all interfaces that are members of 2240 * the bridge, except for the one on which the packet 2241 * arrived. 2242 * 2243 * NOTE: Releases the lock on return. 2244 */ 2245 static void 2246 bridge_broadcast(struct bridge_softc *sc, struct ifnet *src_if, 2247 struct mbuf *m, int runfilt) 2248 { 2249 struct bridge_iflist *dbif, *sbif; 2250 struct mbuf *mc; 2251 struct ifnet *dst_if; 2252 int error = 0, used = 0, i; 2253 2254 sbif = bridge_lookup_member_if(sc, src_if); 2255 2256 BRIDGE_LOCK2REF(sc, error); 2257 if (error) { 2258 m_freem(m); 2259 return; 2260 } 2261 2262 /* Filter on the bridge interface before broadcasting */ 2263 if (runfilt && (PFIL_HOOKED(&inet_pfil_hook) 2264 #ifdef INET6 2265 || PFIL_HOOKED(&inet6_pfil_hook) 2266 #endif 2267 )) { 2268 if (bridge_pfil(&m, sc->sc_ifp, NULL, PFIL_OUT) != 0) 2269 goto out; 2270 if (m == NULL) 2271 goto out; 2272 } 2273 2274 LIST_FOREACH(dbif, &sc->sc_iflist, bif_next) { 2275 dst_if = dbif->bif_ifp; 2276 if (dst_if == src_if) 2277 continue; 2278 2279 /* Private segments can not talk to each other */ 2280 if (sbif && (sbif->bif_flags & dbif->bif_flags & IFBIF_PRIVATE)) 2281 continue; 2282 2283 if ((dbif->bif_flags & IFBIF_STP) && 2284 dbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) 2285 continue; 2286 2287 if ((dbif->bif_flags & IFBIF_DISCOVER) == 0 && 2288 (m->m_flags & (M_BCAST|M_MCAST)) == 0) 2289 continue; 2290 2291 if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) 2292 continue; 2293 2294 if (LIST_NEXT(dbif, bif_next) == NULL) { 2295 mc = m; 2296 used = 1; 2297 } else { 2298 mc = m_dup(m, M_DONTWAIT); 2299 if (mc == NULL) { 2300 sc->sc_ifp->if_oerrors++; 2301 continue; 2302 } 2303 } 2304 2305 /* 2306 * Filter on the output interface. Pass a NULL bridge interface 2307 * pointer so we do not redundantly filter on the bridge for 2308 * each interface we broadcast on. 2309 */ 2310 if (runfilt && (PFIL_HOOKED(&inet_pfil_hook) 2311 #ifdef INET6 2312 || PFIL_HOOKED(&inet6_pfil_hook) 2313 #endif 2314 )) { 2315 if (used == 0) { 2316 /* Keep the layer3 header aligned */ 2317 i = min(mc->m_pkthdr.len, max_protohdr); 2318 mc = m_copyup(mc, i, ETHER_ALIGN); 2319 if (mc == NULL) { 2320 sc->sc_ifp->if_oerrors++; 2321 continue; 2322 } 2323 } 2324 if (bridge_pfil(&mc, NULL, dst_if, PFIL_OUT) != 0) 2325 continue; 2326 if (mc == NULL) 2327 continue; 2328 } 2329 2330 bridge_enqueue(sc, dst_if, mc); 2331 } 2332 if (used == 0) 2333 m_freem(m); 2334 2335 out: 2336 BRIDGE_UNREF(sc); 2337 } 2338 2339 /* 2340 * bridge_span: 2341 * 2342 * Duplicate a packet out one or more interfaces that are in span mode, 2343 * the original mbuf is unmodified. 2344 */ 2345 static void 2346 bridge_span(struct bridge_softc *sc, struct mbuf *m) 2347 { 2348 struct bridge_iflist *bif; 2349 struct ifnet *dst_if; 2350 struct mbuf *mc; 2351 2352 if (LIST_EMPTY(&sc->sc_spanlist)) 2353 return; 2354 2355 LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) { 2356 dst_if = bif->bif_ifp; 2357 2358 if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) 2359 continue; 2360 2361 mc = m_copypacket(m, M_DONTWAIT); 2362 if (mc == NULL) { 2363 sc->sc_ifp->if_oerrors++; 2364 continue; 2365 } 2366 2367 bridge_enqueue(sc, dst_if, mc); 2368 } 2369 } 2370 2371 /* 2372 * bridge_rtupdate: 2373 * 2374 * Add a bridge routing entry. 