xref: /freebsd/sys/net/if.c (revision f0865ec9906d5a18fa2a3b61381f22ce16e606ad)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org>
5  * Copyright (c) 1980, 1986, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_bpf.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ddb.h"
37 
38 #include <sys/param.h>
39 #include <sys/capsicum.h>
40 #include <sys/conf.h>
41 #include <sys/eventhandler.h>
42 #include <sys/malloc.h>
43 #include <sys/domainset.h>
44 #include <sys/sbuf.h>
45 #include <sys/bus.h>
46 #include <sys/epoch.h>
47 #include <sys/mbuf.h>
48 #include <sys/systm.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/protosw.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/refcount.h>
57 #include <sys/module.h>
58 #include <sys/nv.h>
59 #include <sys/rwlock.h>
60 #include <sys/sockio.h>
61 #include <sys/syslog.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #include <sys/taskqueue.h>
65 #include <sys/domain.h>
66 #include <sys/jail.h>
67 #include <sys/priv.h>
68 
69 #ifdef DDB
70 #include <ddb/ddb.h>
71 #endif
72 
73 #include <machine/stdarg.h>
74 #include <vm/uma.h>
75 
76 #include <net/bpf.h>
77 #include <net/ethernet.h>
78 #include <net/if.h>
79 #include <net/if_arp.h>
80 #include <net/if_clone.h>
81 #include <net/if_dl.h>
82 #include <net/if_strings.h>
83 #include <net/if_types.h>
84 #include <net/if_var.h>
85 #include <net/if_media.h>
86 #include <net/if_mib.h>
87 #include <net/if_private.h>
88 #include <net/if_vlan_var.h>
89 #include <net/radix.h>
90 #include <net/route.h>
91 #include <net/route/route_ctl.h>
92 #include <net/vnet.h>
93 
94 #if defined(INET) || defined(INET6)
95 #include <net/ethernet.h>
96 #include <netinet/in.h>
97 #include <netinet/in_var.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_carp.h>
100 #ifdef INET
101 #include <net/debugnet.h>
102 #include <netinet/if_ether.h>
103 #endif /* INET */
104 #ifdef INET6
105 #include <netinet6/in6_var.h>
106 #include <netinet6/in6_ifattach.h>
107 #endif /* INET6 */
108 #endif /* INET || INET6 */
109 
110 #include <security/mac/mac_framework.h>
111 
112 /*
113  * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name
114  * and ifr_ifru when it is used in SIOCGIFCONF.
115  */
116 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) ==
117     offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru");
118 
119 __read_mostly epoch_t net_epoch_preempt;
120 #ifdef COMPAT_FREEBSD32
121 #include <sys/mount.h>
122 #include <compat/freebsd32/freebsd32.h>
123 
124 struct ifreq_buffer32 {
125 	uint32_t	length;		/* (size_t) */
126 	uint32_t	buffer;		/* (void *) */
127 };
128 
129 /*
130  * Interface request structure used for socket
131  * ioctl's.  All interface ioctl's must have parameter
132  * definitions which begin with ifr_name.  The
133  * remainder may be interface specific.
134  */
135 struct ifreq32 {
136 	char	ifr_name[IFNAMSIZ];		/* if name, e.g. "en0" */
137 	union {
138 		struct sockaddr	ifru_addr;
139 		struct sockaddr	ifru_dstaddr;
140 		struct sockaddr	ifru_broadaddr;
141 		struct ifreq_buffer32 ifru_buffer;
142 		short		ifru_flags[2];
143 		short		ifru_index;
144 		int		ifru_jid;
145 		int		ifru_metric;
146 		int		ifru_mtu;
147 		int		ifru_phys;
148 		int		ifru_media;
149 		uint32_t	ifru_data;
150 		int		ifru_cap[2];
151 		u_int		ifru_fib;
152 		u_char		ifru_vlan_pcp;
153 	} ifr_ifru;
154 };
155 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32));
156 CTASSERT(__offsetof(struct ifreq, ifr_ifru) ==
157     __offsetof(struct ifreq32, ifr_ifru));
158 
159 struct ifconf32 {
160 	int32_t	ifc_len;
161 	union {
162 		uint32_t	ifcu_buf;
163 		uint32_t	ifcu_req;
164 	} ifc_ifcu;
165 };
166 #define	SIOCGIFCONF32	_IOWR('i', 36, struct ifconf32)
167 
168 struct ifdrv32 {
169 	char		ifd_name[IFNAMSIZ];
170 	uint32_t	ifd_cmd;
171 	uint32_t	ifd_len;
172 	uint32_t	ifd_data;
173 };
174 #define SIOCSDRVSPEC32	_IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32)
175 #define SIOCGDRVSPEC32	_IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32)
176 
177 struct ifgroupreq32 {
178 	char	ifgr_name[IFNAMSIZ];
179 	u_int	ifgr_len;
180 	union {
181 		char		ifgru_group[IFNAMSIZ];
182 		uint32_t	ifgru_groups;
183 	} ifgr_ifgru;
184 };
185 #define	SIOCAIFGROUP32	_IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32)
186 #define	SIOCGIFGROUP32	_IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32)
187 #define	SIOCDIFGROUP32	_IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32)
188 #define	SIOCGIFGMEMB32	_IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32)
189 
190 struct ifmediareq32 {
191 	char		ifm_name[IFNAMSIZ];
192 	int		ifm_current;
193 	int		ifm_mask;
194 	int		ifm_status;
195 	int		ifm_active;
196 	int		ifm_count;
197 	uint32_t	ifm_ulist;	/* (int *) */
198 };
199 #define	SIOCGIFMEDIA32	_IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32)
200 #define	SIOCGIFXMEDIA32	_IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32)
201 #endif /* COMPAT_FREEBSD32 */
202 
203 union ifreq_union {
204 	struct ifreq	ifr;
205 #ifdef COMPAT_FREEBSD32
206 	struct ifreq32	ifr32;
207 #endif
208 };
209 
210 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
211     "Link layers");
212 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
213     "Generic link-management");
214 
215 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN,
216     &ifqmaxlen, 0, "max send queue size");
217 
218 /* Log link state change events */
219 static int log_link_state_change = 1;
220 
221 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW,
222 	&log_link_state_change, 0,
223 	"log interface link state change events");
224 
225 /* Log promiscuous mode change events */
226 static int log_promisc_mode_change = 1;
227 
228 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN,
229 	&log_promisc_mode_change, 1,
230 	"log promiscuous mode change events");
231 
232 /* Interface description */
233 static unsigned int ifdescr_maxlen = 1024;
234 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW,
235 	&ifdescr_maxlen, 0,
236 	"administrative maximum length for interface description");
237 
238 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions");
239 
240 /* global sx for non-critical path ifdescr */
241 static struct sx ifdescr_sx;
242 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr");
243 
244 void	(*ng_ether_link_state_p)(struct ifnet *ifp, int state);
245 void	(*lagg_linkstate_p)(struct ifnet *ifp, int state);
246 /* These are external hooks for CARP. */
247 void	(*carp_linkstate_p)(struct ifnet *ifp);
248 void	(*carp_demote_adj_p)(int, char *);
249 int	(*carp_master_p)(struct ifaddr *);
250 #if defined(INET) || defined(INET6)
251 int	(*carp_forus_p)(struct ifnet *ifp, u_char *dhost);
252 int	(*carp_output_p)(struct ifnet *ifp, struct mbuf *m,
253     const struct sockaddr *sa);
254 int	(*carp_ioctl_p)(struct ifreq *, u_long, struct thread *);
255 int	(*carp_attach_p)(struct ifaddr *, int);
256 void	(*carp_detach_p)(struct ifaddr *, bool);
257 #endif
258 #ifdef INET
259 int	(*carp_iamatch_p)(struct ifaddr *, uint8_t **);
260 #endif
261 #ifdef INET6
262 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6);
263 caddr_t	(*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m,
264     const struct in6_addr *taddr);
265 #endif
266 
267 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL;
268 
269 /*
270  * XXX: Style; these should be sorted alphabetically, and unprototyped
271  * static functions should be prototyped. Currently they are sorted by
272  * declaration order.
273  */
274 static void	if_attachdomain(void *);
275 static void	if_attachdomain1(struct ifnet *);
276 static int	ifconf(u_long, caddr_t);
277 static void	if_input_default(struct ifnet *, struct mbuf *);
278 static int	if_requestencap_default(struct ifnet *, struct if_encap_req *);
279 static int	if_setflag(struct ifnet *, int, int, int *, int);
280 static int	if_transmit_default(struct ifnet *ifp, struct mbuf *m);
281 static void	if_unroute(struct ifnet *, int flag, int fam);
282 static int	if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int);
283 static void	do_link_state_change(void *, int);
284 static int	if_getgroup(struct ifgroupreq *, struct ifnet *);
285 static int	if_getgroupmembers(struct ifgroupreq *);
286 static void	if_delgroups(struct ifnet *);
287 static void	if_attach_internal(struct ifnet *, bool);
288 static int	if_detach_internal(struct ifnet *, bool);
289 static void	if_siocaddmulti(void *, int);
290 static void	if_link_ifnet(struct ifnet *);
291 static bool	if_unlink_ifnet(struct ifnet *, bool);
292 #ifdef VIMAGE
293 static int	if_vmove(struct ifnet *, struct vnet *);
294 #endif
295 
296 #ifdef INET6
297 /*
298  * XXX: declare here to avoid to include many inet6 related files..
299  * should be more generalized?
300  */
301 extern void	nd6_setmtu(struct ifnet *);
302 #endif
303 
304 /* ipsec helper hooks */
305 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]);
306 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]);
307 
308 int	ifqmaxlen = IFQ_MAXLEN;
309 VNET_DEFINE(struct ifnethead, ifnet);	/* depend on static init XXX */
310 VNET_DEFINE(struct ifgrouphead, ifg_head);
311 
312 /* Table of ifnet by index. */
313 static int if_index;
314 static int if_indexlim = 8;
315 static struct ifindex_entry {
316 	struct ifnet	*ife_ifnet;
317 	uint16_t	ife_gencnt;
318 } *ifindex_table;
319 
320 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system,
321     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
322     "Variables global to all interfaces");
323 static int
324 sysctl_ifcount(SYSCTL_HANDLER_ARGS)
325 {
326 	int rv = 0;
327 
328 	IFNET_RLOCK();
329 	for (int i = 1; i <= if_index; i++)
330 		if (ifindex_table[i].ife_ifnet != NULL &&
331 		    ifindex_table[i].ife_ifnet->if_vnet == curvnet)
332 			rv = i;
333 	IFNET_RUNLOCK();
334 
335 	return (sysctl_handle_int(oidp, &rv, 0, req));
336 }
337 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount,
338     CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I",
339     "Maximum known interface index");
340 
341 /*
342  * The global network interface list (V_ifnet) and related state (such as
343  * if_index, if_indexlim, and ifindex_table) are protected by an sxlock.
344  * This may be acquired to stabilise the list, or we may rely on NET_EPOCH.
345  */
346 struct sx ifnet_sxlock;
347 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE);
348 
349 struct sx ifnet_detach_sxlock;
350 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx",
351     SX_RECURSE);
352 
353 #ifdef VIMAGE
354 #define	VNET_IS_SHUTTING_DOWN(_vnet)					\
355     ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE)
356 #endif
357 
358 static	if_com_alloc_t *if_com_alloc[256];
359 static	if_com_free_t *if_com_free[256];
360 
361 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals");
362 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
363 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
364 
365 struct ifnet *
366 ifnet_byindex(u_int idx)
367 {
368 	struct ifnet *ifp;
369 
370 	NET_EPOCH_ASSERT();
371 
372 	if (__predict_false(idx > if_index))
373 		return (NULL);
374 
375 	ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
376 
377 	if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet)
378 		ifp = NULL;
379 
380 	return (ifp);
381 }
382 
383 struct ifnet *
384 ifnet_byindex_ref(u_int idx)
385 {
386 	struct ifnet *ifp;
387 
388 	ifp = ifnet_byindex(idx);
389 	if (ifp == NULL || (ifp->if_flags & IFF_DYING))
390 		return (NULL);
391 	if (!if_try_ref(ifp))
392 		return (NULL);
393 	return (ifp);
394 }
395 
396 struct ifnet *
397 ifnet_byindexgen(uint16_t idx, uint16_t gen)
398 {
399 	struct ifnet *ifp;
400 
401 	NET_EPOCH_ASSERT();
402 
403 	if (__predict_false(idx > if_index))
404 		return (NULL);
405 
406 	ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
407 
408 	if (ifindex_table[idx].ife_gencnt == gen)
409 		return (ifp);
410 	else
411 		return (NULL);
412 }
413 
414 /*
415  * Network interface utility routines.
416  *
417  * Routines with ifa_ifwith* names take sockaddr *'s as
418  * parameters.
419  */
420 
421 static void
422 if_init_idxtable(void *arg __unused)
423 {
424 
425 	ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table),
426 	    M_IFNET, M_WAITOK | M_ZERO);
427 }
428 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init_idxtable, NULL);
429 
430 static void
431 vnet_if_init(const void *unused __unused)
432 {
433 
434 	CK_STAILQ_INIT(&V_ifnet);
435 	CK_STAILQ_INIT(&V_ifg_head);
436 	vnet_if_clone_init();
437 }
438 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init,
439     NULL);
440 
441 static void
442 if_link_ifnet(struct ifnet *ifp)
443 {
444 
445 	IFNET_WLOCK();
446 	CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link);
447 #ifdef VIMAGE
448 	curvnet->vnet_ifcnt++;
449 #endif
450 	IFNET_WUNLOCK();
451 }
452 
453 static bool
454 if_unlink_ifnet(struct ifnet *ifp, bool vmove)
455 {
456 	struct ifnet *iter;
457 	int found = 0;
458 
459 	IFNET_WLOCK();
460 	CK_STAILQ_FOREACH(iter, &V_ifnet, if_link)
461 		if (iter == ifp) {
462 			CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link);
463 			if (!vmove)
464 				ifp->if_flags |= IFF_DYING;
465 			found = 1;
466 			break;
467 		}
468 #ifdef VIMAGE
469 	curvnet->vnet_ifcnt--;
470 #endif
471 	IFNET_WUNLOCK();
472 
473 	return (found);
474 }
475 
476 #ifdef VIMAGE
477 static void
478 vnet_if_return(const void *unused __unused)
479 {
480 	struct ifnet *ifp, *nifp;
481 	struct ifnet **pending;
482 	int found __diagused;
483 	int i;
484 
485 	i = 0;
486 
487 	/*
488 	 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd
489 	 * enter NET_EPOCH, but that's not possible, because if_vmove() calls
490 	 * if_detach_internal(), which waits for NET_EPOCH callbacks to
491 	 * complete. We can't do that from within NET_EPOCH.
492 	 *
493 	 * However, we can also use the IFNET_xLOCK, which is the V_ifnet
494 	 * read/write lock. We cannot hold the lock as we call if_vmove()
495 	 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib
496 	 * ctx lock.
497 	 */
498 	IFNET_WLOCK();
499 
500 	pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt,
501 	    M_IFNET, M_WAITOK | M_ZERO);
502 
503 	/* Return all inherited interfaces to their parent vnets. */
504 	CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) {
505 		if (ifp->if_home_vnet != ifp->if_vnet) {
506 			found = if_unlink_ifnet(ifp, true);
507 			MPASS(found);
508 
509 			pending[i++] = ifp;
510 		}
511 	}
512 	IFNET_WUNLOCK();
513 
514 	for (int j = 0; j < i; j++) {
515 		sx_xlock(&ifnet_detach_sxlock);
516 		if_vmove(pending[j], pending[j]->if_home_vnet);
517 		sx_xunlock(&ifnet_detach_sxlock);
518 	}
519 
520 	free(pending, M_IFNET);
521 }
522 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY,
523     vnet_if_return, NULL);
524 #endif
525 
526 /*
527  * Allocate a struct ifnet and an index for an interface.  A layer 2
528  * common structure will also be allocated if an allocation routine is
529  * registered for the passed type.
530  */
531 static struct ifnet *
532 if_alloc_domain(u_char type, int numa_domain)
533 {
534 	struct ifnet *ifp;
535 	u_short idx;
536 
537 	KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large"));
538 	if (numa_domain == IF_NODOM)
539 		ifp = malloc(sizeof(struct ifnet), M_IFNET,
540 		    M_WAITOK | M_ZERO);
541 	else
542 		ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET,
543 		    DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO);
544 	ifp->if_type = type;
545 	ifp->if_alloctype = type;
546 	ifp->if_numa_domain = numa_domain;
547 #ifdef VIMAGE
548 	ifp->if_vnet = curvnet;
549 #endif
550 	if (if_com_alloc[type] != NULL) {
551 		ifp->if_l2com = if_com_alloc[type](type, ifp);
552 		KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__,
553 		    type));
554 	}
555 
556 	IF_ADDR_LOCK_INIT(ifp);
557 	TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp);
558 	TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp);
559 	ifp->if_afdata_initialized = 0;
560 	IF_AFDATA_LOCK_INIT(ifp);
561 	CK_STAILQ_INIT(&ifp->if_addrhead);
562 	CK_STAILQ_INIT(&ifp->if_multiaddrs);
563 	CK_STAILQ_INIT(&ifp->if_groups);
564 #ifdef MAC
565 	mac_ifnet_init(ifp);
566 #endif
567 	ifq_init(&ifp->if_snd, ifp);
568 
569 	refcount_init(&ifp->if_refcount, 1);	/* Index reference. */
570 	for (int i = 0; i < IFCOUNTERS; i++)
571 		ifp->if_counters[i] = counter_u64_alloc(M_WAITOK);
572 	ifp->if_get_counter = if_get_counter_default;
573 	ifp->if_pcp = IFNET_PCP_NONE;
574 
575 	/* Allocate an ifindex array entry. */
576 	IFNET_WLOCK();
577 	/*
578 	 * Try to find an empty slot below if_index.  If we fail, take the
579 	 * next slot.
580 	 */
581 	for (idx = 1; idx <= if_index; idx++) {
582 		if (ifindex_table[idx].ife_ifnet == NULL)
583 			break;
584 	}
585 
586 	/* Catch if_index overflow. */
587 	if (idx >= if_indexlim) {
588 		struct ifindex_entry *new, *old;
589 		int newlim;
590 
591 		newlim = if_indexlim * 2;
592 		new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO);
593 		memcpy(new, ifindex_table, if_indexlim * sizeof(*new));
594 		old = ifindex_table;
595 		ck_pr_store_ptr(&ifindex_table, new);
596 		if_indexlim = newlim;
597 		NET_EPOCH_WAIT();
598 		free(old, M_IFNET);
599 	}
600 	if (idx > if_index)
601 		if_index = idx;
602 
603 	ifp->if_index = idx;
604 	ifp->if_idxgen = ifindex_table[idx].ife_gencnt;
605 	ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp);
606 	IFNET_WUNLOCK();
607 
608 	return (ifp);
609 }
610 
611 struct ifnet *
612 if_alloc_dev(u_char type, device_t dev)
613 {
614 	int numa_domain;
615 
616 	if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0)
617 		return (if_alloc_domain(type, IF_NODOM));
618 	return (if_alloc_domain(type, numa_domain));
619 }
620 
621 struct ifnet *
622 if_alloc(u_char type)
623 {
624 
625 	return (if_alloc_domain(type, IF_NODOM));
626 }
627 /*
628  * Do the actual work of freeing a struct ifnet, and layer 2 common
629  * structure.  This call is made when the network epoch guarantees
630  * us that nobody holds a pointer to the interface.
631  */
632 static void
633 if_free_deferred(epoch_context_t ctx)
634 {
635 	struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx);
636 
637 	KASSERT((ifp->if_flags & IFF_DYING),
638 	    ("%s: interface not dying", __func__));
639 
640 	if (if_com_free[ifp->if_alloctype] != NULL)
641 		if_com_free[ifp->if_alloctype](ifp->if_l2com,
642 		    ifp->if_alloctype);
643 
644 #ifdef MAC
645 	mac_ifnet_destroy(ifp);
646 #endif /* MAC */
647 	IF_AFDATA_DESTROY(ifp);
648 	IF_ADDR_LOCK_DESTROY(ifp);
649 	ifq_delete(&ifp->if_snd);
650 
651 	for (int i = 0; i < IFCOUNTERS; i++)
652 		counter_u64_free(ifp->if_counters[i]);
653 
654 	if_freedescr(ifp->if_description);
655 	free(ifp->if_hw_addr, M_IFADDR);
656 	free(ifp, M_IFNET);
657 }
658 
659 /*
660  * Deregister an interface and free the associated storage.
661  */
662 void
663 if_free(struct ifnet *ifp)
664 {
665 
666 	ifp->if_flags |= IFF_DYING;			/* XXX: Locking */
667 
668 	/*
669 	 * XXXGL: An interface index is really an alias to ifp pointer.
670 	 * Why would we clear the alias now, and not in the deferred
671 	 * context?  Indeed there is nothing wrong with some network
672 	 * thread obtaining ifp via ifnet_byindex() inside the network
673 	 * epoch and then dereferencing ifp while we perform if_free(),
674 	 * and after if_free() finished, too.
675 	 *
676 	 * This early index freeing was important back when ifindex was
677 	 * virtualized and interface would outlive the vnet.
