1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org> 5 * Copyright (c) 1980, 1986, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include "opt_bpf.h" 34 #include "opt_inet6.h" 35 #include "opt_inet.h" 36 #include "opt_ddb.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/conf.h> 41 #include <sys/eventhandler.h> 42 #include <sys/malloc.h> 43 #include <sys/domainset.h> 44 #include <sys/sbuf.h> 45 #include <sys/bus.h> 46 #include <sys/epoch.h> 47 #include <sys/mbuf.h> 48 #include <sys/systm.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/protosw.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/refcount.h> 57 #include <sys/module.h> 58 #include <sys/nv.h> 59 #include <sys/rwlock.h> 60 #include <sys/sockio.h> 61 #include <sys/stdarg.h> 62 #include <sys/syslog.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysent.h> 65 #include <sys/taskqueue.h> 66 #include <sys/domain.h> 67 #include <sys/jail.h> 68 #include <sys/priv.h> 69 70 #ifdef DDB 71 #include <ddb/ddb.h> 72 #endif 73 74 #include <vm/uma.h> 75 76 #include <net/bpf.h> 77 #include <net/ethernet.h> 78 #include <net/if.h> 79 #include <net/if_arp.h> 80 #include <net/if_clone.h> 81 #include <net/if_dl.h> 82 #include <net/if_strings.h> 83 #include <net/if_types.h> 84 #include <net/if_var.h> 85 #include <net/if_media.h> 86 #include <net/if_mib.h> 87 #include <net/if_private.h> 88 #include <net/if_vlan_var.h> 89 #include <net/radix.h> 90 #include <net/route.h> 91 #include <net/route/route_ctl.h> 92 #include <net/vnet.h> 93 94 #if defined(INET) || defined(INET6) 95 #include <net/ethernet.h> 96 #include <netinet/in.h> 97 #include <netinet/in_var.h> 98 #include <netinet/ip.h> 99 #include <netinet/ip_carp.h> 100 #ifdef INET 101 #include <net/debugnet.h> 102 #include <netinet/if_ether.h> 103 #endif /* INET */ 104 #ifdef INET6 105 #include <netinet6/in6_var.h> 106 #include <netinet6/in6_ifattach.h> 107 #endif /* INET6 */ 108 #endif /* INET || INET6 */ 109 110 #include <security/mac/mac_framework.h> 111 112 /* 113 * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name 114 * and ifr_ifru when it is used in SIOCGIFCONF. 115 */ 116 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) == 117 offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru"); 118 119 __read_mostly epoch_t net_epoch_preempt; 120 #ifdef COMPAT_FREEBSD32 121 #include <sys/mount.h> 122 #include <compat/freebsd32/freebsd32.h> 123 124 struct ifreq_buffer32 { 125 uint32_t length; /* (size_t) */ 126 uint32_t buffer; /* (void *) */ 127 }; 128 129 /* 130 * Interface request structure used for socket 131 * ioctl's. All interface ioctl's must have parameter 132 * definitions which begin with ifr_name. The 133 * remainder may be interface specific. 134 */ 135 struct ifreq32 { 136 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ 137 union { 138 struct sockaddr ifru_addr; 139 struct sockaddr ifru_dstaddr; 140 struct sockaddr ifru_broadaddr; 141 struct ifreq_buffer32 ifru_buffer; 142 short ifru_flags[2]; 143 short ifru_index; 144 int ifru_jid; 145 int ifru_metric; 146 int ifru_mtu; 147 int ifru_phys; 148 int ifru_media; 149 uint32_t ifru_data; 150 int ifru_cap[2]; 151 u_int ifru_fib; 152 u_char ifru_vlan_pcp; 153 } ifr_ifru; 154 }; 155 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32)); 156 CTASSERT(__offsetof(struct ifreq, ifr_ifru) == 157 __offsetof(struct ifreq32, ifr_ifru)); 158 159 struct ifconf32 { 160 int32_t ifc_len; 161 union { 162 uint32_t ifcu_buf; 163 uint32_t ifcu_req; 164 } ifc_ifcu; 165 }; 166 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 167 168 struct ifdrv32 { 169 char ifd_name[IFNAMSIZ]; 170 uint32_t ifd_cmd; 171 uint32_t ifd_len; 172 uint32_t ifd_data; 173 }; 174 #define SIOCSDRVSPEC32 _IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32) 175 #define SIOCGDRVSPEC32 _IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32) 176 177 struct ifgroupreq32 { 178 char ifgr_name[IFNAMSIZ]; 179 u_int ifgr_len; 180 union { 181 char ifgru_group[IFNAMSIZ]; 182 uint32_t ifgru_groups; 183 } ifgr_ifgru; 184 }; 185 #define SIOCAIFGROUP32 _IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32) 186 #define SIOCGIFGROUP32 _IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32) 187 #define SIOCDIFGROUP32 _IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32) 188 #define SIOCGIFGMEMB32 _IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32) 189 190 struct ifmediareq32 { 191 char ifm_name[IFNAMSIZ]; 192 int ifm_current; 193 int ifm_mask; 194 int ifm_status; 195 int ifm_active; 196 int ifm_count; 197 uint32_t ifm_ulist; /* (int *) */ 198 }; 199 #define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32) 200 #define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32) 201 #endif /* COMPAT_FREEBSD32 */ 202 203 union ifreq_union { 204 struct ifreq ifr; 205 #ifdef COMPAT_FREEBSD32 206 struct ifreq32 ifr32; 207 #endif 208 }; 209 210 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 211 "Link layers"); 212 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 213 "Generic link-management"); 214 215 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 216 &ifqmaxlen, 0, "max send queue size"); 217 218 /* Log link state change events */ 219 static int log_link_state_change = 1; 220 221 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 222 &log_link_state_change, 0, 223 "log interface link state change events"); 224 225 /* Log promiscuous mode change events */ 226 static int log_promisc_mode_change = 1; 227 228 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN, 229 &log_promisc_mode_change, 1, 230 "log promiscuous mode change events"); 231 232 /* Interface description */ 233 static unsigned int ifdescr_maxlen = 1024; 234 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 235 &ifdescr_maxlen, 0, 236 "administrative maximum length for interface description"); 237 238 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 239 240 /* global sx for non-critical path ifdescr */ 241 static struct sx ifdescr_sx; 242 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 243 244 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 245 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 246 /* These are external hooks for CARP. */ 247 void (*carp_linkstate_p)(struct ifnet *ifp); 248 void (*carp_demote_adj_p)(int, char *); 249 int (*carp_master_p)(struct ifaddr *); 250 #if defined(INET) || defined(INET6) 251 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 252 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 253 const struct sockaddr *sa); 254 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 255 int (*carp_attach_p)(struct ifaddr *, int); 256 void (*carp_detach_p)(struct ifaddr *, bool); 257 #endif 258 #ifdef INET 259 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 260 #endif 261 #ifdef INET6 262 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 263 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 264 const struct in6_addr *taddr); 265 #endif 266 267 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 268 269 /* 270 * XXX: Style; these should be sorted alphabetically, and unprototyped 271 * static functions should be prototyped. Currently they are sorted by 272 * declaration order. 273 */ 274 static void if_attachdomain(void *); 275 static void if_attachdomain1(struct ifnet *); 276 static int ifconf(u_long, caddr_t); 277 static void if_input_default(struct ifnet *, struct mbuf *); 278 static int if_requestencap_default(struct ifnet *, struct if_encap_req *); 279 static int if_setflag(struct ifnet *, int, int, int *, int); 280 static int if_transmit_default(struct ifnet *ifp, struct mbuf *m); 281 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 282 static void do_link_state_change(void *, int); 283 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 284 static int if_getgroupmembers(struct ifgroupreq *); 285 static void if_delgroups(struct ifnet *); 286 static void if_attach_internal(struct ifnet *, bool); 287 static void if_detach_internal(struct ifnet *, bool); 288 static void if_siocaddmulti(void *, int); 289 static void if_link_ifnet(struct ifnet *); 290 static bool if_unlink_ifnet(struct ifnet *, bool); 291 #ifdef VIMAGE 292 static void if_vmove(struct ifnet *, struct vnet *); 293 #endif 294 295 #ifdef INET6 296 /* 297 * XXX: declare here to avoid to include many inet6 related files.. 298 * should be more generalized? 299 */ 300 extern void nd6_setmtu(struct ifnet *); 301 #endif 302 303 /* ipsec helper hooks */ 304 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); 305 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); 306 307 int ifqmaxlen = IFQ_MAXLEN; 308 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 309 VNET_DEFINE(struct ifgrouphead, ifg_head); 310 311 /* Table of ifnet by index. */ 312 static int if_index; 313 static int if_indexlim = 8; 314 static struct ifindex_entry { 315 struct ifnet *ife_ifnet; 316 uint16_t ife_gencnt; 317 } *ifindex_table; 318 319 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system, 320 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 321 "Variables global to all interfaces"); 322 static int 323 sysctl_ifcount(SYSCTL_HANDLER_ARGS) 324 { 325 int rv = 0; 326 327 IFNET_RLOCK(); 328 for (int i = 1; i <= if_index; i++) 329 if (ifindex_table[i].ife_ifnet != NULL && 330 ifindex_table[i].ife_ifnet->if_vnet == curvnet) 331 rv = i; 332 IFNET_RUNLOCK(); 333 334 return (sysctl_handle_int(oidp, &rv, 0, req)); 335 } 336 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount, 337 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I", 338 "Maximum known interface index"); 339 340 /* 341 * The global network interface list (V_ifnet) and related state (such as 342 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock. 343 * This may be acquired to stabilise the list, or we may rely on NET_EPOCH. 344 */ 345 struct sx ifnet_sxlock; 346 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 347 348 struct sx ifnet_detach_sxlock; 349 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx", 350 SX_RECURSE); 351 352 #ifdef VIMAGE 353 #define VNET_IS_SHUTTING_DOWN(_vnet) \ 354 ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE) 355 #endif 356 357 static if_com_alloc_t *if_com_alloc[256]; 358 static if_com_free_t *if_com_free[256]; 359 360 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 361 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 362 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 363 364 struct ifnet * 365 ifnet_byindex(u_int idx) 366 { 367 struct ifnet *ifp; 368 369 NET_EPOCH_ASSERT(); 370 371 if (__predict_false(idx > if_index)) 372 return (NULL); 373 374 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 375 376 if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet) 377 ifp = NULL; 378 379 return (ifp); 380 } 381 382 struct ifnet * 383 ifnet_byindex_ref(u_int idx) 384 { 385 struct ifnet *ifp; 386 387 ifp = ifnet_byindex(idx); 388 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) 389 return (NULL); 390 if (!if_try_ref(ifp)) 391 return (NULL); 392 return (ifp); 393 } 394 395 struct ifnet * 396 ifnet_byindexgen(uint16_t idx, uint16_t gen) 397 { 398 struct ifnet *ifp; 399 400 NET_EPOCH_ASSERT(); 401 402 if (__predict_false(idx > if_index)) 403 return (NULL); 404 405 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 406 407 if (ifindex_table[idx].ife_gencnt == gen) 408 return (ifp); 409 else 410 return (NULL); 411 } 412 413 /* 414 * Network interface utility routines. 415 * 416 * Routines with ifa_ifwith* names take sockaddr *'s as 417 * parameters. 418 */ 419 420 static void 421 if_init_idxtable(void *arg __unused) 422 { 423 424 ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table), 425 M_IFNET, M_WAITOK | M_ZERO); 426 } 427 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init_idxtable, NULL); 428 429 static void 430 vnet_if_init(const void *unused __unused) 431 { 432 433 CK_STAILQ_INIT(&V_ifnet); 434 CK_STAILQ_INIT(&V_ifg_head); 435 } 436 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 437 NULL); 438 439 static void 440 if_link_ifnet(struct ifnet *ifp) 441 { 442 443 IFNET_WLOCK(); 444 CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 445 #ifdef VIMAGE 446 curvnet->vnet_ifcnt++; 447 #endif 448 IFNET_WUNLOCK(); 449 } 450 451 static bool 452 if_unlink_ifnet(struct ifnet *ifp, bool vmove) 453 { 454 struct ifnet *iter; 455 int found = 0; 456 457 IFNET_WLOCK(); 458 CK_STAILQ_FOREACH(iter, &V_ifnet, if_link) 459 if (iter == ifp) { 460 CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link); 461 if (!vmove) 462 ifp->if_flags |= IFF_DYING; 463 found = 1; 464 break; 465 } 466 #ifdef VIMAGE 467 curvnet->vnet_ifcnt--; 468 #endif 469 IFNET_WUNLOCK(); 470 471 return (found); 472 } 473 474 #ifdef VIMAGE 475 static void 476 vnet_if_return(const void *unused __unused) 477 { 478 struct ifnet *ifp, *nifp; 479 struct ifnet **pending; 480 int found __diagused; 481 int i; 482 483 i = 0; 484 485 /* 486 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd 487 * enter NET_EPOCH, but that's not possible, because if_vmove() calls 488 * if_detach_internal(), which waits for NET_EPOCH callbacks to 489 * complete. We can't do that from within NET_EPOCH. 490 * 491 * However, we can also use the IFNET_xLOCK, which is the V_ifnet 492 * read/write lock. We cannot hold the lock as we call if_vmove() 493 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib 494 * ctx lock. 495 */ 496 IFNET_WLOCK(); 497 498 pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt, 499 M_IFNET, M_WAITOK | M_ZERO); 500 501 /* Return all inherited interfaces to their parent vnets. */ 502 CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 503 if (ifp->if_home_vnet != ifp->if_vnet) { 504 found = if_unlink_ifnet(ifp, true); 505 MPASS(found); 506 507 pending[i++] = ifp; 508 } 509 } 510 IFNET_WUNLOCK(); 511 512 for (int j = 0; j < i; j++) { 513 sx_xlock(&ifnet_detach_sxlock); 514 if_vmove(pending[j], pending[j]->if_home_vnet); 515 sx_xunlock(&ifnet_detach_sxlock); 516 } 517 518 free(pending, M_IFNET); 519 } 520 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, 521 vnet_if_return, NULL); 522 #endif 523 524 /* 525 * Allocate a struct ifnet and an index for an interface. A layer 2 526 * common structure will also be allocated if an allocation routine is 527 * registered for the passed type. 528 */ 529 static struct ifnet * 530 if_alloc_domain(u_char type, int numa_domain) 531 { 532 struct ifnet *ifp; 533 u_short idx; 534 535 KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large")); 536 if (numa_domain == IF_NODOM) 537 ifp = malloc(sizeof(struct ifnet), M_IFNET, 538 M_WAITOK | M_ZERO); 539 else 540 ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET, 541 DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO); 542 ifp->if_type = type; 543 ifp->if_alloctype = type; 544 ifp->if_numa_domain = numa_domain; 545 #ifdef VIMAGE 546 ifp->if_vnet = curvnet; 547 #endif 548 if (if_com_alloc[type] != NULL) { 549 ifp->if_l2com = if_com_alloc[type](type, ifp); 550 KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__, 551 type)); 552 } 553 554 IF_ADDR_LOCK_INIT(ifp); 555 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 556 TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp); 557 ifp->if_afdata_initialized = 0; 558 IF_AFDATA_LOCK_INIT(ifp); 559 CK_STAILQ_INIT(&ifp->if_addrhead); 560 CK_STAILQ_INIT(&ifp->if_multiaddrs); 561 CK_STAILQ_INIT(&ifp->if_groups); 562 #ifdef MAC 563 mac_ifnet_init(ifp); 564 #endif 565 ifq_init(&ifp->if_snd, ifp); 566 567 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 568 for (int i = 0; i < IFCOUNTERS; i++) 569 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 570 ifp->if_get_counter = if_get_counter_default; 571 ifp->if_pcp = IFNET_PCP_NONE; 572 573 /* Allocate an ifindex array entry. */ 574 IFNET_WLOCK(); 575 /* 576 * Try to find an empty slot below if_index. If we fail, take the 577 * next slot. 578 */ 579 for (idx = 1; idx <= if_index; idx++) { 580 if (ifindex_table[idx].ife_ifnet == NULL) 581 break; 582 } 583 584 /* Catch if_index overflow. */ 585 if (idx >= if_indexlim) { 586 struct ifindex_entry *new, *old; 587 int newlim; 588 589 newlim = if_indexlim * 2; 590 new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO); 591 memcpy(new, ifindex_table, if_indexlim * sizeof(*new)); 592 old = ifindex_table; 593 ck_pr_store_ptr(&ifindex_table, new); 594 if_indexlim = newlim; 595 NET_EPOCH_WAIT(); 596 free(old, M_IFNET); 597 } 598 if (idx > if_index) 599 if_index = idx; 600 601 ifp->if_index = idx; 602 ifp->if_idxgen = ifindex_table[idx].ife_gencnt; 603 ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp); 604 IFNET_WUNLOCK(); 605 606 return (ifp); 607 } 608 609 struct ifnet * 610 if_alloc_dev(u_char type, device_t dev) 611 { 612 int numa_domain; 613 614 if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0) 615 return (if_alloc_domain(type, IF_NODOM)); 616 return (if_alloc_domain(type, numa_domain)); 617 } 618 619 struct ifnet * 620 if_alloc(u_char type) 621 { 622 623 return (if_alloc_domain(type, IF_NODOM)); 624 } 625 /* 626 * Do the actual work of freeing a struct ifnet, and layer 2 common 627 * structure. This call is made when the network epoch guarantees 628 * us that nobody holds a pointer to the interface. 