2375 */ 2376 static int 2377 bridge_rtupdate(struct bridge_softc *sc, const uint8_t *dst, uint16_t vlan, 2378 struct bridge_iflist *bif, int setflags, uint8_t flags) 2379 { 2380 struct bridge_rtnode *brt; 2381 struct ifnet *dst_if = bif->bif_ifp; 2382 int error; 2383 2384 BRIDGE_LOCK_ASSERT(sc); 2385 2386 /* 802.1p frames map to vlan 1 */ 2387 if (vlan == 0) 2388 vlan = 1; 2389 2390 /* 2391 * A route for this destination might already exist. If so, 2392 * update it, otherwise create a new one. 2393 */ 2394 if ((brt = bridge_rtnode_lookup(sc, dst, vlan)) == NULL) { 2395 if (sc->sc_brtcnt >= sc->sc_brtmax) { 2396 sc->sc_brtexceeded++; 2397 return (ENOSPC); 2398 } 2399 2400 /* 2401 * Allocate a new bridge forwarding node, and 2402 * initialize the expiration time and Ethernet 2403 * address. 2404 */ 2405 brt = uma_zalloc(bridge_rtnode_zone, M_NOWAIT | M_ZERO); 2406 if (brt == NULL) 2407 return (ENOMEM); 2408 2409 if (bif->bif_flags & IFBIF_STICKY) 2410 brt->brt_flags = IFBAF_STICKY; 2411 else 2412 brt->brt_flags = IFBAF_DYNAMIC; 2413 2414 brt->brt_ifp = dst_if; 2415 memcpy(brt->brt_addr, dst, ETHER_ADDR_LEN); 2416 brt->brt_vlan = vlan; 2417 2418 if ((error = bridge_rtnode_insert(sc, brt)) != 0) { 2419 uma_zfree(bridge_rtnode_zone, brt); 2420 return (error); 2421 } 2422 } 2423 2424 if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) 2425 brt->brt_ifp = dst_if; 2426 if ((flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) 2427 brt->brt_expire = time_uptime + sc->sc_brttimeout; 2428 if (setflags) 2429 brt->brt_flags = flags; 2430 2431 return (0); 2432 } 2433 2434 /* 2435 * bridge_rtlookup: 2436 * 2437 * Lookup the destination interface for an address. 2438 */ 2439 static struct ifnet * 2440 bridge_rtlookup(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) 2441 { 2442 struct bridge_rtnode *brt; 2443 2444 BRIDGE_LOCK_ASSERT(sc); 2445 2446 if ((brt = bridge_rtnode_lookup(sc, addr, vlan)) == NULL) 2447 return (NULL); 2448 2449 return (brt->brt_ifp); 2450 } 2451 2452 /* 2453 * bridge_rttrim: 2454 * 2455 * Trim the routine table so that we have a number 2456 * of routing entries less than or equal to the 2457 * maximum number. 2458 */ 2459 static void 2460 bridge_rttrim(struct bridge_softc *sc) 2461 { 2462 struct bridge_rtnode *brt, *nbrt; 2463 2464 BRIDGE_LOCK_ASSERT(sc); 2465 2466 /* Make sure we actually need to do this. */ 2467 if (sc->sc_brtcnt <= sc->sc_brtmax) 2468 return; 2469 2470 /* Force an aging cycle; this might trim enough addresses. */ 2471 bridge_rtage(sc); 2472 if (sc->sc_brtcnt <= sc->sc_brtmax) 2473 return; 2474 2475 LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { 2476 if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) { 2477 bridge_rtnode_destroy(sc, brt); 2478 if (sc->sc_brtcnt <= sc->sc_brtmax) 2479 return; 2480 } 2481 } 2482 } 2483 2484 /* 2485 * bridge_timer: 2486 * 2487 * Aging timer for the bridge. 2488 */ 2489 static void 2490 bridge_timer(void *arg) 2491 { 2492 struct bridge_softc *sc = arg; 2493 2494 BRIDGE_LOCK_ASSERT(sc); 2495 2496 bridge_rtage(sc); 2497 2498 if (sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) 2499 callout_reset(&sc->sc_brcallout, 2500 bridge_rtable_prune_period * hz, bridge_timer, sc); 2501 } 2502 2503 /* 2504 * bridge_rtage: 2505 * 2506 * Perform an aging cycle. 