678 	 */
679 	IFNET_WLOCK();
680 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
681 	ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL);
682 	ifindex_table[ifp->if_index].ife_gencnt++;
683 	while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL)
684 		if_index--;
685 	IFNET_WUNLOCK();
686 
687 	if (refcount_release(&ifp->if_refcount))
688 		NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
689 }
690 
691 /*
692  * Interfaces to keep an ifnet type-stable despite the possibility of the
693  * driver calling if_free().  If there are additional references, we defer
694  * freeing the underlying data structure.
695  */
696 void
697 if_ref(struct ifnet *ifp)
698 {
699 	u_int old __diagused;
700 
701 	/* We don't assert the ifnet list lock here, but arguably should. */
702 	old = refcount_acquire(&ifp->if_refcount);
703 	KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp));
704 }
705 
706 bool
707 if_try_ref(struct ifnet *ifp)
708 {
709 	NET_EPOCH_ASSERT();
710 	return (refcount_acquire_if_not_zero(&ifp->if_refcount));
711 }
712 
713 void
714 if_rele(struct ifnet *ifp)
715 {
716 
717 	if (!refcount_release(&ifp->if_refcount))
718 		return;
719 	NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
720 }
721 
722 void
723 ifq_init(struct ifaltq *ifq, struct ifnet *ifp)
724 {
725 
726 	mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF);
727 
728 	if (ifq->ifq_maxlen == 0)
729 		ifq->ifq_maxlen = ifqmaxlen;
730 
731 	ifq->altq_type = 0;
732 	ifq->altq_disc = NULL;
733 	ifq->altq_flags &= ALTQF_CANTCHANGE;
734 	ifq->altq_tbr  = NULL;
735 	ifq->altq_ifp  = ifp;
736 }
737 
738 void
739 ifq_delete(struct ifaltq *ifq)
740 {
741 	mtx_destroy(&ifq->ifq_mtx);
742 }
743 
744 /*
745  * Perform generic interface initialization tasks and attach the interface
746  * to the list of "active" interfaces.  If vmove flag is set on entry
747  * to if_attach_internal(), perform only a limited subset of initialization
748  * tasks, given that we are moving from one vnet to another an ifnet which
749  * has already been fully initialized.
750  *
751  * Note that if_detach_internal() removes group membership unconditionally
752  * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL.
753  * Thus, when if_vmove() is applied to a cloned interface, group membership
754  * is lost while a cloned one always joins a group whose name is
755  * ifc->ifc_name.  To recover this after if_detach_internal() and
756  * if_attach_internal(), the cloner should be specified to
757  * if_attach_internal() via ifc.  If it is non-NULL, if_attach_internal()
758  * attempts to join a group whose name is ifc->ifc_name.
759  *
760  * XXX:
761  *  - The decision to return void and thus require this function to
762  *    succeed is questionable.
763  *  - We should probably do more sanity checking.  For instance we don't
764  *    do anything to insure if_xname is unique or non-empty.
765  */
766 void
767 if_attach(struct ifnet *ifp)
768 {
769 
770 	if_attach_internal(ifp, false);
771 }
772 
773 /*
774  * Compute the least common TSO limit.
775  */
776 void
777 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax)
778 {
779 	/*
780 	 * 1) If there is no limit currently, take the limit from
781 	 * the network adapter.
782 	 *
783 	 * 2) If the network adapter has a limit below the current
784 	 * limit, apply it.
785 	 */
786 	if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 &&
787 	    ifp->if_hw_tsomax < pmax->tsomaxbytes)) {
788 		pmax->tsomaxbytes = ifp->if_hw_tsomax;
789 	}
790 	if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 &&
791 	    ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) {
792 		pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
793 	}
794 	if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 &&
795 	    ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) {
796 		pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
797 	}
798 }
799 
800 /*
801  * Update TSO limit of a network adapter.
802  *
803  * Returns zero if no change. Else non-zero.
804  */
805 int
806 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax)
807 {
808 	int retval = 0;
809 	if (ifp->if_hw_tsomax != pmax->tsomaxbytes) {
810 		ifp->if_hw_tsomax = pmax->tsomaxbytes;
811 		retval++;
812 	}
813 	if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) {
814 		ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize;
815 		retval++;
816 	}
817 	if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) {
818 		ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount;
819 		retval++;
820 	}
821 	return (retval);
822 }
823 
824 static void
825 if_attach_internal(struct ifnet *ifp, bool vmove)
826 {
827 	unsigned socksize, ifasize;
828 	int namelen, masklen;
829 	struct sockaddr_dl *sdl;
830 	struct ifaddr *ifa;
831 
832 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
833 
834 #ifdef VIMAGE
835 	CURVNET_ASSERT_SET();
836 	ifp->if_vnet = curvnet;
837 	if (ifp->if_home_vnet == NULL)
838 		ifp->if_home_vnet = curvnet;
839 #endif
840 
841 	if_addgroup(ifp, IFG_ALL);
842 
843 #ifdef VIMAGE
844 	/* Restore group membership for cloned interface. */
845 	if (vmove)
846 		if_clone_restoregroup(ifp);
847 #endif
848 
849 	getmicrotime(&ifp->if_lastchange);
850 	ifp->if_epoch = time_uptime;
851 
852 	KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) ||
853 	    (ifp->if_transmit != NULL && ifp->if_qflush != NULL),
854 	    ("transmit and qflush must both either be set or both be NULL"));
855 	if (ifp->if_transmit == NULL) {
856 		ifp->if_transmit = if_transmit_default;
857 		ifp->if_qflush = if_qflush;
858 	}
859 	if (ifp->if_input == NULL)
860 		ifp->if_input = if_input_default;
861 
862 	if (ifp->if_requestencap == NULL)
863 		ifp->if_requestencap = if_requestencap_default;
864 
865 	if (!vmove) {
866 #ifdef MAC
867 		mac_ifnet_create(ifp);
868 #endif
869 
870 		/*
871 		 * Create a Link Level name for this device.
872 		 */
873 		namelen = strlen(ifp->if_xname);
874 		/*
875 		 * Always save enough space for any possiable name so we
876 		 * can do a rename in place later.
877 		 */
878 		masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ;
879 		socksize = masklen + ifp->if_addrlen;
880 		if (socksize < sizeof(*sdl))
881 			socksize = sizeof(*sdl);
882 		socksize = roundup2(socksize, sizeof(long));
883 		ifasize = sizeof(*ifa) + 2 * socksize;
884 		ifa = ifa_alloc(ifasize, M_WAITOK);
885 		sdl = (struct sockaddr_dl *)(ifa + 1);
886 		sdl->sdl_len = socksize;
887 		sdl->sdl_family = AF_LINK;
888 		bcopy(ifp->if_xname, sdl->sdl_data, namelen);
889 		sdl->sdl_nlen = namelen;
890 		sdl->sdl_index = ifp->if_index;
891 		sdl->sdl_type = ifp->if_type;
892 		ifp->if_addr = ifa;
893 		ifa->ifa_ifp = ifp;
894 		ifa->ifa_addr = (struct sockaddr *)sdl;
895 		sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
896 		ifa->ifa_netmask = (struct sockaddr *)sdl;
897 		sdl->sdl_len = masklen;
898 		while (namelen != 0)
899 			sdl->sdl_data[--namelen] = 0xff;
900 		CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
901 		/* Reliably crash if used uninitialized. */
902 		ifp->if_broadcastaddr = NULL;
903 
904 		if (ifp->if_type == IFT_ETHER) {
905 			ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR,
906 			    M_WAITOK | M_ZERO);
907 		}
908 
909 #if defined(INET) || defined(INET6)
910 		/* Use defaults for TSO, if nothing is set */
911 		if (ifp->if_hw_tsomax == 0 &&
912 		    ifp->if_hw_tsomaxsegcount == 0 &&
913 		    ifp->if_hw_tsomaxsegsize == 0) {
914 			/*
915 			 * The TSO defaults needs to be such that an
916 			 * NFS mbuf list of 35 mbufs totalling just
917 			 * below 64K works and that a chain of mbufs
918 			 * can be defragged into at most 32 segments:
919 			 */
920 			ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) -
921 			    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN));
922 			ifp->if_hw_tsomaxsegcount = 35;
923 			ifp->if_hw_tsomaxsegsize = 2048;	/* 2K */
924 
925 			/* XXX some drivers set IFCAP_TSO after ethernet attach */
926 			if (ifp->if_capabilities & IFCAP_TSO) {
927 				if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n",
928 				    ifp->if_hw_tsomax,
929 				    ifp->if_hw_tsomaxsegcount,
930 				    ifp->if_hw_tsomaxsegsize);
931 			}
932 		}
933 #endif
934 	}
935 #ifdef VIMAGE
936 	else {
937 		/*
938 		 * Update the interface index in the link layer address
939 		 * of the interface.
940 		 */
941 		for (ifa = ifp->if_addr; ifa != NULL;
942 		    ifa = CK_STAILQ_NEXT(ifa, ifa_link)) {
943 			if (ifa->ifa_addr->sa_family == AF_LINK) {
944 				sdl = (struct sockaddr_dl *)ifa->ifa_addr;
945 				sdl->sdl_index = ifp->if_index;
946 			}
947 		}
948 	}
949 #endif
950 
951 	if_link_ifnet(ifp);
952 
953 	if (domain_init_status >= 2)
954 		if_attachdomain1(ifp);
955 
956 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
957 	if (IS_DEFAULT_VNET(curvnet))
958 		devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
959 }
960 
961 static void
962 if_epochalloc(void *dummy __unused)
963 {
964 
965 	net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT);
966 }
967 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL);
968 
969 static void
970 if_attachdomain(void *dummy)
971 {
972 	struct ifnet *ifp;
973 
974 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link)
975 		if_attachdomain1(ifp);
976 }
977 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND,
978     if_attachdomain, NULL);
979 
980 static void
981 if_attachdomain1(struct ifnet *ifp)
982 {
983 	struct domain *dp;
984 
985 	/*
986 	 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we
987 	 * cannot lock ifp->if_afdata initialization, entirely.
988 	 */
989 	IF_AFDATA_LOCK(ifp);
990 	if (ifp->if_afdata_initialized >= domain_init_status) {
991 		IF_AFDATA_UNLOCK(ifp);
992 		log(LOG_WARNING, "%s called more than once on %s\n",
993 		    __func__, ifp->if_xname);
994 		return;
995 	}
996 	ifp->if_afdata_initialized = domain_init_status;
997 	IF_AFDATA_UNLOCK(ifp);
998 
999 	/* address family dependent data region */
1000 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
1001 	SLIST_FOREACH(dp, &domains, dom_next) {
1002 		if (dp->dom_ifattach)
1003 			ifp->if_afdata[dp->dom_family] =
1004 			    (*dp->dom_ifattach)(ifp);
1005 	}
1006 }
1007 
1008 /*
1009  * Remove any unicast or broadcast network addresses from an interface.
1010  */
1011 void
1012 if_purgeaddrs(struct ifnet *ifp)
1013 {
1014 	struct ifaddr *ifa;
1015 
1016 #ifdef INET6
1017 	/*
1018 	 * Need to leave multicast addresses of proxy NDP llentries
1019 	 * before in6_purgeifaddr() because the llentries are keys
1020 	 * for in6_multi objects of proxy NDP entries.
1021 	 * in6_purgeifaddr()s clean up llentries including proxy NDPs
1022 	 * then we would lose the keys if they are called earlier.
1023 	 */
1024 	in6_purge_proxy_ndp(ifp);
1025 #endif
1026 	while (1) {
1027 		struct epoch_tracker et;
1028 
1029 		NET_EPOCH_ENTER(et);
1030 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1031 			if (ifa->ifa_addr->sa_family != AF_LINK)
1032 				break;
1033 		}
1034 		NET_EPOCH_EXIT(et);
1035 
1036 		if (ifa == NULL)
1037 			break;
1038 #ifdef INET
1039 		/* XXX: Ugly!! ad hoc just for INET */
1040 		if (ifa->ifa_addr->sa_family == AF_INET) {
1041 			struct ifreq ifr;
1042 
1043 			bzero(&ifr, sizeof(ifr));
1044 			ifr.ifr_addr = *ifa->ifa_addr;
1045 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
1046 			    NULL) == 0)
1047 				continue;
1048 		}
1049 #endif /* INET */
1050 #ifdef INET6
1051 		if (ifa->ifa_addr->sa_family == AF_INET6) {
1052 			in6_purgeifaddr((struct in6_ifaddr *)ifa);
1053 			/* ifp_addrhead is already updated */
1054 			continue;
1055 		}
1056 #endif /* INET6 */
1057 		IF_ADDR_WLOCK(ifp);
1058 		CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1059 		IF_ADDR_WUNLOCK(ifp);
1060 		ifa_free(ifa);
1061 	}
1062 }
1063 
1064 /*
1065  * Remove any multicast network addresses from an interface when an ifnet
1066  * is going away.
1067  */
1068 static void
1069 if_purgemaddrs(struct ifnet *ifp)
1070 {
1071 	struct ifmultiaddr *ifma;
1072 
1073 	IF_ADDR_WLOCK(ifp);
1074 	while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) {
1075 		ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs);
1076 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
1077 		if_delmulti_locked(ifp, ifma, 1);
1078 	}
1079 	IF_ADDR_WUNLOCK(ifp);
1080 }
1081 
1082 /*
1083  * Detach an interface, removing it from the list of "active" interfaces.
1084  * If vmove flag is set on entry to if_detach_internal(), perform only a
1085  * limited subset of cleanup tasks, given that we are moving an ifnet from
1086  * one vnet to another, where it must be fully operational.
1087  *
1088  * XXXRW: There are some significant questions about event ordering, and
1089  * how to prevent things from starting to use the interface during detach.
1090  */
1091 void
1092 if_detach(struct ifnet *ifp)
1093 {
1094 	bool found;
1095 
1096 	CURVNET_SET_QUIET(ifp->if_vnet);
1097 	found = if_unlink_ifnet(ifp, false);
1098 	if (found) {
1099 		sx_xlock(&ifnet_detach_sxlock);
1100 		if_detach_internal(ifp, false);
1101 		sx_xunlock(&ifnet_detach_sxlock);
1102 	}
1103 	CURVNET_RESTORE();
1104 }
1105 
1106 /*
1107  * The vmove flag, if set, indicates that we are called from a callpath
1108  * that is moving an interface to a different vnet instance.
1109  *
1110  * The shutdown flag, if set, indicates that we are called in the
1111  * process of shutting down a vnet instance.  Currently only the
1112  * vnet_if_return SYSUNINIT function sets it.  Note: we can be called
1113  * on a vnet instance shutdown without this flag being set, e.g., when
1114  * the cloned interfaces are destoyed as first thing of teardown.
1115  */
1116 static int
1117 if_detach_internal(struct ifnet *ifp, bool vmove)
1118 {
1119 	struct ifaddr *ifa;
1120 	int i;
1121 	struct domain *dp;
1122 #ifdef VIMAGE
1123 	bool shutdown;
1124 
1125 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1126 #endif
1127 
1128 	sx_assert(&ifnet_detach_sxlock, SX_XLOCKED);
1129 
1130 	/*
1131 	 * At this point we know the interface still was on the ifnet list
1132 	 * and we removed it so we are in a stable state.
1133 	 */
1134 	NET_EPOCH_WAIT();
1135 
1136 	/*
1137 	 * Ensure all pending EPOCH(9) callbacks have been executed. This
1138 	 * fixes issues about late destruction of multicast options
1139 	 * which lead to leave group calls, which in turn access the
1140 	 * belonging ifnet structure:
1141 	 */
1142 	NET_EPOCH_DRAIN_CALLBACKS();
1143 
1144 	/*
1145 	 * In any case (destroy or vmove) detach us from the groups
1146 	 * and remove/wait for pending events on the taskq.
1147 	 * XXX-BZ in theory an interface could still enqueue a taskq change?
1148 	 */
1149 	if_delgroups(ifp);
1150 
1151 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
1152 	taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask);
1153 
1154 	if_down(ifp);
1155 
1156 #ifdef VIMAGE
1157 	/*
1158 	 * On VNET shutdown abort here as the stack teardown will do all
1159 	 * the work top-down for us.
1160 	 */
1161 	if (shutdown) {
1162 		/* Give interface users the chance to clean up. */
1163 		EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1164 
1165 		/*
1166 		 * In case of a vmove we are done here without error.
1167 		 * If we would signal an error it would lead to the same
1168 		 * abort as if we did not find the ifnet anymore.
1169 		 * if_detach() calls us in void context and does not care
1170 		 * about an early abort notification, so life is splendid :)
1171 		 */
1172 		goto finish_vnet_shutdown;
1173 	}
1174 #endif
1175 
1176 	/*
1177 	 * At this point we are not tearing down a VNET and are either
1178 	 * going to destroy or vmove the interface and have to cleanup
1179 	 * accordingly.
1180 	 */
1181 
1182 	/*
1183 	 * Remove routes and flush queues.
1184 	 */
1185 #ifdef ALTQ
1186 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
1187 		altq_disable(&ifp->if_snd);
1188 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1189 		altq_detach(&ifp->if_snd);
1190 #endif
1191 
1192 	if_purgeaddrs(ifp);
1193 
1194 #ifdef INET
1195 	in_ifdetach(ifp);
1196 #endif
1197 
1198 #ifdef INET6
1199 	/*
1200 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
1201 	 * before removing routing entries below, since IPv6 interface direct
1202 	 * routes are expected to be removed by the IPv6-specific kernel API.
1203 	 * Otherwise, the kernel will detect some inconsistency and bark it.
1204 	 */
1205 	in6_ifdetach(ifp);
1206 #endif
1207 	if_purgemaddrs(ifp);
1208 
1209 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1210 	if (IS_DEFAULT_VNET(curvnet))
1211 		devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
1212 
1213 	if (!vmove) {
1214 		/*
1215 		 * Prevent further calls into the device driver via ifnet.
1216 		 */
1217 		if_dead(ifp);
1218 
1219 		/*
1220 		 * Clean up all addresses.
1221 		 */
1222 		IF_ADDR_WLOCK(ifp);
1223 		if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) {
1224 			ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
1225 			CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1226 			IF_ADDR_WUNLOCK(ifp);
1227 			ifa_free(ifa);
1228 		} else
1229 			IF_ADDR_WUNLOCK(ifp);
1230 	}
1231 
1232 	rt_flushifroutes(ifp);
1233 
1234 #ifdef VIMAGE
1235 finish_vnet_shutdown:
1236 #endif
1237 	/*
1238 	 * We cannot hold the lock over dom_ifdetach calls as they might
1239 	 * sleep, for example trying to drain a callout, thus open up the
1240 	 * theoretical race with re-attaching.
1241 	 */
1242 	IF_AFDATA_LOCK(ifp);
1243 	i = ifp->if_afdata_initialized;
1244 	ifp->if_afdata_initialized = 0;
1245 	IF_AFDATA_UNLOCK(ifp);
1246 	if (i == 0)
1247 		return (0);
1248 	SLIST_FOREACH(dp, &domains, dom_next) {
1249 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) {
1250 			(*dp->dom_ifdetach)(ifp,
1251 			    ifp->if_afdata[dp->dom_family]);
1252 			ifp->if_afdata[dp->dom_family] = NULL;
1253 		}
1254 	}
1255 
1256 	return (0);
1257 }
1258 
1259 #ifdef VIMAGE
1260 /*
1261  * if_vmove() performs a limited version of if_detach() in current
1262  * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg.
1263  */
1264 static int
1265 if_vmove(struct ifnet *ifp, struct vnet *new_vnet)
1266 {
1267 	int rc;
1268 
1269 	/*
1270 	 * Detach from current vnet, but preserve LLADDR info, do not
1271 	 * mark as dead etc. so that the ifnet can be reattached later.
1272 	 * If we cannot find it, we lost the race to someone else.
1273 	 */
1274 	rc = if_detach_internal(ifp, true);
1275 	if (rc != 0)
1276 		return (rc);
1277 
1278 	/*
1279 	 * Perform interface-specific reassignment tasks, if provided by
1280 	 * the driver.
1281 	 */
1282 	if (ifp->if_reassign != NULL)
1283 		ifp->if_reassign(ifp, new_vnet, NULL);
1284 
1285 	/*
1286 	 * Switch to the context of the target vnet.
1287 	 */
1288 	CURVNET_SET_QUIET(new_vnet);
1289 	if_attach_internal(ifp, true);
1290 	CURVNET_RESTORE();
1291 	return (0);
1292 }
1293 
1294 /*
1295  * Move an ifnet to or from another child prison/vnet, specified by the jail id.