629 */ 630 static void 631 if_free_deferred(epoch_context_t ctx) 632 { 633 struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx); 634 635 KASSERT((ifp->if_flags & IFF_DYING), 636 ("%s: interface not dying", __func__)); 637 638 if (if_com_free[ifp->if_alloctype] != NULL) 639 if_com_free[ifp->if_alloctype](ifp->if_l2com, 640 ifp->if_alloctype); 641 642 #ifdef MAC 643 mac_ifnet_destroy(ifp); 644 #endif /* MAC */ 645 IF_AFDATA_DESTROY(ifp); 646 IF_ADDR_LOCK_DESTROY(ifp); 647 ifq_delete(&ifp->if_snd); 648 649 for (int i = 0; i < IFCOUNTERS; i++) 650 counter_u64_free(ifp->if_counters[i]); 651 652 if_freedescr(ifp->if_description); 653 free(ifp->if_hw_addr, M_IFADDR); 654 free(ifp, M_IFNET); 655 } 656 657 /* 658 * Deregister an interface and free the associated storage. 659 */ 660 void 661 if_free(struct ifnet *ifp) 662 { 663 664 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 665 666 /* 667 * XXXGL: An interface index is really an alias to ifp pointer. 668 * Why would we clear the alias now, and not in the deferred 669 * context? Indeed there is nothing wrong with some network 670 * thread obtaining ifp via ifnet_byindex() inside the network 671 * epoch and then dereferencing ifp while we perform if_free(), 672 * and after if_free() finished, too. 673 * 674 * This early index freeing was important back when ifindex was 675 * virtualized and interface would outlive the vnet. 676 */ 677 IFNET_WLOCK(); 678 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 679 ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL); 680 ifindex_table[ifp->if_index].ife_gencnt++; 681 while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL) 682 if_index--; 683 IFNET_WUNLOCK(); 684 685 if (refcount_release(&ifp->if_refcount)) 686 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 687 } 688 689 /* 690 * Interfaces to keep an ifnet type-stable despite the possibility of the 691 * driver calling if_free(). If there are additional references, we defer 692 * freeing the underlying data structure. 693 */ 694 void 695 if_ref(struct ifnet *ifp) 696 { 697 u_int old __diagused; 698 699 /* We don't assert the ifnet list lock here, but arguably should. */ 700 old = refcount_acquire(&ifp->if_refcount); 701 KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp)); 702 } 703 704 bool 705 if_try_ref(struct ifnet *ifp) 706 { 707 NET_EPOCH_ASSERT(); 708 return (refcount_acquire_if_not_zero(&ifp->if_refcount)); 709 } 710 711 void 712 if_rele(struct ifnet *ifp) 713 { 714 715 if (!refcount_release(&ifp->if_refcount)) 716 return; 717 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 718 } 719 720 void 721 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 722 { 723 724 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 725 726 if (ifq->ifq_maxlen == 0) 727 ifq->ifq_maxlen = ifqmaxlen; 728 729 ifq->altq_type = 0; 730 ifq->altq_disc = NULL; 731 ifq->altq_flags &= ALTQF_CANTCHANGE; 732 ifq->altq_tbr = NULL; 733 ifq->altq_ifp = ifp; 734 } 735 736 void 737 ifq_delete(struct ifaltq *ifq) 738 { 739 mtx_destroy(&ifq->ifq_mtx); 740 } 741 742 /* 743 * Perform generic interface initialization tasks and attach the interface 744 * to the list of "active" interfaces. If vmove flag is set on entry 745 * to if_attach_internal(), perform only a limited subset of initialization 746 * tasks, given that we are moving from one vnet to another an ifnet which 747 * has already been fully initialized. 748 * 749 * Note that if_detach_internal() removes group membership unconditionally 750 * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. 751 * Thus, when if_vmove() is applied to a cloned interface, group membership 752 * is lost while a cloned one always joins a group whose name is 753 * ifc->ifc_name. To recover this after if_detach_internal() and 754 * if_attach_internal(), the cloner should be specified to 755 * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() 756 * attempts to join a group whose name is ifc->ifc_name. 757 * 758 * XXX: 759 * - The decision to return void and thus require this function to 760 * succeed is questionable. 761 * - We should probably do more sanity checking. For instance we don't 762 * do anything to insure if_xname is unique or non-empty. 763 */ 764 void 765 if_attach(struct ifnet *ifp) 766 { 767 768 if_attach_internal(ifp, false); 769 } 770 771 /* 772 * Compute the least common TSO limit. 773 */ 774 void 775 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 776 { 777 /* 778 * 1) If there is no limit currently, take the limit from 779 * the network adapter. 780 * 781 * 2) If the network adapter has a limit below the current 782 * limit, apply it. 783 */ 784 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 785 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 786 pmax->tsomaxbytes = ifp->if_hw_tsomax; 787 } 788 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 789 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 790 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 791 } 792 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 793 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 794 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 795 } 796 } 797 798 /* 799 * Update TSO limit of a network adapter. 800 * 801 * Returns zero if no change. Else non-zero. 802 */ 803 int 804 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 805 { 806 int retval = 0; 807 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 808 ifp->if_hw_tsomax = pmax->tsomaxbytes; 809 retval++; 810 } 811 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 812 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 813 retval++; 814 } 815 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 816 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 817 retval++; 818 } 819 return (retval); 820 } 821 822 static void 823 if_attach_internal(struct ifnet *ifp, bool vmove) 824 { 825 unsigned socksize, ifasize; 826 int namelen, masklen; 827 struct sockaddr_dl *sdl; 828 struct ifaddr *ifa; 829 830 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 831 832 #ifdef VIMAGE 833 CURVNET_ASSERT_SET(); 834 ifp->if_vnet = curvnet; 835 if (ifp->if_home_vnet == NULL) 836 ifp->if_home_vnet = curvnet; 837 #endif 838 839 if_addgroup(ifp, IFG_ALL); 840 841 #ifdef VIMAGE 842 /* Restore group membership for cloned interface. */ 843 if (vmove) 844 if_clone_restoregroup(ifp); 845 #endif 846 847 getmicrotime(&ifp->if_lastchange); 848 ifp->if_epoch = time_uptime; 849 850 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 851 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 852 ("transmit and qflush must both either be set or both be NULL")); 853 if (ifp->if_transmit == NULL) { 854 ifp->if_transmit = if_transmit_default; 855 ifp->if_qflush = if_qflush; 856 } 857 if (ifp->if_input == NULL) 858 ifp->if_input = if_input_default; 859 860 if (ifp->if_requestencap == NULL) 861 ifp->if_requestencap = if_requestencap_default; 862 863 if (!vmove) { 864 #ifdef MAC 865 mac_ifnet_create(ifp); 866 #endif 867 868 /* 869 * Create a Link Level name for this device. 870 */ 871 namelen = strlen(ifp->if_xname); 872 /* 873 * Always save enough space for any possible name so we 874 * can do a rename in place later. 875 */ 876 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 877 socksize = masklen + ifp->if_addrlen; 878 if (socksize < sizeof(*sdl)) 879 socksize = sizeof(*sdl); 880 socksize = roundup2(socksize, sizeof(long)); 881 ifasize = sizeof(*ifa) + 2 * socksize; 882 ifa = ifa_alloc(ifasize, M_WAITOK); 883 sdl = (struct sockaddr_dl *)(ifa + 1); 884 sdl->sdl_len = socksize; 885 sdl->sdl_family = AF_LINK; 886 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 887 sdl->sdl_nlen = namelen; 888 sdl->sdl_index = ifp->if_index; 889 sdl->sdl_type = ifp->if_type; 890 ifp->if_addr = ifa; 891 ifa->ifa_ifp = ifp; 892 ifa->ifa_addr = (struct sockaddr *)sdl; 893 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 894 ifa->ifa_netmask = (struct sockaddr *)sdl; 895 sdl->sdl_len = masklen; 896 while (namelen != 0) 897 sdl->sdl_data[--namelen] = 0xff; 898 CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 899 /* Reliably crash if used uninitialized. */ 900 ifp->if_broadcastaddr = NULL; 901 902 if (ifp->if_type == IFT_ETHER) { 903 ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR, 904 M_WAITOK | M_ZERO); 905 } 906 907 #if defined(INET) || defined(INET6) 908 /* Use defaults for TSO, if nothing is set */ 909 if (ifp->if_hw_tsomax == 0 && 910 ifp->if_hw_tsomaxsegcount == 0 && 911 ifp->if_hw_tsomaxsegsize == 0) { 912 /* 913 * The TSO defaults needs to be such that an 914 * NFS mbuf list of 35 mbufs totalling just 915 * below 64K works and that a chain of mbufs 916 * can be defragged into at most 32 segments: 917 */ 918 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 919 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 920 ifp->if_hw_tsomaxsegcount = 35; 921 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 922 923 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 924 if (ifp->if_capabilities & IFCAP_TSO) { 925 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 926 ifp->if_hw_tsomax, 927 ifp->if_hw_tsomaxsegcount, 928 ifp->if_hw_tsomaxsegsize); 929 } 930 } 931 #endif 932 } 933 934 if (domain_init_status >= 2) 935 if_attachdomain1(ifp); 936 937 if_link_ifnet(ifp); 938 939 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 940 if (IS_DEFAULT_VNET(curvnet)) 941 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 942 } 943 944 static void 945 if_epochalloc(void *dummy __unused) 946 { 947 948 net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT); 949 } 950 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL); 951 952 static void 953 if_attachdomain(void *dummy) 954 { 955 struct ifnet *ifp; 956 957 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 958 if_attachdomain1(ifp); 959 } 960 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 961 if_attachdomain, NULL); 962 963 static void 964 if_attachdomain1(struct ifnet *ifp) 965 { 966 struct domain *dp; 967 968 /* 969 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 970 * cannot lock ifp->if_afdata initialization, entirely. 971 */ 972 IF_AFDATA_LOCK(ifp); 973 if (ifp->if_afdata_initialized >= domain_init_status) { 974 IF_AFDATA_UNLOCK(ifp); 975 log(LOG_WARNING, "%s called more than once on %s\n", 976 __func__, ifp->if_xname); 977 return; 978 } 979 ifp->if_afdata_initialized = domain_init_status; 980 IF_AFDATA_UNLOCK(ifp); 981 982 /* address family dependent data region */ 983 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 984 SLIST_FOREACH(dp, &domains, dom_next) { 985 if (dp->dom_ifattach) 986 ifp->if_afdata[dp->dom_family] = 987 (*dp->dom_ifattach)(ifp); 988 } 989 } 990 991 /* 992 * Remove any unicast or broadcast network addresses from an interface. 993 */ 994 void 995 if_purgeaddrs(struct ifnet *ifp) 996 { 997 struct ifaddr *ifa; 998 999 #ifdef INET6 1000 /* 1001 * Need to leave multicast addresses of proxy NDP llentries 1002 * before in6_purgeifaddr() because the llentries are keys 1003 * for in6_multi objects of proxy NDP entries. 1004 * in6_purgeifaddr()s clean up llentries including proxy NDPs 1005 * then we would lose the keys if they are called earlier. 1006 */ 1007 in6_purge_proxy_ndp(ifp); 1008 #endif 1009 while (1) { 1010 struct epoch_tracker et; 1011 1012 NET_EPOCH_ENTER(et); 1013 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1014 if (ifa->ifa_addr->sa_family != AF_LINK) 1015 break; 1016 } 1017 NET_EPOCH_EXIT(et); 1018 1019 if (ifa == NULL) 1020 break; 1021 #ifdef INET 1022 /* XXX: Ugly!! ad hoc just for INET */ 1023 if (ifa->ifa_addr->sa_family == AF_INET) { 1024 struct ifreq ifr; 1025 1026 bzero(&ifr, sizeof(ifr)); 1027 ifr.ifr_addr = *ifa->ifa_addr; 1028 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 1029 NULL) == 0) 1030 continue; 1031 } 1032 #endif /* INET */ 1033 #ifdef INET6 1034 if (ifa->ifa_addr->sa_family == AF_INET6) { 1035 in6_purgeifaddr((struct in6_ifaddr *)ifa); 1036 /* ifp_addrhead is already updated */ 1037 continue; 1038 } 1039 #endif /* INET6 */ 1040 IF_ADDR_WLOCK(ifp); 1041 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1042 IF_ADDR_WUNLOCK(ifp); 1043 ifa_free(ifa); 1044 } 1045 } 1046 1047 /* 1048 * Remove any multicast network addresses from an interface when an ifnet 1049 * is going away. 1050 */ 1051 static void 1052 if_purgemaddrs(struct ifnet *ifp) 1053 { 1054 struct ifmultiaddr *ifma; 1055 1056 IF_ADDR_WLOCK(ifp); 1057 while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) { 1058 ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs); 1059 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 1060 if_delmulti_locked(ifp, ifma, 1); 1061 } 1062 IF_ADDR_WUNLOCK(ifp); 1063 } 1064 1065 /* 1066 * Detach an interface, removing it from the list of "active" interfaces. 1067 * If vmove flag is set on entry to if_detach_internal(), perform only a 1068 * limited subset of cleanup tasks, given that we are moving an ifnet from 1069 * one vnet to another, where it must be fully operational. 1070 * 1071 * XXXRW: There are some significant questions about event ordering, and 1072 * how to prevent things from starting to use the interface during detach. 1073 */ 1074 void 1075 if_detach(struct ifnet *ifp) 1076 { 1077 bool found; 1078 1079 CURVNET_SET_QUIET(ifp->if_vnet); 1080 found = if_unlink_ifnet(ifp, false); 1081 if (found) { 1082 sx_xlock(&ifnet_detach_sxlock); 1083 if_detach_internal(ifp, false); 1084 sx_xunlock(&ifnet_detach_sxlock); 1085 } 1086 CURVNET_RESTORE(); 1087 } 1088 1089 /* 1090 * The vmove flag, if set, indicates that we are called from a callpath 1091 * that is moving an interface to a different vnet instance. 1092 * 1093 * The shutdown flag, if set, indicates that we are called in the 1094 * process of shutting down a vnet instance. Currently only the 1095 * vnet_if_return SYSUNINIT function sets it. Note: we can be called 1096 * on a vnet instance shutdown without this flag being set, e.g., when 1097 * the cloned interfaces are destoyed as first thing of teardown. 1098 */ 1099 static void 1100 if_detach_internal(struct ifnet *ifp, bool vmove) 1101 { 1102 struct ifaddr *ifa; 1103 int i; 1104 struct domain *dp; 1105 #ifdef VIMAGE 1106 bool shutdown; 1107 1108 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1109 #endif 1110 1111 sx_assert(&ifnet_detach_sxlock, SX_XLOCKED); 1112 1113 /* 1114 * At this point we know the interface still was on the ifnet list 1115 * and we removed it so we are in a stable state. 1116 */ 1117 NET_EPOCH_WAIT(); 1118 1119 /* 1120 * Ensure all pending EPOCH(9) callbacks have been executed. This 1121 * fixes issues about late destruction of multicast options 1122 * which lead to leave group calls, which in turn access the 1123 * belonging ifnet structure: 1124 */ 1125 NET_EPOCH_DRAIN_CALLBACKS(); 1126 1127 /* 1128 * In any case (destroy or vmove) detach us from the groups 1129 * and remove/wait for pending events on the taskq. 1130 * XXX-BZ in theory an interface could still enqueue a taskq change? 1131 */ 1132 if_delgroups(ifp); 1133 1134 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 1135 taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask); 1136 1137 if_down(ifp); 1138 1139 #ifdef VIMAGE 1140 /* 1141 * On VNET shutdown abort here as the stack teardown will do all 1142 * the work top-down for us. 1143 */ 1144 if (shutdown) { 1145 /* Give interface users the chance to clean up. */ 1146 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1147 1148 /* 1149 * In case of a vmove we are done here without error. 1150 * If we would signal an error it would lead to the same 1151 * abort as if we did not find the ifnet anymore. 1152 * if_detach() calls us in void context and does not care 1153 * about an early abort notification, so life is splendid :) 1154 */ 1155 goto finish_vnet_shutdown; 1156 } 1157 #endif 1158 1159 /* 1160 * At this point we are not tearing down a VNET and are either 1161 * going to destroy or vmove the interface and have to cleanup 1162 * accordingly. 1163 */ 1164 1165 /* 1166 * Remove routes and flush queues. 1167 */ 1168 #ifdef ALTQ 1169 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1170 altq_disable(&ifp->if_snd); 1171 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1172 altq_detach(&ifp->if_snd); 1173 #endif 1174 1175 if_purgeaddrs(ifp); 1176 1177 #ifdef INET 1178 in_ifdetach(ifp); 1179 #endif 1180 1181 #ifdef INET6 1182 /* 1183 * Remove all IPv6 kernel structs related to ifp. This should be done 1184 * before removing routing entries below, since IPv6 interface direct 1185 * routes are expected to be removed by the IPv6-specific kernel API. 1186 * Otherwise, the kernel will detect some inconsistency and bark it. 1187 */ 1188 in6_ifdetach(ifp); 1189 #endif 1190 if_purgemaddrs(ifp); 1191 1192 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1193 if (IS_DEFAULT_VNET(curvnet)) 1194 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 1195 1196 if (!vmove) { 1197 /* 1198 * Prevent further calls into the device driver via ifnet. 