xref: /freebsd/sys/net/if.c (revision d0b2dbfa0ecf2bbc9709efc5e20baf8e4b44bbbf)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org>
5  * Copyright (c) 1980, 1986, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)if.c	8.5 (Berkeley) 1/9/95
33  */
34 
35 #include "opt_bpf.h"
36 #include "opt_inet6.h"
37 #include "opt_inet.h"
38 #include "opt_ddb.h"
39 
40 #include <sys/param.h>
41 #include <sys/capsicum.h>
42 #include <sys/conf.h>
43 #include <sys/eventhandler.h>
44 #include <sys/malloc.h>
45 #include <sys/domainset.h>
46 #include <sys/sbuf.h>
47 #include <sys/bus.h>
48 #include <sys/epoch.h>
49 #include <sys/mbuf.h>
50 #include <sys/systm.h>
51 #include <sys/priv.h>
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/refcount.h>
59 #include <sys/module.h>
60 #include <sys/nv.h>
61 #include <sys/rwlock.h>
62 #include <sys/sockio.h>
63 #include <sys/syslog.h>
64 #include <sys/sysctl.h>
65 #include <sys/sysent.h>
66 #include <sys/taskqueue.h>
67 #include <sys/domain.h>
68 #include <sys/jail.h>
69 #include <sys/priv.h>
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <machine/stdarg.h>
76 #include <vm/uma.h>
77 
78 #include <net/bpf.h>
79 #include <net/ethernet.h>
80 #include <net/if.h>
81 #include <net/if_arp.h>
82 #include <net/if_clone.h>
83 #include <net/if_dl.h>
84 #include <net/if_strings.h>
85 #include <net/if_types.h>
86 #include <net/if_var.h>
87 #include <net/if_media.h>
88 #include <net/if_mib.h>
89 #include <net/if_private.h>
90 #include <net/if_vlan_var.h>
91 #include <net/radix.h>
92 #include <net/route.h>
93 #include <net/route/route_ctl.h>
94 #include <net/vnet.h>
95 
96 #if defined(INET) || defined(INET6)
97 #include <net/ethernet.h>
98 #include <netinet/in.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/ip_carp.h>
102 #ifdef INET
103 #include <net/debugnet.h>
104 #include <netinet/if_ether.h>
105 #endif /* INET */
106 #ifdef INET6
107 #include <netinet6/in6_var.h>
108 #include <netinet6/in6_ifattach.h>
109 #endif /* INET6 */
110 #endif /* INET || INET6 */
111 
112 #include <security/mac/mac_framework.h>
113 
114 /*
115  * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name
116  * and ifr_ifru when it is used in SIOCGIFCONF.
117  */
118 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) ==
119     offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru");
120 
121 __read_mostly epoch_t net_epoch_preempt;
122 #ifdef COMPAT_FREEBSD32
123 #include <sys/mount.h>
124 #include <compat/freebsd32/freebsd32.h>
125 
126 struct ifreq_buffer32 {
127 	uint32_t	length;		/* (size_t) */
128 	uint32_t	buffer;		/* (void *) */
129 };
130 
131 /*
132  * Interface request structure used for socket
133  * ioctl's.  All interface ioctl's must have parameter
134  * definitions which begin with ifr_name.  The
135  * remainder may be interface specific.
136  */
137 struct ifreq32 {
138 	char	ifr_name[IFNAMSIZ];		/* if name, e.g. "en0" */
139 	union {
140 		struct sockaddr	ifru_addr;
141 		struct sockaddr	ifru_dstaddr;
142 		struct sockaddr	ifru_broadaddr;
143 		struct ifreq_buffer32 ifru_buffer;
144 		short		ifru_flags[2];
145 		short		ifru_index;
146 		int		ifru_jid;
147 		int		ifru_metric;
148 		int		ifru_mtu;
149 		int		ifru_phys;
150 		int		ifru_media;
151 		uint32_t	ifru_data;
152 		int		ifru_cap[2];
153 		u_int		ifru_fib;
154 		u_char		ifru_vlan_pcp;
155 	} ifr_ifru;
156 };
157 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32));
158 CTASSERT(__offsetof(struct ifreq, ifr_ifru) ==
159     __offsetof(struct ifreq32, ifr_ifru));
160 
161 struct ifconf32 {
162 	int32_t	ifc_len;
163 	union {
164 		uint32_t	ifcu_buf;
165 		uint32_t	ifcu_req;
166 	} ifc_ifcu;
167 };
168 #define	SIOCGIFCONF32	_IOWR('i', 36, struct ifconf32)
169 
170 struct ifdrv32 {
171 	char		ifd_name[IFNAMSIZ];
172 	uint32_t	ifd_cmd;
173 	uint32_t	ifd_len;
174 	uint32_t	ifd_data;
175 };
176 #define SIOCSDRVSPEC32	_IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32)
177 #define SIOCGDRVSPEC32	_IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32)
178 
179 struct ifgroupreq32 {
180 	char	ifgr_name[IFNAMSIZ];
181 	u_int	ifgr_len;
182 	union {
183 		char		ifgru_group[IFNAMSIZ];
184 		uint32_t	ifgru_groups;
185 	} ifgr_ifgru;
186 };
187 #define	SIOCAIFGROUP32	_IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32)
188 #define	SIOCGIFGROUP32	_IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32)