2507 */ 2508 static void 2509 bridge_rtage(struct bridge_softc *sc) 2510 { 2511 struct bridge_rtnode *brt, *nbrt; 2512 2513 BRIDGE_LOCK_ASSERT(sc); 2514 2515 LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { 2516 if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) { 2517 if (time_uptime >= brt->brt_expire) 2518 bridge_rtnode_destroy(sc, brt); 2519 } 2520 } 2521 } 2522 2523 /* 2524 * bridge_rtflush: 2525 * 2526 * Remove all dynamic addresses from the bridge. 2527 */ 2528 static void 2529 bridge_rtflush(struct bridge_softc *sc, int full) 2530 { 2531 struct bridge_rtnode *brt, *nbrt; 2532 2533 BRIDGE_LOCK_ASSERT(sc); 2534 2535 LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { 2536 if (full || (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) 2537 bridge_rtnode_destroy(sc, brt); 2538 } 2539 } 2540 2541 /* 2542 * bridge_rtdaddr: 2543 * 2544 * Remove an address from the table. 2545 */ 2546 static int 2547 bridge_rtdaddr(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) 2548 { 2549 struct bridge_rtnode *brt; 2550 int found = 0; 2551 2552 BRIDGE_LOCK_ASSERT(sc); 2553 2554 /* 2555 * If vlan is zero then we want to delete for all vlans so the lookup 2556 * may return more than one. 2557 */ 2558 while ((brt = bridge_rtnode_lookup(sc, addr, vlan)) != NULL) { 2559 bridge_rtnode_destroy(sc, brt); 2560 found = 1; 2561 } 2562 2563 return (found ? 0 : ENOENT); 2564 } 2565 2566 /* 2567 * bridge_rtdelete: 2568 * 2569 * Delete routes to a speicifc member interface. 2570 */ 2571 static void 2572 bridge_rtdelete(struct bridge_softc *sc, struct ifnet *ifp, int full) 2573 { 2574 struct bridge_rtnode *brt, *nbrt; 2575 2576 BRIDGE_LOCK_ASSERT(sc); 2577 2578 LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { 2579 if (brt->brt_ifp == ifp && (full || 2580 (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC)) 2581 bridge_rtnode_destroy(sc, brt); 2582 } 2583 } 2584 2585 /* 2586 * bridge_rtable_init: 2587 * 2588 * Initialize the route table for this bridge. 2589 */ 2590 static int 2591 bridge_rtable_init(struct bridge_softc *sc) 2592 { 2593 int i; 2594 2595 sc->sc_rthash = malloc(sizeof(*sc->sc_rthash) * BRIDGE_RTHASH_SIZE, 2596 M_DEVBUF, M_NOWAIT); 2597 if (sc->sc_rthash == NULL) 2598 return (ENOMEM); 2599 2600 for (i = 0; i < BRIDGE_RTHASH_SIZE; i++) 2601 LIST_INIT(&sc->sc_rthash[i]); 2602 2603 sc->sc_rthash_key = arc4random(); 2604 2605 LIST_INIT(&sc->sc_rtlist); 2606 2607 return (0); 2608 } 2609 2610 /* 2611 * bridge_rtable_fini: 2612 * 2613 * Deconstruct the route table for this bridge. 2614 */ 2615 static void 2616 bridge_rtable_fini(struct bridge_softc *sc) 2617 { 2618 2619 free(sc->sc_rthash, M_DEVBUF); 2620 } 2621 2622 /* 2623 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2624 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2625 */ 2626 #define mix(a, b, c) \ 2627 do { \ 2628 a -= b; a -= c; a ^= (c >> 13); \ 2629 b -= c; b -= a; b ^= (a << 8); \ 2630 c -= a; c -= b; c ^= (b >> 13); \ 2631 a -= b; a -= c; a ^= (c >> 12); \ 2632 b -= c; b -= a; b ^= (a << 16); \ 2633 c -= a; c -= b; c ^= (b >> 5); \ 2634 a -= b; a -= c; a ^= (c >> 3); \ 2635 b -= c; b -= a; b ^= (a << 10); \ 2636 c -= a; c -= b; c ^= (b >> 15); \ 2637 } while (/*CONSTCOND*/0) 2638 2639 static __inline uint32_t 2640 bridge_rthash(struct bridge_softc *sc, const uint8_t *addr) 2641 { 2642 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = sc->sc_rthash_key; 2643 2644 b += addr[5] << 8; 2645 b += addr[4]; 2646 a += addr[3] << 24; 2647 a += addr[2] << 16; 2648 a += addr[1] << 8; 2649 a += addr[0]; 2650 2651 mix(a, b, c); 2652 2653 return (c & BRIDGE_RTHASH_MASK); 2654 } 2655 2656 #undef mix 2657 2658 static int 2659 bridge_rtnode_addr_cmp(const uint8_t *a, const uint8_t *b) 2660 { 2661 int i, d; 2662 2663 for (i = 0, d = 0; i < ETHER_ADDR_LEN && d == 0; i++) { 2664 d = ((int)a[i]) - ((int)b[i]); 2665 } 2666 2667 return (d); 2668 } 2669 2670 /* 2671 * bridge_rtnode_lookup: 2672 * 2673 * Look up a bridge route node for the specified destination. Compare the 2674 * vlan id or if zero then just return the first match. 