1296  */
1297 static int
1298 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid)
1299 {
1300 	struct prison *pr;
1301 	struct ifnet *difp;
1302 	int error;
1303 	bool found __diagused;
1304 	bool shutdown;
1305 
1306 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
1307 
1308 	/* Try to find the prison within our visibility. */
1309 	sx_slock(&allprison_lock);
1310 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1311 	sx_sunlock(&allprison_lock);
1312 	if (pr == NULL)
1313 		return (ENXIO);
1314 	prison_hold_locked(pr);
1315 	mtx_unlock(&pr->pr_mtx);
1316 
1317 	/* Do not try to move the iface from and to the same prison. */
1318 	if (pr->pr_vnet == ifp->if_vnet) {
1319 		prison_free(pr);
1320 		return (EEXIST);
1321 	}
1322 
1323 	/* Make sure the named iface does not exists in the dst. prison/vnet. */
1324 	/* XXX Lock interfaces to avoid races. */
1325 	CURVNET_SET_QUIET(pr->pr_vnet);
1326 	difp = ifunit(ifname);
1327 	CURVNET_RESTORE();
1328 	if (difp != NULL) {
1329 		prison_free(pr);
1330 		return (EEXIST);
1331 	}
1332 	sx_xlock(&ifnet_detach_sxlock);
1333 
1334 	/* Make sure the VNET is stable. */
1335 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1336 	if (shutdown) {
1337 		sx_xunlock(&ifnet_detach_sxlock);
1338 		prison_free(pr);
1339 		return (EBUSY);
1340 	}
1341 
1342 	found = if_unlink_ifnet(ifp, true);
1343 	if (! found) {
1344 		sx_xunlock(&ifnet_detach_sxlock);
1345 		prison_free(pr);
1346 		return (ENODEV);
1347 	}
1348 
1349 	/* Move the interface into the child jail/vnet. */
1350 	error = if_vmove(ifp, pr->pr_vnet);
1351 
1352 	/* Report the new if_xname back to the userland on success. */
1353 	if (error == 0)
1354 		sprintf(ifname, "%s", ifp->if_xname);
1355 
1356 	sx_xunlock(&ifnet_detach_sxlock);
1357 
1358 	prison_free(pr);
1359 	return (error);
1360 }
1361 
1362 static int
1363 if_vmove_reclaim(struct thread *td, char *ifname, int jid)
1364 {
1365 	struct prison *pr;
1366 	struct vnet *vnet_dst;
1367 	struct ifnet *ifp;
1368 	int error, found __diagused;
1369  	bool shutdown;
1370 
1371 	/* Try to find the prison within our visibility. */
1372 	sx_slock(&allprison_lock);
1373 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1374 	sx_sunlock(&allprison_lock);
1375 	if (pr == NULL)
1376 		return (ENXIO);
1377 	prison_hold_locked(pr);
1378 	mtx_unlock(&pr->pr_mtx);
1379 
1380 	/* Make sure the named iface exists in the source prison/vnet. */
1381 	CURVNET_SET(pr->pr_vnet);
1382 	ifp = ifunit(ifname);		/* XXX Lock to avoid races. */
1383 	if (ifp == NULL) {
1384 		CURVNET_RESTORE();
1385 		prison_free(pr);
1386 		return (ENXIO);
1387 	}
1388 
1389 	/* Do not try to move the iface from and to the same prison. */
1390 	vnet_dst = TD_TO_VNET(td);
1391 	if (vnet_dst == ifp->if_vnet) {
1392 		CURVNET_RESTORE();
1393 		prison_free(pr);
1394 		return (EEXIST);
1395 	}
1396 
1397 	/* Make sure the VNET is stable. */
1398 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1399 	if (shutdown) {
1400 		CURVNET_RESTORE();
1401 		prison_free(pr);
1402 		return (EBUSY);
1403 	}
1404 
1405 	/* Get interface back from child jail/vnet. */
1406 	found = if_unlink_ifnet(ifp, true);
1407 	MPASS(found);
1408 	sx_xlock(&ifnet_detach_sxlock);
1409 	error = if_vmove(ifp, vnet_dst);
1410 	sx_xunlock(&ifnet_detach_sxlock);
1411 	CURVNET_RESTORE();
1412 
1413 	/* Report the new if_xname back to the userland on success. */
1414 	if (error == 0)
1415 		sprintf(ifname, "%s", ifp->if_xname);
1416 
1417 	prison_free(pr);
1418 	return (error);
1419 }
1420 #endif /* VIMAGE */
1421 
1422 /*
1423  * Add a group to an interface
1424  */
1425 int
1426 if_addgroup(struct ifnet *ifp, const char *groupname)
1427 {
1428 	struct ifg_list		*ifgl;
1429 	struct ifg_group	*ifg = NULL;
1430 	struct ifg_member	*ifgm;
1431 	int 			 new = 0;
1432 
1433 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1434 	    groupname[strlen(groupname) - 1] <= '9')
1435 		return (EINVAL);
1436 
1437 	IFNET_WLOCK();
1438 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1439 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) {
1440 			IFNET_WUNLOCK();
1441 			return (EEXIST);
1442 		}
1443 
1444 	if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) {
1445 	    	IFNET_WUNLOCK();
1446 		return (ENOMEM);
1447 	}
1448 
1449 	if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1450 		free(ifgl, M_TEMP);
1451 		IFNET_WUNLOCK();
1452 		return (ENOMEM);
1453 	}
1454 
1455 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1456 		if (!strcmp(ifg->ifg_group, groupname))
1457 			break;
1458 
1459 	if (ifg == NULL) {
1460 		if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) {
1461 			free(ifgl, M_TEMP);
1462 			free(ifgm, M_TEMP);
1463 			IFNET_WUNLOCK();
1464 			return (ENOMEM);
1465 		}
1466 		strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1467 		ifg->ifg_refcnt = 0;
1468 		CK_STAILQ_INIT(&ifg->ifg_members);
1469 		CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next);
1470 		new = 1;
1471 	}
1472 
1473 	ifg->ifg_refcnt++;
1474 	ifgl->ifgl_group = ifg;
1475 	ifgm->ifgm_ifp = ifp;
1476 
1477 	IF_ADDR_WLOCK(ifp);
1478 	CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1479 	CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1480 	IF_ADDR_WUNLOCK(ifp);
1481 
1482 	IFNET_WUNLOCK();
1483 
1484 	if (new)
1485 		EVENTHANDLER_INVOKE(group_attach_event, ifg);
1486 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1487 
1488 	return (0);
1489 }
1490 
1491 /*
1492  * Helper function to remove a group out of an interface.  Expects the global
1493  * ifnet lock to be write-locked, and drops it before returning.
1494  */
1495 static void
1496 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl,
1497     const char *groupname)
1498 {
1499 	struct ifg_member *ifgm;
1500 	bool freeifgl;
1501 
1502 	IFNET_WLOCK_ASSERT();
1503 
1504 	IF_ADDR_WLOCK(ifp);
1505 	CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next);
1506 	IF_ADDR_WUNLOCK(ifp);
1507 
1508 	CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) {
1509 		if (ifgm->ifgm_ifp == ifp) {
1510 			CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm,
1511 			    ifg_member, ifgm_next);
1512 			break;
1513 		}
1514 	}
1515 
1516 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1517 		CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group,
1518 		    ifg_next);
1519 		freeifgl = true;
1520 	} else {
1521 		freeifgl = false;
1522 	}
1523 	IFNET_WUNLOCK();
1524 
1525 	NET_EPOCH_WAIT();
1526 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1527 	if (freeifgl) {
1528 		EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group);
1529 		free(ifgl->ifgl_group, M_TEMP);
1530 	}
1531 	free(ifgm, M_TEMP);
1532 	free(ifgl, M_TEMP);
1533 }
1534 
1535 /*
1536  * Remove a group from an interface
1537  */
1538 int
1539 if_delgroup(struct ifnet *ifp, const char *groupname)
1540 {
1541 	struct ifg_list *ifgl;
1542 
1543 	IFNET_WLOCK();
1544 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1545 		if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0)
1546 			break;
1547 	if (ifgl == NULL) {
1548 		IFNET_WUNLOCK();
1549 		return (ENOENT);
1550 	}
1551 
1552 	_if_delgroup_locked(ifp, ifgl, groupname);
1553 
1554 	return (0);
1555 }
1556 
1557 /*
1558  * Remove an interface from all groups
1559  */
1560 static void
1561 if_delgroups(struct ifnet *ifp)
1562 {
1563 	struct ifg_list *ifgl;
1564 	char groupname[IFNAMSIZ];
1565 
1566 	IFNET_WLOCK();
1567 	while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) {
1568 		strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ);
1569 		_if_delgroup_locked(ifp, ifgl, groupname);
1570 		IFNET_WLOCK();
1571 	}
1572 	IFNET_WUNLOCK();
1573 }
1574 
1575 /*
1576  * Stores all groups from an interface in memory pointed to by ifgr.
1577  */
1578 static int
1579 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp)
1580 {
1581 	int			 len, error;
1582 	struct ifg_list		*ifgl;
1583 	struct ifg_req		 ifgrq, *ifgp;
1584 
1585 	NET_EPOCH_ASSERT();
1586 
1587 	if (ifgr->ifgr_len == 0) {
1588 		CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1589 			ifgr->ifgr_len += sizeof(struct ifg_req);
1590 		return (0);
1591 	}
1592 
1593 	len = ifgr->ifgr_len;
1594 	ifgp = ifgr->ifgr_groups;
1595 	/* XXX: wire */
1596 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1597 		if (len < sizeof(ifgrq))
1598 			return (EINVAL);
1599 		bzero(&ifgrq, sizeof ifgrq);
1600 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1601 		    sizeof(ifgrq.ifgrq_group));
1602 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req))))
1603 			return (error);
1604 		len -= sizeof(ifgrq);
1605 		ifgp++;
1606 	}
1607 
1608 	return (0);
1609 }
1610 
1611 /*
1612  * Stores all members of a group in memory pointed to by igfr
1613  */
1614 static int
1615 if_getgroupmembers(struct ifgroupreq *ifgr)
1616 {
1617 	struct ifg_group	*ifg;
1618 	struct ifg_member	*ifgm;
1619 	struct ifg_req		 ifgrq, *ifgp;
1620 	int			 len, error;
1621 
1622 	IFNET_RLOCK();
1623 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1624 		if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0)
1625 			break;
1626 	if (ifg == NULL) {
1627 		IFNET_RUNLOCK();
1628 		return (ENOENT);
1629 	}
1630 
1631 	if (ifgr->ifgr_len == 0) {
1632 		CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1633 			ifgr->ifgr_len += sizeof(ifgrq);
1634 		IFNET_RUNLOCK();
1635 		return (0);
1636 	}
1637 
1638 	len = ifgr->ifgr_len;
1639 	ifgp = ifgr->ifgr_groups;
1640 	CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1641 		if (len < sizeof(ifgrq)) {
1642 			IFNET_RUNLOCK();
1643 			return (EINVAL);
1644 		}
1645 		bzero(&ifgrq, sizeof ifgrq);
1646 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1647 		    sizeof(ifgrq.ifgrq_member));
1648 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
1649 			IFNET_RUNLOCK();
1650 			return (error);
1651 		}
1652 		len -= sizeof(ifgrq);
1653 		ifgp++;
1654 	}
1655 	IFNET_RUNLOCK();
1656 
1657 	return (0);
1658 }
1659 
1660 /*
1661  * Return counter values from counter(9)s stored in ifnet.
1662  */
1663 uint64_t
1664 if_get_counter_default(struct ifnet *ifp, ift_counter cnt)
1665 {
1666 
1667 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1668 
1669 	return (counter_u64_fetch(ifp->if_counters[cnt]));
1670 }
1671 
1672 /*
1673  * Increase an ifnet counter. Usually used for counters shared
1674  * between the stack and a driver, but function supports them all.
1675  */
1676 void
1677 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc)
1678 {
1679 
1680 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1681 
1682 	counter_u64_add(ifp->if_counters[cnt], inc);
1683 }
1684 
1685 /*
1686  * Copy data from ifnet to userland API structure if_data.
1687  */
1688 void
1689 if_data_copy(struct ifnet *ifp, struct if_data *ifd)
1690 {
1691 
1692 	ifd->ifi_type = ifp->if_type;
1693 	ifd->ifi_physical = 0;
1694 	ifd->ifi_addrlen = ifp->if_addrlen;
1695 	ifd->ifi_hdrlen = ifp->if_hdrlen;
1696 	ifd->ifi_link_state = ifp->if_link_state;
1697 	ifd->ifi_vhid = 0;
1698 	ifd->ifi_datalen = sizeof(struct if_data);
1699 	ifd->ifi_mtu = ifp->if_mtu;
1700 	ifd->ifi_metric = ifp->if_metric;
1701 	ifd->ifi_baudrate = ifp->if_baudrate;
1702 	ifd->ifi_hwassist = ifp->if_hwassist;
1703 	ifd->ifi_epoch = ifp->if_epoch;
1704 	ifd->ifi_lastchange = ifp->if_lastchange;
1705 
1706 	ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
1707 	ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS);
1708 	ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
1709 	ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS);
1710 	ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS);
1711 	ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES);
1712 	ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES);
1713 	ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS);
1714 	ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS);
1715 	ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS);
1716 	ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS);
1717 	ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO);
1718 }
1719 
1720 /*
1721  * Initialization, destruction and refcounting functions for ifaddrs.
1722  */
1723 struct ifaddr *
1724 ifa_alloc(size_t size, int flags)
1725 {
1726 	struct ifaddr *ifa;
1727 
1728 	KASSERT(size >= sizeof(struct ifaddr),
1729 	    ("%s: invalid size %zu", __func__, size));
1730 
1731 	ifa = malloc(size, M_IFADDR, M_ZERO | flags);
1732 	if (ifa == NULL)
1733 		return (NULL);
1734 
1735 	if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL)
1736 		goto fail;
1737 	if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL)
1738 		goto fail;
1739 	if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL)
1740 		goto fail;
1741 	if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL)
1742 		goto fail;
1743 
1744 	refcount_init(&ifa->ifa_refcnt, 1);
1745 
1746 	return (ifa);
1747 
1748 fail:
1749 	/* free(NULL) is okay */
1750 	counter_u64_free(ifa->ifa_opackets);
1751 	counter_u64_free(ifa->ifa_ipackets);
1752 	counter_u64_free(ifa->ifa_obytes);
1753 	counter_u64_free(ifa->ifa_ibytes);
1754 	free(ifa, M_IFADDR);
1755 
1756 	return (NULL);
1757 }
1758 
1759 void
1760 ifa_ref(struct ifaddr *ifa)
1761 {
1762 	u_int old __diagused;
1763 
1764 	old = refcount_acquire(&ifa->ifa_refcnt);
1765 	KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa));
1766 }
1767 
1768 int
1769 ifa_try_ref(struct ifaddr *ifa)
1770 {
1771 
1772 	NET_EPOCH_ASSERT();
1773 	return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt));
1774 }
1775 
1776 static void
1777 ifa_destroy(epoch_context_t ctx)
1778 {
1779 	struct ifaddr *ifa;
1780 
1781 	ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx);
1782 	counter_u64_free(ifa->ifa_opackets);
1783 	counter_u64_free(ifa->ifa_ipackets);
1784 	counter_u64_free(ifa->ifa_obytes);
1785 	counter_u64_free(ifa->ifa_ibytes);
1786 	free(ifa, M_IFADDR);
1787 }
1788 
1789 void
1790 ifa_free(struct ifaddr *ifa)
1791 {
1792 
1793 	if (refcount_release(&ifa->ifa_refcnt))
1794 		NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx);
1795 }
1796 
1797 /*
1798  * XXX: Because sockaddr_dl has deeper structure than the sockaddr
1799  * structs used to represent other address families, it is necessary
1800  * to perform a different comparison.
1801  */
1802 static bool
1803 sa_dl_equal(const struct sockaddr *a, const struct sockaddr *b)
1804 {
1805 	const struct sockaddr_dl *sdl1 = (const struct sockaddr_dl *)a;
1806 	const struct sockaddr_dl *sdl2 = (const struct sockaddr_dl *)b;
1807 
1808 	return (sdl1->sdl_len == sdl2->sdl_len &&
1809 	    bcmp(sdl1->sdl_data + sdl1->sdl_nlen,
1810 	    sdl2->sdl_data + sdl2->sdl_nlen, sdl1->sdl_alen) == 0);
1811 }
1812 
1813 /*
1814  * Locate an interface based on a complete address.
1815  */
1816 /*ARGSUSED*/
1817 struct ifaddr *
1818 ifa_ifwithaddr(const struct sockaddr *addr)
1819 {
1820 	struct ifnet *ifp;
1821 	struct ifaddr *ifa;
1822 
1823 	NET_EPOCH_ASSERT();
1824 
1825 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1826 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1827 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1828 				continue;
1829 			if (sa_equal(addr, ifa->ifa_addr)) {
1830 				goto done;
1831 			}
1832 			/* IP6 doesn't have broadcast */
1833 			if ((ifp->if_flags & IFF_BROADCAST) &&
1834 			    ifa->ifa_broadaddr &&
1835 			    ifa->ifa_broadaddr->sa_len != 0 &&
1836 			    sa_equal(ifa->ifa_broadaddr, addr)) {
1837 				goto done;
1838 			}
1839 		}
1840 	}
1841 	ifa = NULL;
1842 done:
1843 	return (ifa);
1844 }
1845 
1846 int
1847 ifa_ifwithaddr_check(const struct sockaddr *addr)
1848 {
1849 	struct epoch_tracker et;
1850 	int rc;
1851 
1852 	NET_EPOCH_ENTER(et);
1853 	rc = (ifa_ifwithaddr(addr) != NULL);
1854 	NET_EPOCH_EXIT(et);
1855 	return (rc);
1856 }
1857 
1858 /*
1859  * Locate an interface based on the broadcast address.
1860  */
1861 /* ARGSUSED */
1862 struct ifaddr *
1863 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum)
1864 {
1865 	struct ifnet *ifp;
1866 	struct ifaddr *ifa;
1867 
1868 	NET_EPOCH_ASSERT();
1869 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1870 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1871 			continue;
1872 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1873 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1874 				continue;
1875 			if ((ifp->if_flags & IFF_BROADCAST) &&
1876 			    ifa->ifa_broadaddr &&
1877 			    ifa->ifa_broadaddr->sa_len != 0 &&
1878 			    sa_equal(ifa->ifa_broadaddr, addr)) {
1879 				goto done;
1880 			}
1881 		}
1882 	}
1883 	ifa = NULL;
1884 done:
1885 	return (ifa);
1886 }
1887 
1888 /*
1889  * Locate the point to point interface with a given destination address.
1890  */
1891 /*ARGSUSED*/
1892 struct ifaddr *
1893 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum)
1894 {
1895 	struct ifnet *ifp;
1896 	struct ifaddr *ifa;
1897 
1898 	NET_EPOCH_ASSERT();
1899 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1900 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1901 			continue;
1902 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1903 			continue;
1904 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1905 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1906 				continue;
1907 			if (ifa->ifa_dstaddr != NULL &&
1908 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1909 				goto done;
1910 			}
1911 		}
1912 	}
1913 	ifa = NULL;
1914 done:
1915 	return (ifa);
1916 }
1917 
1918 /*
1919  * Find an interface on a specific network.  If many, choice
1920  * is most specific found.
1921  */
1922 struct ifaddr *
1923 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum)
1924 {
1925 	struct ifnet *ifp;
1926 	struct ifaddr *ifa;
1927 	struct ifaddr *ifa_maybe = NULL;
1928 	u_int af = addr->sa_family;
1929 	const char *addr_data = addr->sa_data, *cplim;
1930 
1931 	NET_EPOCH_ASSERT();
1932 	/*
1933 	 * AF_LINK addresses can be looked up directly by their index number,
1934 	 * so do that if we can.
1935 	 */
1936 	if (af == AF_LINK) {
1937 		ifp = ifnet_byindex(
1938 		    ((const struct sockaddr_dl *)addr)->sdl_index);
1939 		return (ifp ? ifp->if_addr : NULL);
1940 	}
1941 
1942 	/*
1943 	 * Scan though each interface, looking for ones that have addresses
1944 	 * in this address family and the requested fib.
1945 	 */
1946 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1947 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1948 			continue;
1949 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1950 			const char *cp, *cp2, *cp3;
1951 
1952 			if (ifa->ifa_addr->sa_family != af)
1953 next:				continue;
1954 			if (af == AF_INET &&
1955 			    ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) {
1956 				/*
1957 				 * This is a bit broken as it doesn't
1958 				 * take into account that the remote end may
1959 				 * be a single node in the network we are
1960 				 * looking for.
1961 				 * The trouble is that we don't know the
1962 				 * netmask for the remote end.
1963 				 */
1964 				if (ifa->ifa_dstaddr != NULL &&
1965 				    sa_equal(addr, ifa->ifa_dstaddr)) {
1966 					goto done;
1967 				}
1968 			} else {
1969 				/*
1970 				 * Scan all the bits in the ifa's address.
1971 				 * If a bit dissagrees with what we are
1972 				 * looking for, mask it with the netmask
1973 				 * to see if it really matters.
1974 				 * (A byte at a time)
1975 				 */
1976 				if (ifa->ifa_netmask == 0)
1977 					continue;
1978 				cp = addr_data;
1979 				cp2 = ifa->ifa_addr->sa_data;
1980 				cp3 = ifa->ifa_netmask->sa_data;
1981 				cplim = ifa->ifa_netmask->sa_len
1982 					+ (char *)ifa->ifa_netmask;
1983 				while (cp3 < cplim)
1984 					if ((*cp++ ^ *cp2++) & *cp3++)
1985 						goto next; /* next address! */
1986 				/*
1987 				 * If the netmask of what we just found
1988 				 * is more specific than what we had before
1989 				 * (if we had one), or if the virtual status
1990 				 * of new prefix is better than of the old one,
1991 				 * then remember the new one before continuing
1992 				 * to search for an even better one.
1993 				 */
1994 				if (ifa_maybe == NULL ||
1995 				    ifa_preferred(ifa_maybe, ifa) ||
1996 				    rn_refines((caddr_t)ifa->ifa_netmask,
1997 				    (caddr_t)ifa_maybe->ifa_netmask)) {
1998 					ifa_maybe = ifa;
1999 				}
2000 			}
2001 		}
2002 	}
2003 	ifa = ifa_maybe;
2004 	ifa_maybe = NULL;
2005 done:
2006 	return (ifa);
2007 }
2008 
2009 /*
2010  * Find an interface address specific to an interface best matching
2011  * a given address.