189 #define	SIOCDIFGROUP32	_IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32)
190 #define	SIOCGIFGMEMB32	_IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32)
191 
192 struct ifmediareq32 {
193 	char		ifm_name[IFNAMSIZ];
194 	int		ifm_current;
195 	int		ifm_mask;
196 	int		ifm_status;
197 	int		ifm_active;
198 	int		ifm_count;
199 	uint32_t	ifm_ulist;	/* (int *) */
200 };
201 #define	SIOCGIFMEDIA32	_IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32)
202 #define	SIOCGIFXMEDIA32	_IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32)
203 #endif /* COMPAT_FREEBSD32 */
204 
205 union ifreq_union {
206 	struct ifreq	ifr;
207 #ifdef COMPAT_FREEBSD32
208 	struct ifreq32	ifr32;
209 #endif
210 };
211 
212 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
213     "Link layers");
214 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
215     "Generic link-management");
216 
217 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN,
218     &ifqmaxlen, 0, "max send queue size");
219 
220 /* Log link state change events */
221 static int log_link_state_change = 1;
222 
223 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW,
224 	&log_link_state_change, 0,
225 	"log interface link state change events");
226 
227 /* Log promiscuous mode change events */
228 static int log_promisc_mode_change = 1;
229 
230 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN,
231 	&log_promisc_mode_change, 1,
232 	"log promiscuous mode change events");
233 
234 /* Interface description */
235 static unsigned int ifdescr_maxlen = 1024;
236 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW,
237 	&ifdescr_maxlen, 0,
238 	"administrative maximum length for interface description");
239 
240 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions");
241 
242 /* global sx for non-critical path ifdescr */
243 static struct sx ifdescr_sx;
244 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr");
245 
246 void	(*ng_ether_link_state_p)(struct ifnet *ifp, int state);
247 void	(*lagg_linkstate_p)(struct ifnet *ifp, int state);
248 /* These are external hooks for CARP. */
249 void	(*carp_linkstate_p)(struct ifnet *ifp);
250 void	(*carp_demote_adj_p)(int, char *);
251 int	(*carp_master_p)(struct ifaddr *);
252 #if defined(INET) || defined(INET6)
253 int	(*carp_forus_p)(struct ifnet *ifp, u_char *dhost);
254 int	(*carp_output_p)(struct ifnet *ifp, struct mbuf *m,
255     const struct sockaddr *sa);
256 int	(*carp_ioctl_p)(struct ifreq *, u_long, struct thread *);
257 int	(*carp_attach_p)(struct ifaddr *, int);
258 void	(*carp_detach_p)(struct ifaddr *, bool);
259 #endif
260 #ifdef INET
261 int	(*carp_iamatch_p)(struct ifaddr *, uint8_t **);
262 #endif
263 #ifdef INET6
264 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6);
265 caddr_t	(*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m,
266     const struct in6_addr *taddr);
267 #endif
268 
269 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL;
270 
271 /*
272  * XXX: Style; these should be sorted alphabetically, and unprototyped
273  * static functions should be prototyped. Currently they are sorted by
274  * declaration order.
275  */
276 static void	if_attachdomain(void *);
277 static void	if_attachdomain1(struct ifnet *);
278 static int	ifconf(u_long, caddr_t);
279 static void	if_input_default(struct ifnet *, struct mbuf *);
280 static int	if_requestencap_default(struct ifnet *, struct if_encap_req *);
281 static int	if_setflag(struct ifnet *, int, int, int *, int);
282 static int	if_transmit_default(struct ifnet *ifp, struct mbuf *m);
283 static void	if_unroute(struct ifnet *, int flag, int fam);
284 static int	if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int);
285 static void	do_link_state_change(void *, int);
286 static int	if_getgroup(struct ifgroupreq *, struct ifnet *);
287 static int	if_getgroupmembers(struct ifgroupreq *);
288 static void	if_delgroups(struct ifnet *);
289 static void	if_attach_internal(struct ifnet *, bool);
290 static int	if_detach_internal(struct ifnet *, bool);
291 static void	if_siocaddmulti(void *, int);
292 static void	if_link_ifnet(struct ifnet *);
293 static bool	if_unlink_ifnet(struct ifnet *, bool);
294 #ifdef VIMAGE
295 static int	if_vmove(struct ifnet *, struct vnet *);
296 #endif
297 
298 #ifdef INET6
299 /*
300  * XXX: declare here to avoid to include many inet6 related files..
301  * should be more generalized?