1199 */ 1200 if_dead(ifp); 1201 1202 /* 1203 * Clean up all addresses. 1204 */ 1205 IF_ADDR_WLOCK(ifp); 1206 if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) { 1207 ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); 1208 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1209 IF_ADDR_WUNLOCK(ifp); 1210 ifa_free(ifa); 1211 } else 1212 IF_ADDR_WUNLOCK(ifp); 1213 } 1214 1215 rt_flushifroutes(ifp); 1216 1217 #ifdef VIMAGE 1218 finish_vnet_shutdown: 1219 #endif 1220 /* 1221 * We cannot hold the lock over dom_ifdetach calls as they might 1222 * sleep, for example trying to drain a callout, thus open up the 1223 * theoretical race with re-attaching. 1224 */ 1225 IF_AFDATA_LOCK(ifp); 1226 i = ifp->if_afdata_initialized; 1227 ifp->if_afdata_initialized = 0; 1228 IF_AFDATA_UNLOCK(ifp); 1229 if (i == 0) 1230 return; 1231 SLIST_FOREACH(dp, &domains, dom_next) { 1232 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) { 1233 (*dp->dom_ifdetach)(ifp, 1234 ifp->if_afdata[dp->dom_family]); 1235 ifp->if_afdata[dp->dom_family] = NULL; 1236 } 1237 } 1238 } 1239 1240 #ifdef VIMAGE 1241 /* 1242 * if_vmove() performs a limited version of if_detach() in current 1243 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1244 */ 1245 static void 1246 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1247 { 1248 #ifdef DEV_BPF 1249 /* 1250 * Detach BPF file descriptors from its interface. 1251 */ 1252 bpf_ifdetach(ifp); 1253 #endif 1254 1255 /* 1256 * Detach from current vnet, but preserve LLADDR info, do not 1257 * mark as dead etc. so that the ifnet can be reattached later. 1258 */ 1259 if_detach_internal(ifp, true); 1260 1261 /* 1262 * Perform interface-specific reassignment tasks, if provided by 1263 * the driver. 1264 */ 1265 if (ifp->if_reassign != NULL) 1266 ifp->if_reassign(ifp, new_vnet, NULL); 1267 1268 /* 1269 * Switch to the context of the target vnet. 1270 */ 1271 CURVNET_SET_QUIET(new_vnet); 1272 if_attach_internal(ifp, true); 1273 CURVNET_RESTORE(); 1274 } 1275 1276 /* 1277 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1278 */ 1279 static int 1280 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1281 { 1282 struct prison *pr; 1283 struct ifnet *difp; 1284 bool found; 1285 bool shutdown; 1286 1287 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 1288 1289 /* Try to find the prison within our visibility. */ 1290 sx_slock(&allprison_lock); 1291 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1292 sx_sunlock(&allprison_lock); 1293 if (pr == NULL) 1294 return (ENXIO); 1295 prison_hold_locked(pr); 1296 mtx_unlock(&pr->pr_mtx); 1297 1298 /* Do not try to move the iface from and to the same prison. */ 1299 if (pr->pr_vnet == ifp->if_vnet) { 1300 prison_free(pr); 1301 return (EEXIST); 1302 } 1303 1304 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1305 /* XXX Lock interfaces to avoid races. */ 1306 CURVNET_SET_QUIET(pr->pr_vnet); 1307 difp = ifunit(ifname); 1308 CURVNET_RESTORE(); 1309 if (difp != NULL) { 1310 prison_free(pr); 1311 return (EEXIST); 1312 } 1313 sx_xlock(&ifnet_detach_sxlock); 1314 1315 /* Make sure the VNET is stable. */ 1316 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1317 if (shutdown) { 1318 sx_xunlock(&ifnet_detach_sxlock); 1319 prison_free(pr); 1320 return (EBUSY); 1321 } 1322 1323 found = if_unlink_ifnet(ifp, true); 1324 if (! found) { 1325 sx_xunlock(&ifnet_detach_sxlock); 1326 prison_free(pr); 1327 return (ENODEV); 1328 } 1329 1330 /* Move the interface into the child jail/vnet. */ 1331 if_vmove(ifp, pr->pr_vnet); 1332 1333 /* Report the new if_xname back to the userland. */ 1334 sprintf(ifname, "%s", ifp->if_xname); 1335 1336 sx_xunlock(&ifnet_detach_sxlock); 1337 1338 prison_free(pr); 1339 return (0); 1340 } 1341 1342 static int 1343 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1344 { 1345 struct prison *pr; 1346 struct vnet *vnet_dst; 1347 struct ifnet *ifp; 1348 int found __diagused; 1349 bool shutdown; 1350 1351 /* Try to find the prison within our visibility. */ 1352 sx_slock(&allprison_lock); 1353 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1354 sx_sunlock(&allprison_lock); 1355 if (pr == NULL) 1356 return (ENXIO); 1357 prison_hold_locked(pr); 1358 mtx_unlock(&pr->pr_mtx); 1359 1360 /* Make sure the named iface exists in the source prison/vnet. */ 1361 CURVNET_SET(pr->pr_vnet); 1362 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1363 if (ifp == NULL) { 1364 CURVNET_RESTORE(); 1365 prison_free(pr); 1366 return (ENXIO); 1367 } 1368 1369 /* Do not try to move the iface from and to the same prison. */ 1370 vnet_dst = TD_TO_VNET(td); 1371 if (vnet_dst == ifp->if_vnet) { 1372 CURVNET_RESTORE(); 1373 prison_free(pr); 1374 return (EEXIST); 1375 } 1376 1377 /* Make sure the VNET is stable. */ 1378 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1379 if (shutdown) { 1380 CURVNET_RESTORE(); 1381 prison_free(pr); 1382 return (EBUSY); 1383 } 1384 1385 /* Get interface back from child jail/vnet. */ 1386 found = if_unlink_ifnet(ifp, true); 1387 MPASS(found); 1388 sx_xlock(&ifnet_detach_sxlock); 1389 if_vmove(ifp, vnet_dst); 1390 sx_xunlock(&ifnet_detach_sxlock); 1391 CURVNET_RESTORE(); 1392 1393 /* Report the new if_xname back to the userland. */ 1394 sprintf(ifname, "%s", ifp->if_xname); 1395 1396 prison_free(pr); 1397 return (0); 1398 } 1399 #endif /* VIMAGE */ 1400 1401 /* 1402 * Add a group to an interface 1403 */ 1404 int 1405 if_addgroup(struct ifnet *ifp, const char *groupname) 1406 { 1407 struct ifg_list *ifgl; 1408 struct ifg_group *ifg = NULL; 1409 struct ifg_member *ifgm; 1410 int new = 0; 1411 1412 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1413 groupname[strlen(groupname) - 1] <= '9') 1414 return (EINVAL); 1415 1416 IFNET_WLOCK(); 1417 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1418 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1419 IFNET_WUNLOCK(); 1420 return (EEXIST); 1421 } 1422 1423 if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) { 1424 IFNET_WUNLOCK(); 1425 return (ENOMEM); 1426 } 1427 1428 if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 1429 free(ifgl, M_TEMP); 1430 IFNET_WUNLOCK(); 1431 return (ENOMEM); 1432 } 1433 1434 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1435 if (!strcmp(ifg->ifg_group, groupname)) 1436 break; 1437 1438 if (ifg == NULL) { 1439 if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) { 1440 free(ifgl, M_TEMP); 1441 free(ifgm, M_TEMP); 1442 IFNET_WUNLOCK(); 1443 return (ENOMEM); 1444 } 1445 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1446 ifg->ifg_refcnt = 0; 1447 CK_STAILQ_INIT(&ifg->ifg_members); 1448 CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1449 new = 1; 1450 } 1451 1452 ifg->ifg_refcnt++; 1453 ifgl->ifgl_group = ifg; 1454 ifgm->ifgm_ifp = ifp; 1455 1456 IF_ADDR_WLOCK(ifp); 1457 CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1458 CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1459 IF_ADDR_WUNLOCK(ifp); 1460 1461 IFNET_WUNLOCK(); 1462 1463 if (new) 1464 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1465 EVENTHANDLER_INVOKE(group_change_event, groupname); 1466 1467 return (0); 1468 } 1469 1470 /* 1471 * Helper function to remove a group out of an interface. Expects the global 1472 * ifnet lock to be write-locked, and drops it before returning. 1473 */ 1474 static void 1475 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl, 1476 const char *groupname) 1477 { 1478 struct ifg_member *ifgm; 1479 bool freeifgl; 1480 1481 IFNET_WLOCK_ASSERT(); 1482 1483 IF_ADDR_WLOCK(ifp); 1484 CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next); 1485 IF_ADDR_WUNLOCK(ifp); 1486 1487 CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { 1488 if (ifgm->ifgm_ifp == ifp) { 1489 CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1490 ifg_member, ifgm_next); 1491 break; 1492 } 1493 } 1494 1495 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1496 CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, 1497 ifg_next); 1498 freeifgl = true; 1499 } else { 1500 freeifgl = false; 1501 } 1502 IFNET_WUNLOCK(); 1503 1504 NET_EPOCH_WAIT(); 1505 EVENTHANDLER_INVOKE(group_change_event, groupname); 1506 if (freeifgl) { 1507 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1508 free(ifgl->ifgl_group, M_TEMP); 1509 } 1510 free(ifgm, M_TEMP); 1511 free(ifgl, M_TEMP); 1512 } 1513 1514 /* 1515 * Remove a group from an interface 1516 */ 1517 int 1518 if_delgroup(struct ifnet *ifp, const char *groupname) 1519 { 1520 struct ifg_list *ifgl; 1521 1522 IFNET_WLOCK(); 1523 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1524 if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) 1525 break; 1526 if (ifgl == NULL) { 1527 IFNET_WUNLOCK(); 1528 return (ENOENT); 1529 } 1530 1531 _if_delgroup_locked(ifp, ifgl, groupname); 1532 1533 return (0); 1534 } 1535 1536 /* 1537 * Remove an interface from all groups 1538 */ 1539 static void 1540 if_delgroups(struct ifnet *ifp) 1541 { 1542 struct ifg_list *ifgl; 1543 char groupname[IFNAMSIZ]; 1544 1545 IFNET_WLOCK(); 1546 while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) { 1547 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1548 _if_delgroup_locked(ifp, ifgl, groupname); 1549 IFNET_WLOCK(); 1550 } 1551 IFNET_WUNLOCK(); 1552 } 1553 1554 /* 1555 * Stores all groups from an interface in memory pointed to by ifgr. 1556 */ 1557 static int 1558 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp) 1559 { 1560 int len, error; 1561 struct ifg_list *ifgl; 1562 struct ifg_req ifgrq, *ifgp; 1563 1564 NET_EPOCH_ASSERT(); 1565 1566 if (ifgr->ifgr_len == 0) { 1567 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1568 ifgr->ifgr_len += sizeof(struct ifg_req); 1569 return (0); 1570 } 1571 1572 len = ifgr->ifgr_len; 1573 ifgp = ifgr->ifgr_groups; 1574 /* XXX: wire */ 1575 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1576 if (len < sizeof(ifgrq)) 1577 return (EINVAL); 1578 bzero(&ifgrq, sizeof ifgrq); 1579 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1580 sizeof(ifgrq.ifgrq_group)); 1581 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) 1582 return (error); 1583 len -= sizeof(ifgrq); 1584 ifgp++; 1585 } 1586 1587 return (0); 1588 } 1589 1590 /* 1591 * Stores all members of a group in memory pointed to by igfr 1592 */ 1593 static int 1594 if_getgroupmembers(struct ifgroupreq *ifgr) 1595 { 1596 struct ifg_group *ifg; 1597 struct ifg_member *ifgm; 1598 struct ifg_req ifgrq, *ifgp; 1599 int len, error; 1600 1601 IFNET_RLOCK(); 1602 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1603 if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) 1604 break; 1605 if (ifg == NULL) { 1606 IFNET_RUNLOCK(); 1607 return (ENOENT); 1608 } 1609 1610 if (ifgr->ifgr_len == 0) { 1611 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1612 ifgr->ifgr_len += sizeof(ifgrq); 1613 IFNET_RUNLOCK(); 1614 return (0); 1615 } 1616 1617 len = ifgr->ifgr_len; 1618 ifgp = ifgr->ifgr_groups; 1619 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1620 if (len < sizeof(ifgrq)) { 1621 IFNET_RUNLOCK(); 1622 return (EINVAL); 1623 } 1624 bzero(&ifgrq, sizeof ifgrq); 1625 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1626 sizeof(ifgrq.ifgrq_member)); 1627 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1628 IFNET_RUNLOCK(); 1629 return (error); 1630 } 1631 len -= sizeof(ifgrq); 1632 ifgp++; 1633 } 1634 IFNET_RUNLOCK(); 1635 1636 return (0); 1637 } 1638 1639 /* 1640 * Return counter values from counter(9)s stored in ifnet. 1641 */ 1642 uint64_t 1643 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1644 { 1645 1646 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1647 1648 return (counter_u64_fetch(ifp->if_counters[cnt])); 1649 } 1650 1651 /* 1652 * Increase an ifnet counter. Usually used for counters shared 1653 * between the stack and a driver, but function supports them all. 1654 */ 1655 void 1656 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1657 { 1658 1659 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1660 1661 counter_u64_add(ifp->if_counters[cnt], inc); 1662 } 1663 1664 /* 1665 * Copy data from ifnet to userland API structure if_data. 1666 */ 1667 void 1668 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1669 { 1670 1671 ifd->ifi_type = ifp->if_type; 1672 ifd->ifi_physical = 0; 1673 ifd->ifi_addrlen = ifp->if_addrlen; 1674 ifd->ifi_hdrlen = ifp->if_hdrlen; 1675 ifd->ifi_link_state = ifp->if_link_state; 1676 ifd->ifi_vhid = 0; 1677 ifd->ifi_datalen = sizeof(struct if_data); 1678 ifd->ifi_mtu = ifp->if_mtu; 1679 ifd->ifi_metric = ifp->if_metric; 1680 ifd->ifi_baudrate = ifp->if_baudrate; 1681 ifd->ifi_hwassist = ifp->if_hwassist; 1682 ifd->ifi_epoch = ifp->if_epoch; 1683 ifd->ifi_lastchange = ifp->if_lastchange; 1684 1685 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1686 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1687 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1688 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1689 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1690 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1691 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1692 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1693 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1694 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1695 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1696 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1697 } 1698 1699 /* 1700 * Initialization, destruction and refcounting functions for ifaddrs. 1701 */ 1702 struct ifaddr * 1703 ifa_alloc(size_t size, int flags) 1704 { 1705 struct ifaddr *ifa; 1706 1707 KASSERT(size >= sizeof(struct ifaddr), 1708 ("%s: invalid size %zu", __func__, size)); 1709 1710 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1711 if (ifa == NULL) 1712 return (NULL); 1713 1714 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1715 goto fail; 1716 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1717 goto fail; 1718 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1719 goto fail; 1720 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1721 goto fail; 1722 1723 refcount_init(&ifa->ifa_refcnt, 1); 1724 1725 return (ifa); 1726 1727 fail: 1728 /* free(NULL) is okay */ 1729 counter_u64_free(ifa->ifa_opackets); 1730 counter_u64_free(ifa->ifa_ipackets); 1731 counter_u64_free(ifa->ifa_obytes); 1732 counter_u64_free(ifa->ifa_ibytes); 1733 free(ifa, M_IFADDR); 1734 1735 return (NULL); 1736 } 1737 1738 void 1739 ifa_ref(struct ifaddr *ifa) 1740 { 1741 u_int old __diagused; 1742 1743 old = refcount_acquire(&ifa->ifa_refcnt); 1744 KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa)); 1745 } 1746 1747 int 1748 ifa_try_ref(struct ifaddr *ifa) 1749 { 1750 1751 NET_EPOCH_ASSERT(); 1752 return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt)); 1753 } 1754 1755 static void 1756 ifa_destroy(epoch_context_t ctx) 1757 { 1758 struct ifaddr *ifa; 1759 1760 ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx); 1761 counter_u64_free(ifa->ifa_opackets); 1762 counter_u64_free(ifa->ifa_ipackets); 1763 counter_u64_free(ifa->ifa_obytes); 1764 counter_u64_free(ifa->ifa_ibytes); 1765 free(ifa, M_IFADDR); 1766 } 1767 1768 void 1769 ifa_free(struct ifaddr *ifa) 1770 { 1771 1772 if (refcount_release(&ifa->ifa_refcnt)) 1773 NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx); 1774 } 1775 1776 /* 1777 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1778 * structs used to represent other address families, it is necessary 1779 * to perform a different comparison. 1780 */ 1781 static bool 1782 sa_dl_equal(const struct sockaddr *a, const struct sockaddr *b) 1783 { 1784 const struct sockaddr_dl *sdl1 = (const struct sockaddr_dl *)a; 1785 const struct sockaddr_dl *sdl2 = (const struct sockaddr_dl *)b; 1786 1787 return (sdl1->sdl_len == sdl2->sdl_len && 1788 bcmp(sdl1->sdl_data + sdl1->sdl_nlen, 1789 sdl2->sdl_data + sdl2->sdl_nlen, sdl1->sdl_alen) == 0); 1790 } 1791 1792 /* 1793 * Locate an interface based on a complete address. 1794 */ 1795 /*ARGSUSED*/ 1796 struct ifaddr * 1797 ifa_ifwithaddr(const struct sockaddr *addr) 1798 { 1799 struct ifnet *ifp; 1800 struct ifaddr *ifa; 1801 1802 NET_EPOCH_ASSERT(); 1803 1804 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1805 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1806 if (ifa->ifa_addr->sa_family != addr->sa_family) 1807 continue; 1808 if (sa_equal(addr, ifa->ifa_addr)) { 1809 goto done; 1810 } 1811 /* IP6 doesn't have broadcast */ 1812 if ((ifp->if_flags & IFF_BROADCAST) && 1813 ifa->ifa_broadaddr && 1814 ifa->ifa_broadaddr->sa_len != 0 && 1815 sa_equal(ifa->ifa_broadaddr, addr)) { 1816 goto done; 1817 } 1818 } 1819 } 1820 ifa = NULL; 1821 done: 1822 return (ifa); 1823 } 1824 1825 int 1826 ifa_ifwithaddr_check(const struct sockaddr *addr) 1827 { 1828 struct epoch_tracker et; 1829 int rc; 1830 1831 NET_EPOCH_ENTER(et); 1832 rc = (ifa_ifwithaddr(addr) != NULL); 1833 NET_EPOCH_EXIT(et); 1834 return (rc); 1835 } 1836 1837 /* 1838 * Locate an interface based on the broadcast address. 