2675 */ 2676 static struct bridge_rtnode * 2677 bridge_rtnode_lookup(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) 2678 { 2679 struct bridge_rtnode *brt; 2680 uint32_t hash; 2681 int dir; 2682 2683 BRIDGE_LOCK_ASSERT(sc); 2684 2685 hash = bridge_rthash(sc, addr); 2686 LIST_FOREACH(brt, &sc->sc_rthash[hash], brt_hash) { 2687 dir = bridge_rtnode_addr_cmp(addr, brt->brt_addr); 2688 if (dir == 0 && (brt->brt_vlan == vlan || vlan == 0)) 2689 return (brt); 2690 if (dir > 0) 2691 return (NULL); 2692 } 2693 2694 return (NULL); 2695 } 2696 2697 /* 2698 * bridge_rtnode_insert: 2699 * 2700 * Insert the specified bridge node into the route table. We 2701 * assume the entry is not already in the table. 2702 */ 2703 static int 2704 bridge_rtnode_insert(struct bridge_softc *sc, struct bridge_rtnode *brt) 2705 { 2706 struct bridge_rtnode *lbrt; 2707 uint32_t hash; 2708 int dir; 2709 2710 BRIDGE_LOCK_ASSERT(sc); 2711 2712 hash = bridge_rthash(sc, brt->brt_addr); 2713 2714 lbrt = LIST_FIRST(&sc->sc_rthash[hash]); 2715 if (lbrt == NULL) { 2716 LIST_INSERT_HEAD(&sc->sc_rthash[hash], brt, brt_hash); 2717 goto out; 2718 } 2719 2720 do { 2721 dir = bridge_rtnode_addr_cmp(brt->brt_addr, lbrt->brt_addr); 2722 if (dir == 0 && brt->brt_vlan == lbrt->brt_vlan) 2723 return (EEXIST); 2724 if (dir > 0) { 2725 LIST_INSERT_BEFORE(lbrt, brt, brt_hash); 2726 goto out; 2727 } 2728 if (LIST_NEXT(lbrt, brt_hash) == NULL) { 2729 LIST_INSERT_AFTER(lbrt, brt, brt_hash); 2730 goto out; 2731 } 2732 lbrt = LIST_NEXT(lbrt, brt_hash); 2733 } while (lbrt != NULL); 2734 2735 #ifdef DIAGNOSTIC 2736 panic("bridge_rtnode_insert: impossible"); 2737 #endif 2738 2739 out: 2740 LIST_INSERT_HEAD(&sc->sc_rtlist, brt, brt_list); 2741 sc->sc_brtcnt++; 2742 2743 return (0); 2744 } 2745 2746 /* 2747 * bridge_rtnode_destroy: 2748 * 2749 * Destroy a bridge rtnode. 2750 */ 2751 static void 2752 bridge_rtnode_destroy(struct bridge_softc *sc, struct bridge_rtnode *brt) 2753 { 2754 BRIDGE_LOCK_ASSERT(sc); 2755 2756 LIST_REMOVE(brt, brt_hash); 2757 2758 LIST_REMOVE(brt, brt_list); 2759 sc->sc_brtcnt--; 2760 uma_zfree(bridge_rtnode_zone, brt); 2761 } 2762 2763 /* 2764 * bridge_rtable_expire: 2765 * 2766 * Set the expiry time for all routes on an interface. 2767 */ 2768 static void 2769 bridge_rtable_expire(struct ifnet *ifp, int age) 2770 { 2771 struct bridge_softc *sc = ifp->if_bridge; 2772 struct bridge_rtnode *brt; 2773 2774 BRIDGE_LOCK(sc); 2775 2776 /* 2777 * If the age is zero then flush, otherwise set all the expiry times to 2778 * age for the interface 2779 */ 2780 if (age == 0) 2781 bridge_rtdelete(sc, ifp, IFBF_FLUSHDYN); 2782 else { 2783 LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) { 2784 /* Cap the expiry time to 'age' */ 2785 if (brt->brt_ifp == ifp && 2786 brt->brt_expire > time_uptime + age && 2787 (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) 2788 brt->brt_expire = time_uptime + age; 2789 } 2790 } 2791 BRIDGE_UNLOCK(sc); 2792 } 2793 2794 /* 2795 * bridge_state_change: 2796 * 2797 * Callback from the bridgestp code when a port changes states. 