302  */
303 extern void	nd6_setmtu(struct ifnet *);
304 #endif
305 
306 /* ipsec helper hooks */
307 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]);
308 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]);
309 
310 int	ifqmaxlen = IFQ_MAXLEN;
311 VNET_DEFINE(struct ifnethead, ifnet);	/* depend on static init XXX */
312 VNET_DEFINE(struct ifgrouphead, ifg_head);
313 
314 /* Table of ifnet by index. */
315 static int if_index;
316 static int if_indexlim = 8;
317 static struct ifindex_entry {
318 	struct ifnet	*ife_ifnet;
319 	uint16_t	ife_gencnt;
320 } *ifindex_table;
321 
322 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system,
323     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
324     "Variables global to all interfaces");
325 static int
326 sysctl_ifcount(SYSCTL_HANDLER_ARGS)
327 {
328 	int rv = 0;
329 
330 	IFNET_RLOCK();
331 	for (int i = 1; i <= if_index; i++)
332 		if (ifindex_table[i].ife_ifnet != NULL &&
333 		    ifindex_table[i].ife_ifnet->if_vnet == curvnet)
334 			rv = i;
335 	IFNET_RUNLOCK();
336 
337 	return (sysctl_handle_int(oidp, &rv, 0, req));
338 }
339 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount,
340     CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I",
341     "Maximum known interface index");
342 
343 /*
344  * The global network interface list (V_ifnet) and related state (such as
345  * if_index, if_indexlim, and ifindex_table) are protected by an sxlock.
346  * This may be acquired to stabilise the list, or we may rely on NET_EPOCH.
347  */
348 struct sx ifnet_sxlock;
349 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE);
350 
351 struct sx ifnet_detach_sxlock;
352 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx",
353     SX_RECURSE);
354 
355 #ifdef VIMAGE
356 #define	VNET_IS_SHUTTING_DOWN(_vnet)					\
357     ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE)
358 #endif
359 
360 static	if_com_alloc_t *if_com_alloc[256];
361 static	if_com_free_t *if_com_free[256];
362 
363 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals");
364 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
365 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
366 
367 struct ifnet *
368 ifnet_byindex(u_int idx)
369 {
370 	struct ifnet *ifp;
371 
372 	NET_EPOCH_ASSERT();
373 
374 	if (__predict_false(idx > if_index))
375 		return (NULL);
376 
377 	ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
378 
379 	if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet)
380 		ifp = NULL;
381 
382 	return (ifp);
383 }
384 
385 struct ifnet *
386 ifnet_byindex_ref(u_int idx)
387 {
388 	struct ifnet *ifp;
389 
390 	ifp = ifnet_byindex(idx);
391 	if (ifp == NULL || (ifp->if_flags & IFF_DYING))
392 		return (NULL);
393 	if (!if_try_ref(ifp))
394 		return (NULL);
395 	return (ifp);
396 }
397 
398 struct ifnet *
399 ifnet_byindexgen(uint16_t idx, uint16_t gen)
400 {
401 	struct ifnet *ifp;
402 
403 	NET_EPOCH_ASSERT();
404 
405 	if (__predict_false(idx > if_index))
406 		return (NULL);
407 
408 	ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
409 
410 	if (ifindex_table[idx].ife_gencnt == gen)
411 		return (ifp);
412 	else
413 		return (NULL);
414 }
415 
416 /*
417  * Network interface utility routines.
418  *
419  * Routines with ifa_ifwith* names take sockaddr *'s as
420  * parameters.
421  */
422 
423 static void
424 if_init_idxtable(void *arg __unused)
425 {
426 
427 	ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table),
428 	    M_IFNET, M_WAITOK | M_ZERO);
429 }
430 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init_idxtable, NULL);
431 
432 static void
433 vnet_if_init(const void *unused __unused)
434 {
435 
436 	CK_STAILQ_INIT(&V_ifnet);
437 	CK_STAILQ_INIT(&V_ifg_head);
438 	vnet_if_clone_init();
439 }
440 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init,
441     NULL);
442 
443 static void
444 if_link_ifnet(struct ifnet *ifp)
445 {
446 
447 	IFNET_WLOCK();
448 	CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link);
449 #ifdef VIMAGE
450 	curvnet->vnet_ifcnt++;
451 #endif
452 	IFNET_WUNLOCK();
453 }
454 
455 static bool
456 if_unlink_ifnet(struct ifnet *ifp, bool vmove)
457 {
458 	struct ifnet *iter;
459 	int found = 0;
460 
461 	IFNET_WLOCK();
462 	CK_STAILQ_FOREACH(iter, &V_ifnet, if_link)
463 		if (iter == ifp) {
464 			CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link);
465 			if (!vmove)
466 				ifp->if_flags |= IFF_DYING;
467 			found = 1;
468 			break;
469 		}
470 #ifdef VIMAGE
471 	curvnet->vnet_ifcnt--;
472 #endif
473 	IFNET_WUNLOCK();
474 
475 	return (found);
476 }
477 
478 #ifdef VIMAGE
479 static void
480 vnet_if_return(const void *unused __unused)
481 {
482 	struct ifnet *ifp, *nifp;
483 	struct ifnet **pending;
484 	int found __diagused;
485 	int i;
486 
487 	i = 0;
488 
489 	/*
490 	 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd
491 	 * enter NET_EPOCH, but that's not possible, because if_vmove() calls
492 	 * if_detach_internal(), which waits for NET_EPOCH callbacks to
493 	 * complete. We can't do that from within NET_EPOCH.