2012  */
2013 struct ifaddr *
2014 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2015 {
2016 	struct ifaddr *ifa;
2017 	const char *cp, *cp2, *cp3;
2018 	char *cplim;
2019 	struct ifaddr *ifa_maybe = NULL;
2020 	u_int af = addr->sa_family;
2021 
2022 	if (af >= AF_MAX)
2023 		return (NULL);
2024 
2025 	NET_EPOCH_ASSERT();
2026 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2027 		if (ifa->ifa_addr->sa_family != af)
2028 			continue;
2029 		if (ifa_maybe == NULL)
2030 			ifa_maybe = ifa;
2031 		if (ifa->ifa_netmask == 0) {
2032 			if (sa_equal(addr, ifa->ifa_addr) ||
2033 			    (ifa->ifa_dstaddr &&
2034 			    sa_equal(addr, ifa->ifa_dstaddr)))
2035 				goto done;
2036 			continue;
2037 		}
2038 		if (ifp->if_flags & IFF_POINTOPOINT) {
2039 			if (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))
2040 				goto done;
2041 		} else {
2042 			cp = addr->sa_data;
2043 			cp2 = ifa->ifa_addr->sa_data;
2044 			cp3 = ifa->ifa_netmask->sa_data;
2045 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2046 			for (; cp3 < cplim; cp3++)
2047 				if ((*cp++ ^ *cp2++) & *cp3)
2048 					break;
2049 			if (cp3 == cplim)
2050 				goto done;
2051 		}
2052 	}
2053 	ifa = ifa_maybe;
2054 done:
2055 	return (ifa);
2056 }
2057 
2058 /*
2059  * See whether new ifa is better than current one:
2060  * 1) A non-virtual one is preferred over virtual.
2061  * 2) A virtual in master state preferred over any other state.
2062  *
2063  * Used in several address selecting functions.
2064  */
2065 int
2066 ifa_preferred(struct ifaddr *cur, struct ifaddr *next)
2067 {
2068 
2069 	return (cur->ifa_carp && (!next->ifa_carp ||
2070 	    ((*carp_master_p)(next) && !(*carp_master_p)(cur))));
2071 }
2072 
2073 struct sockaddr_dl *
2074 link_alloc_sdl(size_t size, int flags)
2075 {
2076 
2077 	return (malloc(size, M_TEMP, flags));
2078 }
2079 
2080 void
2081 link_free_sdl(struct sockaddr *sa)
2082 {
2083 	free(sa, M_TEMP);
2084 }
2085 
2086 /*
2087  * Fills in given sdl with interface basic info.
2088  * Returns pointer to filled sdl.
2089  */
2090 struct sockaddr_dl *
2091 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype)
2092 {
2093 	struct sockaddr_dl *sdl;
2094 
2095 	sdl = (struct sockaddr_dl *)paddr;
2096 	memset(sdl, 0, sizeof(struct sockaddr_dl));
2097 	sdl->sdl_len = sizeof(struct sockaddr_dl);
2098 	sdl->sdl_family = AF_LINK;
2099 	sdl->sdl_index = ifp->if_index;
2100 	sdl->sdl_type = iftype;
2101 
2102 	return (sdl);
2103 }
2104 
2105 /*
2106  * Mark an interface down and notify protocols of
2107  * the transition.
2108  */
2109 static void
2110 if_unroute(struct ifnet *ifp, int flag, int fam)
2111 {
2112 
2113 	KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP"));
2114 
2115 	ifp->if_flags &= ~flag;
2116 	getmicrotime(&ifp->if_lastchange);
2117 	ifp->if_qflush(ifp);
2118 
2119 	if (ifp->if_carp)
2120 		(*carp_linkstate_p)(ifp);
2121 	rt_ifmsg(ifp, IFF_UP);
2122 }
2123 
2124 void	(*vlan_link_state_p)(struct ifnet *);	/* XXX: private from if_vlan */
2125 void	(*vlan_trunk_cap_p)(struct ifnet *);		/* XXX: private from if_vlan */
2126 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *);
2127 struct	ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t);
2128 int	(*vlan_tag_p)(struct ifnet *, uint16_t *);
2129 int	(*vlan_pcp_p)(struct ifnet *, uint16_t *);
2130 int	(*vlan_setcookie_p)(struct ifnet *, void *);
2131 void	*(*vlan_cookie_p)(struct ifnet *);
2132 
2133 /*
2134  * Handle a change in the interface link state. To avoid LORs
2135  * between driver lock and upper layer locks, as well as possible
2136  * recursions, we post event to taskqueue, and all job
2137  * is done in static do_link_state_change().
2138  */
2139 void
2140 if_link_state_change(struct ifnet *ifp, int link_state)
2141 {
2142 	/* Return if state hasn't changed. */
2143 	if (ifp->if_link_state == link_state)
2144 		return;
2145 
2146 	ifp->if_link_state = link_state;
2147 
2148 	/* XXXGL: reference ifp? */
2149 	taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask);
2150 }
2151 
2152 static void
2153 do_link_state_change(void *arg, int pending)
2154 {
2155 	struct ifnet *ifp;
2156 	int link_state;
2157 
2158 	ifp = arg;
2159 	link_state = ifp->if_link_state;
2160 
2161 	CURVNET_SET(ifp->if_vnet);
2162 	rt_ifmsg(ifp, 0);
2163 	if (ifp->if_vlantrunk != NULL)
2164 		(*vlan_link_state_p)(ifp);
2165 
2166 	if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) &&
2167 	    ifp->if_l2com != NULL)
2168 		(*ng_ether_link_state_p)(ifp, link_state);
2169 	if (ifp->if_carp)
2170 		(*carp_linkstate_p)(ifp);
2171 	if (ifp->if_bridge)
2172 		ifp->if_bridge_linkstate(ifp);
2173 	if (ifp->if_lagg)
2174 		(*lagg_linkstate_p)(ifp, link_state);
2175 
2176 	if (IS_DEFAULT_VNET(curvnet))
2177 		devctl_notify("IFNET", ifp->if_xname,
2178 		    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN",
2179 		    NULL);
2180 	if (pending > 1)
2181 		if_printf(ifp, "%d link states coalesced\n", pending);
2182 	if (log_link_state_change)
2183 		if_printf(ifp, "link state changed to %s\n",
2184 		    (link_state == LINK_STATE_UP) ? "UP" : "DOWN" );
2185 	EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
2186 	CURVNET_RESTORE();
2187 }
2188 
2189 /*
2190  * Mark an interface down and notify protocols of
2191  * the transition.
2192  */
2193 void
2194 if_down(struct ifnet *ifp)
2195 {
2196 
2197 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN);
2198 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
2199 }
2200 
2201 /*
2202  * Mark an interface up and notify protocols of
2203  * the transition.
2204  */
2205 void
2206 if_up(struct ifnet *ifp)
2207 {
2208 
2209 	ifp->if_flags |= IFF_UP;
2210 	getmicrotime(&ifp->if_lastchange);
2211 	if (ifp->if_carp)
2212 		(*carp_linkstate_p)(ifp);
2213 	rt_ifmsg(ifp, IFF_UP);
2214 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP);
2215 }
2216 
2217 /*
2218  * Flush an interface queue.
2219  */
2220 void
2221 if_qflush(struct ifnet *ifp)
2222 {
2223 	struct mbuf *m, *n;
2224 	struct ifaltq *ifq;
2225 
2226 	ifq = &ifp->if_snd;
2227 	IFQ_LOCK(ifq);
2228 #ifdef ALTQ
2229 	if (ALTQ_IS_ENABLED(ifq))
2230 		ALTQ_PURGE(ifq);
2231 #endif
2232 	n = ifq->ifq_head;
2233 	while ((m = n) != NULL) {
2234 		n = m->m_nextpkt;
2235 		m_freem(m);
2236 	}
2237 	ifq->ifq_head = 0;
2238 	ifq->ifq_tail = 0;
2239 	ifq->ifq_len = 0;
2240 	IFQ_UNLOCK(ifq);
2241 }
2242 
2243 /*
2244  * Map interface name to interface structure pointer, with or without
2245  * returning a reference.
2246  */
2247 struct ifnet *
2248 ifunit_ref(const char *name)
2249 {
2250 	struct epoch_tracker et;
2251 	struct ifnet *ifp;
2252 
2253 	NET_EPOCH_ENTER(et);
2254 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2255 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 &&
2256 		    !(ifp->if_flags & IFF_DYING))
2257 			break;
2258 	}
2259 	if (ifp != NULL) {
2260 		if_ref(ifp);
2261 		MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
2262 	}
2263 
2264 	NET_EPOCH_EXIT(et);
2265 	return (ifp);
2266 }
2267 
2268 struct ifnet *
2269 ifunit(const char *name)
2270 {
2271 	struct epoch_tracker et;
2272 	struct ifnet *ifp;
2273 
2274 	NET_EPOCH_ENTER(et);
2275 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2276 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0)
2277 			break;
2278 	}
2279 	NET_EPOCH_EXIT(et);
2280 	return (ifp);
2281 }
2282 
2283 void *
2284 ifr_buffer_get_buffer(void *data)
2285 {
2286 	union ifreq_union *ifrup;
2287 
2288 	ifrup = data;
2289 #ifdef COMPAT_FREEBSD32
2290 	if (SV_CURPROC_FLAG(SV_ILP32))
2291 		return ((void *)(uintptr_t)
2292 		    ifrup->ifr32.ifr_ifru.ifru_buffer.buffer);
2293 #endif
2294 	return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer);
2295 }
2296 
2297 static void
2298 ifr_buffer_set_buffer_null(void *data)
2299 {
2300 	union ifreq_union *ifrup;
2301 
2302 	ifrup = data;
2303 #ifdef COMPAT_FREEBSD32
2304 	if (SV_CURPROC_FLAG(SV_ILP32))
2305 		ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0;
2306 	else
2307 #endif
2308 		ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL;
2309 }
2310 
2311 size_t
2312 ifr_buffer_get_length(void *data)
2313 {
2314 	union ifreq_union *ifrup;
2315 
2316 	ifrup = data;
2317 #ifdef COMPAT_FREEBSD32
2318 	if (SV_CURPROC_FLAG(SV_ILP32))
2319 		return (ifrup->ifr32.ifr_ifru.ifru_buffer.length);
2320 #endif
2321 	return (ifrup->ifr.ifr_ifru.ifru_buffer.length);
2322 }
2323 
2324 static void
2325 ifr_buffer_set_length(void *data, size_t len)
2326 {
2327 	union ifreq_union *ifrup;
2328 
2329 	ifrup = data;
2330 #ifdef COMPAT_FREEBSD32
2331 	if (SV_CURPROC_FLAG(SV_ILP32))
2332 		ifrup->ifr32.ifr_ifru.ifru_buffer.length = len;
2333 	else
2334 #endif
2335 		ifrup->ifr.ifr_ifru.ifru_buffer.length = len;
2336 }
2337 
2338 void *
2339 ifr_data_get_ptr(void *ifrp)
2340 {
2341 	union ifreq_union *ifrup;
2342 
2343 	ifrup = ifrp;
2344 #ifdef COMPAT_FREEBSD32
2345 	if (SV_CURPROC_FLAG(SV_ILP32))
2346 		return ((void *)(uintptr_t)
2347 		    ifrup->ifr32.ifr_ifru.ifru_data);
2348 #endif
2349 		return (ifrup->ifr.ifr_ifru.ifru_data);
2350 }
2351 
2352 struct ifcap_nv_bit_name {
2353 	uint64_t cap_bit;
2354 	const char *cap_name;
2355 };
2356 #define CAPNV(x) {.cap_bit = IFCAP_##x, \
2357     .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) }
2358 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = {
2359 	CAPNV(RXCSUM),
2360 	CAPNV(TXCSUM),
2361 	CAPNV(NETCONS),
2362 	CAPNV(VLAN_MTU),
2363 	CAPNV(VLAN_HWTAGGING),
2364 	CAPNV(JUMBO_MTU),
2365 	CAPNV(POLLING),
2366 	CAPNV(VLAN_HWCSUM),
2367 	CAPNV(TSO4),
2368 	CAPNV(TSO6),
2369 	CAPNV(LRO),
2370 	CAPNV(WOL_UCAST),
2371 	CAPNV(WOL_MCAST),
2372 	CAPNV(WOL_MAGIC),
2373 	CAPNV(TOE4),
2374 	CAPNV(TOE6),
2375 	CAPNV(VLAN_HWFILTER),
2376 	CAPNV(VLAN_HWTSO),
2377 	CAPNV(LINKSTATE),
2378 	CAPNV(NETMAP),
2379 	CAPNV(RXCSUM_IPV6),
2380 	CAPNV(TXCSUM_IPV6),
2381 	CAPNV(HWSTATS),
2382 	CAPNV(TXRTLMT),
2383 	CAPNV(HWRXTSTMP),
2384 	CAPNV(MEXTPG),
2385 	CAPNV(TXTLS4),
2386 	CAPNV(TXTLS6),
2387 	CAPNV(VXLAN_HWCSUM),
2388 	CAPNV(VXLAN_HWTSO),
2389 	CAPNV(TXTLS_RTLMT),
2390 	{0, NULL}
2391 };
2392 #define CAP2NV(x) {.cap_bit = IFCAP2_BIT(IFCAP2_##x), \
2393     .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) }
2394 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = {
2395 	CAP2NV(RXTLS4),
2396 	CAP2NV(RXTLS6),
2397 	CAP2NV(IPSEC_OFFLOAD),
2398 	{0, NULL}
2399 };
2400 #undef CAPNV
2401 #undef CAP2NV
2402 
2403 int
2404 if_capnv_to_capint(const nvlist_t *nv, int *old_cap,
2405     const struct ifcap_nv_bit_name *nn, bool all)
2406 {
2407 	int i, res;
2408 
2409 	res = 0;
2410 	for (i = 0; nn[i].cap_name != NULL; i++) {
2411 		if (nvlist_exists_bool(nv, nn[i].cap_name)) {
2412 			if (all || nvlist_get_bool(nv, nn[i].cap_name))
2413 				res |= nn[i].cap_bit;
2414 		} else {
2415 			res |= *old_cap & nn[i].cap_bit;
2416 		}
2417 	}
2418 	return (res);
2419 }
2420 
2421 void
2422 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn,
2423     int ifr_cap, int ifr_req)
2424 {
2425 	int i;
2426 
2427 	for (i = 0; nn[i].cap_name != NULL; i++) {
2428 		if ((nn[i].cap_bit & ifr_cap) != 0) {
2429 			nvlist_add_bool(nv, nn[i].cap_name,
2430 			    (nn[i].cap_bit & ifr_req) != 0);
2431 		}
2432 	}
2433 }
2434 
2435 /*
2436  * Hardware specific interface ioctls.
2437  */
2438 int
2439 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
2440 {
2441 	struct ifreq *ifr;
2442 	int error = 0, do_ifup = 0;
2443 	int new_flags, temp_flags;
2444 	size_t descrlen, nvbuflen;
2445 	char *descrbuf;
2446 	char new_name[IFNAMSIZ];
2447 	void *buf;
2448 	nvlist_t *nvcap;
2449 	struct siocsifcapnv_driver_data drv_ioctl_data;
2450 
2451 	ifr = (struct ifreq *)data;
2452 	switch (cmd) {
2453 	case SIOCGIFINDEX:
2454 		ifr->ifr_index = ifp->if_index;
2455 		break;
2456 
2457 	case SIOCGIFFLAGS:
2458 		temp_flags = ifp->if_flags | ifp->if_drv_flags;
2459 		ifr->ifr_flags = temp_flags & 0xffff;
2460 		ifr->ifr_flagshigh = temp_flags >> 16;
2461 		break;
2462 
2463 	case SIOCGIFCAP:
2464 		ifr->ifr_reqcap = ifp->if_capabilities;
2465 		ifr->ifr_curcap = ifp->if_capenable;
2466 		break;
2467 
2468 	case SIOCGIFCAPNV:
2469 		if ((ifp->if_capabilities & IFCAP_NV) == 0) {
2470 			error = EINVAL;
2471 			break;
2472 		}
2473 		buf = NULL;
2474 		nvcap = nvlist_create(0);
2475 		for (;;) {
2476 			if_capint_to_capnv(nvcap, ifcap_nv_bit_names,
2477 			    ifp->if_capabilities, ifp->if_capenable);
2478 			if_capint_to_capnv(nvcap, ifcap2_nv_bit_names,
2479 			    ifp->if_capabilities2, ifp->if_capenable2);
2480 			error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV,
2481 			    __DECONST(caddr_t, nvcap));
2482 			if (error != 0) {
2483 				if_printf(ifp,
2484 			    "SIOCGIFCAPNV driver mistake: nvlist error %d\n",
2485 				    error);
2486 				break;
2487 			}
2488 			buf = nvlist_pack(nvcap, &nvbuflen);
2489 			if (buf == NULL) {
2490 				error = nvlist_error(nvcap);
2491 				if (error == 0)
2492 					error = EDOOFUS;
2493 				break;
2494 			}
2495 			if (nvbuflen > ifr->ifr_cap_nv.buf_length) {
2496 				ifr->ifr_cap_nv.length = nvbuflen;
2497 				ifr->ifr_cap_nv.buffer = NULL;
2498 				error = EFBIG;
2499 				break;
2500 			}
2501 			ifr->ifr_cap_nv.length = nvbuflen;
2502 			error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen);
2503 			break;
2504 		}
2505 		free(buf, M_NVLIST);
2506 		nvlist_destroy(nvcap);
2507 		break;
2508 
2509 	case SIOCGIFDATA:
2510 	{
2511 		struct if_data ifd;
2512 
2513 		/* Ensure uninitialised padding is not leaked. */
2514 		memset(&ifd, 0, sizeof(ifd));
2515 
2516 		if_data_copy(ifp, &ifd);
2517 		error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd));
2518 		break;
2519 	}
2520 
2521 #ifdef MAC
2522 	case SIOCGIFMAC:
2523 		error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp);
2524 		break;
2525 #endif
2526 
2527 	case SIOCGIFMETRIC:
2528 		ifr->ifr_metric = ifp->if_metric;
2529 		break;
2530 
2531 	case SIOCGIFMTU:
2532 		ifr->ifr_mtu = ifp->if_mtu;
2533 		break;
2534 
2535 	case SIOCGIFPHYS:
2536 		/* XXXGL: did this ever worked? */
2537 		ifr->ifr_phys = 0;
2538 		break;
2539 
2540 	case SIOCGIFDESCR:
2541 		error = 0;
2542 		sx_slock(&ifdescr_sx);
2543 		if (ifp->if_description == NULL)
2544 			error = ENOMSG;
2545 		else {
2546 			/* space for terminating nul */
2547 			descrlen = strlen(ifp->if_description) + 1;
2548 			if (ifr_buffer_get_length(ifr) < descrlen)
2549 				ifr_buffer_set_buffer_null(ifr);
2550 			else
2551 				error = copyout(ifp->if_description,
2552 				    ifr_buffer_get_buffer(ifr), descrlen);
2553 			ifr_buffer_set_length(ifr, descrlen);
2554 		}
2555 		sx_sunlock(&ifdescr_sx);
2556 		break;
2557 
2558 	case SIOCSIFDESCR:
2559 		error = priv_check(td, PRIV_NET_SETIFDESCR);
2560 		if (error)
2561 			return (error);
2562 
2563 		/*
2564 		 * Copy only (length-1) bytes to make sure that
2565 		 * if_description is always nul terminated.  The
2566 		 * length parameter is supposed to count the
2567 		 * terminating nul in.
2568 		 */
2569 		if (ifr_buffer_get_length(ifr) > ifdescr_maxlen)
2570 			return (ENAMETOOLONG);
2571 		else if (ifr_buffer_get_length(ifr) == 0)
2572 			descrbuf = NULL;
2573 		else {
2574 			descrbuf = if_allocdescr(ifr_buffer_get_length(ifr), M_WAITOK);
2575 			error = copyin(ifr_buffer_get_buffer(ifr), descrbuf,
2576 			    ifr_buffer_get_length(ifr) - 1);
2577 			if (error) {
2578 				if_freedescr(descrbuf);
2579 				break;
2580 			}
2581 		}
2582 
2583 		if_setdescr(ifp, descrbuf);
2584 		getmicrotime(&ifp->if_lastchange);
2585 		break;
2586 
2587 	case SIOCGIFFIB:
2588 		ifr->ifr_fib = ifp->if_fib;
2589 		break;
2590 
2591 	case SIOCSIFFIB:
2592 		error = priv_check(td, PRIV_NET_SETIFFIB);
2593 		if (error)
2594 			return (error);
2595 		if (ifr->ifr_fib >= rt_numfibs)
2596 			return (EINVAL);
2597 
2598 		ifp->if_fib = ifr->ifr_fib;
2599 		break;
2600 
2601 	case SIOCSIFFLAGS:
2602 		error = priv_check(td, PRIV_NET_SETIFFLAGS);
2603 		if (error)
2604 			return (error);
2605 		/*
2606 		 * Currently, no driver owned flags pass the IFF_CANTCHANGE
2607 		 * check, so we don't need special handling here yet.