1839 */ 1840 /* ARGSUSED */ 1841 struct ifaddr * 1842 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) 1843 { 1844 struct ifnet *ifp; 1845 struct ifaddr *ifa; 1846 1847 NET_EPOCH_ASSERT(); 1848 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1849 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1850 continue; 1851 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1852 if (ifa->ifa_addr->sa_family != addr->sa_family) 1853 continue; 1854 if ((ifp->if_flags & IFF_BROADCAST) && 1855 ifa->ifa_broadaddr && 1856 ifa->ifa_broadaddr->sa_len != 0 && 1857 sa_equal(ifa->ifa_broadaddr, addr)) { 1858 goto done; 1859 } 1860 } 1861 } 1862 ifa = NULL; 1863 done: 1864 return (ifa); 1865 } 1866 1867 /* 1868 * Locate the point to point interface with a given destination address. 1869 */ 1870 /*ARGSUSED*/ 1871 struct ifaddr * 1872 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) 1873 { 1874 struct ifnet *ifp; 1875 struct ifaddr *ifa; 1876 1877 NET_EPOCH_ASSERT(); 1878 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1879 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1880 continue; 1881 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1882 continue; 1883 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1884 if (ifa->ifa_addr->sa_family != addr->sa_family) 1885 continue; 1886 if (ifa->ifa_dstaddr != NULL && 1887 sa_equal(addr, ifa->ifa_dstaddr)) { 1888 goto done; 1889 } 1890 } 1891 } 1892 ifa = NULL; 1893 done: 1894 return (ifa); 1895 } 1896 1897 /* 1898 * Find an interface on a specific network. If many, choice 1899 * is most specific found. 1900 */ 1901 struct ifaddr * 1902 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) 1903 { 1904 struct ifnet *ifp; 1905 struct ifaddr *ifa; 1906 struct ifaddr *ifa_maybe = NULL; 1907 u_int af = addr->sa_family; 1908 const char *addr_data = addr->sa_data, *cplim; 1909 1910 NET_EPOCH_ASSERT(); 1911 /* 1912 * AF_LINK addresses can be looked up directly by their index number, 1913 * so do that if we can. 1914 */ 1915 if (af == AF_LINK) { 1916 ifp = ifnet_byindex( 1917 ((const struct sockaddr_dl *)addr)->sdl_index); 1918 return (ifp ? ifp->if_addr : NULL); 1919 } 1920 1921 /* 1922 * Scan though each interface, looking for ones that have addresses 1923 * in this address family and the requested fib. 1924 */ 1925 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1926 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1927 continue; 1928 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1929 const char *cp, *cp2, *cp3; 1930 1931 if (ifa->ifa_addr->sa_family != af) 1932 next: continue; 1933 if (af == AF_INET && 1934 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1935 /* 1936 * This is a bit broken as it doesn't 1937 * take into account that the remote end may 1938 * be a single node in the network we are 1939 * looking for. 1940 * The trouble is that we don't know the 1941 * netmask for the remote end. 1942 */ 1943 if (ifa->ifa_dstaddr != NULL && 1944 sa_equal(addr, ifa->ifa_dstaddr)) { 1945 goto done; 1946 } 1947 } else { 1948 /* 1949 * Scan all the bits in the ifa's address. 1950 * If a bit dissagrees with what we are 1951 * looking for, mask it with the netmask 1952 * to see if it really matters. 1953 * (A byte at a time) 1954 */ 1955 if (ifa->ifa_netmask == 0) 1956 continue; 1957 cp = addr_data; 1958 cp2 = ifa->ifa_addr->sa_data; 1959 cp3 = ifa->ifa_netmask->sa_data; 1960 cplim = ifa->ifa_netmask->sa_len 1961 + (char *)ifa->ifa_netmask; 1962 while (cp3 < cplim) 1963 if ((*cp++ ^ *cp2++) & *cp3++) 1964 goto next; /* next address! */ 1965 /* 1966 * If the netmask of what we just found 1967 * is more specific than what we had before 1968 * (if we had one), or if the virtual status 1969 * of new prefix is better than of the old one, 1970 * then remember the new one before continuing 1971 * to search for an even better one. 1972 */ 1973 if (ifa_maybe == NULL || 1974 ifa_preferred(ifa_maybe, ifa) || 1975 rn_refines((caddr_t)ifa->ifa_netmask, 1976 (caddr_t)ifa_maybe->ifa_netmask)) { 1977 ifa_maybe = ifa; 1978 } 1979 } 1980 } 1981 } 1982 ifa = ifa_maybe; 1983 ifa_maybe = NULL; 1984 done: 1985 return (ifa); 1986 } 1987 1988 /* 1989 * Find an interface address specific to an interface best matching 1990 * a given address. 1991 */ 1992 struct ifaddr * 1993 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 1994 { 1995 struct ifaddr *ifa; 1996 const char *cp, *cp2, *cp3; 1997 char *cplim; 1998 struct ifaddr *ifa_maybe = NULL; 1999 u_int af = addr->sa_family; 2000 2001 if (af >= AF_MAX) 2002 return (NULL); 2003 2004 NET_EPOCH_ASSERT(); 2005 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2006 if (ifa->ifa_addr->sa_family != af) 2007 continue; 2008 if (ifa_maybe == NULL) 2009 ifa_maybe = ifa; 2010 if (ifa->ifa_netmask == 0) { 2011 if (sa_equal(addr, ifa->ifa_addr) || 2012 (ifa->ifa_dstaddr && 2013 sa_equal(addr, ifa->ifa_dstaddr))) 2014 goto done; 2015 continue; 2016 } 2017 if (ifp->if_flags & IFF_POINTOPOINT) { 2018 if (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr)) 2019 goto done; 2020 } else { 2021 cp = addr->sa_data; 2022 cp2 = ifa->ifa_addr->sa_data; 2023 cp3 = ifa->ifa_netmask->sa_data; 2024 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2025 for (; cp3 < cplim; cp3++) 2026 if ((*cp++ ^ *cp2++) & *cp3) 2027 break; 2028 if (cp3 == cplim) 2029 goto done; 2030 } 2031 } 2032 ifa = ifa_maybe; 2033 done: 2034 return (ifa); 2035 } 2036 2037 /* 2038 * See whether new ifa is better than current one: 2039 * 1) A non-virtual one is preferred over virtual. 2040 * 2) A virtual in master state preferred over any other state. 2041 * 2042 * Used in several address selecting functions. 2043 */ 2044 int 2045 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 2046 { 2047 2048 return (cur->ifa_carp && (!next->ifa_carp || 2049 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 2050 } 2051 2052 struct sockaddr_dl * 2053 link_alloc_sdl(size_t size, int flags) 2054 { 2055 2056 return (malloc(size, M_TEMP, flags)); 2057 } 2058 2059 void 2060 link_free_sdl(struct sockaddr *sa) 2061 { 2062 free(sa, M_TEMP); 2063 } 2064 2065 /* 2066 * Fills in given sdl with interface basic info. 2067 * Returns pointer to filled sdl. 2068 */ 2069 struct sockaddr_dl * 2070 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2071 { 2072 struct sockaddr_dl *sdl; 2073 2074 sdl = (struct sockaddr_dl *)paddr; 2075 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2076 sdl->sdl_len = sizeof(struct sockaddr_dl); 2077 sdl->sdl_family = AF_LINK; 2078 sdl->sdl_index = ifp->if_index; 2079 sdl->sdl_type = iftype; 2080 2081 return (sdl); 2082 } 2083 2084 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2085 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2086 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2087 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2088 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2089 int (*vlan_pcp_p)(struct ifnet *, uint16_t *); 2090 int (*vlan_setcookie_p)(struct ifnet *, void *); 2091 void *(*vlan_cookie_p)(struct ifnet *); 2092 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 2093 2094 /* 2095 * Handle a change in the interface link state. To avoid LORs 2096 * between driver lock and upper layer locks, as well as possible 2097 * recursions, we post event to taskqueue, and all job 2098 * is done in static do_link_state_change(). 2099 */ 2100 void 2101 if_link_state_change(struct ifnet *ifp, int link_state) 2102 { 2103 /* Return if state hasn't changed. */ 2104 if (ifp->if_link_state == link_state) 2105 return; 2106 2107 ifp->if_link_state = link_state; 2108 2109 /* XXXGL: reference ifp? */ 2110 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2111 } 2112 2113 static void 2114 do_link_state_change(void *arg, int pending) 2115 { 2116 struct ifnet *ifp; 2117 int link_state; 2118 2119 ifp = arg; 2120 link_state = ifp->if_link_state; 2121 2122 CURVNET_SET(ifp->if_vnet); 2123 rt_ifmsg(ifp, 0); 2124 if (ifp->if_vlantrunk != NULL) 2125 (*vlan_link_state_p)(ifp); 2126 2127 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2128 ifp->if_l2com != NULL) 2129 (*ng_ether_link_state_p)(ifp, link_state); 2130 if (ifp->if_carp) 2131 (*carp_linkstate_p)(ifp); 2132 if (ifp->if_bridge) 2133 ifp->if_bridge_linkstate(ifp); 2134 if (ifp->if_lagg) 2135 (*lagg_linkstate_p)(ifp, link_state); 2136 2137 if (IS_DEFAULT_VNET(curvnet)) 2138 devctl_notify("IFNET", ifp->if_xname, 2139 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2140 NULL); 2141 if (pending > 1) 2142 if_printf(ifp, "%d link states coalesced\n", pending); 2143 if (log_link_state_change) 2144 if_printf(ifp, "link state changed to %s\n", 2145 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2146 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); 2147 CURVNET_RESTORE(); 2148 } 2149 2150 /* 2151 * Mark an interface down and notify protocols of 2152 * the transition. 2153 */ 2154 void 2155 if_down(struct ifnet *ifp) 2156 { 2157 2158 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); 2159 2160 ifp->if_flags &= ~IFF_UP; 2161 getmicrotime(&ifp->if_lastchange); 2162 ifp->if_qflush(ifp); 2163 2164 if (ifp->if_carp) 2165 (*carp_linkstate_p)(ifp); 2166 rt_ifmsg(ifp, IFF_UP); 2167 } 2168 2169 /* 2170 * Mark an interface up and notify protocols of 2171 * the transition. 2172 */ 2173 void 2174 if_up(struct ifnet *ifp) 2175 { 2176 2177 ifp->if_flags |= IFF_UP; 2178 getmicrotime(&ifp->if_lastchange); 2179 if (ifp->if_carp) 2180 (*carp_linkstate_p)(ifp); 2181 rt_ifmsg(ifp, IFF_UP); 2182 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); 2183 } 2184 2185 /* 2186 * Flush an interface queue. 2187 */ 2188 void 2189 if_qflush(struct ifnet *ifp) 2190 { 2191 struct mbuf *m, *n; 2192 struct ifaltq *ifq; 2193 2194 ifq = &ifp->if_snd; 2195 IFQ_LOCK(ifq); 2196 #ifdef ALTQ 2197 if (ALTQ_IS_ENABLED(ifq)) 2198 ALTQ_PURGE(ifq); 2199 #endif 2200 n = ifq->ifq_head; 2201 while ((m = n) != NULL) { 2202 n = m->m_nextpkt; 2203 m_freem(m); 2204 } 2205 ifq->ifq_head = 0; 2206 ifq->ifq_tail = 0; 2207 ifq->ifq_len = 0; 2208 IFQ_UNLOCK(ifq); 2209 } 2210 2211 /* 2212 * Map interface name to interface structure pointer, with or without 2213 * returning a reference. 2214 */ 2215 struct ifnet * 2216 ifunit_ref(const char *name) 2217 { 2218 struct epoch_tracker et; 2219 struct ifnet *ifp; 2220 2221 NET_EPOCH_ENTER(et); 2222 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2223 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2224 !(ifp->if_flags & IFF_DYING)) 2225 break; 2226 } 2227 if (ifp != NULL) { 2228 if_ref(ifp); 2229 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 2230 } 2231 2232 NET_EPOCH_EXIT(et); 2233 return (ifp); 2234 } 2235 2236 struct ifnet * 2237 ifunit(const char *name) 2238 { 2239 struct epoch_tracker et; 2240 struct ifnet *ifp; 2241 2242 NET_EPOCH_ENTER(et); 2243 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2244 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2245 break; 2246 } 2247 NET_EPOCH_EXIT(et); 2248 return (ifp); 2249 } 2250 2251 void * 2252 ifr_buffer_get_buffer(void *data) 2253 { 2254 union ifreq_union *ifrup; 2255 2256 ifrup = data; 2257 #ifdef COMPAT_FREEBSD32 2258 if (SV_CURPROC_FLAG(SV_ILP32)) 2259 return ((void *)(uintptr_t) 2260 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer); 2261 #endif 2262 return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer); 2263 } 2264 2265 static void 2266 ifr_buffer_set_buffer_null(void *data) 2267 { 2268 union ifreq_union *ifrup; 2269 2270 ifrup = data; 2271 #ifdef COMPAT_FREEBSD32 2272 if (SV_CURPROC_FLAG(SV_ILP32)) 2273 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0; 2274 else 2275 #endif 2276 ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL; 2277 } 2278 2279 size_t 2280 ifr_buffer_get_length(void *data) 2281 { 2282 union ifreq_union *ifrup; 2283 2284 ifrup = data; 2285 #ifdef COMPAT_FREEBSD32 2286 if (SV_CURPROC_FLAG(SV_ILP32)) 2287 return (ifrup->ifr32.ifr_ifru.ifru_buffer.length); 2288 #endif 2289 return (ifrup->ifr.ifr_ifru.ifru_buffer.length); 2290 } 2291 2292 static void 2293 ifr_buffer_set_length(void *data, size_t len) 2294 { 2295 union ifreq_union *ifrup; 2296 2297 ifrup = data; 2298 #ifdef COMPAT_FREEBSD32 2299 if (SV_CURPROC_FLAG(SV_ILP32)) 2300 ifrup->ifr32.ifr_ifru.ifru_buffer.length = len; 2301 else 2302 #endif 2303 ifrup->ifr.ifr_ifru.ifru_buffer.length = len; 2304 } 2305 2306 void * 2307 ifr_data_get_ptr(void *ifrp) 2308 { 2309 union ifreq_union *ifrup; 2310 2311 ifrup = ifrp; 2312 #ifdef COMPAT_FREEBSD32 2313 if (SV_CURPROC_FLAG(SV_ILP32)) 2314 return ((void *)(uintptr_t) 2315 ifrup->ifr32.ifr_ifru.ifru_data); 2316 #endif 2317 return (ifrup->ifr.ifr_ifru.ifru_data); 2318 } 2319 2320 struct ifcap_nv_bit_name { 2321 uint64_t cap_bit; 2322 const char *cap_name; 2323 }; 2324 #define CAPNV(x) {.cap_bit = IFCAP_##x, \ 2325 .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) } 2326 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = { 2327 CAPNV(RXCSUM), 2328 CAPNV(TXCSUM), 2329 CAPNV(NETCONS), 2330 CAPNV(VLAN_MTU), 2331 CAPNV(VLAN_HWTAGGING), 2332 CAPNV(JUMBO_MTU), 2333 CAPNV(POLLING), 2334 CAPNV(VLAN_HWCSUM), 2335 CAPNV(TSO4), 2336 CAPNV(TSO6), 2337 CAPNV(LRO), 2338 CAPNV(WOL_UCAST), 2339 CAPNV(WOL_MCAST), 2340 CAPNV(WOL_MAGIC), 2341 CAPNV(TOE4), 2342 CAPNV(TOE6), 2343 CAPNV(VLAN_HWFILTER), 2344 CAPNV(VLAN_HWTSO), 2345 CAPNV(LINKSTATE), 2346 CAPNV(NETMAP), 2347 CAPNV(RXCSUM_IPV6), 2348 CAPNV(TXCSUM_IPV6), 2349 CAPNV(HWSTATS), 2350 CAPNV(TXRTLMT), 2351 CAPNV(HWRXTSTMP), 2352 CAPNV(MEXTPG), 2353 CAPNV(TXTLS4), 2354 CAPNV(TXTLS6), 2355 CAPNV(VXLAN_HWCSUM), 2356 CAPNV(VXLAN_HWTSO), 2357 CAPNV(TXTLS_RTLMT), 2358 {0, NULL} 2359 }; 2360 #define CAP2NV(x) {.cap_bit = IFCAP2_BIT(IFCAP2_##x), \ 2361 .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) } 2362 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = { 2363 CAP2NV(RXTLS4), 2364 CAP2NV(RXTLS6), 2365 CAP2NV(IPSEC_OFFLOAD), 2366 {0, NULL} 2367 }; 2368 #undef CAPNV 2369 #undef CAP2NV 2370 2371 int 2372 if_capnv_to_capint(const nvlist_t *nv, int *old_cap, 2373 const struct ifcap_nv_bit_name *nn, bool all) 2374 { 2375 int i, res; 2376 2377 res = 0; 2378 for (i = 0; nn[i].cap_name != NULL; i++) { 2379 if (nvlist_exists_bool(nv, nn[i].cap_name)) { 2380 if (all || nvlist_get_bool(nv, nn[i].cap_name)) 2381 res |= nn[i].cap_bit; 2382 } else { 2383 res |= *old_cap & nn[i].cap_bit; 2384 } 2385 } 2386 return (res); 2387 } 2388 2389 void 2390 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn, 2391 int ifr_cap, int ifr_req) 2392 { 2393 int i; 2394 2395 for (i = 0; nn[i].cap_name != NULL; i++) { 2396 if ((nn[i].cap_bit & ifr_cap) != 0) { 2397 nvlist_add_bool(nv, nn[i].cap_name, 2398 (nn[i].cap_bit & ifr_req) != 0); 2399 } 2400 } 2401 } 2402 2403 /* 2404 * Hardware specific interface ioctls. 