494 	 *
495 	 * However, we can also use the IFNET_xLOCK, which is the V_ifnet
496 	 * read/write lock. We cannot hold the lock as we call if_vmove()
497 	 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib
498 	 * ctx lock.
499 	 */
500 	IFNET_WLOCK();
501 
502 	pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt,
503 	    M_IFNET, M_WAITOK | M_ZERO);
504 
505 	/* Return all inherited interfaces to their parent vnets. */
506 	CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) {
507 		if (ifp->if_home_vnet != ifp->if_vnet) {
508 			found = if_unlink_ifnet(ifp, true);
509 			MPASS(found);
510 
511 			pending[i++] = ifp;
512 		}
513 	}
514 	IFNET_WUNLOCK();
515 
516 	for (int j = 0; j < i; j++) {
517 		sx_xlock(&ifnet_detach_sxlock);
518 		if_vmove(pending[j], pending[j]->if_home_vnet);
519 		sx_xunlock(&ifnet_detach_sxlock);
520 	}
521 
522 	free(pending, M_IFNET);
523 }
524 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY,
525     vnet_if_return, NULL);
526 #endif
527 
528 /*
529  * Allocate a struct ifnet and an index for an interface.  A layer 2
530  * common structure will also be allocated if an allocation routine is
531  * registered for the passed type.
532  */
533 static struct ifnet *
534 if_alloc_domain(u_char type, int numa_domain)
535 {
536 	struct ifnet *ifp;
537 	u_short idx;
538 
539 	KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large"));
540 	if (numa_domain == IF_NODOM)
541 		ifp = malloc(sizeof(struct ifnet), M_IFNET,
542 		    M_WAITOK | M_ZERO);
543 	else
544 		ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET,
545 		    DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO);
546 	ifp->if_type = type;
547 	ifp->if_alloctype = type;
548 	ifp->if_numa_domain = numa_domain;
549 #ifdef VIMAGE
550 	ifp->if_vnet = curvnet;
551 #endif
552 	if (if_com_alloc[type] != NULL) {
553 		ifp->if_l2com = if_com_alloc[type](type, ifp);
554 		KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__,
555 		    type));
556 	}
557 
558 	IF_ADDR_LOCK_INIT(ifp);
559 	TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp);
560 	TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp);
561 	ifp->if_afdata_initialized = 0;
562 	IF_AFDATA_LOCK_INIT(ifp);
563 	CK_STAILQ_INIT(&ifp->if_addrhead);
564 	CK_STAILQ_INIT(&ifp->if_multiaddrs);
565 	CK_STAILQ_INIT(&ifp->if_groups);
566 #ifdef MAC
567 	mac_ifnet_init(ifp);
568 #endif
569 	ifq_init(&ifp->if_snd, ifp);
570 
571 	refcount_init(&ifp->if_refcount, 1);	/* Index reference. */
572 	for (int i = 0; i < IFCOUNTERS; i++)
573 		ifp->if_counters[i] = counter_u64_alloc(M_WAITOK);
574 	ifp->if_get_counter = if_get_counter_default;
575 	ifp->if_pcp = IFNET_PCP_NONE;
576 
577 	/* Allocate an ifindex array entry. */
578 	IFNET_WLOCK();
579 	/*
580 	 * Try to find an empty slot below if_index.  If we fail, take the
581 	 * next slot.
582 	 */
583 	for (idx = 1; idx <= if_index; idx++) {
584 		if (ifindex_table[idx].ife_ifnet == NULL)
585 			break;
586 	}
587 
588 	/* Catch if_index overflow. */
589 	if (idx >= if_indexlim) {
590 		struct ifindex_entry *new, *old;
591 		int newlim;
592 
593 		newlim = if_indexlim * 2;
594 		new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO);
595 		memcpy(new, ifindex_table, if_indexlim * sizeof(*new));
596 		old = ifindex_table;
597 		ck_pr_store_ptr(&ifindex_table, new);
598 		if_indexlim = newlim;
599 		epoch_wait_preempt(net_epoch_preempt);
600 		free(old, M_IFNET);
601 	}
602 	if (idx > if_index)
603 		if_index = idx;
604 
605 	ifp->if_index = idx;
606 	ifp->if_idxgen = ifindex_table[idx].ife_gencnt;
607 	ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp);
608 	IFNET_WUNLOCK();
609 
610 	return (ifp);
611 }
612 
613 struct ifnet *
614 if_alloc_dev(u_char type, device_t dev)
615 {
616 	int numa_domain;
617 
618 	if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0)
619 		return (if_alloc_domain(type, IF_NODOM));
620 	return (if_alloc_domain(type, numa_domain));
621 }
622 
623 struct ifnet *
624 if_alloc(u_char type)
625 {
626 
627 	return (if_alloc_domain(type, IF_NODOM));
628 }
629 /*
630  * Do the actual work of freeing a struct ifnet, and layer 2 common
631  * structure.  This call is made when the network epoch guarantees
632  * us that nobody holds a pointer to the interface.