2798 */ 2799 static void 2800 bridge_state_change(struct ifnet *ifp, int state) 2801 { 2802 struct bridge_softc *sc = ifp->if_bridge; 2803 static const char *stpstates[] = { 2804 "disabled", 2805 "listening", 2806 "learning", 2807 "forwarding", 2808 "blocking", 2809 "discarding" 2810 }; 2811 2812 if (log_stp) 2813 log(LOG_NOTICE, "%s: state changed to %s on %s\n", 2814 sc->sc_ifp->if_xname, stpstates[state], ifp->if_xname); 2815 } 2816 2817 /* 2818 * Send bridge packets through pfil if they are one of the types pfil can deal 2819 * with, or if they are ARP or REVARP. (pfil will pass ARP and REVARP without 2820 * question.) If *bifp or *ifp are NULL then packet filtering is skipped for 2821 * that interface. 2822 */ 2823 static int 2824 bridge_pfil(struct mbuf **mp, struct ifnet *bifp, struct ifnet *ifp, int dir) 2825 { 2826 int snap, error, i, hlen; 2827 struct ether_header *eh1, eh2; 2828 struct ip_fw_args args; 2829 struct ip *ip; 2830 struct llc llc1; 2831 u_int16_t ether_type; 2832 2833 snap = 0; 2834 error = -1; /* Default error if not error == 0 */ 2835 2836 #if 0 2837 /* we may return with the IP fields swapped, ensure its not shared */ 2838 KASSERT(M_WRITABLE(*mp), ("%s: modifying a shared mbuf", __func__)); 2839 #endif 2840 2841 if (pfil_bridge == 0 && pfil_member == 0 && pfil_ipfw == 0) 2842 return (0); /* filtering is disabled */ 2843 2844 i = min((*mp)->m_pkthdr.len, max_protohdr); 2845 if ((*mp)->m_len < i) { 2846 *mp = m_pullup(*mp, i); 2847 if (*mp == NULL) { 2848 printf("%s: m_pullup failed\n", __func__); 2849 return (-1); 2850 } 2851 } 2852 2853 eh1 = mtod(*mp, struct ether_header *); 2854 ether_type = ntohs(eh1->ether_type); 2855 2856 /* 2857 * Check for SNAP/LLC. 2858 */ 2859 if (ether_type < ETHERMTU) { 2860 struct llc *llc2 = (struct llc *)(eh1 + 1); 2861 2862 if ((*mp)->m_len >= ETHER_HDR_LEN + 8 && 2863 llc2->llc_dsap == LLC_SNAP_LSAP && 2864 llc2->llc_ssap == LLC_SNAP_LSAP && 2865 llc2->llc_control == LLC_UI) { 2866 ether_type = htons(llc2->llc_un.type_snap.ether_type); 2867 snap = 1; 2868 } 2869 } 2870 2871 /* 2872 * If we're trying to filter bridge traffic, don't look at anything 2873 * other than IP and ARP traffic. If the filter doesn't understand 2874 * IPv6, don't allow IPv6 through the bridge either. This is lame 2875 * since if we really wanted, say, an AppleTalk filter, we are hosed, 2876 * but of course we don't have an AppleTalk filter to begin with. 2877 * (Note that since pfil doesn't understand ARP it will pass *ALL* 2878 * ARP traffic.) 2879 */ 2880 switch (ether_type) { 2881 case ETHERTYPE_ARP: 2882 case ETHERTYPE_REVARP: 2883 if (pfil_ipfw_arp == 0) 2884 return (0); /* Automatically pass */ 2885 break; 2886 2887 case ETHERTYPE_IP: 2888 #ifdef INET6 2889 case ETHERTYPE_IPV6: 2890 #endif /* INET6 */ 2891 break; 2892 default: 2893 /* 2894 * Check to see if the user wants to pass non-ip 2895 * packets, these will not be checked by pfil(9) and 2896 * passed unconditionally so the default is to drop. 2897 */ 2898 if (pfil_onlyip) 2899 goto bad; 2900 } 2901 2902 /* Strip off the Ethernet header and keep a copy. */ 2903 m_copydata(*mp, 0, ETHER_HDR_LEN, (caddr_t) &eh2); 2904 m_adj(*mp, ETHER_HDR_LEN); 2905 2906 /* Strip off snap header, if present */ 2907 if (snap) { 2908 m_copydata(*mp, 0, sizeof(struct llc), (caddr_t) &llc1); 2909 m_adj(*mp, sizeof(struct llc)); 2910 } 2911 2912 /* 2913 * Check the IP header for alignment and errors 2914 */ 2915 if (dir == PFIL_IN) { 2916 switch (ether_type) { 2917 case ETHERTYPE_IP: 2918 error = bridge_ip_checkbasic(mp); 2919 break; 2920 #ifdef INET6 2921 case ETHERTYPE_IPV6: 2922 error = bridge_ip6_checkbasic(mp); 2923 break; 2924 #endif /* INET6 */ 2925 default: 2926 error = 0; 2927 } 2928 if (error) 2929 goto bad; 2930 } 2931 2932 if (IPFW_LOADED && pfil_ipfw != 0 && dir == PFIL_OUT && ifp != NULL) { 2933 error = -1; 2934 args.rule = ip_dn_claim_rule(*mp); 2935 if (args.rule != NULL && fw_one_pass) 2936 goto ipfwpass; /* packet already partially processed */ 2937 2938 args.m = *mp; 2939 args.oif = ifp; 2940 args.next_hop = NULL; 2941 args.eh = &eh2; 2942 args.inp = NULL; /* used by ipfw uid/gid/jail rules */ 2943 i = ip_fw_chk_ptr(&args); 2944 *mp = args.m; 2945 2946 if (*mp == NULL) 2947 return (error); 2948 2949 if (DUMMYNET_LOADED && (i == IP_FW_DUMMYNET)) { 2950 2951 /* put the Ethernet header back on */ 2952 M_PREPEND(*mp, ETHER_HDR_LEN, M_DONTWAIT); 2953 if (*mp == NULL) 2954 return (error); 2955 bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN); 2956 2957 /* 2958 * Pass the pkt to dummynet, which consumes it. The 2959 * packet will return to us via bridge_dummynet(). 2960 */ 2961 args.oif = ifp; 2962 ip_dn_io_ptr(*mp, DN_TO_IFB_FWD, &args); 2963 return (error); 2964 } 2965 2966 if (i != IP_FW_PASS) /* drop */ 2967 goto bad; 2968 } 2969 2970 ipfwpass: 2971 error = 0; 2972 2973 /* 2974 * Run the packet through pfil 2975 */ 2976 switch (ether_type) { 2977 case ETHERTYPE_IP: 2978 /* 2979 * before calling the firewall, swap fields the same as 2980 * IP does. here we assume the header is contiguous 2981 */ 2982 ip = mtod(*mp, struct ip *); 2983 2984 ip->ip_len = ntohs(ip->ip_len); 2985 ip->ip_off = ntohs(ip->ip_off); 2986 2987 /* 2988 * Run pfil on the member interface and the bridge, both can 2989 * be skipped by clearing pfil_member or pfil_bridge. 2990 * 2991 * Keep the order: 2992 * in_if -> bridge_if -> out_if 2993 */ 2994 if (pfil_bridge && dir == PFIL_OUT && bifp != NULL) 2995 error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, 2996 dir, NULL); 2997 2998 if (*mp == NULL || error != 0) /* filter may consume */ 2999 break; 3000 3001 if (pfil_member && ifp != NULL) 3002 error = pfil_run_hooks(&inet_pfil_hook, mp, ifp, 3003 dir, NULL); 3004 3005 if (*mp == NULL || error != 0) /* filter may consume */ 3006 break; 3007 3008 if (pfil_bridge && dir == PFIL_IN && bifp != NULL) 3009 error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, 3010 dir, NULL); 3011 3012 if (*mp == NULL || error != 0) /* filter may consume */ 3013 break; 3014 3015 /* check if we need to fragment the packet */ 3016 if (pfil_member && ifp != NULL && dir == PFIL_OUT) { 3017 i = (*mp)->m_pkthdr.len; 3018 if (i > ifp->if_mtu) { 3019 error = bridge_fragment(ifp, *mp, &eh2, snap, 3020 &llc1); 3021 return (error); 3022 } 3023 } 3024 3025 /* Recalculate the ip checksum and restore byte ordering */ 3026 ip = mtod(*mp, struct ip *); 3027 hlen = ip->ip_hl << 2; 3028 if (hlen < sizeof(struct ip)) 3029 goto bad; 3030 if (hlen > (*mp)->m_len) { 3031 if ((*mp = m_pullup(*mp, hlen)) == 0) 3032 goto bad; 3033 ip = mtod(*mp, struct ip *); 3034 if (ip == NULL) 