2405 */ 2406 int 2407 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2408 { 2409 struct ifreq *ifr; 2410 int error = 0, do_ifup = 0; 2411 int new_flags, temp_flags; 2412 size_t descrlen, nvbuflen; 2413 char *descrbuf; 2414 char new_name[IFNAMSIZ]; 2415 void *buf; 2416 nvlist_t *nvcap; 2417 struct siocsifcapnv_driver_data drv_ioctl_data; 2418 2419 ifr = (struct ifreq *)data; 2420 switch (cmd) { 2421 case SIOCGIFINDEX: 2422 ifr->ifr_index = ifp->if_index; 2423 break; 2424 2425 case SIOCGIFFLAGS: 2426 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2427 ifr->ifr_flags = temp_flags & 0xffff; 2428 ifr->ifr_flagshigh = temp_flags >> 16; 2429 break; 2430 2431 case SIOCGIFCAP: 2432 ifr->ifr_reqcap = ifp->if_capabilities; 2433 ifr->ifr_curcap = ifp->if_capenable; 2434 break; 2435 2436 case SIOCGIFCAPNV: 2437 if ((ifp->if_capabilities & IFCAP_NV) == 0) { 2438 error = EINVAL; 2439 break; 2440 } 2441 buf = NULL; 2442 nvcap = nvlist_create(0); 2443 for (;;) { 2444 if_capint_to_capnv(nvcap, ifcap_nv_bit_names, 2445 ifp->if_capabilities, ifp->if_capenable); 2446 if_capint_to_capnv(nvcap, ifcap2_nv_bit_names, 2447 ifp->if_capabilities2, ifp->if_capenable2); 2448 error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV, 2449 __DECONST(caddr_t, nvcap)); 2450 if (error != 0) { 2451 if_printf(ifp, 2452 "SIOCGIFCAPNV driver mistake: nvlist error %d\n", 2453 error); 2454 break; 2455 } 2456 buf = nvlist_pack(nvcap, &nvbuflen); 2457 if (buf == NULL) { 2458 error = nvlist_error(nvcap); 2459 if (error == 0) 2460 error = EDOOFUS; 2461 break; 2462 } 2463 if (nvbuflen > ifr->ifr_cap_nv.buf_length) { 2464 ifr->ifr_cap_nv.length = nvbuflen; 2465 ifr->ifr_cap_nv.buffer = NULL; 2466 error = EFBIG; 2467 break; 2468 } 2469 ifr->ifr_cap_nv.length = nvbuflen; 2470 error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen); 2471 break; 2472 } 2473 free(buf, M_NVLIST); 2474 nvlist_destroy(nvcap); 2475 break; 2476 2477 case SIOCGIFDATA: 2478 { 2479 struct if_data ifd; 2480 2481 /* Ensure uninitialised padding is not leaked. */ 2482 memset(&ifd, 0, sizeof(ifd)); 2483 2484 if_data_copy(ifp, &ifd); 2485 error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd)); 2486 break; 2487 } 2488 2489 #ifdef MAC 2490 case SIOCGIFMAC: 2491 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2492 break; 2493 #endif 2494 2495 case SIOCGIFMETRIC: 2496 ifr->ifr_metric = ifp->if_metric; 2497 break; 2498 2499 case SIOCGIFMTU: 2500 ifr->ifr_mtu = ifp->if_mtu; 2501 break; 2502 2503 case SIOCGIFPHYS: 2504 /* XXXGL: did this ever worked? */ 2505 ifr->ifr_phys = 0; 2506 break; 2507 2508 case SIOCGIFDESCR: 2509 error = 0; 2510 sx_slock(&ifdescr_sx); 2511 if (ifp->if_description == NULL) 2512 error = ENOMSG; 2513 else { 2514 /* space for terminating nul */ 2515 descrlen = strlen(ifp->if_description) + 1; 2516 if (ifr_buffer_get_length(ifr) < descrlen) 2517 ifr_buffer_set_buffer_null(ifr); 2518 else 2519 error = copyout(ifp->if_description, 2520 ifr_buffer_get_buffer(ifr), descrlen); 2521 ifr_buffer_set_length(ifr, descrlen); 2522 } 2523 sx_sunlock(&ifdescr_sx); 2524 break; 2525 2526 case SIOCSIFDESCR: 2527 error = priv_check(td, PRIV_NET_SETIFDESCR); 2528 if (error) 2529 return (error); 2530 2531 /* 2532 * Copy only (length-1) bytes to make sure that 2533 * if_description is always nul terminated. The 2534 * length parameter is supposed to count the 2535 * terminating nul in. 2536 */ 2537 if (ifr_buffer_get_length(ifr) > ifdescr_maxlen) 2538 return (ENAMETOOLONG); 2539 else if (ifr_buffer_get_length(ifr) == 0) 2540 descrbuf = NULL; 2541 else { 2542 descrbuf = if_allocdescr(ifr_buffer_get_length(ifr), M_WAITOK); 2543 error = copyin(ifr_buffer_get_buffer(ifr), descrbuf, 2544 ifr_buffer_get_length(ifr) - 1); 2545 if (error) { 2546 if_freedescr(descrbuf); 2547 break; 2548 } 2549 } 2550 2551 if_setdescr(ifp, descrbuf); 2552 getmicrotime(&ifp->if_lastchange); 2553 break; 2554 2555 case SIOCGIFFIB: 2556 ifr->ifr_fib = ifp->if_fib; 2557 break; 2558 2559 case SIOCSIFFIB: 2560 error = priv_check(td, PRIV_NET_SETIFFIB); 2561 if (error) 2562 return (error); 2563 if (ifr->ifr_fib >= rt_numfibs) 2564 return (EINVAL); 2565 2566 ifp->if_fib = ifr->ifr_fib; 2567 break; 2568 2569 case SIOCSIFFLAGS: 2570 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2571 if (error) 2572 return (error); 2573 /* 2574 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2575 * check, so we don't need special handling here yet. 2576 */ 2577 new_flags = (ifr->ifr_flags & 0xffff) | 2578 (ifr->ifr_flagshigh << 16); 2579 if (ifp->if_flags & IFF_UP && 2580 (new_flags & IFF_UP) == 0) { 2581 if_down(ifp); 2582 } else if (new_flags & IFF_UP && 2583 (ifp->if_flags & IFF_UP) == 0) { 2584 do_ifup = 1; 2585 } 2586 2587 /* 2588 * See if the promiscuous mode or allmulti bits are about to 2589 * flip. They require special handling because in-kernel 2590 * consumers may indepdently toggle them. 2591 */ 2592 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2593 if (new_flags & IFF_PPROMISC) 2594 ifp->if_flags |= IFF_PROMISC; 2595 else if (ifp->if_pcount == 0) 2596 ifp->if_flags &= ~IFF_PROMISC; 2597 if (log_promisc_mode_change) 2598 if_printf(ifp, "permanently promiscuous mode %s\n", 2599 ((new_flags & IFF_PPROMISC) ? 2600 "enabled" : "disabled")); 2601 } 2602 if ((ifp->if_flags ^ new_flags) & IFF_PALLMULTI) { 2603 if (new_flags & IFF_PALLMULTI) 2604 ifp->if_flags |= IFF_ALLMULTI; 2605 else if (ifp->if_amcount == 0) 2606 ifp->if_flags &= ~IFF_ALLMULTI; 2607 } 2608 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2609 (new_flags &~ IFF_CANTCHANGE); 2610 if (ifp->if_ioctl) { 2611 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2612 } 2613 if (do_ifup) 2614 if_up(ifp); 2615 getmicrotime(&ifp->if_lastchange); 2616 break; 2617 2618 case SIOCSIFCAP: 2619 error = priv_check(td, PRIV_NET_SETIFCAP); 2620 if (error != 0) 2621 return (error); 2622 if (ifp->if_ioctl == NULL) 2623 return (EOPNOTSUPP); 2624 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2625 return (EINVAL); 2626 error = (*ifp->if_ioctl)(ifp, cmd, data); 2627 if (error == 0) 2628 getmicrotime(&ifp->if_lastchange); 2629 break; 2630 2631 case SIOCSIFCAPNV: 2632 error = priv_check(td, PRIV_NET_SETIFCAP); 2633 if (error != 0) 2634 return (error); 2635 if (ifp->if_ioctl == NULL) 2636 return (EOPNOTSUPP); 2637 if ((ifp->if_capabilities & IFCAP_NV) == 0) 2638 return (EINVAL); 2639 if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE) 2640 return (EINVAL); 2641 nvcap = NULL; 2642 buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK); 2643 for (;;) { 2644 error = copyin(ifr->ifr_cap_nv.buffer, buf, 2645 ifr->ifr_cap_nv.length); 2646 if (error != 0) 2647 break; 2648 nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0); 2649 if (nvcap == NULL) { 2650 error = EINVAL; 2651 break; 2652 } 2653 drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap, 2654 &ifp->if_capenable, ifcap_nv_bit_names, false); 2655 if ((drv_ioctl_data.reqcap & 2656 ~ifp->if_capabilities) != 0) { 2657 error = EINVAL; 2658 break; 2659 } 2660 drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap, 2661 &ifp->if_capenable2, ifcap2_nv_bit_names, false); 2662 if ((drv_ioctl_data.reqcap2 & 2663 ~ifp->if_capabilities2) != 0) { 2664 error = EINVAL; 2665 break; 2666 } 2667 drv_ioctl_data.nvcap = nvcap; 2668 error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV, 2669 (caddr_t)&drv_ioctl_data); 2670 break; 2671 } 2672 nvlist_destroy(nvcap); 2673 free(buf, M_TEMP); 2674 if (error == 0) 2675 getmicrotime(&ifp->if_lastchange); 2676 break; 2677 2678 #ifdef MAC 2679 case SIOCSIFMAC: 2680 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2681 break; 2682 #endif 2683 2684 case SIOCSIFNAME: 2685 error = priv_check(td, PRIV_NET_SETIFNAME); 2686 if (error) 2687 return (error); 2688 error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ, 2689 NULL); 2690 if (error != 0) 2691 return (error); 2692 error = if_rename(ifp, new_name); 2693 break; 2694 2695 #ifdef VIMAGE 2696 case SIOCSIFVNET: 2697 error = priv_check(td, PRIV_NET_SETIFVNET); 2698 if (error) 2699 return (error); 2700 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2701 break; 2702 #endif 2703 2704 case SIOCSIFMETRIC: 2705 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2706 if (error) 2707 return (error); 2708 ifp->if_metric = ifr->ifr_metric; 2709 getmicrotime(&ifp->if_lastchange); 2710 break; 2711 2712 case SIOCSIFPHYS: 2713 error = priv_check(td, PRIV_NET_SETIFPHYS); 2714 if (error) 2715 return (error); 2716 if (ifp->if_ioctl == NULL) 2717 return (EOPNOTSUPP); 2718 error = (*ifp->if_ioctl)(ifp, cmd, data); 2719 if (error == 0) 2720 getmicrotime(&ifp->if_lastchange); 2721 break; 2722 2723 case SIOCSIFMTU: 2724 { 2725 u_long oldmtu = ifp->if_mtu; 2726 2727 error = priv_check(td, PRIV_NET_SETIFMTU); 2728 if (error) 2729 return (error); 2730 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2731 return (EINVAL); 2732 if (ifp->if_ioctl == NULL) 2733 return (EOPNOTSUPP); 2734 /* Disallow MTU changes on bridge member interfaces. */ 2735 if (ifp->if_bridge) 2736 return (EOPNOTSUPP); 2737 error = (*ifp->if_ioctl)(ifp, cmd, data); 2738 if (error == 0) { 2739 getmicrotime(&ifp->if_lastchange); 2740 rt_ifmsg(ifp, 0); 2741 #ifdef INET 2742 DEBUGNET_NOTIFY_MTU(ifp); 2743 #endif 2744 } 2745 /* 2746 * If the link MTU changed, do network layer specific procedure. 2747 */ 2748 if (ifp->if_mtu != oldmtu) 2749 if_notifymtu(ifp); 2750 break; 2751 } 2752 2753 case SIOCADDMULTI: 2754 case SIOCDELMULTI: 2755 if (cmd == SIOCADDMULTI) 2756 error = priv_check(td, PRIV_NET_ADDMULTI); 2757 else 2758 error = priv_check(td, PRIV_NET_DELMULTI); 2759 if (error) 2760 return (error); 2761 2762 /* Don't allow group membership on non-multicast interfaces. */ 2763 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2764 return (EOPNOTSUPP); 2765 2766 /* Don't let users screw up protocols' entries. */ 2767 if (ifr->ifr_addr.sa_family != AF_LINK) 2768 return (EINVAL); 2769 2770 if (cmd == SIOCADDMULTI) { 2771 struct epoch_tracker et; 2772 struct ifmultiaddr *ifma; 2773 2774 /* 2775 * Userland is only permitted to join groups once 2776 * via the if_addmulti() KPI, because it cannot hold 2777 * struct ifmultiaddr * between calls. It may also 2778 * lose a race while we check if the membership 2779 * already exists. 2780 */ 2781 NET_EPOCH_ENTER(et); 2782 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2783 NET_EPOCH_EXIT(et); 2784 if (ifma != NULL) 2785 error = EADDRINUSE; 2786 else 2787 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2788 } else { 2789 error = if_delmulti(ifp, &ifr->ifr_addr); 2790 } 2791 if (error == 0) 2792 getmicrotime(&ifp->if_lastchange); 2793 break; 2794 2795 case SIOCSIFPHYADDR: 2796 case SIOCDIFPHYADDR: 2797 #ifdef INET6 2798 case SIOCSIFPHYADDR_IN6: 2799 #endif 2800 case SIOCSIFMEDIA: 2801 case SIOCSIFGENERIC: 2802 error = priv_check(td, PRIV_NET_HWIOCTL); 2803 if (error) 2804 return (error); 2805 if (ifp->if_ioctl == NULL) 2806 return (EOPNOTSUPP); 2807 error = (*ifp->if_ioctl)(ifp, cmd, data); 2808 if (error == 0) 2809 getmicrotime(&ifp->if_lastchange); 2810 break; 2811 2812 case SIOCGIFSTATUS: 2813 case SIOCGIFPSRCADDR: 2814 case SIOCGIFPDSTADDR: 2815 case SIOCGIFMEDIA: 2816 case SIOCGIFXMEDIA: 2817 case SIOCGIFGENERIC: 2818 case SIOCGIFRSSKEY: 2819 case SIOCGIFRSSHASH: 2820 case SIOCGIFDOWNREASON: 2821 if (ifp->if_ioctl == NULL) 2822 return (EOPNOTSUPP); 2823 error = (*ifp->if_ioctl)(ifp, cmd, data); 2824 break; 2825 2826 case SIOCSIFLLADDR: 2827 error = priv_check(td, PRIV_NET_SETLLADDR); 2828 if (error) 2829 return (error); 2830 error = if_setlladdr(ifp, 2831 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2832 break; 2833 2834 case SIOCGHWADDR: 2835 error = if_gethwaddr(ifp, ifr); 2836 break; 2837 2838 case SIOCAIFGROUP: 2839 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2840 if (error) 2841 return (error); 2842 error = if_addgroup(ifp, 2843 ((struct ifgroupreq *)data)->ifgr_group); 2844 if (error != 0) 2845 return (error); 2846 break; 2847 2848 case SIOCGIFGROUP: 2849 { 2850 struct epoch_tracker et; 2851 2852 NET_EPOCH_ENTER(et); 2853 error = if_getgroup((struct ifgroupreq *)data, ifp); 2854 NET_EPOCH_EXIT(et); 2855 break; 2856 } 2857 2858 case SIOCDIFGROUP: 2859 error = priv_check(td, PRIV_NET_DELIFGROUP); 2860 if (error) 2861 return (error); 2862 error = if_delgroup(ifp, 2863 ((struct ifgroupreq *)data)->ifgr_group); 2864 if (error != 0) 2865 return (error); 2866 break; 2867 2868 default: 2869 error = ENOIOCTL; 2870 break; 2871 } 2872 return (error); 2873 } 2874 2875 /* 2876 * Interface ioctls. 2877 */ 2878 int 2879 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2880 { 2881 #ifdef COMPAT_FREEBSD32 2882 union { 2883 struct ifconf ifc; 2884 struct ifdrv ifd; 2885 struct ifgroupreq ifgr; 2886 struct ifmediareq ifmr; 2887 } thunk; 2888 u_long saved_cmd; 2889 struct ifconf32 *ifc32; 2890 struct ifdrv32 *ifd32; 2891 struct ifgroupreq32 *ifgr32; 2892 struct ifmediareq32 *ifmr32; 2893 #endif 2894 struct ifnet *ifp; 2895 struct ifreq *ifr; 2896 int error; 2897 int oif_flags; 2898 #ifdef VIMAGE 2899 bool shutdown; 2900 #endif 2901 2902 CURVNET_SET(so->so_vnet); 2903 #ifdef VIMAGE 2904 /* Make sure the VNET is stable. */ 2905 shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet); 2906 if (shutdown) { 2907 CURVNET_RESTORE(); 2908 return (EBUSY); 2909 } 2910 #endif 2911 2912 #ifdef COMPAT_FREEBSD32 2913 saved_cmd = cmd; 2914 switch (cmd) { 2915 case SIOCGIFCONF32: 2916 ifc32 = (struct ifconf32 *)data; 2917 thunk.ifc.ifc_len = ifc32->ifc_len; 2918 thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2919 data = (caddr_t)&thunk.ifc; 2920 cmd = SIOCGIFCONF; 2921 break; 2922 case SIOCGDRVSPEC32: 2923 case SIOCSDRVSPEC32: 2924 ifd32 = (struct ifdrv32 *)data; 2925 memcpy(thunk.ifd.ifd_name, ifd32->ifd_name, 2926 sizeof(thunk.ifd.ifd_name)); 2927 thunk.ifd.ifd_cmd = ifd32->ifd_cmd; 2928 thunk.ifd.ifd_len = ifd32->ifd_len; 2929 thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data); 2930 data = (caddr_t)&thunk.ifd; 2931 cmd = _IOC_NEWTYPE(cmd, struct ifdrv); 2932 break; 2933 case SIOCAIFGROUP32: 2934 case SIOCGIFGROUP32: 2935 case SIOCDIFGROUP32: 2936 case SIOCGIFGMEMB32: 2937 ifgr32 = (struct ifgroupreq32 *)data; 2938 memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name, 2939 sizeof(thunk.ifgr.ifgr_name)); 2940 thunk.ifgr.ifgr_len = ifgr32->ifgr_len; 2941 switch (cmd) { 2942 case SIOCAIFGROUP32: 2943 case SIOCDIFGROUP32: 2944 memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group, 2945 sizeof(thunk.ifgr.ifgr_group)); 2946 break; 2947 case SIOCGIFGROUP32: 2948 case SIOCGIFGMEMB32: 2949 thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups); 2950 break; 2951 } 2952 data = (caddr_t)&thunk.ifgr; 2953 cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq); 2954 break; 2955 case SIOCGIFMEDIA32: 2956 case SIOCGIFXMEDIA32: 2957 ifmr32 = (struct ifmediareq32 *)data; 2958 memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name, 2959 sizeof(thunk.ifmr.ifm_name)); 2960 thunk.ifmr.ifm_current = ifmr32->ifm_current; 2961 thunk.ifmr.ifm_mask = ifmr32->ifm_mask; 2962 thunk.ifmr.ifm_status = ifmr32->ifm_status; 2963 thunk.ifmr.ifm_active = ifmr32->ifm_active; 2964 thunk.ifmr.ifm_count = ifmr32->ifm_count; 2965 thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist); 2966 data = (caddr_t)&thunk.ifmr; 2967 cmd = _IOC_NEWTYPE(cmd, struct ifmediareq); 2968 break; 2969 } 2970 #endif 2971 2972 switch (cmd) { 2973 case SIOCGIFCONF: 2974 error = ifconf(cmd, data); 2975 goto out_noref; 2976 } 2977 2978 ifr = (struct ifreq *)data; 2979 switch (cmd) { 2980 #ifdef VIMAGE 2981 case SIOCSIFRVNET: 2982 error = priv_check(td, PRIV_NET_SETIFVNET); 2983 if (error == 0) 2984 error = if_vmove_reclaim(td, ifr->ifr_name, 2985 ifr->ifr_jid); 2986 goto out_noref; 2987 #endif 2988 case SIOCIFCREATE: 2989 case SIOCIFCREATE2: 2990 error = priv_check(td, PRIV_NET_IFCREATE); 2991 if (error == 0) 2992 error = if_clone_create(ifr->ifr_name, 2993 sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? 2994 ifr_data_get_ptr(ifr) : NULL); 2995 goto out_noref; 2996 case SIOCIFDESTROY: 2997 error = priv_check(td, PRIV_NET_IFDESTROY); 2998 2999 if (error == 0) { 3000 sx_xlock(&ifnet_detach_sxlock); 3001 error = if_clone_destroy(ifr->ifr_name); 3002 sx_xunlock(&ifnet_detach_sxlock); 3003 } 3004 goto out_noref; 3005 3006 case SIOCIFGCLONERS: 3007 error = if_clone_list((struct if_clonereq *)data); 3008 goto out_noref; 3009 3010 case SIOCGIFGMEMB: 3011 error = if_getgroupmembers((struct ifgroupreq *)data); 3012 goto out_noref; 3013 3014 #if defined(INET) || defined(INET6) 3015 case SIOCSVH: 3016 case SIOCGVH: 3017 if (carp_ioctl_p == NULL) 3018 error = EPROTONOSUPPORT; 3019 else 3020 error = (*carp_ioctl_p)(ifr, cmd, td); 3021 goto out_noref; 3022 #endif 3023 } 3024 3025 ifp = ifunit_ref(ifr->ifr_name); 3026 if (ifp == NULL) { 3027 error = ENXIO; 3028 goto out_noref; 3029 } 3030 3031 error = ifhwioctl(cmd, ifp, data, td); 3032 if (error != ENOIOCTL) 3033 goto out_ref; 3034 3035 oif_flags = ifp->if_flags; 3036 if (so->so_proto == NULL) { 3037 error = EOPNOTSUPP; 3038 goto out_ref; 3039 } 3040 3041 /* 3042 * Pass the request on to the socket control method, and if the 3043 * latter returns EOPNOTSUPP, directly to the interface. 3044 * 3045 * Make an exception for the legacy SIOCSIF* requests. Drivers 3046 * trust SIOCSIFADDR et al to come from an already privileged 3047 * layer, and do not perform any credentials checks or input 3048 * validation. 3049 */ 3050 error = so->so_proto->pr_control(so, cmd, data, ifp, td); 3051 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 3052 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 3053 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 3054 error = (*ifp->if_ioctl)(ifp, cmd, data); 3055 3056 if (!(oif_flags & IFF_UP) && (ifp->if_flags & IFF_UP)) 3057 if_up(ifp); 3058 out_ref: 3059 if_rele(ifp); 3060 out_noref: 3061 CURVNET_RESTORE(); 3062 #ifdef COMPAT_FREEBSD32 3063 if (error != 0) 3064 return (error); 3065 switch (saved_cmd) { 3066 case SIOCGIFCONF32: 3067 ifc32->ifc_len = thunk.ifc.ifc_len; 3068 break; 3069 case SIOCGDRVSPEC32: 3070 /* 3071 * SIOCGDRVSPEC is IOWR, but nothing actually touches 3072 * the struct so just assert that ifd_len (the only 3073 * field it might make sense to update) hasn't 3074 * changed. 3075 */ 3076 KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len, 3077 ("ifd_len was updated %u -> %zu", ifd32->ifd_len, 3078 thunk.ifd.ifd_len)); 3079 break; 3080 case SIOCGIFGROUP32: 3081 case SIOCGIFGMEMB32: 3082 ifgr32->ifgr_len = thunk.ifgr.ifgr_len; 3083 break; 3084 case SIOCGIFMEDIA32: 3085 case SIOCGIFXMEDIA32: 3086 ifmr32->ifm_current = thunk.ifmr.ifm_current; 3087 ifmr32->ifm_mask = thunk.ifmr.ifm_mask; 3088 ifmr32->ifm_status = thunk.ifmr.ifm_status; 3089 ifmr32->ifm_active = thunk.ifmr.ifm_active; 3090 ifmr32->ifm_count = thunk.ifmr.ifm_count; 3091 break; 3092 } 3093 #endif 3094 return (error); 3095 } 3096 3097 int 3098 if_rename(struct ifnet *ifp, char *new_name) 3099 { 3100 struct ifaddr *ifa; 3101 struct sockaddr_dl *sdl; 3102 size_t namelen, onamelen; 3103 char old_name[IFNAMSIZ]; 3104 char strbuf[IFNAMSIZ + 8]; 3105 3106 if (new_name[0] == '\0') 3107 return (EINVAL); 3108 if (strcmp(new_name, ifp->if_xname) == 0) 3109 return (0); 3110 if (ifunit(new_name) != NULL) 3111 return (EEXIST); 3112 3113 /* 3114 * XXX: Locking. Nothing else seems to lock if_flags, 3115 * and there are numerous other races with the 3116 * ifunit() checks not being atomic with namespace 3117 * changes (renames, vmoves, if_attach, etc). 