2608 		 */
2609 		new_flags = (ifr->ifr_flags & 0xffff) |
2610 		    (ifr->ifr_flagshigh << 16);
2611 		if (ifp->if_flags & IFF_UP &&
2612 		    (new_flags & IFF_UP) == 0) {
2613 			if_down(ifp);
2614 		} else if (new_flags & IFF_UP &&
2615 		    (ifp->if_flags & IFF_UP) == 0) {
2616 			do_ifup = 1;
2617 		}
2618 
2619 		/*
2620 		 * See if the promiscuous mode or allmulti bits are about to
2621 		 * flip.  They require special handling because in-kernel
2622 		 * consumers may indepdently toggle them.
2623 		 */
2624 		if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) {
2625 			if (new_flags & IFF_PPROMISC)
2626 				ifp->if_flags |= IFF_PROMISC;
2627 			else if (ifp->if_pcount == 0)
2628 				ifp->if_flags &= ~IFF_PROMISC;
2629 			if (log_promisc_mode_change)
2630                                 if_printf(ifp, "permanently promiscuous mode %s\n",
2631                                     ((new_flags & IFF_PPROMISC) ?
2632                                      "enabled" : "disabled"));
2633 		}
2634 		if ((ifp->if_flags ^ new_flags) & IFF_PALLMULTI) {
2635 			if (new_flags & IFF_PALLMULTI)
2636 				ifp->if_flags |= IFF_ALLMULTI;
2637 			else if (ifp->if_amcount == 0)
2638 				ifp->if_flags &= ~IFF_ALLMULTI;
2639 		}
2640 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2641 			(new_flags &~ IFF_CANTCHANGE);
2642 		if (ifp->if_ioctl) {
2643 			(void) (*ifp->if_ioctl)(ifp, cmd, data);
2644 		}
2645 		if (do_ifup)
2646 			if_up(ifp);
2647 		getmicrotime(&ifp->if_lastchange);
2648 		break;
2649 
2650 	case SIOCSIFCAP:
2651 		error = priv_check(td, PRIV_NET_SETIFCAP);
2652 		if (error != 0)
2653 			return (error);
2654 		if (ifp->if_ioctl == NULL)
2655 			return (EOPNOTSUPP);
2656 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
2657 			return (EINVAL);
2658 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2659 		if (error == 0)
2660 			getmicrotime(&ifp->if_lastchange);
2661 		break;
2662 
2663 	case SIOCSIFCAPNV:
2664 		error = priv_check(td, PRIV_NET_SETIFCAP);
2665 		if (error != 0)
2666 			return (error);
2667 		if (ifp->if_ioctl == NULL)
2668 			return (EOPNOTSUPP);
2669 		if ((ifp->if_capabilities & IFCAP_NV) == 0)
2670 			return (EINVAL);
2671 		if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE)
2672 			return (EINVAL);
2673 		nvcap = NULL;
2674 		buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK);
2675 		for (;;) {
2676 			error = copyin(ifr->ifr_cap_nv.buffer, buf,
2677 			    ifr->ifr_cap_nv.length);
2678 			if (error != 0)
2679 				break;
2680 			nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0);
2681 			if (nvcap == NULL) {
2682 				error = EINVAL;
2683 				break;
2684 			}
2685 			drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap,
2686 			    &ifp->if_capenable, ifcap_nv_bit_names, false);
2687 			if ((drv_ioctl_data.reqcap &
2688 			    ~ifp->if_capabilities) != 0) {
2689 				error = EINVAL;
2690 				break;
2691 			}
2692 			drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap,
2693 			    &ifp->if_capenable2, ifcap2_nv_bit_names, false);
2694 			if ((drv_ioctl_data.reqcap2 &
2695 			    ~ifp->if_capabilities2) != 0) {
2696 				error = EINVAL;
2697 				break;
2698 			}
2699 			drv_ioctl_data.nvcap = nvcap;
2700 			error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV,
2701 			    (caddr_t)&drv_ioctl_data);
2702 			break;
2703 		}
2704 		nvlist_destroy(nvcap);
2705 		free(buf, M_TEMP);
2706 		if (error == 0)
2707 			getmicrotime(&ifp->if_lastchange);
2708 		break;
2709 
2710 #ifdef MAC
2711 	case SIOCSIFMAC:
2712 		error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp);
2713 		break;
2714 #endif
2715 
2716 	case SIOCSIFNAME:
2717 		error = priv_check(td, PRIV_NET_SETIFNAME);
2718 		if (error)
2719 			return (error);
2720 		error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ,
2721 		    NULL);
2722 		if (error != 0)
2723 			return (error);
2724 		error = if_rename(ifp, new_name);
2725 		break;
2726 
2727 #ifdef VIMAGE
2728 	case SIOCSIFVNET:
2729 		error = priv_check(td, PRIV_NET_SETIFVNET);
2730 		if (error)
2731 			return (error);
2732 		error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid);
2733 		break;
2734 #endif
2735 
2736 	case SIOCSIFMETRIC:
2737 		error = priv_check(td, PRIV_NET_SETIFMETRIC);
2738 		if (error)
2739 			return (error);
2740 		ifp->if_metric = ifr->ifr_metric;
2741 		getmicrotime(&ifp->if_lastchange);
2742 		break;
2743 
2744 	case SIOCSIFPHYS:
2745 		error = priv_check(td, PRIV_NET_SETIFPHYS);
2746 		if (error)
2747 			return (error);
2748 		if (ifp->if_ioctl == NULL)
2749 			return (EOPNOTSUPP);
2750 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2751 		if (error == 0)
2752 			getmicrotime(&ifp->if_lastchange);
2753 		break;
2754 
2755 	case SIOCSIFMTU:
2756 	{
2757 		u_long oldmtu = ifp->if_mtu;
2758 
2759 		error = priv_check(td, PRIV_NET_SETIFMTU);
2760 		if (error)
2761 			return (error);
2762 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
2763 			return (EINVAL);
2764 		if (ifp->if_ioctl == NULL)
2765 			return (EOPNOTSUPP);
2766 		/* Disallow MTU changes on bridge member interfaces. */
2767 		if (ifp->if_bridge)
2768 			return (EOPNOTSUPP);
2769 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2770 		if (error == 0) {
2771 			getmicrotime(&ifp->if_lastchange);
2772 			rt_ifmsg(ifp, 0);
2773 #ifdef INET
2774 			DEBUGNET_NOTIFY_MTU(ifp);
2775 #endif
2776 		}
2777 		/*
2778 		 * If the link MTU changed, do network layer specific procedure.
2779 		 */
2780 		if (ifp->if_mtu != oldmtu)
2781 			if_notifymtu(ifp);
2782 		break;
2783 	}
2784 
2785 	case SIOCADDMULTI:
2786 	case SIOCDELMULTI:
2787 		if (cmd == SIOCADDMULTI)
2788 			error = priv_check(td, PRIV_NET_ADDMULTI);
2789 		else
2790 			error = priv_check(td, PRIV_NET_DELMULTI);
2791 		if (error)
2792 			return (error);
2793 
2794 		/* Don't allow group membership on non-multicast interfaces. */
2795 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
2796 			return (EOPNOTSUPP);
2797 
2798 		/* Don't let users screw up protocols' entries. */
2799 		if (ifr->ifr_addr.sa_family != AF_LINK)
2800 			return (EINVAL);
2801 
2802 		if (cmd == SIOCADDMULTI) {
2803 			struct epoch_tracker et;
2804 			struct ifmultiaddr *ifma;
2805 
2806 			/*
2807 			 * Userland is only permitted to join groups once
2808 			 * via the if_addmulti() KPI, because it cannot hold
2809 			 * struct ifmultiaddr * between calls. It may also
2810 			 * lose a race while we check if the membership
2811 			 * already exists.
2812 			 */
2813 			NET_EPOCH_ENTER(et);
2814 			ifma = if_findmulti(ifp, &ifr->ifr_addr);
2815 			NET_EPOCH_EXIT(et);
2816 			if (ifma != NULL)
2817 				error = EADDRINUSE;
2818 			else
2819 				error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2820 		} else {
2821 			error = if_delmulti(ifp, &ifr->ifr_addr);
2822 		}
2823 		if (error == 0)
2824 			getmicrotime(&ifp->if_lastchange);
2825 		break;
2826 
2827 	case SIOCSIFPHYADDR:
2828 	case SIOCDIFPHYADDR:
2829 #ifdef INET6
2830 	case SIOCSIFPHYADDR_IN6:
2831 #endif
2832 	case SIOCSIFMEDIA:
2833 	case SIOCSIFGENERIC:
2834 		error = priv_check(td, PRIV_NET_HWIOCTL);
2835 		if (error)
2836 			return (error);
2837 		if (ifp->if_ioctl == NULL)
2838 			return (EOPNOTSUPP);
2839 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2840 		if (error == 0)
2841 			getmicrotime(&ifp->if_lastchange);
2842 		break;
2843 
2844 	case SIOCGIFSTATUS:
2845 	case SIOCGIFPSRCADDR:
2846 	case SIOCGIFPDSTADDR:
2847 	case SIOCGIFMEDIA:
2848 	case SIOCGIFXMEDIA:
2849 	case SIOCGIFGENERIC:
2850 	case SIOCGIFRSSKEY:
2851 	case SIOCGIFRSSHASH:
2852 	case SIOCGIFDOWNREASON:
2853 		if (ifp->if_ioctl == NULL)
2854 			return (EOPNOTSUPP);
2855 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2856 		break;
2857 
2858 	case SIOCSIFLLADDR:
2859 		error = priv_check(td, PRIV_NET_SETLLADDR);
2860 		if (error)
2861 			return (error);
2862 		error = if_setlladdr(ifp,
2863 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
2864 		break;
2865 
2866 	case SIOCGHWADDR:
2867 		error = if_gethwaddr(ifp, ifr);
2868 		break;
2869 
2870 	case SIOCAIFGROUP:
2871 		error = priv_check(td, PRIV_NET_ADDIFGROUP);
2872 		if (error)
2873 			return (error);
2874 		error = if_addgroup(ifp,
2875 		    ((struct ifgroupreq *)data)->ifgr_group);
2876 		if (error != 0)
2877 			return (error);
2878 		break;
2879 
2880 	case SIOCGIFGROUP:
2881 	{
2882 		struct epoch_tracker et;
2883 
2884 		NET_EPOCH_ENTER(et);
2885 		error = if_getgroup((struct ifgroupreq *)data, ifp);
2886 		NET_EPOCH_EXIT(et);
2887 		break;
2888 	}
2889 
2890 	case SIOCDIFGROUP:
2891 		error = priv_check(td, PRIV_NET_DELIFGROUP);
2892 		if (error)
2893 			return (error);
2894 		error = if_delgroup(ifp,
2895 		    ((struct ifgroupreq *)data)->ifgr_group);
2896 		if (error != 0)
2897 			return (error);
2898 		break;
2899 
2900 	default:
2901 		error = ENOIOCTL;
2902 		break;
2903 	}
2904 	return (error);
2905 }
2906 
2907 /*
2908  * Interface ioctls.
2909  */
2910 int
2911 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td)
2912 {
2913 #ifdef COMPAT_FREEBSD32
2914 	union {
2915 		struct ifconf ifc;
2916 		struct ifdrv ifd;
2917 		struct ifgroupreq ifgr;
2918 		struct ifmediareq ifmr;
2919 	} thunk;
2920 	u_long saved_cmd;
2921 	struct ifconf32 *ifc32;
2922 	struct ifdrv32 *ifd32;
2923 	struct ifgroupreq32 *ifgr32;
2924 	struct ifmediareq32 *ifmr32;
2925 #endif
2926 	struct ifnet *ifp;
2927 	struct ifreq *ifr;
2928 	int error;
2929 	int oif_flags;
2930 #ifdef VIMAGE
2931 	bool shutdown;
2932 #endif
2933 
2934 	CURVNET_SET(so->so_vnet);
2935 #ifdef VIMAGE
2936 	/* Make sure the VNET is stable. */
2937 	shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet);
2938 	if (shutdown) {
2939 		CURVNET_RESTORE();
2940 		return (EBUSY);
2941 	}
2942 #endif
2943 
2944 #ifdef COMPAT_FREEBSD32
2945 	saved_cmd = cmd;
2946 	switch (cmd) {
2947 	case SIOCGIFCONF32:
2948 		ifc32 = (struct ifconf32 *)data;
2949 		thunk.ifc.ifc_len = ifc32->ifc_len;
2950 		thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf);
2951 		data = (caddr_t)&thunk.ifc;
2952 		cmd = SIOCGIFCONF;
2953 		break;
2954 	case SIOCGDRVSPEC32:
2955 	case SIOCSDRVSPEC32:
2956 		ifd32 = (struct ifdrv32 *)data;
2957 		memcpy(thunk.ifd.ifd_name, ifd32->ifd_name,
2958 		    sizeof(thunk.ifd.ifd_name));
2959 		thunk.ifd.ifd_cmd = ifd32->ifd_cmd;
2960 		thunk.ifd.ifd_len = ifd32->ifd_len;
2961 		thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data);
2962 		data = (caddr_t)&thunk.ifd;
2963 		cmd = _IOC_NEWTYPE(cmd, struct ifdrv);
2964 		break;
2965 	case SIOCAIFGROUP32:
2966 	case SIOCGIFGROUP32:
2967 	case SIOCDIFGROUP32:
2968 	case SIOCGIFGMEMB32:
2969 		ifgr32 = (struct ifgroupreq32 *)data;
2970 		memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name,
2971 		    sizeof(thunk.ifgr.ifgr_name));
2972 		thunk.ifgr.ifgr_len = ifgr32->ifgr_len;
2973 		switch (cmd) {
2974 		case SIOCAIFGROUP32:
2975 		case SIOCDIFGROUP32:
2976 			memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group,
2977 			    sizeof(thunk.ifgr.ifgr_group));
2978 			break;
2979 		case SIOCGIFGROUP32:
2980 		case SIOCGIFGMEMB32:
2981 			thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups);
2982 			break;
2983 		}
2984 		data = (caddr_t)&thunk.ifgr;
2985 		cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq);
2986 		break;
2987 	case SIOCGIFMEDIA32:
2988 	case SIOCGIFXMEDIA32:
2989 		ifmr32 = (struct ifmediareq32 *)data;
2990 		memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name,
2991 		    sizeof(thunk.ifmr.ifm_name));
2992 		thunk.ifmr.ifm_current = ifmr32->ifm_current;
2993 		thunk.ifmr.ifm_mask = ifmr32->ifm_mask;
2994 		thunk.ifmr.ifm_status = ifmr32->ifm_status;
2995 		thunk.ifmr.ifm_active = ifmr32->ifm_active;
2996 		thunk.ifmr.ifm_count = ifmr32->ifm_count;
2997 		thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist);
2998 		data = (caddr_t)&thunk.ifmr;
2999 		cmd = _IOC_NEWTYPE(cmd, struct ifmediareq);
3000 		break;
3001 	}
3002 #endif
3003 
3004 	switch (cmd) {
3005 	case SIOCGIFCONF:
3006 		error = ifconf(cmd, data);
3007 		goto out_noref;
3008 	}
3009 
3010 	ifr = (struct ifreq *)data;
3011 	switch (cmd) {
3012 #ifdef VIMAGE
3013 	case SIOCSIFRVNET:
3014 		error = priv_check(td, PRIV_NET_SETIFVNET);
3015 		if (error == 0)
3016 			error = if_vmove_reclaim(td, ifr->ifr_name,
3017 			    ifr->ifr_jid);
3018 		goto out_noref;
3019 #endif
3020 	case SIOCIFCREATE:
3021 	case SIOCIFCREATE2:
3022 		error = priv_check(td, PRIV_NET_IFCREATE);
3023 		if (error == 0)
3024 			error = if_clone_create(ifr->ifr_name,
3025 			    sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ?
3026 			    ifr_data_get_ptr(ifr) : NULL);
3027 		goto out_noref;
3028 	case SIOCIFDESTROY:
3029 		error = priv_check(td, PRIV_NET_IFDESTROY);
3030 
3031 		if (error == 0) {
3032 			sx_xlock(&ifnet_detach_sxlock);
3033 			error = if_clone_destroy(ifr->ifr_name);
3034 			sx_xunlock(&ifnet_detach_sxlock);
3035 		}
3036 		goto out_noref;
3037 
3038 	case SIOCIFGCLONERS:
3039 		error = if_clone_list((struct if_clonereq *)data);
3040 		goto out_noref;
3041 
3042 	case SIOCGIFGMEMB:
3043 		error = if_getgroupmembers((struct ifgroupreq *)data);
3044 		goto out_noref;
3045 
3046 #if defined(INET) || defined(INET6)
3047 	case SIOCSVH:
3048 	case SIOCGVH:
3049 		if (carp_ioctl_p == NULL)
3050 			error = EPROTONOSUPPORT;
3051 		else
3052 			error = (*carp_ioctl_p)(ifr, cmd, td);
3053 		goto out_noref;
3054 #endif
3055 	}
3056 
3057 	ifp = ifunit_ref(ifr->ifr_name);
3058 	if (ifp == NULL) {
3059 		error = ENXIO;
3060 		goto out_noref;
3061 	}
3062 
3063 	error = ifhwioctl(cmd, ifp, data, td);
3064 	if (error != ENOIOCTL)
3065 		goto out_ref;
3066 
3067 	oif_flags = ifp->if_flags;
3068 	if (so->so_proto == NULL) {
3069 		error = EOPNOTSUPP;
3070 		goto out_ref;
3071 	}
3072 
3073 	/*
3074 	 * Pass the request on to the socket control method, and if the
3075 	 * latter returns EOPNOTSUPP, directly to the interface.
3076 	 *
3077 	 * Make an exception for the legacy SIOCSIF* requests.  Drivers
3078 	 * trust SIOCSIFADDR et al to come from an already privileged
3079 	 * layer, and do not perform any credentials checks or input
3080 	 * validation.
3081 	 */
3082 	error = so->so_proto->pr_control(so, cmd, data, ifp, td);
3083 	if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL &&
3084 	    cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR &&
3085 	    cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK)
3086 		error = (*ifp->if_ioctl)(ifp, cmd, data);
3087 
3088 	if (!(oif_flags & IFF_UP) && (ifp->if_flags & IFF_UP))
3089 		if_up(ifp);
3090 out_ref:
3091 	if_rele(ifp);
3092 out_noref:
3093 	CURVNET_RESTORE();
3094 #ifdef COMPAT_FREEBSD32
3095 	if (error != 0)
3096 		return (error);
3097 	switch (saved_cmd) {
3098 	case SIOCGIFCONF32:
3099 		ifc32->ifc_len = thunk.ifc.ifc_len;
3100 		break;
3101 	case SIOCGDRVSPEC32:
3102 		/*
3103 		 * SIOCGDRVSPEC is IOWR, but nothing actually touches
3104 		 * the struct so just assert that ifd_len (the only
3105 		 * field it might make sense to update) hasn't
3106 		 * changed.
3107 		 */
3108 		KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len,
3109 		    ("ifd_len was updated %u -> %zu", ifd32->ifd_len,
3110 			thunk.ifd.ifd_len));
3111 		break;
3112 	case SIOCGIFGROUP32:
3113 	case SIOCGIFGMEMB32:
3114 		ifgr32->ifgr_len = thunk.ifgr.ifgr_len;
3115 		break;
3116 	case SIOCGIFMEDIA32:
3117 	case SIOCGIFXMEDIA32:
3118 		ifmr32->ifm_current = thunk.ifmr.ifm_current;
3119 		ifmr32->ifm_mask = thunk.ifmr.ifm_mask;
3120 		ifmr32->ifm_status = thunk.ifmr.ifm_status;
3121 		ifmr32->ifm_active = thunk.ifmr.ifm_active;
3122 		ifmr32->ifm_count = thunk.ifmr.ifm_count;
3123 		break;
3124 	}
3125 #endif
3126 	return (error);
3127 }
3128 
3129 int
3130 if_rename(struct ifnet *ifp, char *new_name)
3131 {
3132 	struct ifaddr *ifa;
3133 	struct sockaddr_dl *sdl;
3134 	size_t namelen, onamelen;
3135 	char old_name[IFNAMSIZ];
3136 	char strbuf[IFNAMSIZ + 8];
3137 
3138 	if (new_name[0] == '\0')
3139 		return (EINVAL);
3140 	if (strcmp(new_name, ifp->if_xname) == 0)
3141 		return (0);
3142 	if (ifunit(new_name) != NULL)
3143 		return (EEXIST);
3144 
3145 	/*
3146 	 * XXX: Locking.  Nothing else seems to lock if_flags,
3147 	 * and there are numerous other races with the
3148 	 * ifunit() checks not being atomic with namespace
3149 	 * changes (renames, vmoves, if_attach, etc).
3150 	 */
3151 	ifp->if_flags |= IFF_RENAMING;
3152 
3153 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
3154 
3155 	if_printf(ifp, "changing name to '%s'\n", new_name);
3156 
3157 	IF_ADDR_WLOCK(ifp);
3158 	strlcpy(old_name, ifp->if_xname, sizeof(old_name));
3159 	strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
3160 	ifa = ifp->if_addr;
3161 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
3162 	namelen = strlen(new_name);
3163 	onamelen = sdl->sdl_nlen;
3164 	/*
3165 	 * Move the address if needed.  This is safe because we
3166 	 * allocate space for a name of length IFNAMSIZ when we
3167 	 * create this in if_attach().