3035 goto bad; 3036 } 3037 ip->ip_len = htons(ip->ip_len); 3038 ip->ip_off = htons(ip->ip_off); 3039 ip->ip_sum = 0; 3040 if (hlen == sizeof(struct ip)) 3041 ip->ip_sum = in_cksum_hdr(ip); 3042 else 3043 ip->ip_sum = in_cksum(*mp, hlen); 3044 3045 break; 3046 #ifdef INET6 3047 case ETHERTYPE_IPV6: 3048 if (pfil_bridge && dir == PFIL_OUT && bifp != NULL) 3049 error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp, 3050 dir, NULL); 3051 3052 if (*mp == NULL || error != 0) /* filter may consume */ 3053 break; 3054 3055 if (pfil_member && ifp != NULL) 3056 error = pfil_run_hooks(&inet6_pfil_hook, mp, ifp, 3057 dir, NULL); 3058 3059 if (*mp == NULL || error != 0) /* filter may consume */ 3060 break; 3061 3062 if (pfil_bridge && dir == PFIL_IN && bifp != NULL) 3063 error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp, 3064 dir, NULL); 3065 break; 3066 #endif 3067 default: 3068 error = 0; 3069 break; 3070 } 3071 3072 if (*mp == NULL) 3073 return (error); 3074 if (error != 0) 3075 goto bad; 3076 3077 error = -1; 3078 3079 /* 3080 * Finally, put everything back the way it was and return 3081 */ 3082 if (snap) { 3083 M_PREPEND(*mp, sizeof(struct llc), M_DONTWAIT); 3084 if (*mp == NULL) 3085 return (error); 3086 bcopy(&llc1, mtod(*mp, caddr_t), sizeof(struct llc)); 3087 } 3088 3089 M_PREPEND(*mp, ETHER_HDR_LEN, M_DONTWAIT); 3090 if (*mp == NULL) 3091 return (error); 3092 bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN); 3093 3094 return (0); 3095 3096 bad: 3097 m_freem(*mp); 3098 *mp = NULL; 3099 return (error); 3100 } 3101 3102 /* 3103 * Perform basic checks on header size since 3104 * pfil assumes ip_input has already processed 3105 * it for it. Cut-and-pasted from ip_input.c. 3106 * Given how simple the IPv6 version is, 3107 * does the IPv4 version really need to be 3108 * this complicated? 3109 * 3110 * XXX Should we update ipstat here, or not? 3111 * XXX Right now we update ipstat but not 3112 * XXX csum_counter. 3113 */ 3114 static int 3115 bridge_ip_checkbasic(struct mbuf **mp) 3116 { 3117 struct mbuf *m = *mp; 3118 struct ip *ip; 3119 int len, hlen; 3120 u_short sum; 3121 3122 if (*mp == NULL) 3123 return (-1); 3124 3125 if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) { 3126 if ((m = m_copyup(m, sizeof(struct ip), 3127 (max_linkhdr + 3) & ~3)) == NULL) { 3128 /* XXXJRT new stat, please */ 3129 ipstat.ips_toosmall++; 3130 goto bad; 3131 } 3132 } else if (__predict_false(m->m_len < sizeof (struct ip))) { 3133 if ((m = m_pullup(m, sizeof (struct ip))) == NULL) { 3134 ipstat.ips_toosmall++; 3135 goto bad; 3136 } 3137 } 3138 ip = mtod(m, struct ip *); 3139 if (ip == NULL) goto bad; 3140 3141 if (ip->ip_v != IPVERSION) { 3142 ipstat.ips_badvers++; 3143 goto bad; 3144 } 3145 hlen = ip->ip_hl << 2; 3146 if (hlen < sizeof(struct ip)) { /* minimum header length */ 3147 ipstat.ips_badhlen++; 3148 goto bad; 3149 } 3150 if (hlen > m->m_len) { 3151 if ((m = m_pullup(m, hlen)) == 0) { 3152 ipstat.ips_badhlen++; 3153 goto bad; 3154 } 3155 ip = mtod(m, struct ip *); 3156 if (ip == NULL) goto bad; 3157 } 3158 3159 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 3160 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); 3161 } else { 3162 if (hlen == sizeof(struct ip)) { 3163 sum = in_cksum_hdr(ip); 3164 } else { 3165 sum = in_cksum(m, hlen); 3166 } 3167 } 3168 if (sum) { 3169 ipstat.ips_badsum++; 3170 goto bad; 3171 } 3172 3173 /* Retrieve the packet length. */ 3174 len = ntohs(ip->ip_len); 3175 3176 /* 3177 * Check for additional length bogosity 3178 */ 3179 if (len < hlen) { 3180 ipstat.ips_badlen++; 3181 goto bad; 3182 } 3183 3184 /* 3185 * Check that the amount of data in the buffers 3186 * is as at least much as the IP header would have us expect. 