3118 */ 3119 ifp->if_flags |= IFF_RENAMING; 3120 3121 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 3122 3123 if_printf(ifp, "changing name to '%s'\n", new_name); 3124 3125 IF_ADDR_WLOCK(ifp); 3126 strlcpy(old_name, ifp->if_xname, sizeof(old_name)); 3127 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 3128 ifa = ifp->if_addr; 3129 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3130 namelen = strlen(new_name); 3131 onamelen = sdl->sdl_nlen; 3132 /* 3133 * Move the address if needed. This is safe because we 3134 * allocate space for a name of length IFNAMSIZ when we 3135 * create this in if_attach(). 3136 */ 3137 if (namelen != onamelen) { 3138 bcopy(sdl->sdl_data + onamelen, 3139 sdl->sdl_data + namelen, sdl->sdl_alen); 3140 } 3141 bcopy(new_name, sdl->sdl_data, namelen); 3142 sdl->sdl_nlen = namelen; 3143 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 3144 bzero(sdl->sdl_data, onamelen); 3145 while (namelen != 0) 3146 sdl->sdl_data[--namelen] = 0xff; 3147 IF_ADDR_WUNLOCK(ifp); 3148 3149 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 3150 3151 ifp->if_flags &= ~IFF_RENAMING; 3152 3153 snprintf(strbuf, sizeof(strbuf), "name=%s", new_name); 3154 devctl_notify("IFNET", old_name, "RENAME", strbuf); 3155 3156 return (0); 3157 } 3158 3159 /* 3160 * The code common to handling reference counted flags, 3161 * e.g., in ifpromisc() and if_allmulti(). 3162 * The "pflag" argument can specify a permanent mode flag to check, 3163 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 3164 * 3165 * Only to be used on stack-owned flags, not driver-owned flags. 3166 */ 3167 static int 3168 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 3169 { 3170 struct ifreq ifr; 3171 int error; 3172 int oldflags, oldcount; 3173 3174 /* Sanity checks to catch programming errors */ 3175 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 3176 ("%s: setting driver-owned flag %d", __func__, flag)); 3177 3178 if (onswitch) 3179 KASSERT(*refcount >= 0, 3180 ("%s: increment negative refcount %d for flag %d", 3181 __func__, *refcount, flag)); 3182 else 3183 KASSERT(*refcount > 0, 3184 ("%s: decrement non-positive refcount %d for flag %d", 3185 __func__, *refcount, flag)); 3186 3187 /* In case this mode is permanent, just touch refcount */ 3188 if (ifp->if_flags & pflag) { 3189 *refcount += onswitch ? 1 : -1; 3190 return (0); 3191 } 3192 3193 /* Save ifnet parameters for if_ioctl() may fail */ 3194 oldcount = *refcount; 3195 oldflags = ifp->if_flags; 3196 3197 /* 3198 * See if we aren't the only and touching refcount is enough. 3199 * Actually toggle interface flag if we are the first or last. 3200 */ 3201 if (onswitch) { 3202 if ((*refcount)++) 3203 return (0); 3204 ifp->if_flags |= flag; 3205 } else { 3206 if (--(*refcount)) 3207 return (0); 3208 ifp->if_flags &= ~flag; 3209 } 3210 3211 /* Call down the driver since we've changed interface flags */ 3212 if (ifp->if_ioctl == NULL) { 3213 error = EOPNOTSUPP; 3214 goto recover; 3215 } 3216 ifr.ifr_flags = ifp->if_flags & 0xffff; 3217 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3218 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3219 if (error) 3220 goto recover; 3221 /* Notify userland that interface flags have changed */ 3222 rt_ifmsg(ifp, flag); 3223 return (0); 3224 3225 recover: 3226 /* Recover after driver error */ 3227 *refcount = oldcount; 3228 ifp->if_flags = oldflags; 3229 return (error); 3230 } 3231 3232 /* 3233 * Set/clear promiscuous mode on interface ifp based on the truth value 3234 * of pswitch. The calls are reference counted so that only the first 3235 * "on" request actually has an effect, as does the final "off" request. 3236 * Results are undefined if the "off" and "on" requests are not matched. 3237 */ 3238 int 3239 ifpromisc(struct ifnet *ifp, int pswitch) 3240 { 3241 int error; 3242 int oldflags = ifp->if_flags; 3243 3244 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 3245 &ifp->if_pcount, pswitch); 3246 /* If promiscuous mode status has changed, log a message */ 3247 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) && 3248 log_promisc_mode_change) 3249 if_printf(ifp, "promiscuous mode %s\n", 3250 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 3251 return (error); 3252 } 3253 3254 /* 3255 * Return interface configuration 3256 * of system. List may be used 3257 * in later ioctl's (above) to get 3258 * other information. 3259 */ 3260 /*ARGSUSED*/ 3261 static int 3262 ifconf(u_long cmd, caddr_t data) 3263 { 3264 struct ifconf *ifc = (struct ifconf *)data; 3265 struct ifnet *ifp; 3266 struct ifaddr *ifa; 3267 struct ifreq ifr; 3268 struct sbuf *sb; 3269 int error, full = 0, valid_len, max_len; 3270 3271 /* Limit initial buffer size to maxphys to avoid DoS from userspace. */ 3272 max_len = maxphys - 1; 3273 3274 /* Prevent hostile input from being able to crash the system */ 3275 if (ifc->ifc_len <= 0) 3276 return (EINVAL); 3277 3278 again: 3279 if (ifc->ifc_len <= max_len) { 3280 max_len = ifc->ifc_len; 3281 full = 1; 3282 } 3283 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 3284 max_len = 0; 3285 valid_len = 0; 3286 3287 IFNET_RLOCK(); 3288 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 3289 struct epoch_tracker et; 3290 int addrs; 3291 3292 /* 3293 * Zero the ifr to make sure we don't disclose the contents 3294 * of the stack. 3295 */ 3296 memset(&ifr, 0, sizeof(ifr)); 3297 3298 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 3299 >= sizeof(ifr.ifr_name)) { 3300 sbuf_delete(sb); 3301 IFNET_RUNLOCK(); 3302 return (ENAMETOOLONG); 3303 } 3304 3305 addrs = 0; 3306 NET_EPOCH_ENTER(et); 3307 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3308 struct sockaddr *sa = ifa->ifa_addr; 3309 3310 if (prison_if(curthread->td_ucred, sa) != 0) 3311 continue; 3312 addrs++; 3313 if (sa->sa_len <= sizeof(*sa)) { 3314 if (sa->sa_len < sizeof(*sa)) { 3315 memset(&ifr.ifr_ifru.ifru_addr, 0, 3316 sizeof(ifr.ifr_ifru.ifru_addr)); 3317 memcpy(&ifr.ifr_ifru.ifru_addr, sa, 3318 sa->sa_len); 3319 } else 3320 ifr.ifr_ifru.ifru_addr = *sa; 3321 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3322 max_len += sizeof(ifr); 3323 } else { 3324 sbuf_bcat(sb, &ifr, 3325 offsetof(struct ifreq, ifr_addr)); 3326 max_len += offsetof(struct ifreq, ifr_addr); 3327 sbuf_bcat(sb, sa, sa->sa_len); 3328 max_len += sa->sa_len; 3329 } 3330 3331 if (sbuf_error(sb) == 0) 3332 valid_len = sbuf_len(sb); 3333 } 3334 NET_EPOCH_EXIT(et); 3335 if (addrs == 0) { 3336 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3337 max_len += sizeof(ifr); 3338 3339 if (sbuf_error(sb) == 0) 3340 valid_len = sbuf_len(sb); 3341 } 3342 } 3343 IFNET_RUNLOCK(); 3344 3345 /* 3346 * If we didn't allocate enough space (uncommon), try again. If 3347 * we have already allocated as much space as we are allowed, 3348 * return what we've got. 3349 */ 3350 if (valid_len != max_len && !full) { 3351 sbuf_delete(sb); 3352 goto again; 3353 } 3354 3355 ifc->ifc_len = valid_len; 3356 sbuf_finish(sb); 3357 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 3358 sbuf_delete(sb); 3359 return (error); 3360 } 3361 3362 /* 3363 * Just like ifpromisc(), but for all-multicast-reception mode. 3364 */ 3365 int 3366 if_allmulti(struct ifnet *ifp, int onswitch) 3367 { 3368 3369 return (if_setflag(ifp, IFF_ALLMULTI, IFF_PALLMULTI, &ifp->if_amcount, 3370 onswitch)); 3371 } 3372 3373 struct ifmultiaddr * 3374 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) 3375 { 3376 struct ifmultiaddr *ifma; 3377 3378 IF_ADDR_LOCK_ASSERT(ifp); 3379 3380 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3381 if (sa->sa_family == AF_LINK) { 3382 if (sa_dl_equal(ifma->ifma_addr, sa)) 3383 break; 3384 } else { 3385 if (sa_equal(ifma->ifma_addr, sa)) 3386 break; 3387 } 3388 } 3389 3390 return ifma; 3391 } 3392 3393 /* 3394 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 3395 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 3396 * the ifnet multicast address list here, so the caller must do that and 3397 * other setup work (such as notifying the device driver). The reference 3398 * count is initialized to 1. 3399 */ 3400 static struct ifmultiaddr * 3401 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 3402 int mflags) 3403 { 3404 struct ifmultiaddr *ifma; 3405 struct sockaddr *dupsa; 3406 3407 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3408 M_ZERO); 3409 if (ifma == NULL) 3410 return (NULL); 3411 3412 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3413 if (dupsa == NULL) { 3414 free(ifma, M_IFMADDR); 3415 return (NULL); 3416 } 3417 bcopy(sa, dupsa, sa->sa_len); 3418 ifma->ifma_addr = dupsa; 3419 3420 ifma->ifma_ifp = ifp; 3421 ifma->ifma_refcount = 1; 3422 ifma->ifma_protospec = NULL; 3423 3424 if (llsa == NULL) { 3425 ifma->ifma_lladdr = NULL; 3426 return (ifma); 3427 } 3428 3429 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3430 if (dupsa == NULL) { 3431 free(ifma->ifma_addr, M_IFMADDR); 3432 free(ifma, M_IFMADDR); 3433 return (NULL); 3434 } 3435 bcopy(llsa, dupsa, llsa->sa_len); 3436 ifma->ifma_lladdr = dupsa; 3437 3438 return (ifma); 3439 } 3440 3441 /* 3442 * if_freemulti: free ifmultiaddr structure and possibly attached related 3443 * addresses. The caller is responsible for implementing reference 3444 * counting, notifying the driver, handling routing messages, and releasing 3445 * any dependent link layer state. 3446 */ 3447 #ifdef MCAST_VERBOSE 3448 extern void kdb_backtrace(void); 3449 #endif 3450 static void 3451 if_freemulti_internal(struct ifmultiaddr *ifma) 3452 { 3453 3454 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3455 ifma->ifma_refcount)); 3456 3457 if (ifma->ifma_lladdr != NULL) 3458 free(ifma->ifma_lladdr, M_IFMADDR); 3459 #ifdef MCAST_VERBOSE 3460 kdb_backtrace(); 3461 printf("%s freeing ifma: %p\n", __func__, ifma); 3462 #endif 3463 free(ifma->ifma_addr, M_IFMADDR); 3464 free(ifma, M_IFMADDR); 3465 } 3466 3467 static void 3468 if_destroymulti(epoch_context_t ctx) 3469 { 3470 struct ifmultiaddr *ifma; 3471 3472 ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx); 3473 if_freemulti_internal(ifma); 3474 } 3475 3476 void 3477 if_freemulti(struct ifmultiaddr *ifma) 3478 { 3479 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d", 3480 ifma->ifma_refcount)); 3481 3482 NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx); 3483 } 3484 3485 /* 3486 * Register an additional multicast address with a network interface. 3487 * 3488 * - If the address is already present, bump the reference count on the 3489 * address and return. 3490 * - If the address is not link-layer, look up a link layer address. 3491 * - Allocate address structures for one or both addresses, and attach to the 3492 * multicast address list on the interface. If automatically adding a link 3493 * layer address, the protocol address will own a reference to the link 3494 * layer address, to be freed when it is freed. 3495 * - Notify the network device driver of an addition to the multicast address 3496 * list. 3497 * 3498 * 'sa' points to caller-owned memory with the desired multicast address. 3499 * 3500 * 'retifma' will be used to return a pointer to the resulting multicast 3501 * address reference, if desired. 3502 */ 3503 int 3504 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3505 struct ifmultiaddr **retifma) 3506 { 3507 struct ifmultiaddr *ifma, *ll_ifma; 3508 struct sockaddr *llsa; 3509 struct sockaddr_dl sdl; 3510 int error; 3511 3512 #ifdef INET 3513 IN_MULTI_LIST_UNLOCK_ASSERT(); 3514 #endif 3515 #ifdef INET6 3516 IN6_MULTI_LIST_UNLOCK_ASSERT(); 3517 #endif 3518 /* 3519 * If the address is already present, return a new reference to it; 3520 * otherwise, allocate storage and set up a new address. 3521 */ 3522 IF_ADDR_WLOCK(ifp); 3523 ifma = if_findmulti(ifp, sa); 3524 if (ifma != NULL) { 3525 ifma->ifma_refcount++; 3526 if (retifma != NULL) 3527 *retifma = ifma; 3528 IF_ADDR_WUNLOCK(ifp); 3529 return (0); 3530 } 3531 3532 /* 3533 * The address isn't already present; resolve the protocol address 3534 * into a link layer address, and then look that up, bump its 3535 * refcount or allocate an ifma for that also. 3536 * Most link layer resolving functions returns address data which 3537 * fits inside default sockaddr_dl structure. However callback 3538 * can allocate another sockaddr structure, in that case we need to 3539 * free it later. 3540 */ 3541 llsa = NULL; 3542 ll_ifma = NULL; 3543 if (ifp->if_resolvemulti != NULL) { 3544 /* Provide called function with buffer size information */ 3545 sdl.sdl_len = sizeof(sdl); 3546 llsa = (struct sockaddr *)&sdl; 3547 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3548 if (error) 3549 goto unlock_out; 3550 } 3551 3552 /* 3553 * Allocate the new address. Don't hook it up yet, as we may also 3554 * need to allocate a link layer multicast address. 3555 */ 3556 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3557 if (ifma == NULL) { 3558 error = ENOMEM; 3559 goto free_llsa_out; 3560 } 3561 3562 /* 3563 * If a link layer address is found, we'll need to see if it's 3564 * already present in the address list, or allocate is as well. 3565 * When this block finishes, the link layer address will be on the 3566 * list. 3567 */ 3568 if (llsa != NULL) { 3569 ll_ifma = if_findmulti(ifp, llsa); 3570 if (ll_ifma == NULL) { 3571 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3572 if (ll_ifma == NULL) { 3573 --ifma->ifma_refcount; 3574 if_freemulti(ifma); 3575 error = ENOMEM; 3576 goto free_llsa_out; 3577 } 3578 ll_ifma->ifma_flags |= IFMA_F_ENQUEUED; 3579 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3580 ifma_link); 3581 } else 3582 ll_ifma->ifma_refcount++; 3583 ifma->ifma_llifma = ll_ifma; 3584 } 3585 3586 /* 3587 * We now have a new multicast address, ifma, and possibly a new or 3588 * referenced link layer address. Add the primary address to the 3589 * ifnet address list. 3590 */ 3591 ifma->ifma_flags |= IFMA_F_ENQUEUED; 3592 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3593 3594 if (retifma != NULL) 3595 *retifma = ifma; 3596 3597 /* 3598 * Must generate the message while holding the lock so that 'ifma' 3599 * pointer is still valid. 3600 */ 3601 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3602 IF_ADDR_WUNLOCK(ifp); 3603 3604 /* 3605 * We are certain we have added something, so call down to the 3606 * interface to let them know about it. 3607 */ 3608 if (ifp->if_ioctl != NULL) { 3609 if (THREAD_CAN_SLEEP()) 3610 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3611 else 3612 taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask); 3613 } 3614 3615 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3616 link_free_sdl(llsa); 3617 3618 return (0); 3619 3620 free_llsa_out: 3621 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3622 link_free_sdl(llsa); 3623 3624 unlock_out: 3625 IF_ADDR_WUNLOCK(ifp); 3626 return (error); 3627 } 3628 3629 static void 3630 if_siocaddmulti(void *arg, int pending) 3631 { 3632 struct ifnet *ifp; 3633 3634 ifp = arg; 3635 #ifdef DIAGNOSTIC 3636 if (pending > 1) 3637 if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending); 3638 #endif 3639 CURVNET_SET(ifp->if_vnet); 3640 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3641 CURVNET_RESTORE(); 3642 } 3643 3644 /* 3645 * Delete a multicast group membership by network-layer group address. 3646 * 3647 * Returns ENOENT if the entry could not be found. If ifp no longer 3648 * exists, results are undefined. This entry point should only be used 3649 * from subsystems which do appropriate locking to hold ifp for the 3650 * duration of the call. 3651 * Network-layer protocol domains must use if_delmulti_ifma(). 3652 */ 3653 int 3654 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3655 { 3656 struct ifmultiaddr *ifma; 3657 int lastref; 3658 3659 KASSERT(ifp, ("%s: NULL ifp", __func__)); 3660 3661 IF_ADDR_WLOCK(ifp); 3662 lastref = 0; 3663 ifma = if_findmulti(ifp, sa); 3664 if (ifma != NULL) 3665 lastref = if_delmulti_locked(ifp, ifma, 0); 3666 IF_ADDR_WUNLOCK(ifp); 3667 3668 if (ifma == NULL) 3669 return (ENOENT); 3670 3671 if (lastref && ifp->if_ioctl != NULL) { 3672 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3673 } 3674 3675 return (0); 3676 } 3677 3678 /* 3679 * Delete all multicast group membership for an interface. 3680 * Should be used to quickly flush all multicast filters. 3681 */ 3682 void 3683 if_delallmulti(struct ifnet *ifp) 3684 { 3685 struct ifmultiaddr *ifma; 3686 struct ifmultiaddr *next; 3687 3688 IF_ADDR_WLOCK(ifp); 3689 CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3690 if_delmulti_locked(ifp, ifma, 0); 3691 IF_ADDR_WUNLOCK(ifp); 3692 } 3693 3694 void 3695 if_delmulti_ifma(struct ifmultiaddr *ifma) 3696 { 3697 if_delmulti_ifma_flags(ifma, 0); 3698 } 3699 3700 /* 3701 * Delete a multicast group membership by group membership pointer. 3702 * Network-layer protocol domains must use this routine. 