3168 	 */
3169 	if (namelen != onamelen) {
3170 		bcopy(sdl->sdl_data + onamelen,
3171 		    sdl->sdl_data + namelen, sdl->sdl_alen);
3172 	}
3173 	bcopy(new_name, sdl->sdl_data, namelen);
3174 	sdl->sdl_nlen = namelen;
3175 	sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
3176 	bzero(sdl->sdl_data, onamelen);
3177 	while (namelen != 0)
3178 		sdl->sdl_data[--namelen] = 0xff;
3179 	IF_ADDR_WUNLOCK(ifp);
3180 
3181 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
3182 
3183 	ifp->if_flags &= ~IFF_RENAMING;
3184 
3185 	snprintf(strbuf, sizeof(strbuf), "name=%s", new_name);
3186 	devctl_notify("IFNET", old_name, "RENAME", strbuf);
3187 
3188 	return (0);
3189 }
3190 
3191 /*
3192  * The code common to handling reference counted flags,
3193  * e.g., in ifpromisc() and if_allmulti().
3194  * The "pflag" argument can specify a permanent mode flag to check,
3195  * such as IFF_PPROMISC for promiscuous mode; should be 0 if none.
3196  *
3197  * Only to be used on stack-owned flags, not driver-owned flags.
3198  */
3199 static int
3200 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch)
3201 {
3202 	struct ifreq ifr;
3203 	int error;
3204 	int oldflags, oldcount;
3205 
3206 	/* Sanity checks to catch programming errors */
3207 	KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0,
3208 	    ("%s: setting driver-owned flag %d", __func__, flag));
3209 
3210 	if (onswitch)
3211 		KASSERT(*refcount >= 0,
3212 		    ("%s: increment negative refcount %d for flag %d",
3213 		    __func__, *refcount, flag));
3214 	else
3215 		KASSERT(*refcount > 0,
3216 		    ("%s: decrement non-positive refcount %d for flag %d",
3217 		    __func__, *refcount, flag));
3218 
3219 	/* In case this mode is permanent, just touch refcount */
3220 	if (ifp->if_flags & pflag) {
3221 		*refcount += onswitch ? 1 : -1;
3222 		return (0);
3223 	}
3224 
3225 	/* Save ifnet parameters for if_ioctl() may fail */
3226 	oldcount = *refcount;
3227 	oldflags = ifp->if_flags;
3228 
3229 	/*
3230 	 * See if we aren't the only and touching refcount is enough.
3231 	 * Actually toggle interface flag if we are the first or last.
3232 	 */
3233 	if (onswitch) {
3234 		if ((*refcount)++)
3235 			return (0);
3236 		ifp->if_flags |= flag;
3237 	} else {
3238 		if (--(*refcount))
3239 			return (0);
3240 		ifp->if_flags &= ~flag;
3241 	}
3242 
3243 	/* Call down the driver since we've changed interface flags */
3244 	if (ifp->if_ioctl == NULL) {
3245 		error = EOPNOTSUPP;
3246 		goto recover;
3247 	}
3248 	ifr.ifr_flags = ifp->if_flags & 0xffff;
3249 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
3250 	error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3251 	if (error)
3252 		goto recover;
3253 	/* Notify userland that interface flags have changed */
3254 	rt_ifmsg(ifp, flag);
3255 	return (0);
3256 
3257 recover:
3258 	/* Recover after driver error */
3259 	*refcount = oldcount;
3260 	ifp->if_flags = oldflags;
3261 	return (error);
3262 }
3263 
3264 /*
3265  * Set/clear promiscuous mode on interface ifp based on the truth value
3266  * of pswitch.  The calls are reference counted so that only the first
3267  * "on" request actually has an effect, as does the final "off" request.
3268  * Results are undefined if the "off" and "on" requests are not matched.
3269  */
3270 int
3271 ifpromisc(struct ifnet *ifp, int pswitch)
3272 {
3273 	int error;
3274 	int oldflags = ifp->if_flags;
3275 
3276 	error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC,
3277 			   &ifp->if_pcount, pswitch);
3278 	/* If promiscuous mode status has changed, log a message */
3279 	if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) &&
3280             log_promisc_mode_change)
3281 		if_printf(ifp, "promiscuous mode %s\n",
3282 		    (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
3283 	return (error);
3284 }
3285 
3286 /*
3287  * Return interface configuration
3288  * of system.  List may be used
3289  * in later ioctl's (above) to get
3290  * other information.
3291  */
3292 /*ARGSUSED*/
3293 static int
3294 ifconf(u_long cmd, caddr_t data)
3295 {
3296 	struct ifconf *ifc = (struct ifconf *)data;
3297 	struct ifnet *ifp;
3298 	struct ifaddr *ifa;
3299 	struct ifreq ifr;
3300 	struct sbuf *sb;
3301 	int error, full = 0, valid_len, max_len;
3302 
3303 	/* Limit initial buffer size to maxphys to avoid DoS from userspace. */
3304 	max_len = maxphys - 1;
3305 
3306 	/* Prevent hostile input from being able to crash the system */
3307 	if (ifc->ifc_len <= 0)
3308 		return (EINVAL);
3309 
3310 again:
3311 	if (ifc->ifc_len <= max_len) {
3312 		max_len = ifc->ifc_len;
3313 		full = 1;
3314 	}
3315 	sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN);
3316 	max_len = 0;
3317 	valid_len = 0;
3318 
3319 	IFNET_RLOCK();
3320 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
3321 		struct epoch_tracker et;
3322 		int addrs;
3323 
3324 		/*
3325 		 * Zero the ifr to make sure we don't disclose the contents
3326 		 * of the stack.
3327 		 */
3328 		memset(&ifr, 0, sizeof(ifr));
3329 
3330 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
3331 		    >= sizeof(ifr.ifr_name)) {
3332 			sbuf_delete(sb);
3333 			IFNET_RUNLOCK();
3334 			return (ENAMETOOLONG);
3335 		}
3336 
3337 		addrs = 0;
3338 		NET_EPOCH_ENTER(et);
3339 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
3340 			struct sockaddr *sa = ifa->ifa_addr;
3341 
3342 			if (prison_if(curthread->td_ucred, sa) != 0)
3343 				continue;
3344 			addrs++;
3345 			if (sa->sa_len <= sizeof(*sa)) {
3346 				if (sa->sa_len < sizeof(*sa)) {
3347 					memset(&ifr.ifr_ifru.ifru_addr, 0,
3348 					    sizeof(ifr.ifr_ifru.ifru_addr));
3349 					memcpy(&ifr.ifr_ifru.ifru_addr, sa,
3350 					    sa->sa_len);
3351 				} else
3352 					ifr.ifr_ifru.ifru_addr = *sa;
3353 				sbuf_bcat(sb, &ifr, sizeof(ifr));
3354 				max_len += sizeof(ifr);
3355 			} else {
3356 				sbuf_bcat(sb, &ifr,
3357 				    offsetof(struct ifreq, ifr_addr));
3358 				max_len += offsetof(struct ifreq, ifr_addr);
3359 				sbuf_bcat(sb, sa, sa->sa_len);
3360 				max_len += sa->sa_len;
3361 			}
3362 
3363 			if (sbuf_error(sb) == 0)
3364 				valid_len = sbuf_len(sb);
3365 		}
3366 		NET_EPOCH_EXIT(et);
3367 		if (addrs == 0) {
3368 			sbuf_bcat(sb, &ifr, sizeof(ifr));
3369 			max_len += sizeof(ifr);
3370 
3371 			if (sbuf_error(sb) == 0)
3372 				valid_len = sbuf_len(sb);
3373 		}
3374 	}
3375 	IFNET_RUNLOCK();
3376 
3377 	/*
3378 	 * If we didn't allocate enough space (uncommon), try again.  If
3379 	 * we have already allocated as much space as we are allowed,
3380 	 * return what we've got.
3381 	 */
3382 	if (valid_len != max_len && !full) {
3383 		sbuf_delete(sb);
3384 		goto again;
3385 	}
3386 
3387 	ifc->ifc_len = valid_len;
3388 	sbuf_finish(sb);
3389 	error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len);
3390 	sbuf_delete(sb);
3391 	return (error);
3392 }
3393 
3394 /*
3395  * Just like ifpromisc(), but for all-multicast-reception mode.
3396  */
3397 int
3398 if_allmulti(struct ifnet *ifp, int onswitch)
3399 {
3400 
3401 	return (if_setflag(ifp, IFF_ALLMULTI, IFF_PALLMULTI, &ifp->if_amcount,
3402 	    onswitch));
3403 }
3404 
3405 struct ifmultiaddr *
3406 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa)
3407 {
3408 	struct ifmultiaddr *ifma;
3409 
3410 	IF_ADDR_LOCK_ASSERT(ifp);
3411 
3412 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3413 		if (sa->sa_family == AF_LINK) {
3414 			if (sa_dl_equal(ifma->ifma_addr, sa))
3415 				break;
3416 		} else {
3417 			if (sa_equal(ifma->ifma_addr, sa))
3418 				break;
3419 		}
3420 	}
3421 
3422 	return ifma;
3423 }
3424 
3425 /*
3426  * Allocate a new ifmultiaddr and initialize based on passed arguments.  We
3427  * make copies of passed sockaddrs.  The ifmultiaddr will not be added to
3428  * the ifnet multicast address list here, so the caller must do that and
3429  * other setup work (such as notifying the device driver).  The reference
3430  * count is initialized to 1.
3431  */
3432 static struct ifmultiaddr *
3433 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa,
3434     int mflags)
3435 {
3436 	struct ifmultiaddr *ifma;
3437 	struct sockaddr *dupsa;
3438 
3439 	ifma = malloc(sizeof *ifma, M_IFMADDR, mflags |
3440 	    M_ZERO);
3441 	if (ifma == NULL)
3442 		return (NULL);
3443 
3444 	dupsa = malloc(sa->sa_len, M_IFMADDR, mflags);
3445 	if (dupsa == NULL) {
3446 		free(ifma, M_IFMADDR);
3447 		return (NULL);
3448 	}
3449 	bcopy(sa, dupsa, sa->sa_len);
3450 	ifma->ifma_addr = dupsa;
3451 
3452 	ifma->ifma_ifp = ifp;
3453 	ifma->ifma_refcount = 1;
3454 	ifma->ifma_protospec = NULL;
3455 
3456 	if (llsa == NULL) {
3457 		ifma->ifma_lladdr = NULL;
3458 		return (ifma);
3459 	}
3460 
3461 	dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags);
3462 	if (dupsa == NULL) {
3463 		free(ifma->ifma_addr, M_IFMADDR);
3464 		free(ifma, M_IFMADDR);
3465 		return (NULL);
3466 	}
3467 	bcopy(llsa, dupsa, llsa->sa_len);
3468 	ifma->ifma_lladdr = dupsa;
3469 
3470 	return (ifma);
3471 }
3472 
3473 /*
3474  * if_freemulti: free ifmultiaddr structure and possibly attached related
3475  * addresses.  The caller is responsible for implementing reference
3476  * counting, notifying the driver, handling routing messages, and releasing
3477  * any dependent link layer state.
3478  */
3479 #ifdef MCAST_VERBOSE
3480 extern void kdb_backtrace(void);
3481 #endif
3482 static void
3483 if_freemulti_internal(struct ifmultiaddr *ifma)
3484 {
3485 
3486 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d",
3487 	    ifma->ifma_refcount));
3488 
3489 	if (ifma->ifma_lladdr != NULL)
3490 		free(ifma->ifma_lladdr, M_IFMADDR);
3491 #ifdef MCAST_VERBOSE
3492 	kdb_backtrace();
3493 	printf("%s freeing ifma: %p\n", __func__, ifma);
3494 #endif
3495 	free(ifma->ifma_addr, M_IFMADDR);
3496 	free(ifma, M_IFMADDR);
3497 }
3498 
3499 static void
3500 if_destroymulti(epoch_context_t ctx)
3501 {
3502 	struct ifmultiaddr *ifma;
3503 
3504 	ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx);
3505 	if_freemulti_internal(ifma);
3506 }
3507 
3508 void
3509 if_freemulti(struct ifmultiaddr *ifma)
3510 {
3511 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d",
3512 	    ifma->ifma_refcount));
3513 
3514 	NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx);
3515 }
3516 
3517 /*
3518  * Register an additional multicast address with a network interface.
3519  *
3520  * - If the address is already present, bump the reference count on the
3521  *   address and return.
3522  * - If the address is not link-layer, look up a link layer address.
3523  * - Allocate address structures for one or both addresses, and attach to the
3524  *   multicast address list on the interface.  If automatically adding a link
3525  *   layer address, the protocol address will own a reference to the link
3526  *   layer address, to be freed when it is freed.
3527  * - Notify the network device driver of an addition to the multicast address
3528  *   list.
3529  *
3530  * 'sa' points to caller-owned memory with the desired multicast address.
3531  *
3532  * 'retifma' will be used to return a pointer to the resulting multicast
3533  * address reference, if desired.
3534  */
3535 int
3536 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
3537     struct ifmultiaddr **retifma)
3538 {
3539 	struct ifmultiaddr *ifma, *ll_ifma;
3540 	struct sockaddr *llsa;
3541 	struct sockaddr_dl sdl;
3542 	int error;
3543 
3544 #ifdef INET
3545 	IN_MULTI_LIST_UNLOCK_ASSERT();
3546 #endif
3547 #ifdef INET6
3548 	IN6_MULTI_LIST_UNLOCK_ASSERT();
3549 #endif
3550 	/*
3551 	 * If the address is already present, return a new reference to it;
3552 	 * otherwise, allocate storage and set up a new address.
3553 	 */
3554 	IF_ADDR_WLOCK(ifp);
3555 	ifma = if_findmulti(ifp, sa);
3556 	if (ifma != NULL) {
3557 		ifma->ifma_refcount++;
3558 		if (retifma != NULL)
3559 			*retifma = ifma;
3560 		IF_ADDR_WUNLOCK(ifp);
3561 		return (0);
3562 	}
3563 
3564 	/*
3565 	 * The address isn't already present; resolve the protocol address
3566 	 * into a link layer address, and then look that up, bump its
3567 	 * refcount or allocate an ifma for that also.
3568 	 * Most link layer resolving functions returns address data which
3569 	 * fits inside default sockaddr_dl structure. However callback
3570 	 * can allocate another sockaddr structure, in that case we need to
3571 	 * free it later.
3572 	 */
3573 	llsa = NULL;
3574 	ll_ifma = NULL;
3575 	if (ifp->if_resolvemulti != NULL) {
3576 		/* Provide called function with buffer size information */
3577 		sdl.sdl_len = sizeof(sdl);
3578 		llsa = (struct sockaddr *)&sdl;
3579 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
3580 		if (error)
3581 			goto unlock_out;
3582 	}
3583 
3584 	/*
3585 	 * Allocate the new address.  Don't hook it up yet, as we may also
3586 	 * need to allocate a link layer multicast address.
3587 	 */
3588 	ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT);
3589 	if (ifma == NULL) {
3590 		error = ENOMEM;
3591 		goto free_llsa_out;
3592 	}
3593 
3594 	/*
3595 	 * If a link layer address is found, we'll need to see if it's
3596 	 * already present in the address list, or allocate is as well.
3597 	 * When this block finishes, the link layer address will be on the
3598 	 * list.
3599 	 */
3600 	if (llsa != NULL) {
3601 		ll_ifma = if_findmulti(ifp, llsa);
3602 		if (ll_ifma == NULL) {
3603 			ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT);
3604 			if (ll_ifma == NULL) {
3605 				--ifma->ifma_refcount;
3606 				if_freemulti(ifma);
3607 				error = ENOMEM;
3608 				goto free_llsa_out;
3609 			}
3610 			ll_ifma->ifma_flags |= IFMA_F_ENQUEUED;
3611 			CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma,
3612 			    ifma_link);
3613 		} else
3614 			ll_ifma->ifma_refcount++;
3615 		ifma->ifma_llifma = ll_ifma;
3616 	}
3617 
3618 	/*
3619 	 * We now have a new multicast address, ifma, and possibly a new or
3620 	 * referenced link layer address.  Add the primary address to the
3621 	 * ifnet address list.
3622 	 */
3623 	ifma->ifma_flags |= IFMA_F_ENQUEUED;
3624 	CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
3625 
3626 	if (retifma != NULL)
3627 		*retifma = ifma;
3628 
3629 	/*
3630 	 * Must generate the message while holding the lock so that 'ifma'
3631 	 * pointer is still valid.
3632 	 */
3633 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
3634 	IF_ADDR_WUNLOCK(ifp);
3635 
3636 	/*
3637 	 * We are certain we have added something, so call down to the
3638 	 * interface to let them know about it.
3639 	 */
3640 	if (ifp->if_ioctl != NULL) {
3641 		if (THREAD_CAN_SLEEP())
3642 			(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
3643 		else
3644 			taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask);
3645 	}
3646 
3647 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3648 		link_free_sdl(llsa);
3649 
3650 	return (0);
3651 
3652 free_llsa_out:
3653 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3654 		link_free_sdl(llsa);
3655 
3656 unlock_out:
3657 	IF_ADDR_WUNLOCK(ifp);
3658 	return (error);
3659 }
3660 
3661 static void
3662 if_siocaddmulti(void *arg, int pending)
3663 {
3664 	struct ifnet *ifp;
3665 
3666 	ifp = arg;
3667 #ifdef DIAGNOSTIC
3668 	if (pending > 1)
3669 		if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending);
3670 #endif
3671 	CURVNET_SET(ifp->if_vnet);
3672 	(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
3673 	CURVNET_RESTORE();
3674 }
3675 
3676 /*
3677  * Delete a multicast group membership by network-layer group address.
3678  *
3679  * Returns ENOENT if the entry could not be found. If ifp no longer
3680  * exists, results are undefined. This entry point should only be used
3681  * from subsystems which do appropriate locking to hold ifp for the
3682  * duration of the call.
3683  * Network-layer protocol domains must use if_delmulti_ifma().
3684  */
3685 int
3686 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
3687 {
3688 	struct ifmultiaddr *ifma;
3689 	int lastref;
3690 
3691 	KASSERT(ifp, ("%s: NULL ifp", __func__));
3692 
3693 	IF_ADDR_WLOCK(ifp);
3694 	lastref = 0;
3695 	ifma = if_findmulti(ifp, sa);
3696 	if (ifma != NULL)
3697 		lastref = if_delmulti_locked(ifp, ifma, 0);
3698 	IF_ADDR_WUNLOCK(ifp);
3699 
3700 	if (ifma == NULL)
3701 		return (ENOENT);
3702 
3703 	if (lastref && ifp->if_ioctl != NULL) {
3704 		(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3705 	}
3706 
3707 	return (0);
3708 }
3709 
3710 /*
3711  * Delete all multicast group membership for an interface.
3712  * Should be used to quickly flush all multicast filters.
3713  */
3714 void
3715 if_delallmulti(struct ifnet *ifp)
3716 {
3717 	struct ifmultiaddr *ifma;
3718 	struct ifmultiaddr *next;
3719 
3720 	IF_ADDR_WLOCK(ifp);
3721 	CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
3722 		if_delmulti_locked(ifp, ifma, 0);
3723 	IF_ADDR_WUNLOCK(ifp);
3724 }
3725 
3726 void
3727 if_delmulti_ifma(struct ifmultiaddr *ifma)
3728 {
3729 	if_delmulti_ifma_flags(ifma, 0);
3730 }
3731 
3732 /*
3733  * Delete a multicast group membership by group membership pointer.
3734  * Network-layer protocol domains must use this routine.
3735  *
3736  * It is safe to call this routine if the ifp disappeared.
3737  */
3738 void
3739 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags)
3740 {
3741 	struct ifnet *ifp;
3742 	int lastref;
3743 	MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma);
3744 #ifdef INET
3745 	IN_MULTI_LIST_UNLOCK_ASSERT();
3746 #endif
3747 	ifp = ifma->ifma_ifp;
3748 #ifdef DIAGNOSTIC
3749 	if (ifp == NULL) {
3750 		printf("%s: ifma_ifp seems to be detached\n", __func__);
3751 	} else {
3752 		struct epoch_tracker et;
3753 		struct ifnet *oifp;
3754 
3755 		NET_EPOCH_ENTER(et);
3756 		CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link)
3757 			if (ifp == oifp)
3758 				break;
3759 		NET_EPOCH_EXIT(et);
3760 		if (ifp != oifp)
3761 			ifp = NULL;
3762 	}
3763 #endif
3764 	/*
3765 	 * If and only if the ifnet instance exists: Acquire the address lock.
3766 	 */
3767 	if (ifp != NULL)
3768 		IF_ADDR_WLOCK(ifp);
3769 
3770 	lastref = if_delmulti_locked(ifp, ifma, flags);
3771 
3772 	if (ifp != NULL) {
3773 		/*
3774 		 * If and only if the ifnet instance exists:
3775 		 *  Release the address lock.
3776 		 *  If the group was left: update the hardware hash filter.
3777 		 */
3778 		IF_ADDR_WUNLOCK(ifp);
3779 		if (lastref && ifp->if_ioctl != NULL) {
3780 			(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3781 		}
3782 	}
3783 }
3784 
3785 /*
3786  * Perform deletion of network-layer and/or link-layer multicast address.
3787  *
3788  * Return 0 if the reference count was decremented.
3789  * Return 1 if the final reference was released, indicating that the
3790  * hardware hash filter should be reprogrammed.