633  */
634 static void
635 if_free_deferred(epoch_context_t ctx)
636 {
637 	struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx);
638 
639 	KASSERT((ifp->if_flags & IFF_DYING),
640 	    ("%s: interface not dying", __func__));
641 
642 	if (if_com_free[ifp->if_alloctype] != NULL)
643 		if_com_free[ifp->if_alloctype](ifp->if_l2com,
644 		    ifp->if_alloctype);
645 
646 #ifdef MAC
647 	mac_ifnet_destroy(ifp);
648 #endif /* MAC */
649 	IF_AFDATA_DESTROY(ifp);
650 	IF_ADDR_LOCK_DESTROY(ifp);
651 	ifq_delete(&ifp->if_snd);
652 
653 	for (int i = 0; i < IFCOUNTERS; i++)
654 		counter_u64_free(ifp->if_counters[i]);
655 
656 	if_freedescr(ifp->if_description);
657 	free(ifp->if_hw_addr, M_IFADDR);
658 	free(ifp, M_IFNET);
659 }
660 
661 /*
662  * Deregister an interface and free the associated storage.
663  */
664 void
665 if_free(struct ifnet *ifp)
666 {
667 
668 	ifp->if_flags |= IFF_DYING;			/* XXX: Locking */
669 
670 	/*
671 	 * XXXGL: An interface index is really an alias to ifp pointer.
672 	 * Why would we clear the alias now, and not in the deferred
673 	 * context?  Indeed there is nothing wrong with some network
674 	 * thread obtaining ifp via ifnet_byindex() inside the network
675 	 * epoch and then dereferencing ifp while we perform if_free(),
676 	 * and after if_free() finished, too.
677 	 *
678 	 * This early index freeing was important back when ifindex was
679 	 * virtualized and interface would outlive the vnet.
680 	 */
681 	IFNET_WLOCK();
682 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
683 	ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL);
684 	ifindex_table[ifp->if_index].ife_gencnt++;
685 	while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL)
686 		if_index--;
687 	IFNET_WUNLOCK();
688 
689 	if (refcount_release(&ifp->if_refcount))
690 		NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
691 }
692 
693 /*
694  * Interfaces to keep an ifnet type-stable despite the possibility of the
695  * driver calling if_free().  If there are additional references, we defer
696  * freeing the underlying data structure.
697  */
698 void
699 if_ref(struct ifnet *ifp)
700 {
701 	u_int old __diagused;
702 
703 	/* We don't assert the ifnet list lock here, but arguably should. */
704 	old = refcount_acquire(&ifp->if_refcount);
705 	KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp));
706 }
707 
708 bool
709 if_try_ref(struct ifnet *ifp)
710 {
711 	NET_EPOCH_ASSERT();
712 	return (refcount_acquire_if_not_zero(&ifp->if_refcount));
713 }
714 
715 void
716 if_rele(struct ifnet *ifp)
717 {
718 
719 	if (!refcount_release(&ifp->if_refcount))
720 		return;
721 	NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
722 }
723 
724 void
725 ifq_init(struct ifaltq *ifq, struct ifnet *ifp)
726 {
727 
728 	mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF);
729 
730 	if (ifq->ifq_maxlen == 0)
731 		ifq->ifq_maxlen = ifqmaxlen;
732 
733 	ifq->altq_type = 0;
734 	ifq->altq_disc = NULL;
735 	ifq->altq_flags &= ALTQF_CANTCHANGE;
736 	ifq->altq_tbr  = NULL;
737 	ifq->altq_ifp  = ifp;
738 }
739 
740 void
741 ifq_delete(struct ifaltq *ifq)
742 {
743 	mtx_destroy(&ifq->ifq_mtx);
744 }
745 
746 /*
747  * Perform generic interface initialization tasks and attach the interface
748  * to the list of "active" interfaces.  If vmove flag is set on entry
749  * to if_attach_internal(), perform only a limited subset of initialization
750  * tasks, given that we are moving from one vnet to another an ifnet which
751  * has already been fully initialized.
752  *
753  * Note that if_detach_internal() removes group membership unconditionally
754  * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL.
755  * Thus, when if_vmove() is applied to a cloned interface, group membership
756  * is lost while a cloned one always joins a group whose name is
757  * ifc->ifc_name.  To recover this after if_detach_internal() and
758  * if_attach_internal(), the cloner should be specified to
759  * if_attach_internal() via ifc.  If it is non-NULL, if_attach_internal()
760  * attempts to join a group whose name is ifc->ifc_name.