3187 * Drop packet if shorter than we expect. 3188 */ 3189 if (m->m_pkthdr.len < len) { 3190 ipstat.ips_tooshort++; 3191 goto bad; 3192 } 3193 3194 /* Checks out, proceed */ 3195 *mp = m; 3196 return (0); 3197 3198 bad: 3199 *mp = m; 3200 return (-1); 3201 } 3202 3203 #ifdef INET6 3204 /* 3205 * Same as above, but for IPv6. 3206 * Cut-and-pasted from ip6_input.c. 3207 * XXX Should we update ip6stat, or not? 3208 */ 3209 static int 3210 bridge_ip6_checkbasic(struct mbuf **mp) 3211 { 3212 struct mbuf *m = *mp; 3213 struct ip6_hdr *ip6; 3214 3215 /* 3216 * If the IPv6 header is not aligned, slurp it up into a new 3217 * mbuf with space for link headers, in the event we forward 3218 * it. Otherwise, if it is aligned, make sure the entire base 3219 * IPv6 header is in the first mbuf of the chain. 3220 */ 3221 if (IP6_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) { 3222 struct ifnet *inifp = m->m_pkthdr.rcvif; 3223 if ((m = m_copyup(m, sizeof(struct ip6_hdr), 3224 (max_linkhdr + 3) & ~3)) == NULL) { 3225 /* XXXJRT new stat, please */ 3226 ip6stat.ip6s_toosmall++; 3227 in6_ifstat_inc(inifp, ifs6_in_hdrerr); 3228 goto bad; 3229 } 3230 } else if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) { 3231 struct ifnet *inifp = m->m_pkthdr.rcvif; 3232 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) { 3233 ip6stat.ip6s_toosmall++; 3234 in6_ifstat_inc(inifp, ifs6_in_hdrerr); 3235 goto bad; 3236 } 3237 } 3238 3239 ip6 = mtod(m, struct ip6_hdr *); 3240 3241 if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) { 3242 ip6stat.ip6s_badvers++; 3243 in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr); 3244 goto bad; 3245 } 3246 3247 /* Checks out, proceed */ 3248 *mp = m; 3249 return (0); 3250 3251 bad: 3252 *mp = m; 3253 return (-1); 3254 } 3255 #endif /* INET6 */ 3256 3257 /* 3258 * bridge_fragment: 3259 * 3260 * Return a fragmented mbuf chain. 3261 */ 3262 static int 3263 bridge_fragment(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh, 3264 int snap, struct llc *llc) 3265 { 3266 struct mbuf *m0; 3267 struct ip *ip; 3268 int error = -1; 3269 3270 if (m->m_len < sizeof(struct ip) && 3271 (m = m_pullup(m, sizeof(struct ip))) == NULL) 3272 goto out; 3273 ip = mtod(m, struct ip *); 3274 3275 error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, 3276 CSUM_DELAY_IP); 3277 if (error) 3278 goto out; 3279 3280 /* walk the chain and re-add the Ethernet header */ 3281 for (m0 = m; m0; m0 = m0->m_nextpkt) { 3282 if (error == 0) { 3283 if (snap) { 3284 M_PREPEND(m0, sizeof(struct llc), M_DONTWAIT); 3285 if (m0 == NULL) { 3286 error = ENOBUFS; 3287 continue; 3288 } 3289 bcopy(llc, mtod(m0, caddr_t), 3290 sizeof(struct llc)); 3291 } 3292 M_PREPEND(m0, ETHER_HDR_LEN, M_DONTWAIT); 3293 if (m0 == NULL) { 3294 error = ENOBUFS; 3295 continue; 3296 } 3297 bcopy(eh, mtod(m0, caddr_t), ETHER_HDR_LEN); 3298 } else 3299 m_freem(m); 3300 } 3301 3302 if (error == 0) 3303 ipstat.ips_fragmented++; 3304 3305 return (error); 3306 3307 out: 3308 if (m != NULL) 3309 m_freem(m); 3310 return (error); 3311 } 3312