3791  */
3792 static int
3793 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching)
3794 {
3795 	struct ifmultiaddr *ll_ifma;
3796 
3797 	if (ifp != NULL && ifma->ifma_ifp != NULL) {
3798 		KASSERT(ifma->ifma_ifp == ifp,
3799 		    ("%s: inconsistent ifp %p", __func__, ifp));
3800 		IF_ADDR_WLOCK_ASSERT(ifp);
3801 	}
3802 
3803 	ifp = ifma->ifma_ifp;
3804 	MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : "");
3805 
3806 	/*
3807 	 * If the ifnet is detaching, null out references to ifnet,
3808 	 * so that upper protocol layers will notice, and not attempt
3809 	 * to obtain locks for an ifnet which no longer exists. The
3810 	 * routing socket announcement must happen before the ifnet
3811 	 * instance is detached from the system.
3812 	 */
3813 	if (detaching) {
3814 #ifdef DIAGNOSTIC
3815 		printf("%s: detaching ifnet instance %p\n", __func__, ifp);
3816 #endif
3817 		/*
3818 		 * ifp may already be nulled out if we are being reentered
3819 		 * to delete the ll_ifma.
3820 		 */
3821 		if (ifp != NULL) {
3822 			rt_newmaddrmsg(RTM_DELMADDR, ifma);
3823 			ifma->ifma_ifp = NULL;
3824 		}
3825 	}
3826 
3827 	if (--ifma->ifma_refcount > 0)
3828 		return 0;
3829 
3830 	if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) {
3831 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
3832 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3833 	}
3834 	/*
3835 	 * If this ifma is a network-layer ifma, a link-layer ifma may
3836 	 * have been associated with it. Release it first if so.
3837 	 */
3838 	ll_ifma = ifma->ifma_llifma;
3839 	if (ll_ifma != NULL) {
3840 		KASSERT(ifma->ifma_lladdr != NULL,
3841 		    ("%s: llifma w/o lladdr", __func__));
3842 		if (detaching)
3843 			ll_ifma->ifma_ifp = NULL;	/* XXX */
3844 		if (--ll_ifma->ifma_refcount == 0) {
3845 			if (ifp != NULL) {
3846 				if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
3847 					CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr,
3848 						ifma_link);
3849 					ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3850 				}
3851 			}
3852 			if_freemulti(ll_ifma);
3853 		}
3854 	}
3855 #ifdef INVARIANTS
3856 	if (ifp) {
3857 		struct ifmultiaddr *ifmatmp;
3858 
3859 		CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link)
3860 			MPASS(ifma != ifmatmp);
3861 	}
3862 #endif
3863 	if_freemulti(ifma);
3864 	/*
3865 	 * The last reference to this instance of struct ifmultiaddr
3866 	 * was released; the hardware should be notified of this change.
3867 	 */
3868 	return 1;
3869 }
3870 
3871 /*
3872  * Set the link layer address on an interface.
3873  *
3874  * At this time we only support certain types of interfaces,
3875  * and we don't allow the length of the address to change.
3876  *
3877  * Set noinline to be dtrace-friendly
3878  */
3879 __noinline int
3880 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
3881 {
3882 	struct sockaddr_dl *sdl;
3883 	struct ifaddr *ifa;
3884 	struct ifreq ifr;
3885 
3886 	ifa = ifp->if_addr;
3887 	if (ifa == NULL)
3888 		return (EINVAL);
3889 
3890 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
3891 	if (sdl == NULL)
3892 		return (EINVAL);
3893 
3894 	if (len != sdl->sdl_alen)	/* don't allow length to change */
3895 		return (EINVAL);
3896 
3897 	switch (ifp->if_type) {
3898 	case IFT_ETHER:
3899 	case IFT_XETHER:
3900 	case IFT_L2VLAN:
3901 	case IFT_BRIDGE:
3902 	case IFT_IEEE8023ADLAG:
3903 		bcopy(lladdr, LLADDR(sdl), len);
3904 		break;
3905 	default:
3906 		return (ENODEV);
3907 	}
3908 
3909 	/*
3910 	 * If the interface is already up, we need
3911 	 * to re-init it in order to reprogram its
3912 	 * address filter.
3913 	 */
3914 	if ((ifp->if_flags & IFF_UP) != 0) {
3915 		if (ifp->if_ioctl) {
3916 			ifp->if_flags &= ~IFF_UP;
3917 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3918 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3919 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3920 			ifp->if_flags |= IFF_UP;
3921 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3922 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3923 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3924 		}
3925 	}
3926 	EVENTHANDLER_INVOKE(iflladdr_event, ifp);
3927 
3928 	return (0);
3929 }
3930 
3931 /*
3932  * Compat function for handling basic encapsulation requests.
3933  * Not converted stacks (FDDI, IB, ..) supports traditional
3934  * output model: ARP (and other similar L2 protocols) are handled
3935  * inside output routine, arpresolve/nd6_resolve() returns MAC
3936  * address instead of full prepend.
3937  *
3938  * This function creates calculated header==MAC for IPv4/IPv6 and
3939  * returns EAFNOSUPPORT (which is then handled in ARP code) for other
3940  * address families.
3941  */
3942 static int
3943 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req)
3944 {
3945 	if (req->rtype != IFENCAP_LL)
3946 		return (EOPNOTSUPP);
3947 
3948 	if (req->bufsize < req->lladdr_len)
3949 		return (ENOMEM);
3950 
3951 	switch (req->family) {
3952 	case AF_INET:
3953 	case AF_INET6:
3954 		break;
3955 	default:
3956 		return (EAFNOSUPPORT);
3957 	}
3958 
3959 	/* Copy lladdr to storage as is */
3960 	memmove(req->buf, req->lladdr, req->lladdr_len);
3961 	req->bufsize = req->lladdr_len;
3962 	req->lladdr_off = 0;
3963 
3964 	return (0);
3965 }
3966 
3967 /*
3968  * Tunnel interfaces can nest, also they may cause infinite recursion
3969  * calls when misconfigured. We'll prevent this by detecting loops.
3970  * High nesting level may cause stack exhaustion. We'll prevent this
3971  * by introducing upper limit.
3972  *
3973  * Return 0, if tunnel nesting count is equal or less than limit.
3974  */
3975 int
3976 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie,
3977     int limit)
3978 {
3979 	struct m_tag *mtag;
3980 	int count;
3981 
3982 	count = 1;
3983 	mtag = NULL;
3984 	while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) {
3985 		if (*(struct ifnet **)(mtag + 1) == ifp) {
3986 			log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp));
3987 			return (EIO);
3988 		}
3989 		count++;
3990 	}
3991 	if (count > limit) {
3992 		log(LOG_NOTICE,
3993 		    "%s: if_output recursively called too many times(%d)\n",
3994 		    if_name(ifp), count);
3995 		return (EIO);
3996 	}
3997 	mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT);
3998 	if (mtag == NULL)
3999 		return (ENOMEM);
4000 	*(struct ifnet **)(mtag + 1) = ifp;
4001 	m_tag_prepend(m, mtag);
4002 	return (0);
4003 }
4004 
4005 /*
4006  * Get the link layer address that was read from the hardware at attach.
4007  *
4008  * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type
4009  * their component interfaces as IFT_IEEE8023ADLAG.
4010  */
4011 int
4012 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr)
4013 {
4014 	if (ifp->if_hw_addr == NULL)
4015 		return (ENODEV);
4016 
4017 	switch (ifp->if_type) {
4018 	case IFT_ETHER:
4019 	case IFT_IEEE8023ADLAG:
4020 		bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen);
4021 		return (0);
4022 	default:
4023 		return (ENODEV);
4024 	}
4025 }
4026 
4027 /*
4028  * The name argument must be a pointer to storage which will last as
4029  * long as the interface does.  For physical devices, the result of
4030  * device_get_name(dev) is a good choice and for pseudo-devices a
4031  * static string works well.
4032  */
4033 void
4034 if_initname(struct ifnet *ifp, const char *name, int unit)
4035 {
4036 	ifp->if_dname = name;
4037 	ifp->if_dunit = unit;
4038 	if (unit != IF_DUNIT_NONE)
4039 		snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
4040 	else
4041 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
4042 }
4043 
4044 static int
4045 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap)
4046 {
4047 	char if_fmt[256];
4048 
4049 	snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt);
4050 	vlog(pri, if_fmt, ap);
4051 	return (0);
4052 }
4053 
4054 
4055 int
4056 if_printf(struct ifnet *ifp, const char *fmt, ...)
4057 {
4058 	va_list ap;
4059 
4060 	va_start(ap, fmt);
4061 	if_vlog(ifp, LOG_INFO, fmt, ap);
4062 	va_end(ap);
4063 	return (0);
4064 }
4065 
4066 int
4067 if_log(struct ifnet *ifp, int pri, const char *fmt, ...)
4068 {
4069 	va_list ap;
4070 
4071 	va_start(ap, fmt);
4072 	if_vlog(ifp, pri, fmt, ap);
4073 	va_end(ap);
4074 	return (0);
4075 }
4076 
4077 void
4078 if_start(struct ifnet *ifp)
4079 {
4080 
4081 	(*(ifp)->if_start)(ifp);
4082 }
4083 
4084 /*
4085  * Backwards compatibility interface for drivers
4086  * that have not implemented it
4087  */
4088 static int
4089 if_transmit_default(struct ifnet *ifp, struct mbuf *m)
4090 {
4091 	int error;
4092 
4093 	IFQ_HANDOFF(ifp, m, error);
4094 	return (error);
4095 }
4096 
4097 static void
4098 if_input_default(struct ifnet *ifp __unused, struct mbuf *m)
4099 {
4100 	m_freem(m);
4101 }
4102 
4103 int
4104 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
4105 {
4106 	int active = 0;
4107 
4108 	IF_LOCK(ifq);
4109 	if (_IF_QFULL(ifq)) {
4110 		IF_UNLOCK(ifq);
4111 		if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4112 		m_freem(m);
4113 		return (0);
4114 	}
4115 	if (ifp != NULL) {
4116 		if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust);
4117 		if (m->m_flags & (M_BCAST|M_MCAST))
4118 			if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4119 		active = ifp->if_drv_flags & IFF_DRV_OACTIVE;
4120 	}
4121 	_IF_ENQUEUE(ifq, m);
4122 	IF_UNLOCK(ifq);
4123 	if (ifp != NULL && !active)
4124 		(*(ifp)->if_start)(ifp);
4125 	return (1);
4126 }
4127 
4128 void
4129 if_register_com_alloc(u_char type,
4130     if_com_alloc_t *a, if_com_free_t *f)
4131 {
4132 
4133 	KASSERT(if_com_alloc[type] == NULL,
4134 	    ("if_register_com_alloc: %d already registered", type));
4135 	KASSERT(if_com_free[type] == NULL,
4136 	    ("if_register_com_alloc: %d free already registered", type));
4137 
4138 	if_com_alloc[type] = a;
4139 	if_com_free[type] = f;
4140 }
4141 
4142 void
4143 if_deregister_com_alloc(u_char type)
4144 {
4145 
4146 	KASSERT(if_com_alloc[type] != NULL,
4147 	    ("if_deregister_com_alloc: %d not registered", type));
4148 	KASSERT(if_com_free[type] != NULL,
4149 	    ("if_deregister_com_alloc: %d free not registered", type));
4150 
4151 	/*
4152 	 * Ensure all pending EPOCH(9) callbacks have been executed. This
4153 	 * fixes issues about late invocation of if_destroy(), which leads
4154 	 * to memory leak from if_com_alloc[type] allocated if_l2com.
4155 	 */
4156 	NET_EPOCH_DRAIN_CALLBACKS();
4157 
4158 	if_com_alloc[type] = NULL;
4159 	if_com_free[type] = NULL;
4160 }
4161 
4162 /* API for driver access to network stack owned ifnet.*/
4163 uint64_t
4164 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate)
4165 {
4166 	uint64_t oldbrate;
4167 
4168 	oldbrate = ifp->if_baudrate;
4169 	ifp->if_baudrate = baudrate;
4170 	return (oldbrate);
4171 }
4172 
4173 uint64_t
4174 if_getbaudrate(const if_t ifp)
4175 {
4176 	return (ifp->if_baudrate);
4177 }
4178 
4179 int
4180 if_setcapabilities(if_t ifp, int capabilities)
4181 {
4182 	ifp->if_capabilities = capabilities;
4183 	return (0);
4184 }
4185 
4186 int
4187 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit)
4188 {
4189 	ifp->if_capabilities &= ~clearbit;
4190 	ifp->if_capabilities |= setbit;
4191 	return (0);
4192 }
4193 
4194 int
4195 if_getcapabilities(const if_t ifp)
4196 {
4197 	return (ifp->if_capabilities);
4198 }
4199 
4200 int
4201 if_setcapenable(if_t ifp, int capabilities)
4202 {
4203 	ifp->if_capenable = capabilities;
4204 	return (0);
4205 }
4206 
4207 int
4208 if_setcapenablebit(if_t ifp, int setcap, int clearcap)
4209 {
4210 	ifp->if_capenable &= ~clearcap;
4211 	ifp->if_capenable |= setcap;
4212 	return (0);
4213 }
4214 
4215 int
4216 if_setcapabilities2(if_t ifp, int capabilities)
4217 {
4218 	ifp->if_capabilities2 = capabilities;
4219 	return (0);
4220 }
4221 
4222 int
4223 if_setcapabilities2bit(if_t ifp, int setbit, int clearbit)
4224 {
4225 	ifp->if_capabilities2 &= ~clearbit;
4226 	ifp->if_capabilities2 |= setbit;
4227 	return (0);
4228 }
4229 
4230 int
4231 if_getcapabilities2(const if_t ifp)
4232 {
4233 	return (ifp->if_capabilities2);
4234 }
4235 
4236 int
4237 if_setcapenable2(if_t ifp, int capabilities2)
4238 {
4239 	ifp->if_capenable2 = capabilities2;
4240 	return (0);
4241 }
4242 
4243 int
4244 if_setcapenable2bit(if_t ifp, int setcap, int clearcap)
4245 {
4246 	ifp->if_capenable2 &= ~clearcap;
4247 	ifp->if_capenable2 |= setcap;
4248 	return (0);
4249 }
4250 
4251 const char *
4252 if_getdname(const if_t ifp)
4253 {
4254 	return (ifp->if_dname);
4255 }
4256 
4257 void
4258 if_setdname(if_t ifp, const char *dname)
4259 {
4260 	ifp->if_dname = dname;
4261 }
4262 
4263 const char *
4264 if_name(if_t ifp)
4265 {
4266 	return (ifp->if_xname);
4267 }
4268 
4269 int
4270 if_setname(if_t ifp, const char *name)
4271 {
4272 	if (strlen(name) > sizeof(ifp->if_xname) - 1)
4273 		return (ENAMETOOLONG);
4274 	strcpy(ifp->if_xname, name);
4275 
4276 	return (0);
4277 }
4278 
4279 int
4280 if_togglecapenable(if_t ifp, int togglecap)
4281 {
4282 	ifp->if_capenable ^= togglecap;
4283 	return (0);
4284 }
4285 
4286 int
4287 if_getcapenable(const if_t ifp)
4288 {
4289 	return (ifp->if_capenable);
4290 }
4291 
4292 int
4293 if_togglecapenable2(if_t ifp, int togglecap)
4294 {
4295 	ifp->if_capenable2 ^= togglecap;
4296 	return (0);
4297 }
4298 
4299 int
4300 if_getcapenable2(const if_t ifp)
4301 {
4302 	return (ifp->if_capenable2);
4303 }
4304 
4305 int
4306 if_getdunit(const if_t ifp)
4307 {
4308 	return (ifp->if_dunit);
4309 }
4310 
4311 int
4312 if_getindex(const if_t ifp)
4313 {
4314 	return (ifp->if_index);
4315 }
4316 
4317 int
4318 if_getidxgen(const if_t ifp)
4319 {
4320 	return (ifp->if_idxgen);
4321 }
4322 
4323 const char *
4324 if_getdescr(if_t ifp)
4325 {
4326 	return (ifp->if_description);
4327 }
4328 
4329 void
4330 if_setdescr(if_t ifp, char *descrbuf)
4331 {
4332 	sx_xlock(&ifdescr_sx);
4333 	char *odescrbuf = ifp->if_description;
4334 	ifp->if_description = descrbuf;
4335 	sx_xunlock(&ifdescr_sx);
4336 
4337 	if_freedescr(odescrbuf);
4338 }
4339 
4340 char *
4341 if_allocdescr(size_t sz, int malloc_flag)
4342 {
4343 	malloc_flag &= (M_WAITOK | M_NOWAIT);
4344 	return (malloc(sz, M_IFDESCR, M_ZERO | malloc_flag));
4345 }
4346 
4347 void
4348 if_freedescr(char *descrbuf)
4349 {
4350 	free(descrbuf, M_IFDESCR);
4351 }
4352 
4353 int
4354 if_getalloctype(const if_t ifp)
4355 {
4356 	return (ifp->if_alloctype);
4357 }
4358 
4359 void
4360 if_setlastchange(if_t ifp)
4361 {
4362 	getmicrotime(&ifp->if_lastchange);
4363 }
4364 
4365 /*
4366  * This is largely undesirable because it ties ifnet to a device, but does
4367  * provide flexiblity for an embedded product vendor. Should be used with
4368  * the understanding that it violates the interface boundaries, and should be
4369  * a last resort only.
4370  */
4371 int
4372 if_setdev(if_t ifp, void *dev)
4373 {
4374 	return (0);
4375 }
4376 
4377 int
4378 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags)
4379 {
4380 	ifp->if_drv_flags &= ~clear_flags;
4381 	ifp->if_drv_flags |= set_flags;
4382 
4383 	return (0);
4384 }
4385 
4386 int
4387 if_getdrvflags(const if_t ifp)
4388 {
4389 	return (ifp->if_drv_flags);
4390 }
4391 
4392 int
4393 if_setdrvflags(if_t ifp, int flags)
4394 {
4395 	ifp->if_drv_flags = flags;
4396 	return (0);
4397 }
4398 
4399 int
4400 if_setflags(if_t ifp, int flags)
4401 {
4402 	ifp->if_flags = flags;
4403 	return (0);
4404 }
4405 
4406 int
4407 if_setflagbits(if_t ifp, int set, int clear)
4408 {
4409 	ifp->if_flags &= ~clear;
4410 	ifp->if_flags |= set;
4411 	return (0);
4412 }
4413 
4414 int
4415 if_getflags(const if_t ifp)
4416 {
4417 	return (ifp->if_flags);
4418 }
4419 
4420 int
4421 if_clearhwassist(if_t ifp)
4422 {
4423 	ifp->if_hwassist = 0;
4424 	return (0);
4425 }
4426 
4427 int
4428 if_sethwassistbits(if_t ifp, int toset, int toclear)
4429 {
4430 	ifp->if_hwassist &= ~toclear;
4431 	ifp->if_hwassist |= toset;
4432 
4433 	return (0);
4434 }
4435 
4436 int
4437 if_sethwassist(if_t ifp, int hwassist_bit)
4438 {
4439 	ifp->if_hwassist = hwassist_bit;
4440 	return (0);
4441 }
4442 
4443 int
4444 if_gethwassist(const if_t ifp)
4445 {
4446 	return (ifp->if_hwassist);
4447 }
4448 
4449 int
4450 if_togglehwassist(if_t ifp, int toggle_bits)
4451 {
4452 	ifp->if_hwassist ^= toggle_bits;
4453 	return (0);
4454 }
4455 
4456 int
4457 if_setmtu(if_t ifp, int mtu)
4458 {
4459 	ifp->if_mtu = mtu;
4460 	return (0);
4461 }
4462 
4463 void
4464 if_notifymtu(if_t ifp)
4465 {
4466 #ifdef INET6
4467 	nd6_setmtu(ifp);
4468 #endif
4469 	rt_updatemtu(ifp);
4470 }
4471 
4472 int
4473 if_getmtu(const if_t ifp)
4474 {
4475 	return (ifp->if_mtu);
4476 }
4477 
4478 int
4479 if_getmtu_family(const if_t ifp, int family)
4480 {
4481 	struct domain *dp;
4482 
4483 	SLIST_FOREACH(dp, &domains, dom_next) {
4484 		if (dp->dom_family == family && dp->dom_ifmtu != NULL)
4485 			return (dp->dom_ifmtu(ifp));
4486 	}
4487 
4488 	return (ifp->if_mtu);
4489 }
4490 
4491 /*
4492  * Methods for drivers to access interface unicast and multicast
4493  * link level addresses.  Driver shall not know 'struct ifaddr' neither
4494  * 'struct ifmultiaddr'.
4495  */
4496 u_int
4497 if_lladdr_count(if_t ifp)
4498 {
4499 	struct epoch_tracker et;
4500 	struct ifaddr *ifa;
4501 	u_int count;
4502 
4503 	count = 0;
4504 	NET_EPOCH_ENTER(et);
4505 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
4506 		if (ifa->ifa_addr->sa_family == AF_LINK)
4507 			count++;
4508 	NET_EPOCH_EXIT(et);
4509 
4510 	return (count);
4511 }
4512 
4513 int
4514 if_foreach(if_foreach_cb_t cb, void *cb_arg)
4515 {
4516 	if_t ifp;
4517 	int error;
4518 
4519 	NET_EPOCH_ASSERT();
4520 	MPASS(cb);
4521 
4522 	error = 0;
4523 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
4524 		error = cb(ifp, cb_arg);
4525 		if (error != 0)
4526 			break;
4527 	}
4528 
4529 	return (error);
4530 }
4531 
4532 /*
4533  * Iterates over the list of interfaces, permitting callback function @cb to sleep.
4534  * Stops iteration if @cb returns non-zero error code.