3703 * 3704 * It is safe to call this routine if the ifp disappeared. 3705 */ 3706 void 3707 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags) 3708 { 3709 struct ifnet *ifp; 3710 int lastref; 3711 MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma); 3712 #ifdef INET 3713 IN_MULTI_LIST_UNLOCK_ASSERT(); 3714 #endif 3715 ifp = ifma->ifma_ifp; 3716 #ifdef DIAGNOSTIC 3717 if (ifp == NULL) { 3718 printf("%s: ifma_ifp seems to be detached\n", __func__); 3719 } else { 3720 struct epoch_tracker et; 3721 struct ifnet *oifp; 3722 3723 NET_EPOCH_ENTER(et); 3724 CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link) 3725 if (ifp == oifp) 3726 break; 3727 NET_EPOCH_EXIT(et); 3728 if (ifp != oifp) 3729 ifp = NULL; 3730 } 3731 #endif 3732 /* 3733 * If and only if the ifnet instance exists: Acquire the address lock. 3734 */ 3735 if (ifp != NULL) 3736 IF_ADDR_WLOCK(ifp); 3737 3738 lastref = if_delmulti_locked(ifp, ifma, flags); 3739 3740 if (ifp != NULL) { 3741 /* 3742 * If and only if the ifnet instance exists: 3743 * Release the address lock. 3744 * If the group was left: update the hardware hash filter. 3745 */ 3746 IF_ADDR_WUNLOCK(ifp); 3747 if (lastref && ifp->if_ioctl != NULL) { 3748 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3749 } 3750 } 3751 } 3752 3753 /* 3754 * Perform deletion of network-layer and/or link-layer multicast address. 3755 * 3756 * Return 0 if the reference count was decremented. 3757 * Return 1 if the final reference was released, indicating that the 3758 * hardware hash filter should be reprogrammed. 3759 */ 3760 static int 3761 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3762 { 3763 struct ifmultiaddr *ll_ifma; 3764 3765 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3766 KASSERT(ifma->ifma_ifp == ifp, 3767 ("%s: inconsistent ifp %p", __func__, ifp)); 3768 IF_ADDR_WLOCK_ASSERT(ifp); 3769 } 3770 3771 ifp = ifma->ifma_ifp; 3772 MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : ""); 3773 3774 /* 3775 * If the ifnet is detaching, null out references to ifnet, 3776 * so that upper protocol layers will notice, and not attempt 3777 * to obtain locks for an ifnet which no longer exists. The 3778 * routing socket announcement must happen before the ifnet 3779 * instance is detached from the system. 3780 */ 3781 if (detaching) { 3782 #ifdef DIAGNOSTIC 3783 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3784 #endif 3785 /* 3786 * ifp may already be nulled out if we are being reentered 3787 * to delete the ll_ifma. 3788 */ 3789 if (ifp != NULL) { 3790 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3791 ifma->ifma_ifp = NULL; 3792 } 3793 } 3794 3795 if (--ifma->ifma_refcount > 0) 3796 return 0; 3797 3798 if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) { 3799 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 3800 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3801 } 3802 /* 3803 * If this ifma is a network-layer ifma, a link-layer ifma may 3804 * have been associated with it. Release it first if so. 3805 */ 3806 ll_ifma = ifma->ifma_llifma; 3807 if (ll_ifma != NULL) { 3808 KASSERT(ifma->ifma_lladdr != NULL, 3809 ("%s: llifma w/o lladdr", __func__)); 3810 if (detaching) 3811 ll_ifma->ifma_ifp = NULL; /* XXX */ 3812 if (--ll_ifma->ifma_refcount == 0) { 3813 if (ifp != NULL) { 3814 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 3815 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, 3816 ifma_link); 3817 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3818 } 3819 } 3820 if_freemulti(ll_ifma); 3821 } 3822 } 3823 #ifdef INVARIANTS 3824 if (ifp) { 3825 struct ifmultiaddr *ifmatmp; 3826 3827 CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link) 3828 MPASS(ifma != ifmatmp); 3829 } 3830 #endif 3831 if_freemulti(ifma); 3832 /* 3833 * The last reference to this instance of struct ifmultiaddr 3834 * was released; the hardware should be notified of this change. 3835 */ 3836 return 1; 3837 } 3838 3839 /* 3840 * Set the link layer address on an interface. 3841 * 3842 * At this time we only support certain types of interfaces, 3843 * and we don't allow the length of the address to change. 3844 * 3845 * Set noinline to be dtrace-friendly 3846 */ 3847 __noinline int 3848 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3849 { 3850 struct sockaddr_dl *sdl; 3851 struct ifaddr *ifa; 3852 struct ifreq ifr; 3853 3854 ifa = ifp->if_addr; 3855 if (ifa == NULL) 3856 return (EINVAL); 3857 3858 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3859 if (sdl == NULL) 3860 return (EINVAL); 3861 3862 if (len != sdl->sdl_alen) /* don't allow length to change */ 3863 return (EINVAL); 3864 3865 switch (ifp->if_type) { 3866 case IFT_ETHER: 3867 case IFT_XETHER: 3868 case IFT_L2VLAN: 3869 case IFT_BRIDGE: 3870 case IFT_IEEE8023ADLAG: 3871 bcopy(lladdr, LLADDR(sdl), len); 3872 break; 3873 default: 3874 return (ENODEV); 3875 } 3876 3877 /* 3878 * If the interface is already up, we need 3879 * to re-init it in order to reprogram its 3880 * address filter. 3881 */ 3882 if ((ifp->if_flags & IFF_UP) != 0) { 3883 if (ifp->if_ioctl) { 3884 ifp->if_flags &= ~IFF_UP; 3885 ifr.ifr_flags = ifp->if_flags & 0xffff; 3886 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3887 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3888 ifp->if_flags |= IFF_UP; 3889 ifr.ifr_flags = ifp->if_flags & 0xffff; 3890 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3891 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3892 } 3893 } 3894 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 3895 3896 return (0); 3897 } 3898 3899 /* 3900 * Compat function for handling basic encapsulation requests. 3901 * Not converted stacks (FDDI, IB, ..) supports traditional 3902 * output model: ARP (and other similar L2 protocols) are handled 3903 * inside output routine, arpresolve/nd6_resolve() returns MAC 3904 * address instead of full prepend. 3905 * 3906 * This function creates calculated header==MAC for IPv4/IPv6 and 3907 * returns EAFNOSUPPORT (which is then handled in ARP code) for other 3908 * address families. 3909 */ 3910 static int 3911 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) 3912 { 3913 if (req->rtype != IFENCAP_LL) 3914 return (EOPNOTSUPP); 3915 3916 if (req->bufsize < req->lladdr_len) 3917 return (ENOMEM); 3918 3919 switch (req->family) { 3920 case AF_INET: 3921 case AF_INET6: 3922 break; 3923 default: 3924 return (EAFNOSUPPORT); 3925 } 3926 3927 /* Copy lladdr to storage as is */ 3928 memmove(req->buf, req->lladdr, req->lladdr_len); 3929 req->bufsize = req->lladdr_len; 3930 req->lladdr_off = 0; 3931 3932 return (0); 3933 } 3934 3935 /* 3936 * Tunnel interfaces can nest, also they may cause infinite recursion 3937 * calls when misconfigured. We'll prevent this by detecting loops. 3938 * High nesting level may cause stack exhaustion. We'll prevent this 3939 * by introducing upper limit. 3940 * 3941 * Return 0, if tunnel nesting count is equal or less than limit. 3942 */ 3943 int 3944 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie, 3945 int limit) 3946 { 3947 struct m_tag *mtag; 3948 int count; 3949 3950 count = 1; 3951 mtag = NULL; 3952 while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) { 3953 if (*(struct ifnet **)(mtag + 1) == ifp) { 3954 log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp)); 3955 return (EIO); 3956 } 3957 count++; 3958 } 3959 if (count > limit) { 3960 log(LOG_NOTICE, 3961 "%s: if_output recursively called too many times(%d)\n", 3962 if_name(ifp), count); 3963 return (EIO); 3964 } 3965 mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT); 3966 if (mtag == NULL) 3967 return (ENOMEM); 3968 *(struct ifnet **)(mtag + 1) = ifp; 3969 m_tag_prepend(m, mtag); 3970 return (0); 3971 } 3972 3973 /* 3974 * Get the link layer address that was read from the hardware at attach. 3975 * 3976 * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type 3977 * their component interfaces as IFT_IEEE8023ADLAG. 3978 */ 3979 int 3980 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr) 3981 { 3982 if (ifp->if_hw_addr == NULL) 3983 return (ENODEV); 3984 3985 switch (ifp->if_type) { 3986 case IFT_ETHER: 3987 case IFT_IEEE8023ADLAG: 3988 bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen); 3989 return (0); 3990 default: 3991 return (ENODEV); 3992 } 3993 } 3994 3995 /* 3996 * The name argument must be a pointer to storage which will last as 3997 * long as the interface does. For physical devices, the result of 3998 * device_get_name(dev) is a good choice and for pseudo-devices a 3999 * static string works well. 4000 */ 4001 void 4002 if_initname(struct ifnet *ifp, const char *name, int unit) 4003 { 4004 ifp->if_dname = name; 4005 ifp->if_dunit = unit; 4006 if (unit != IF_DUNIT_NONE) 4007 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 4008 else 4009 strlcpy(ifp->if_xname, name, IFNAMSIZ); 4010 } 4011 4012 static int 4013 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap) 4014 { 4015 char if_fmt[256]; 4016 4017 snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt); 4018 vlog(pri, if_fmt, ap); 4019 return (0); 4020 } 4021 4022 4023 int 4024 if_printf(struct ifnet *ifp, const char *fmt, ...) 4025 { 4026 va_list ap; 4027 4028 va_start(ap, fmt); 4029 if_vlog(ifp, LOG_INFO, fmt, ap); 4030 va_end(ap); 4031 return (0); 4032 } 4033 4034 int 4035 if_log(struct ifnet *ifp, int pri, const char *fmt, ...) 4036 { 4037 va_list ap; 4038 4039 va_start(ap, fmt); 4040 if_vlog(ifp, pri, fmt, ap); 4041 va_end(ap); 4042 return (0); 4043 } 4044 4045 void 4046 if_start(struct ifnet *ifp) 4047 { 4048 4049 (*(ifp)->if_start)(ifp); 4050 } 4051 4052 /* 4053 * Backwards compatibility interface for drivers 4054 * that have not implemented it 4055 */ 4056 static int 4057 if_transmit_default(struct ifnet *ifp, struct mbuf *m) 4058 { 4059 int error; 4060 4061 IFQ_HANDOFF(ifp, m, error); 4062 return (error); 4063 } 4064 4065 static void 4066 if_input_default(struct ifnet *ifp __unused, struct mbuf *m) 4067 { 4068 m_freem(m); 4069 } 4070 4071 int 4072 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 4073 { 4074 int active = 0; 4075 4076 IF_LOCK(ifq); 4077 if (_IF_QFULL(ifq)) { 4078 IF_UNLOCK(ifq); 4079 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 4080 m_freem(m); 4081 return (0); 4082 } 4083 if (ifp != NULL) { 4084 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 4085 if (m->m_flags & (M_BCAST|M_MCAST)) 4086 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4087 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 4088 } 4089 _IF_ENQUEUE(ifq, m); 4090 IF_UNLOCK(ifq); 4091 if (ifp != NULL && !active) 4092 (*(ifp)->if_start)(ifp); 4093 return (1); 4094 } 4095 4096 void 4097 if_register_com_alloc(u_char type, 4098 if_com_alloc_t *a, if_com_free_t *f) 4099 { 4100 4101 KASSERT(if_com_alloc[type] == NULL, 4102 ("if_register_com_alloc: %d already registered", type)); 4103 KASSERT(if_com_free[type] == NULL, 4104 ("if_register_com_alloc: %d free already registered", type)); 4105 4106 if_com_alloc[type] = a; 4107 if_com_free[type] = f; 4108 } 4109 4110 void 4111 if_deregister_com_alloc(u_char type) 4112 { 4113 4114 KASSERT(if_com_alloc[type] != NULL, 4115 ("if_deregister_com_alloc: %d not registered", type)); 4116 KASSERT(if_com_free[type] != NULL, 4117 ("if_deregister_com_alloc: %d free not registered", type)); 4118 4119 /* 4120 * Ensure all pending EPOCH(9) callbacks have been executed. This 4121 * fixes issues about late invocation of if_destroy(), which leads 4122 * to memory leak from if_com_alloc[type] allocated if_l2com. 4123 */ 4124 NET_EPOCH_DRAIN_CALLBACKS(); 4125 4126 if_com_alloc[type] = NULL; 4127 if_com_free[type] = NULL; 4128 } 4129 4130 /* API for driver access to network stack owned ifnet.*/ 4131 uint64_t 4132 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 4133 { 4134 uint64_t oldbrate; 4135 4136 oldbrate = ifp->if_baudrate; 4137 ifp->if_baudrate = baudrate; 4138 return (oldbrate); 4139 } 4140 4141 uint64_t 4142 if_getbaudrate(const if_t ifp) 4143 { 4144 return (ifp->if_baudrate); 4145 } 4146 4147 int 4148 if_setcapabilities(if_t ifp, int capabilities) 4149 { 4150 ifp->if_capabilities = capabilities; 4151 return (0); 4152 } 4153 4154 int 4155 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 4156 { 4157 ifp->if_capabilities &= ~clearbit; 4158 ifp->if_capabilities |= setbit; 4159 return (0); 4160 } 4161 4162 int 4163 if_getcapabilities(const if_t ifp) 4164 { 4165 return (ifp->if_capabilities); 4166 } 4167 4168 int 4169 if_setcapenable(if_t ifp, int capabilities) 4170 { 4171 ifp->if_capenable = capabilities; 4172 return (0); 4173 } 4174 4175 int 4176 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 4177 { 4178 ifp->if_capenable &= ~clearcap; 4179 ifp->if_capenable |= setcap; 4180 return (0); 4181 } 4182 4183 int 4184 if_setcapabilities2(if_t ifp, int capabilities) 4185 { 4186 ifp->if_capabilities2 = capabilities; 4187 return (0); 4188 } 4189 4190 int 4191 if_setcapabilities2bit(if_t ifp, int setbit, int clearbit) 4192 { 4193 ifp->if_capabilities2 &= ~clearbit; 4194 ifp->if_capabilities2 |= setbit; 4195 return (0); 4196 } 4197 4198 int 4199 if_getcapabilities2(const if_t ifp) 4200 { 4201 return (ifp->if_capabilities2); 4202 } 4203 4204 int 4205 if_setcapenable2(if_t ifp, int capabilities2) 4206 { 4207 ifp->if_capenable2 = capabilities2; 4208 return (0); 4209 } 4210 4211 int 4212 if_setcapenable2bit(if_t ifp, int setcap, int clearcap) 4213 { 4214 ifp->if_capenable2 &= ~clearcap; 4215 ifp->if_capenable2 |= setcap; 4216 return (0); 4217 } 4218 4219 const char * 4220 if_getdname(const if_t ifp) 4221 { 4222 return (ifp->if_dname); 4223 } 4224 4225 void 4226 if_setdname(if_t ifp, const char *dname) 4227 { 4228 ifp->if_dname = dname; 4229 } 4230 4231 const char * 4232 if_name(if_t ifp) 4233 { 4234 return (ifp->if_xname); 4235 } 4236 4237 int 4238 if_setname(if_t ifp, const char *name) 4239 { 4240 if (strlen(name) > sizeof(ifp->if_xname) - 1) 4241 return (ENAMETOOLONG); 4242 strcpy(ifp->if_xname, name); 4243 4244 return (0); 4245 } 4246 4247 int 4248 if_togglecapenable(if_t ifp, int togglecap) 4249 { 4250 ifp->if_capenable ^= togglecap; 4251 return (0); 4252 } 4253 4254 int 4255 if_getcapenable(const if_t ifp) 4256 { 4257 return (ifp->if_capenable); 4258 } 4259 4260 int 4261 if_togglecapenable2(if_t ifp, int togglecap) 4262 { 4263 ifp->if_capenable2 ^= togglecap; 4264 return (0); 4265 } 4266 4267 int 4268 if_getcapenable2(const if_t ifp) 4269 { 4270 return (ifp->if_capenable2); 4271 } 4272 4273 int 4274 if_getdunit(const if_t ifp) 4275 { 4276 return (ifp->if_dunit); 4277 } 4278 4279 int 4280 if_getindex(const if_t ifp) 4281 { 4282 return (ifp->if_index); 4283 } 4284 4285 int 4286 if_getidxgen(const if_t ifp) 4287 { 4288 return (ifp->if_idxgen); 4289 } 4290 4291 const char * 4292 if_getdescr(if_t ifp) 4293 { 4294 return (ifp->if_description); 4295 } 4296 4297 void 4298 if_setdescr(if_t ifp, char *descrbuf) 4299 { 4300 sx_xlock(&ifdescr_sx); 4301 char *odescrbuf = ifp->if_description; 4302 ifp->if_description = descrbuf; 4303 sx_xunlock(&ifdescr_sx); 4304 4305 if_freedescr(odescrbuf); 4306 } 4307 4308 char * 4309 if_allocdescr(size_t sz, int malloc_flag) 4310 { 4311 malloc_flag &= (M_WAITOK | M_NOWAIT); 4312 return (malloc(sz, M_IFDESCR, M_ZERO | malloc_flag)); 4313 } 4314 4315 void 4316 if_freedescr(char *descrbuf) 4317 { 4318 free(descrbuf, M_IFDESCR); 4319 } 4320 4321 int 4322 if_getalloctype(const if_t ifp) 4323 { 4324 return (ifp->if_alloctype); 4325 } 4326 4327 void 4328 if_setlastchange(if_t ifp) 4329 { 4330 getmicrotime(&ifp->if_lastchange); 4331 } 4332 4333 /* 4334 * This is largely undesirable because it ties ifnet to a device, but does 4335 * provide flexiblity for an embedded product vendor. Should be used with 4336 * the understanding that it violates the interface boundaries, and should be 4337 * a last resort only. 4338 */ 4339 int 4340 if_setdev(if_t ifp, void *dev) 4341 { 4342 return (0); 4343 } 4344 4345 int 4346 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 4347 { 4348 ifp->if_drv_flags &= ~clear_flags; 4349 ifp->if_drv_flags |= set_flags; 4350 4351 return (0); 4352 } 4353 4354 int 4355 if_getdrvflags(const if_t ifp) 4356 { 4357 return (ifp->if_drv_flags); 4358 } 4359 4360 int 4361 if_setdrvflags(if_t ifp, int flags) 4362 { 4363 ifp->if_drv_flags = flags; 4364 return (0); 4365 } 4366 4367 int 4368 if_setflags(if_t ifp, int flags) 4369 { 4370 ifp->if_flags = flags; 4371 return (0); 4372 } 4373 4374 int 4375 if_setflagbits(if_t ifp, int set, int clear) 4376 { 4377 ifp->if_flags &= ~clear; 4378 ifp->if_flags |= set; 4379 return (0); 4380 } 4381 4382 int 4383 if_getflags(const if_t ifp) 4384 { 4385 return (ifp->if_flags); 4386 } 4387 4388 int 4389 if_clearhwassist(if_t ifp) 4390 { 4391 ifp->if_hwassist = 0; 4392 return (0); 4393 } 4394 4395 int 4396 if_sethwassistbits(if_t ifp, int toset, int toclear) 4397 { 4398 ifp->if_hwassist &= ~toclear; 4399 ifp->if_hwassist |= toset; 4400 4401 return (0); 4402 } 4403 4404 int 4405 if_sethwassist(if_t ifp, int hwassist_bit) 4406 { 4407 ifp->if_hwassist = hwassist_bit; 4408 return (0); 4409 } 4410 4411 int 4412 if_gethwassist(const if_t ifp) 4413 { 4414 return (ifp->if_hwassist); 4415 } 4416 4417 int 4418 if_togglehwassist(if_t ifp, int toggle_bits) 4419 { 4420 ifp->if_hwassist ^= toggle_bits; 4421 return (0); 4422 } 4423 4424 int 4425 if_setmtu(if_t ifp, int mtu) 4426 { 4427 ifp->if_mtu = mtu; 4428 return (0); 4429 } 4430 4431 void 4432 if_notifymtu(if_t ifp) 4433 { 4434 #ifdef INET6 4435 nd6_setmtu(ifp); 4436 #endif 4437 rt_updatemtu(ifp); 4438 } 4439 4440 int 4441 if_getmtu(const if_t ifp) 4442 { 4443 return (ifp->if_mtu); 4444 } 4445 4446 int 4447 if_getmtu_family(const if_t ifp, int family) 4448 { 4449 struct domain *dp; 4450 4451 SLIST_FOREACH(dp, &domains, dom_next) { 4452 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 4453 return (dp->dom_ifmtu(ifp)); 4454 } 4455 4456 return (ifp->if_mtu); 4457 } 4458 4459 /* 4460 * Methods for drivers to access interface unicast and multicast 4461 * link level addresses. Driver shall not know 'struct ifaddr' neither 4462 * 'struct ifmultiaddr'. 