761  *
762  * XXX:
763  *  - The decision to return void and thus require this function to
764  *    succeed is questionable.
765  *  - We should probably do more sanity checking.  For instance we don't
766  *    do anything to insure if_xname is unique or non-empty.
767  */
768 void
769 if_attach(struct ifnet *ifp)
770 {
771 
772 	if_attach_internal(ifp, false);
773 }
774 
775 /*
776  * Compute the least common TSO limit.
777  */
778 void
779 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax)
780 {
781 	/*
782 	 * 1) If there is no limit currently, take the limit from
783 	 * the network adapter.
784 	 *
785 	 * 2) If the network adapter has a limit below the current
786 	 * limit, apply it.
787 	 */
788 	if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 &&
789 	    ifp->if_hw_tsomax < pmax->tsomaxbytes)) {
790 		pmax->tsomaxbytes = ifp->if_hw_tsomax;
791 	}
792 	if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 &&
793 	    ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) {
794 		pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
795 	}
796 	if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 &&
797 	    ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) {
798 		pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
799 	}
800 }
801 
802 /*
803  * Update TSO limit of a network adapter.
804  *
805  * Returns zero if no change. Else non-zero.
806  */
807 int
808 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax)
809 {
810 	int retval = 0;
811 	if (ifp->if_hw_tsomax != pmax->tsomaxbytes) {
812 		ifp->if_hw_tsomax = pmax->tsomaxbytes;
813 		retval++;
814 	}
815 	if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) {
816 		ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize;
817 		retval++;
818 	}
819 	if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) {
820 		ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount;
821 		retval++;
822 	}
823 	return (retval);
824 }
825 
826 static void
827 if_attach_internal(struct ifnet *ifp, bool vmove)
828 {
829 	unsigned socksize, ifasize;
830 	int namelen, masklen;
831 	struct sockaddr_dl *sdl;
832 	struct ifaddr *ifa;
833 
834 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
835 
836 #ifdef VIMAGE
837 	ifp->if_vnet = curvnet;
838 	if (ifp->if_home_vnet == NULL)
839 		ifp->if_home_vnet = curvnet;
840 #endif
841 
842 	if_addgroup(ifp, IFG_ALL);
843 
844 #ifdef VIMAGE
845 	/* Restore group membership for cloned interface. */
846 	if (vmove)
847 		if_clone_restoregroup(ifp);
848 #endif
849 
850 	getmicrotime(&ifp->if_lastchange);
851 	ifp->if_epoch = time_uptime;
852 
853 	KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) ||
854 	    (ifp->if_transmit != NULL && ifp->if_qflush != NULL),
855 	    ("transmit and qflush must both either be set or both be NULL"));
856 	if (ifp->if_transmit == NULL) {
857 		ifp->if_transmit = if_transmit_default;
858 		ifp->if_qflush = if_qflush;
859 	}
860 	if (ifp->if_input == NULL)
861 		ifp->if_input = if_input_default;
862 
863 	if (ifp->if_requestencap == NULL)
864 		ifp->if_requestencap = if_requestencap_default;
865 
866 	if (!vmove) {
867 #ifdef MAC
868 		mac_ifnet_create(ifp);
869 #endif
870 
871 		/*
872 		 * Create a Link Level name for this device.
873 		 */
874 		namelen = strlen(ifp->if_xname);
875 		/*
876 		 * Always save enough space for any possiable name so we
877 		 * can do a rename in place later.
878 		 */
879 		masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ;
880 		socksize = masklen + ifp->if_addrlen;
881 		if (socksize < sizeof(*sdl))
882 			socksize = sizeof(*sdl);
883 		socksize = roundup2(socksize, sizeof(long));
884 		ifasize = sizeof(*ifa) + 2 * socksize;
885 		ifa = ifa_alloc(ifasize, M_WAITOK);
886 		sdl = (struct sockaddr_dl *)(ifa + 1);
887 		sdl->sdl_len = socksize;
888 		sdl->sdl_family = AF_LINK;
889 		bcopy(ifp->if_xname, sdl->sdl_data, namelen);
890 		sdl->sdl_nlen = namelen;
891 		sdl->sdl_index = ifp->if_index;
892 		sdl->sdl_type = ifp->if_type;
893 		ifp->if_addr = ifa;
894 		ifa->ifa_ifp = ifp;
895 		ifa->ifa_addr = (struct sockaddr *)sdl;
896 		sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
897 		ifa->ifa_netmask = (struct sockaddr *)sdl;
898 		sdl->sdl_len = masklen;
899 		while (namelen != 0)
900 			sdl->sdl_data[--namelen] = 0xff;
901 		CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
902 		/* Reliably crash if used uninitialized. */
903 		ifp->if_broadcastaddr = NULL;
904 
905 		if (ifp->if_type == IFT_ETHER) {
906 			ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR,
907 			    M_WAITOK | M_ZERO);
908 		}
909 
910 #if defined(INET) || defined(INET6)
911 		/* Use defaults for TSO, if nothing is set */
912 		if (ifp->if_hw_tsomax == 0 &&
913 		    ifp->if_hw_tsomaxsegcount == 0 &&
914 		    ifp->if_hw_tsomaxsegsize == 0) {
915 			/*
916 			 * The TSO defaults needs to be such that an
917 			 * NFS mbuf list of 35 mbufs totalling just
918 			 * below 64K works and that a chain of mbufs
919 			 * can be defragged into at most 32 segments:
920 			 */
921 			ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) -
922 			    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN));
923 			ifp->if_hw_tsomaxsegcount = 35;
924 			ifp->if_hw_tsomaxsegsize = 2048;	/* 2K */
925 
926 			/* XXX some drivers set IFCAP_TSO after ethernet attach */
927 			if (ifp->if_capabilities & IFCAP_TSO) {
928 				if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n",
929 				    ifp->if_hw_tsomax,
930 				    ifp->if_hw_tsomaxsegcount,
931 				    ifp->if_hw_tsomaxsegsize);
932 			}
933 		}
934 #endif
935 	}
936 #ifdef VIMAGE
937 	else {
938 		/*
939 		 * Update the interface index in the link layer address
940 		 * of the interface.