4535  * Returns the last error code from @cb.
4536  * @match_cb: optional match callback limiting the iteration to only matched interfaces
4537  * @match_arg: argument to pass to @match_cb
4538  * @cb: iteration callback
4539  * @cb_arg: argument to pass to @cb
4540  */
4541 int
4542 if_foreach_sleep(if_foreach_match_t match_cb, void *match_arg, if_foreach_cb_t cb,
4543     void *cb_arg)
4544 {
4545 	int match_count = 0, array_size = 16; /* 128 bytes for malloc */
4546 	struct ifnet **match_array = NULL;
4547 	int error = 0;
4548 
4549 	MPASS(cb);
4550 
4551 	while (true) {
4552 		struct ifnet **new_array;
4553 		int new_size = array_size;
4554 		struct epoch_tracker et;
4555 		struct ifnet *ifp;
4556 
4557 		while (new_size < match_count)
4558 			new_size *= 2;
4559 		new_array = malloc(new_size * sizeof(void *), M_TEMP, M_WAITOK);
4560 		if (match_array != NULL)
4561 			memcpy(new_array, match_array, array_size * sizeof(void *));
4562 		free(match_array, M_TEMP);
4563 		match_array = new_array;
4564 		array_size = new_size;
4565 
4566 		match_count = 0;
4567 		NET_EPOCH_ENTER(et);
4568 		CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
4569 			if (match_cb != NULL && !match_cb(ifp, match_arg))
4570 				continue;
4571 			if (match_count < array_size) {
4572 				if (if_try_ref(ifp))
4573 					match_array[match_count++] = ifp;
4574 			} else
4575 				match_count++;
4576 		}
4577 		NET_EPOCH_EXIT(et);
4578 
4579 		if (match_count > array_size) {
4580 			for (int i = 0; i < array_size; i++)
4581 				if_rele(match_array[i]);
4582 			continue;
4583 		} else {
4584 			for (int i = 0; i < match_count; i++) {
4585 				if (error == 0)
4586 					error = cb(match_array[i], cb_arg);
4587 				if_rele(match_array[i]);
4588 			}
4589 			free(match_array, M_TEMP);
4590 			break;
4591 		}
4592 	}
4593 
4594 	return (error);
4595 }
4596 
4597 
4598 /*
4599  * Uses just 1 pointer of the 4 available in the public struct.
4600  */
4601 if_t
4602 if_iter_start(struct if_iter *iter)
4603 {
4604 	if_t ifp;
4605 
4606 	NET_EPOCH_ASSERT();
4607 
4608 	bzero(iter, sizeof(*iter));
4609 	ifp = CK_STAILQ_FIRST(&V_ifnet);
4610 	if (ifp != NULL)
4611 		iter->context[0] = CK_STAILQ_NEXT(ifp, if_link);
4612 	else
4613 		iter->context[0] = NULL;
4614 	return (ifp);
4615 }
4616 
4617 if_t
4618 if_iter_next(struct if_iter *iter)
4619 {
4620 	if_t cur_ifp = iter->context[0];
4621 
4622 	if (cur_ifp != NULL)
4623 		iter->context[0] = CK_STAILQ_NEXT(cur_ifp, if_link);
4624 	return (cur_ifp);
4625 }
4626 
4627 void
4628 if_iter_finish(struct if_iter *iter)
4629 {
4630 	/* Nothing to do here for now. */
4631 }
4632 
4633 u_int
4634 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
4635 {
4636 	struct epoch_tracker et;
4637 	struct ifaddr *ifa;
4638 	u_int count;
4639 
4640 	MPASS(cb);
4641 
4642 	count = 0;
4643 	NET_EPOCH_ENTER(et);
4644 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
4645 		if (ifa->ifa_addr->sa_family != AF_LINK)
4646 			continue;
4647 		count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr,
4648 		    count);
4649 	}
4650 	NET_EPOCH_EXIT(et);
4651 
4652 	return (count);
4653 }
4654 
4655 u_int
4656 if_llmaddr_count(if_t ifp)
4657 {
4658 	struct epoch_tracker et;
4659 	struct ifmultiaddr *ifma;
4660 	int count;
4661 
4662 	count = 0;
4663 	NET_EPOCH_ENTER(et);
4664 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
4665 		if (ifma->ifma_addr->sa_family == AF_LINK)
4666 			count++;
4667 	NET_EPOCH_EXIT(et);
4668 
4669 	return (count);
4670 }
4671 
4672 bool
4673 if_maddr_empty(if_t ifp)
4674 {
4675 
4676 	return (CK_STAILQ_EMPTY(&ifp->if_multiaddrs));
4677 }
4678 
4679 u_int
4680 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
4681 {
4682 	struct epoch_tracker et;
4683 	struct ifmultiaddr *ifma;
4684 	u_int count;
4685 
4686 	MPASS(cb);
4687 
4688 	count = 0;
4689 	NET_EPOCH_ENTER(et);
4690 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4691 		if (ifma->ifma_addr->sa_family != AF_LINK)
4692 			continue;
4693 		count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr,
4694 		    count);
4695 	}
4696 	NET_EPOCH_EXIT(et);
4697 
4698 	return (count);
4699 }
4700 
4701 u_int
4702 if_foreach_addr_type(if_t ifp, int type, if_addr_cb_t cb, void *cb_arg)
4703 {
4704 	struct epoch_tracker et;
4705 	struct ifaddr *ifa;
4706 	u_int count;
4707 
4708 	MPASS(cb);
4709 
4710 	count = 0;
4711 	NET_EPOCH_ENTER(et);
4712 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
4713 		if (ifa->ifa_addr->sa_family != type)
4714 			continue;
4715 		count += (*cb)(cb_arg, ifa, count);
4716 	}
4717 	NET_EPOCH_EXIT(et);
4718 
4719 	return (count);
4720 }
4721 
4722 struct ifaddr *
4723 ifa_iter_start(if_t ifp, struct ifa_iter *iter)
4724 {
4725 	struct ifaddr *ifa;
4726 
4727 	NET_EPOCH_ASSERT();
4728 
4729 	bzero(iter, sizeof(*iter));
4730 	ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
4731 	if (ifa != NULL)
4732 		iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
4733 	else
4734 		iter->context[0] = NULL;
4735 	return (ifa);
4736 }
4737 
4738 struct ifaddr *
4739 ifa_iter_next(struct ifa_iter *iter)
4740 {
4741 	struct ifaddr *ifa = iter->context[0];
4742 
4743 	if (ifa != NULL)
4744 		iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
4745 	return (ifa);
4746 }
4747 
4748 void
4749 ifa_iter_finish(struct ifa_iter *iter)
4750 {
4751 	/* Nothing to do here for now. */
4752 }
4753 
4754 int
4755 if_setsoftc(if_t ifp, void *softc)
4756 {
4757 	ifp->if_softc = softc;
4758 	return (0);
4759 }
4760 
4761 void *
4762 if_getsoftc(const if_t ifp)
4763 {
4764 	return (ifp->if_softc);
4765 }
4766 
4767 void
4768 if_setrcvif(struct mbuf *m, if_t ifp)
4769 {
4770 
4771 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
4772 	m->m_pkthdr.rcvif = (struct ifnet *)ifp;
4773 }
4774 
4775 void
4776 if_setvtag(struct mbuf *m, uint16_t tag)
4777 {
4778 	m->m_pkthdr.ether_vtag = tag;
4779 }
4780 
4781 uint16_t
4782 if_getvtag(struct mbuf *m)
4783 {
4784 	return (m->m_pkthdr.ether_vtag);
4785 }
4786 
4787 int
4788 if_sendq_empty(if_t ifp)
4789 {
4790 	return (IFQ_DRV_IS_EMPTY(&ifp->if_snd));
4791 }
4792 
4793 struct ifaddr *
4794 if_getifaddr(const if_t ifp)
4795 {
4796 	return (ifp->if_addr);
4797 }
4798 
4799 int
4800 if_setsendqready(if_t ifp)
4801 {
4802 	IFQ_SET_READY(&ifp->if_snd);
4803 	return (0);
4804 }
4805 
4806 int
4807 if_setsendqlen(if_t ifp, int tx_desc_count)
4808 {
4809 	IFQ_SET_MAXLEN(&ifp->if_snd, tx_desc_count);
4810 	ifp->if_snd.ifq_drv_maxlen = tx_desc_count;
4811 	return (0);
4812 }
4813 
4814 void
4815 if_setnetmapadapter(if_t ifp, struct netmap_adapter *na)
4816 {
4817 	ifp->if_netmap = na;
4818 }
4819 
4820 struct netmap_adapter *
4821 if_getnetmapadapter(if_t ifp)
4822 {
4823 	return (ifp->if_netmap);
4824 }
4825 
4826 int
4827 if_vlantrunkinuse(if_t ifp)
4828 {
4829 	return (ifp->if_vlantrunk != NULL);
4830 }
4831 
4832 void
4833 if_init(if_t ifp, void *ctx)
4834 {
4835 	(*ifp->if_init)(ctx);
4836 }
4837 
4838 void
4839 if_input(if_t ifp, struct mbuf* sendmp)
4840 {
4841 	(*ifp->if_input)(ifp, sendmp);
4842 }
4843 
4844 int
4845 if_transmit(if_t ifp, struct mbuf *m)
4846 {
4847 	return ((*ifp->if_transmit)(ifp, m));
4848 }
4849 
4850 int
4851 if_resolvemulti(if_t ifp, struct sockaddr **srcs, struct sockaddr *dst)
4852 {
4853 	if (ifp->if_resolvemulti == NULL)
4854 		return (EOPNOTSUPP);
4855 
4856 	return (ifp->if_resolvemulti(ifp, srcs, dst));
4857 }
4858 
4859 int
4860 if_ioctl(if_t ifp, u_long cmd, void *data)
4861 {
4862 	if (ifp->if_ioctl == NULL)
4863 		return (EOPNOTSUPP);
4864 
4865 	return (ifp->if_ioctl(ifp, cmd, data));
4866 }
4867 
4868 struct mbuf *
4869 if_dequeue(if_t ifp)
4870 {
4871 	struct mbuf *m;
4872 
4873 	IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
4874 	return (m);
4875 }
4876 
4877 int
4878 if_sendq_prepend(if_t ifp, struct mbuf *m)
4879 {
4880 	IFQ_DRV_PREPEND(&ifp->if_snd, m);
4881 	return (0);
4882 }
4883 
4884 int
4885 if_setifheaderlen(if_t ifp, int len)
4886 {
4887 	ifp->if_hdrlen = len;
4888 	return (0);
4889 }
4890 
4891 char *
4892 if_getlladdr(const if_t ifp)
4893 {
4894 	return (IF_LLADDR(ifp));
4895 }
4896 
4897 void *
4898 if_gethandle(u_char type)
4899 {
4900 	return (if_alloc(type));
4901 }
4902 
4903 void
4904 if_vlancap(if_t ifp)
4905 {
4906 	VLAN_CAPABILITIES(ifp);
4907 }
4908 
4909 int
4910 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax)
4911 {
4912 	ifp->if_hw_tsomax = if_hw_tsomax;
4913         return (0);
4914 }
4915 
4916 int
4917 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount)
4918 {
4919 	ifp->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount;
4920         return (0);
4921 }
4922 
4923 int
4924 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize)
4925 {
4926 	ifp->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize;
4927         return (0);
4928 }
4929 
4930 u_int
4931 if_gethwtsomax(const if_t ifp)
4932 {
4933 	return (ifp->if_hw_tsomax);
4934 }
4935 
4936 u_int
4937 if_gethwtsomaxsegcount(const if_t ifp)
4938 {
4939 	return (ifp->if_hw_tsomaxsegcount);
4940 }
4941 
4942 u_int
4943 if_gethwtsomaxsegsize(const if_t ifp)
4944 {
4945 	return (ifp->if_hw_tsomaxsegsize);
4946 }
4947 
4948 void
4949 if_setinitfn(if_t ifp, if_init_fn_t init_fn)
4950 {
4951 	ifp->if_init = init_fn;
4952 }
4953 
4954 void
4955 if_setinputfn(if_t ifp, if_input_fn_t input_fn)
4956 {
4957 	ifp->if_input = input_fn;
4958 }
4959 
4960 if_input_fn_t
4961 if_getinputfn(if_t ifp)
4962 {
4963 	return (ifp->if_input);
4964 }
4965 
4966 void
4967 if_setioctlfn(if_t ifp, if_ioctl_fn_t ioctl_fn)
4968 {
4969 	ifp->if_ioctl = ioctl_fn;
4970 }
4971 
4972 void
4973 if_setoutputfn(if_t ifp, if_output_fn_t output_fn)
4974 {
4975 	ifp->if_output = output_fn;
4976 }
4977 
4978 void
4979 if_setstartfn(if_t ifp, if_start_fn_t start_fn)
4980 {
4981 	ifp->if_start = start_fn;
4982 }
4983 
4984 if_start_fn_t
4985 if_getstartfn(if_t ifp)
4986 {
4987 	return (ifp->if_start);
4988 }
4989 
4990 void
4991 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn)
4992 {
4993 	ifp->if_transmit = start_fn;
4994 }
4995 
4996 if_transmit_fn_t
4997 if_gettransmitfn(if_t ifp)
4998 {
4999 	return (ifp->if_transmit);
5000 }
5001 
5002 void
5003 if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn)
5004 {
5005 	ifp->if_qflush = flush_fn;
5006 }
5007 
5008 void
5009 if_setsndtagallocfn(if_t ifp, if_snd_tag_alloc_t alloc_fn)
5010 {
5011 	ifp->if_snd_tag_alloc = alloc_fn;
5012 }
5013 
5014 int
5015 if_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
5016     struct m_snd_tag **mstp)
5017 {
5018 	if (ifp->if_snd_tag_alloc == NULL)
5019 		return (EOPNOTSUPP);
5020 	return (ifp->if_snd_tag_alloc(ifp, params, mstp));
5021 }
5022 
5023 void
5024 if_setgetcounterfn(if_t ifp, if_get_counter_t fn)
5025 {
5026 	ifp->if_get_counter = fn;
5027 }
5028 
5029 void
5030 if_setreassignfn(if_t ifp, if_reassign_fn_t fn)
5031 {
5032 	ifp->if_reassign = fn;
5033 }
5034 
5035 void
5036 if_setratelimitqueryfn(if_t ifp, if_ratelimit_query_t fn)
5037 {
5038 	ifp->if_ratelimit_query = fn;
5039 }
5040 
5041 void
5042 if_setdebugnet_methods(if_t ifp, struct debugnet_methods *m)
5043 {
5044 	ifp->if_debugnet_methods = m;
5045 }
5046 
5047 struct label *
5048 if_getmaclabel(if_t ifp)
5049 {
5050 	return (ifp->if_label);
5051 }
5052 
5053 void
5054 if_setmaclabel(if_t ifp, struct label *label)
5055 {
5056 	ifp->if_label = label;
5057 }
5058 
5059 int
5060 if_gettype(if_t ifp)
5061 {
5062 	return (ifp->if_type);
5063 }
5064 
5065 void *
5066 if_getllsoftc(if_t ifp)
5067 {
5068 	return (ifp->if_llsoftc);
5069 }
5070 
5071 void
5072 if_setllsoftc(if_t ifp, void *llsoftc)
5073 {
5074 	ifp->if_llsoftc = llsoftc;
5075 };
5076 
5077 int
5078 if_getlinkstate(if_t ifp)
5079 {
5080 	return (ifp->if_link_state);
5081 }
5082 
5083 const uint8_t *
5084 if_getbroadcastaddr(if_t ifp)
5085 {
5086 	return (ifp->if_broadcastaddr);
5087 }
5088 
5089 void
5090 if_setbroadcastaddr(if_t ifp, const uint8_t *addr)
5091 {
5092 	ifp->if_broadcastaddr = addr;
5093 }
5094 
5095 int
5096 if_getnumadomain(if_t ifp)
5097 {
5098 	return (ifp->if_numa_domain);
5099 }
5100 
5101 uint64_t
5102 if_getcounter(if_t ifp, ift_counter counter)
5103 {
5104 	return (ifp->if_get_counter(ifp, counter));
5105 }
5106 
5107 bool
5108 if_altq_is_enabled(if_t ifp)
5109 {
5110 	return (ALTQ_IS_ENABLED(&ifp->if_snd));
5111 }
5112 
5113 struct vnet *
5114 if_getvnet(if_t ifp)
5115 {
5116 	return (ifp->if_vnet);
5117 }
5118 
5119 void *
5120 if_getafdata(if_t ifp, int af)
5121 {
5122 	return (ifp->if_afdata[af]);
5123 }
5124 
5125 u_int
5126 if_getfib(if_t ifp)
5127 {
5128 	return (ifp->if_fib);
5129 }
5130 
5131 uint8_t
5132 if_getaddrlen(if_t ifp)
5133 {
5134 	return (ifp->if_addrlen);
5135 }
5136 
5137 struct bpf_if *
5138 if_getbpf(if_t ifp)
5139 {
5140 	return (ifp->if_bpf);
5141 }
5142 
5143 struct ifvlantrunk *
5144 if_getvlantrunk(if_t ifp)
5145 {
5146 	return (ifp->if_vlantrunk);
5147 }
5148 
5149 uint8_t
5150 if_getpcp(if_t ifp)
5151 {
5152 	return (ifp->if_pcp);
5153 }
5154 
5155 void *
5156 if_getl2com(if_t ifp)
5157 {
5158 	return (ifp->if_l2com);
5159 }
5160 
5161 void
5162 if_setipsec_accel_methods(if_t ifp, const struct if_ipsec_accel_methods *m)
5163 {
5164 	ifp->if_ipsec_accel_m = m;
5165 }
5166 
5167 #ifdef DDB
5168 static void
5169 if_show_ifnet(struct ifnet *ifp)
5170 {
5171 	if (ifp == NULL)
5172 		return;
5173 	db_printf("%s:\n", ifp->if_xname);
5174 #define	IF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, ifp->e);
5175 	IF_DB_PRINTF("%s", if_dname);
5176 	IF_DB_PRINTF("%d", if_dunit);
5177 	IF_DB_PRINTF("%s", if_description);
5178 	IF_DB_PRINTF("%u", if_index);
5179 	IF_DB_PRINTF("%d", if_idxgen);
5180 	IF_DB_PRINTF("%u", if_refcount);
5181 	IF_DB_PRINTF("%p", if_softc);
5182 	IF_DB_PRINTF("%p", if_l2com);
5183 	IF_DB_PRINTF("%p", if_llsoftc);
5184 	IF_DB_PRINTF("%d", if_amcount);
5185 	IF_DB_PRINTF("%p", if_addr);
5186 	IF_DB_PRINTF("%p", if_broadcastaddr);
5187 	IF_DB_PRINTF("%p", if_afdata);
5188 	IF_DB_PRINTF("%d", if_afdata_initialized);
5189 	IF_DB_PRINTF("%u", if_fib);
5190 	IF_DB_PRINTF("%p", if_vnet);
5191 	IF_DB_PRINTF("%p", if_home_vnet);
5192 	IF_DB_PRINTF("%p", if_vlantrunk);
5193 	IF_DB_PRINTF("%p", if_bpf);
5194 	IF_DB_PRINTF("%u", if_pcount);
5195 	IF_DB_PRINTF("%p", if_bridge);
5196 	IF_DB_PRINTF("%p", if_lagg);
5197 	IF_DB_PRINTF("%p", if_pf_kif);
5198 	IF_DB_PRINTF("%p", if_carp);
5199 	IF_DB_PRINTF("%p", if_label);
5200 	IF_DB_PRINTF("%p", if_netmap);
5201 	IF_DB_PRINTF("0x%08x", if_flags);
5202 	IF_DB_PRINTF("0x%08x", if_drv_flags);
5203 	IF_DB_PRINTF("0x%08x", if_capabilities);
5204 	IF_DB_PRINTF("0x%08x", if_capenable);
5205 	IF_DB_PRINTF("%p", if_snd.ifq_head);
5206 	IF_DB_PRINTF("%p", if_snd.ifq_tail);
5207 	IF_DB_PRINTF("%d", if_snd.ifq_len);
5208 	IF_DB_PRINTF("%d", if_snd.ifq_maxlen);
5209 	IF_DB_PRINTF("%p", if_snd.ifq_drv_head);
5210 	IF_DB_PRINTF("%p", if_snd.ifq_drv_tail);
5211 	IF_DB_PRINTF("%d", if_snd.ifq_drv_len);
5212 	IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen);
5213 	IF_DB_PRINTF("%d", if_snd.altq_type);
5214 	IF_DB_PRINTF("%x", if_snd.altq_flags);
5215 #undef IF_DB_PRINTF
5216 }
5217 
5218 DB_SHOW_COMMAND(ifnet, db_show_ifnet)
5219 {
5220 	if (!have_addr) {
5221 		db_printf("usage: show ifnet <struct ifnet *>\n");
5222 		return;
5223 	}
5224 
5225 	if_show_ifnet((struct ifnet *)addr);
5226 }
5227 
5228 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets)
5229 {
5230 	struct ifnet *ifp;
5231 	u_short idx;
5232 
5233 	for (idx = 1; idx <= if_index; idx++) {
5234 		ifp = ifindex_table[idx].ife_ifnet;
5235 		if (ifp == NULL)
5236 			continue;
5237 		db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp);
5238 		if (db_pager_quit)
5239 			break;
5240 	}
5241 }
5242 #endif	/* DDB */
5243