4463 */ 4464 u_int 4465 if_lladdr_count(if_t ifp) 4466 { 4467 struct epoch_tracker et; 4468 struct ifaddr *ifa; 4469 u_int count; 4470 4471 count = 0; 4472 NET_EPOCH_ENTER(et); 4473 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 4474 if (ifa->ifa_addr->sa_family == AF_LINK) 4475 count++; 4476 NET_EPOCH_EXIT(et); 4477 4478 return (count); 4479 } 4480 4481 int 4482 if_foreach(if_foreach_cb_t cb, void *cb_arg) 4483 { 4484 if_t ifp; 4485 int error; 4486 4487 NET_EPOCH_ASSERT(); 4488 MPASS(cb); 4489 4490 error = 0; 4491 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 4492 error = cb(ifp, cb_arg); 4493 if (error != 0) 4494 break; 4495 } 4496 4497 return (error); 4498 } 4499 4500 /* 4501 * Iterates over the list of interfaces, permitting callback function @cb to sleep. 4502 * Stops iteration if @cb returns non-zero error code. 4503 * Returns the last error code from @cb. 4504 * @match_cb: optional match callback limiting the iteration to only matched interfaces 4505 * @match_arg: argument to pass to @match_cb 4506 * @cb: iteration callback 4507 * @cb_arg: argument to pass to @cb 4508 */ 4509 int 4510 if_foreach_sleep(if_foreach_match_t match_cb, void *match_arg, if_foreach_cb_t cb, 4511 void *cb_arg) 4512 { 4513 int match_count = 0, array_size = 16; /* 128 bytes for malloc */ 4514 struct ifnet **match_array = NULL; 4515 int error = 0; 4516 4517 MPASS(cb); 4518 4519 while (true) { 4520 struct ifnet **new_array; 4521 int new_size = array_size; 4522 struct epoch_tracker et; 4523 struct ifnet *ifp; 4524 4525 while (new_size < match_count) 4526 new_size *= 2; 4527 new_array = malloc(new_size * sizeof(void *), M_TEMP, M_WAITOK); 4528 if (match_array != NULL) 4529 memcpy(new_array, match_array, array_size * sizeof(void *)); 4530 free(match_array, M_TEMP); 4531 match_array = new_array; 4532 array_size = new_size; 4533 4534 match_count = 0; 4535 NET_EPOCH_ENTER(et); 4536 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 4537 if (match_cb != NULL && !match_cb(ifp, match_arg)) 4538 continue; 4539 if (match_count < array_size) { 4540 if (if_try_ref(ifp)) 4541 match_array[match_count++] = ifp; 4542 } else 4543 match_count++; 4544 } 4545 NET_EPOCH_EXIT(et); 4546 4547 if (match_count > array_size) { 4548 for (int i = 0; i < array_size; i++) 4549 if_rele(match_array[i]); 4550 continue; 4551 } else { 4552 for (int i = 0; i < match_count; i++) { 4553 if (error == 0) 4554 error = cb(match_array[i], cb_arg); 4555 if_rele(match_array[i]); 4556 } 4557 free(match_array, M_TEMP); 4558 break; 4559 } 4560 } 4561 4562 return (error); 4563 } 4564 4565 4566 /* 4567 * Uses just 1 pointer of the 4 available in the public struct. 4568 */ 4569 if_t 4570 if_iter_start(struct if_iter *iter) 4571 { 4572 if_t ifp; 4573 4574 NET_EPOCH_ASSERT(); 4575 4576 bzero(iter, sizeof(*iter)); 4577 ifp = CK_STAILQ_FIRST(&V_ifnet); 4578 if (ifp != NULL) 4579 iter->context[0] = CK_STAILQ_NEXT(ifp, if_link); 4580 else 4581 iter->context[0] = NULL; 4582 return (ifp); 4583 } 4584 4585 if_t 4586 if_iter_next(struct if_iter *iter) 4587 { 4588 if_t cur_ifp = iter->context[0]; 4589 4590 if (cur_ifp != NULL) 4591 iter->context[0] = CK_STAILQ_NEXT(cur_ifp, if_link); 4592 return (cur_ifp); 4593 } 4594 4595 void 4596 if_iter_finish(struct if_iter *iter) 4597 { 4598 /* Nothing to do here for now. */ 4599 } 4600 4601 u_int 4602 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4603 { 4604 struct epoch_tracker et; 4605 struct ifaddr *ifa; 4606 u_int count; 4607 4608 MPASS(cb); 4609 4610 count = 0; 4611 NET_EPOCH_ENTER(et); 4612 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4613 if (ifa->ifa_addr->sa_family != AF_LINK) 4614 continue; 4615 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr, 4616 count); 4617 } 4618 NET_EPOCH_EXIT(et); 4619 4620 return (count); 4621 } 4622 4623 u_int 4624 if_llmaddr_count(if_t ifp) 4625 { 4626 struct epoch_tracker et; 4627 struct ifmultiaddr *ifma; 4628 int count; 4629 4630 count = 0; 4631 NET_EPOCH_ENTER(et); 4632 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 4633 if (ifma->ifma_addr->sa_family == AF_LINK) 4634 count++; 4635 NET_EPOCH_EXIT(et); 4636 4637 return (count); 4638 } 4639 4640 bool 4641 if_maddr_empty(if_t ifp) 4642 { 4643 4644 return (CK_STAILQ_EMPTY(&ifp->if_multiaddrs)); 4645 } 4646 4647 u_int 4648 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4649 { 4650 struct epoch_tracker et; 4651 struct ifmultiaddr *ifma; 4652 u_int count; 4653 4654 MPASS(cb); 4655 4656 count = 0; 4657 NET_EPOCH_ENTER(et); 4658 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 4659 if (ifma->ifma_addr->sa_family != AF_LINK) 4660 continue; 4661 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr, 4662 count); 4663 } 4664 NET_EPOCH_EXIT(et); 4665 4666 return (count); 4667 } 4668 4669 u_int 4670 if_foreach_addr_type(if_t ifp, int type, if_addr_cb_t cb, void *cb_arg) 4671 { 4672 struct epoch_tracker et; 4673 struct ifaddr *ifa; 4674 u_int count; 4675 4676 MPASS(cb); 4677 4678 count = 0; 4679 NET_EPOCH_ENTER(et); 4680 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4681 if (ifa->ifa_addr->sa_family != type) 4682 continue; 4683 count += (*cb)(cb_arg, ifa, count); 4684 } 4685 NET_EPOCH_EXIT(et); 4686 4687 return (count); 4688 } 4689 4690 struct ifaddr * 4691 ifa_iter_start(if_t ifp, struct ifa_iter *iter) 4692 { 4693 struct ifaddr *ifa; 4694 4695 NET_EPOCH_ASSERT(); 4696 4697 bzero(iter, sizeof(*iter)); 4698 ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); 4699 if (ifa != NULL) 4700 iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link); 4701 else 4702 iter->context[0] = NULL; 4703 return (ifa); 4704 } 4705 4706 struct ifaddr * 4707 ifa_iter_next(struct ifa_iter *iter) 4708 { 4709 struct ifaddr *ifa = iter->context[0]; 4710 4711 if (ifa != NULL) 4712 iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link); 4713 return (ifa); 4714 } 4715 4716 void 4717 ifa_iter_finish(struct ifa_iter *iter) 4718 { 4719 /* Nothing to do here for now. */ 4720 } 4721 4722 int 4723 if_setsoftc(if_t ifp, void *softc) 4724 { 4725 ifp->if_softc = softc; 4726 return (0); 4727 } 4728 4729 void * 4730 if_getsoftc(const if_t ifp) 4731 { 4732 return (ifp->if_softc); 4733 } 4734 4735 void 4736 if_setrcvif(struct mbuf *m, if_t ifp) 4737 { 4738 4739 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 4740 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 4741 } 4742 4743 void 4744 if_setvtag(struct mbuf *m, uint16_t tag) 4745 { 4746 m->m_pkthdr.ether_vtag = tag; 4747 } 4748 4749 uint16_t 4750 if_getvtag(struct mbuf *m) 4751 { 4752 return (m->m_pkthdr.ether_vtag); 4753 } 4754 4755 int 4756 if_sendq_empty(if_t ifp) 4757 { 4758 return (IFQ_DRV_IS_EMPTY(&ifp->if_snd)); 4759 } 4760 4761 struct ifaddr * 4762 if_getifaddr(const if_t ifp) 4763 { 4764 return (ifp->if_addr); 4765 } 4766 4767 int 4768 if_setsendqready(if_t ifp) 4769 { 4770 IFQ_SET_READY(&ifp->if_snd); 4771 return (0); 4772 } 4773 4774 int 4775 if_setsendqlen(if_t ifp, int tx_desc_count) 4776 { 4777 IFQ_SET_MAXLEN(&ifp->if_snd, tx_desc_count); 4778 ifp->if_snd.ifq_drv_maxlen = tx_desc_count; 4779 return (0); 4780 } 4781 4782 void 4783 if_setnetmapadapter(if_t ifp, struct netmap_adapter *na) 4784 { 4785 ifp->if_netmap = na; 4786 } 4787 4788 struct netmap_adapter * 4789 if_getnetmapadapter(if_t ifp) 4790 { 4791 return (ifp->if_netmap); 4792 } 4793 4794 int 4795 if_vlantrunkinuse(if_t ifp) 4796 { 4797 return (ifp->if_vlantrunk != NULL); 4798 } 4799 4800 void 4801 if_init(if_t ifp, void *ctx) 4802 { 4803 (*ifp->if_init)(ctx); 4804 } 4805 4806 void 4807 if_input(if_t ifp, struct mbuf* sendmp) 4808 { 4809 (*ifp->if_input)(ifp, sendmp); 4810 } 4811 4812 int 4813 if_transmit(if_t ifp, struct mbuf *m) 4814 { 4815 return ((*ifp->if_transmit)(ifp, m)); 4816 } 4817 4818 int 4819 if_resolvemulti(if_t ifp, struct sockaddr **srcs, struct sockaddr *dst) 4820 { 4821 if (ifp->if_resolvemulti == NULL) 4822 return (EOPNOTSUPP); 4823 4824 return (ifp->if_resolvemulti(ifp, srcs, dst)); 4825 } 4826 4827 int 4828 if_ioctl(if_t ifp, u_long cmd, void *data) 4829 { 4830 if (ifp->if_ioctl == NULL) 4831 return (EOPNOTSUPP); 4832 4833 return (ifp->if_ioctl(ifp, cmd, data)); 4834 } 4835 4836 struct mbuf * 4837 if_dequeue(if_t ifp) 4838 { 4839 struct mbuf *m; 4840 4841 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 4842 return (m); 4843 } 4844 4845 int 4846 if_sendq_prepend(if_t ifp, struct mbuf *m) 4847 { 4848 IFQ_DRV_PREPEND(&ifp->if_snd, m); 4849 return (0); 4850 } 4851 4852 int 4853 if_setifheaderlen(if_t ifp, int len) 4854 { 4855 ifp->if_hdrlen = len; 4856 return (0); 4857 } 4858 4859 char * 4860 if_getlladdr(const if_t ifp) 4861 { 4862 return (IF_LLADDR(ifp)); 4863 } 4864 4865 void * 4866 if_gethandle(u_char type) 4867 { 4868 return (if_alloc(type)); 4869 } 4870 4871 void 4872 if_vlancap(if_t ifp) 4873 { 4874 VLAN_CAPABILITIES(ifp); 4875 } 4876 4877 int 4878 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax) 4879 { 4880 ifp->if_hw_tsomax = if_hw_tsomax; 4881 return (0); 4882 } 4883 4884 int 4885 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount) 4886 { 4887 ifp->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount; 4888 return (0); 4889 } 4890 4891 int 4892 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize) 4893 { 4894 ifp->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize; 4895 return (0); 4896 } 4897 4898 u_int 4899 if_gethwtsomax(const if_t ifp) 4900 { 4901 return (ifp->if_hw_tsomax); 4902 } 4903 4904 u_int 4905 if_gethwtsomaxsegcount(const if_t ifp) 4906 { 4907 return (ifp->if_hw_tsomaxsegcount); 4908 } 4909 4910 u_int 4911 if_gethwtsomaxsegsize(const if_t ifp) 4912 { 4913 return (ifp->if_hw_tsomaxsegsize); 4914 } 4915 4916 void 4917 if_setinitfn(if_t ifp, if_init_fn_t init_fn) 4918 { 4919 ifp->if_init = init_fn; 4920 } 4921 4922 void 4923 if_setinputfn(if_t ifp, if_input_fn_t input_fn) 4924 { 4925 ifp->if_input = input_fn; 4926 } 4927 4928 if_input_fn_t 4929 if_getinputfn(if_t ifp) 4930 { 4931 return (ifp->if_input); 4932 } 4933 4934 void 4935 if_setioctlfn(if_t ifp, if_ioctl_fn_t ioctl_fn) 4936 { 4937 ifp->if_ioctl = ioctl_fn; 4938 } 4939 4940 void 4941 if_setoutputfn(if_t ifp, if_output_fn_t output_fn) 4942 { 4943 ifp->if_output = output_fn; 4944 } 4945 4946 void 4947 if_setstartfn(if_t ifp, if_start_fn_t start_fn) 4948 { 4949 ifp->if_start = start_fn; 4950 } 4951 4952 if_start_fn_t 4953 if_getstartfn(if_t ifp) 4954 { 4955 return (ifp->if_start); 4956 } 4957 4958 void 4959 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 4960 { 4961 ifp->if_transmit = start_fn; 4962 } 4963 4964 if_transmit_fn_t 4965 if_gettransmitfn(if_t ifp) 4966 { 4967 return (ifp->if_transmit); 4968 } 4969 4970 void 4971 if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 4972 { 4973 ifp->if_qflush = flush_fn; 4974 } 4975 4976 void 4977 if_setsndtagallocfn(if_t ifp, if_snd_tag_alloc_t alloc_fn) 4978 { 4979 ifp->if_snd_tag_alloc = alloc_fn; 4980 } 4981 4982 int 4983 if_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 4984 struct m_snd_tag **mstp) 4985 { 4986 if (ifp->if_snd_tag_alloc == NULL) 4987 return (EOPNOTSUPP); 4988 return (ifp->if_snd_tag_alloc(ifp, params, mstp)); 4989 } 4990 4991 void 4992 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 4993 { 4994 ifp->if_get_counter = fn; 4995 } 4996 4997 void 4998 if_setreassignfn(if_t ifp, if_reassign_fn_t fn) 4999 { 5000 ifp->if_reassign = fn; 5001 } 5002 5003 void 5004 if_setratelimitqueryfn(if_t ifp, if_ratelimit_query_t fn) 5005 { 5006 ifp->if_ratelimit_query = fn; 5007 } 5008 5009 void 5010 if_setdebugnet_methods(if_t ifp, struct debugnet_methods *m) 5011 { 5012 ifp->if_debugnet_methods = m; 5013 } 5014 5015 struct label * 5016 if_getmaclabel(if_t ifp) 5017 { 5018 return (ifp->if_label); 5019 } 5020 5021 void 5022 if_setmaclabel(if_t ifp, struct label *label) 5023 { 5024 ifp->if_label = label; 5025 } 5026 5027 int 5028 if_gettype(if_t ifp) 5029 { 5030 return (ifp->if_type); 5031 } 5032 5033 void * 5034 if_getllsoftc(if_t ifp) 5035 { 5036 return (ifp->if_llsoftc); 5037 } 5038 5039 void 5040 if_setllsoftc(if_t ifp, void *llsoftc) 5041 { 5042 ifp->if_llsoftc = llsoftc; 5043 }; 5044 5045 int 5046 if_getlinkstate(if_t ifp) 5047 { 5048 return (ifp->if_link_state); 5049 } 5050 5051 const uint8_t * 5052 if_getbroadcastaddr(if_t ifp) 5053 { 5054 return (ifp->if_broadcastaddr); 5055 } 5056 5057 void 5058 if_setbroadcastaddr(if_t ifp, const uint8_t *addr) 5059 { 5060 ifp->if_broadcastaddr = addr; 5061 } 5062 5063 int 5064 if_getnumadomain(if_t ifp) 5065 { 5066 return (ifp->if_numa_domain); 5067 } 5068 5069 uint64_t 5070 if_getcounter(if_t ifp, ift_counter counter) 5071 { 5072 return (ifp->if_get_counter(ifp, counter)); 5073 } 5074 5075 bool 5076 if_altq_is_enabled(if_t ifp) 5077 { 5078 return (ALTQ_IS_ENABLED(&ifp->if_snd)); 5079 } 5080 5081 struct vnet * 5082 if_getvnet(if_t ifp) 5083 { 5084 return (ifp->if_vnet); 5085 } 5086 5087 void * 5088 if_getafdata(if_t ifp, int af) 5089 { 5090 return (ifp->if_afdata[af]); 5091 } 5092 5093 u_int 5094 if_getfib(if_t ifp) 5095 { 5096 return (ifp->if_fib); 5097 } 5098 5099 uint8_t 5100 if_getaddrlen(if_t ifp) 5101 { 5102 return (ifp->if_addrlen); 5103 } 5104 5105 struct bpf_if * 5106 if_getbpf(if_t ifp) 5107 { 5108 return (ifp->if_bpf); 5109 } 5110 5111 struct ifvlantrunk * 5112 if_getvlantrunk(if_t ifp) 5113 { 5114 return (ifp->if_vlantrunk); 5115 } 5116 5117 uint8_t 5118 if_getpcp(if_t ifp) 5119 { 5120 return (ifp->if_pcp); 5121 } 5122 5123 void * 5124 if_getl2com(if_t ifp) 5125 { 5126 return (ifp->if_l2com); 5127 } 5128 5129 void 5130 if_setipsec_accel_methods(if_t ifp, const struct if_ipsec_accel_methods *m) 5131 { 5132 ifp->if_ipsec_accel_m = m; 5133 } 5134 5135 #ifdef DDB 5136 static void 5137 if_show_ifnet(struct ifnet *ifp) 5138 { 5139 if (ifp == NULL) 5140 return; 5141 db_printf("%s:\n", ifp->if_xname); 5142 #define IF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, ifp->e); 5143 IF_DB_PRINTF("%s", if_dname); 5144 IF_DB_PRINTF("%d", if_dunit); 5145 IF_DB_PRINTF("%s", if_description); 5146 IF_DB_PRINTF("%u", if_index); 5147 IF_DB_PRINTF("%d", if_idxgen); 5148 IF_DB_PRINTF("%u", if_refcount); 5149 IF_DB_PRINTF("%p", if_softc); 5150 IF_DB_PRINTF("%p", if_l2com); 5151 IF_DB_PRINTF("%p", if_llsoftc); 5152 IF_DB_PRINTF("%d", if_amcount); 5153 IF_DB_PRINTF("%p", if_addr); 5154 IF_DB_PRINTF("%p", if_broadcastaddr); 5155 IF_DB_PRINTF("%p", if_afdata); 5156 IF_DB_PRINTF("%d", if_afdata_initialized); 5157 IF_DB_PRINTF("%u", if_fib); 5158 IF_DB_PRINTF("%p", if_vnet); 5159 IF_DB_PRINTF("%p", if_home_vnet); 5160 IF_DB_PRINTF("%p", if_vlantrunk); 5161 IF_DB_PRINTF("%p", if_bpf); 5162 IF_DB_PRINTF("%u", if_pcount); 5163 IF_DB_PRINTF("%p", if_bridge); 5164 IF_DB_PRINTF("%p", if_lagg); 5165 IF_DB_PRINTF("%p", if_pf_kif); 5166 IF_DB_PRINTF("%p", if_carp); 5167 IF_DB_PRINTF("%p", if_label); 5168 IF_DB_PRINTF("%p", if_netmap); 5169 IF_DB_PRINTF("0x%08x", if_flags); 5170 IF_DB_PRINTF("0x%08x", if_drv_flags); 5171 IF_DB_PRINTF("0x%08x", if_capabilities); 5172 IF_DB_PRINTF("0x%08x", if_capenable); 5173 IF_DB_PRINTF("%p", if_snd.ifq_head); 5174 IF_DB_PRINTF("%p", if_snd.ifq_tail); 5175 IF_DB_PRINTF("%d", if_snd.ifq_len); 5176 IF_DB_PRINTF("%d", if_snd.ifq_maxlen); 5177 IF_DB_PRINTF("%p", if_snd.ifq_drv_head); 5178 IF_DB_PRINTF("%p", if_snd.ifq_drv_tail); 5179 IF_DB_PRINTF("%d", if_snd.ifq_drv_len); 5180 IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen); 5181 IF_DB_PRINTF("%d", if_snd.altq_type); 5182 IF_DB_PRINTF("%x", if_snd.altq_flags); 5183 #undef IF_DB_PRINTF 5184 } 5185 5186 DB_SHOW_COMMAND(ifnet, db_show_ifnet) 5187 { 5188 if (!have_addr) { 5189 db_printf("usage: show ifnet <struct ifnet *>\n"); 5190 return; 5191 } 5192 5193 if_show_ifnet((struct ifnet *)addr); 5194 } 5195 5196 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets) 5197 { 5198 struct ifnet *ifp; 5199 u_short idx; 5200 5201 for (idx = 1; idx <= if_index; idx++) { 5202 ifp = ifindex_table[idx].ife_ifnet; 5203 if (ifp == NULL) 5204 continue; 5205 db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp); 5206 if (db_pager_quit) 5207 break; 5208 } 5209 } 5210 #endif /* DDB */ 5211