941 		 */
942 		for (ifa = ifp->if_addr; ifa != NULL;
943 		    ifa = CK_STAILQ_NEXT(ifa, ifa_link)) {
944 			if (ifa->ifa_addr->sa_family == AF_LINK) {
945 				sdl = (struct sockaddr_dl *)ifa->ifa_addr;
946 				sdl->sdl_index = ifp->if_index;
947 			}
948 		}
949 	}
950 #endif
951 
952 	if_link_ifnet(ifp);
953 
954 	if (domain_init_status >= 2)
955 		if_attachdomain1(ifp);
956 
957 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
958 	if (IS_DEFAULT_VNET(curvnet))
959 		devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
960 }
961 
962 static void
963 if_epochalloc(void *dummy __unused)
964 {
965 
966 	net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT);
967 }
968 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL);
969 
970 static void
971 if_attachdomain(void *dummy)
972 {
973 	struct ifnet *ifp;
974 
975 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link)
976 		if_attachdomain1(ifp);
977 }
978 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND,
979     if_attachdomain, NULL);
980 
981 static void
982 if_attachdomain1(struct ifnet *ifp)
983 {
984 	struct domain *dp;
985 
986 	/*
987 	 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we
988 	 * cannot lock ifp->if_afdata initialization, entirely.
989 	 */
990 	IF_AFDATA_LOCK(ifp);
991 	if (ifp->if_afdata_initialized >= domain_init_status) {
992 		IF_AFDATA_UNLOCK(ifp);
993 		log(LOG_WARNING, "%s called more than once on %s\n",
994 		    __func__, ifp->if_xname);
995 		return;
996 	}
997 	ifp->if_afdata_initialized = domain_init_status;
998 	IF_AFDATA_UNLOCK(ifp);
999 
1000 	/* address family dependent data region */
1001 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
1002 	SLIST_FOREACH(dp, &domains, dom_next) {
1003 		if (dp->dom_ifattach)
1004 			ifp->if_afdata[dp->dom_family] =
1005 			    (*dp->dom_ifattach)(ifp);
1006 	}
1007 }
1008 
1009 /*
1010  * Remove any unicast or broadcast network addresses from an interface.
1011  */
1012 void
1013 if_purgeaddrs(struct ifnet *ifp)
1014 {
1015 	struct ifaddr *ifa;
1016 
1017 #ifdef INET6
1018 	/*
1019 	 * Need to leave multicast addresses of proxy NDP llentries
1020 	 * before in6_purgeifaddr() because the llentries are keys
1021 	 * for in6_multi objects of proxy NDP entries.
1022 	 * in6_purgeifaddr()s clean up llentries including proxy NDPs
1023 	 * then we would lose the keys if they are called earlier.
1024 	 */
1025 	in6_purge_proxy_ndp(ifp);
1026 #endif
1027 	while (1) {
1028 		struct epoch_tracker et;
1029 
1030 		NET_EPOCH_ENTER(et);
1031 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1032 			if (ifa->ifa_addr->sa_family != AF_LINK)
1033 				break;
1034 		}
1035 		NET_EPOCH_EXIT(et);
1036 
1037 		if (ifa == NULL)
1038 			break;
1039 #ifdef INET
1040 		/* XXX: Ugly!! ad hoc just for INET */
1041 		if (ifa->ifa_addr->sa_family == AF_INET) {
1042 			struct ifaliasreq ifr;
1043 
1044 			bzero(&ifr, sizeof(ifr));
1045 			ifr.ifra_addr = *ifa->ifa_addr;
1046 			if (ifa->ifa_dstaddr)
1047 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
1048 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
1049 			    NULL) == 0)
1050 				continue;
1051 		}
1052 #endif /* INET */
1053 #ifdef INET6
1054 		if (ifa->ifa_addr->sa_family == AF_INET6) {
1055 			in6_purgeifaddr((struct in6_ifaddr *)ifa);
1056 			/* ifp_addrhead is already updated */
1057 			continue;
1058 		}
1059 #endif /* INET6 */
1060 		IF_ADDR_WLOCK(ifp);
1061 		CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1062 		IF_ADDR_WUNLOCK(ifp);
1063 		ifa_free(ifa);
1064 	}
1065 }
1066 
1067 /*
1068  * Remove any multicast network addresses from an interface when an ifnet
1069  * is going away.
1070  */
1071 static void
1072 if_purgemaddrs(struct ifnet *ifp)
1073 {
1074 	struct ifmultiaddr *ifma;
1075 
1076 	IF_ADDR_WLOCK(ifp);
1077 	while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) {
1078 		ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs);
1079 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
1080 		if_delmulti_locked(ifp, ifma, 1);
1081 	}
1082 	IF_ADDR_WUNLOCK(ifp);
1083 }
1084 
1085 /*
1086  * Detach an interface, removing it from the list of "active" interfaces.
1087  * If vmove flag is set on entry to if_detach_internal(), perform only a
1088  * limited subset of cleanup tasks, given that we are moving an ifnet from
1089  * one vnet to another, where it must be fully operational.
1090  *
1091  * XXXRW: There are some significant questions about event ordering, and
1092  * how to prevent things from starting to use the interface during detach.
1093  */
1094 void
1095 if_detach(struct ifnet *ifp)
1096 {
1097 	bool found;
1098 
1099 	CURVNET_SET_QUIET(ifp->if_vnet);
1100 	found = if_unlink_ifnet(ifp, false);
1101 	if (found) {
1102 		sx_xlock(&ifnet_detach_sxlock);
1103 		if_detach_internal(ifp, false);
1104 		sx_xunlock(&ifnet_detach_sxlock);
1105 	}
1106 	CURVNET_RESTORE();
1107 }
1108 
1109 /*
1110  * The vmove flag, if set, indicates that we are called from a callpath
1111  * that is moving an interface to a different vnet instance.
1112  *
1113  * The shutdown flag, if set, indicates that we are called in the
1114  * process of shutting down a vnet instance.  Currently only the
1115  * vnet_if_return SYSUNINIT function sets it.  Note: we can be called
1116  * on a vnet instance shutdown without this flag being set, e.g., when
1117  * the cloned interfaces are destoyed as first thing of teardown.
1118  */
1119 static int
1120 if_detach_internal(struct ifnet *ifp, bool vmove)
1121 {
1122 	struct ifaddr *ifa;
1123 	int i;
1124 	struct domain *dp;
1125 #ifdef VIMAGE
1126 	bool shutdown;
1127 
1128 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1129 #endif
1130 
1131 	/*
1132 	 * At this point we know the interface still was on the ifnet list
1133 	 * and we removed it so we are in a stable state.
1134 	 */
1135 	epoch_wait_preempt(net_epoch_preempt);
1136 
1137 	/*
1138 	 * Ensure all pending EPOCH(9) callbacks have been executed. This
1139 	 * fixes issues about late destruction of multicast options
1140 	 * which lead to leave group calls, which in turn access the
1141 	 * belonging ifnet structure:
1142 	 */
1143 	NET_EPOCH_DRAIN_CALLBACKS();
1144 
1145 	/*
1146 	 * In any case (destroy or vmove) detach us from the groups
1147 	 * and remove/wait for pending events on the taskq.
1148 	 * XXX-BZ in theory an interface could still enqueue a taskq change?
1149 	 */
1150 	if_delgroups(ifp);
1151 
1152 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
1153 	taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask);
1154 
1155 	if_down(ifp);
1156 
1157 #ifdef VIMAGE
1158 	/*
1159 	 * On VNET shutdown abort here as the stack teardown will do all
1160 	 * the work top-down for us.
1161 	 */
1162 	if (shutdown) {
1163 		/* Give interface users the chance to clean up. */
1164 		EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1165 
1166 		/*
1167 		 * In case of a vmove we are done here without error.
1168 		 * If we would signal an error it would lead to the same
1169 		 * abort as if we did not find the ifnet anymore.
1170 		 * if_detach() calls us in void context and does not care
1171 		 * about an early abort notification, so life is splendid :)
1172 		 */
1173 		goto finish_vnet_shutdown;
1174 	}
1175 #endif
1176 
1177 	/*
1178 	 * At this point we are not tearing down a VNET and are either
1179 	 * going to destroy or vmove the interface and have to cleanup
1180 	 * accordingly.
1181 	 */
1182 
1183 	/*
1184 	 * Remove routes and flush queues.
1185 	 */
1186 #ifdef ALTQ
1187 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
1188 		altq_disable(&ifp->if_snd);
1189 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1190 		altq_detach(&ifp->if_snd);
1191 #endif
1192 
1193 	if_purgeaddrs(ifp);
1194 
1195 #ifdef INET
1196 	in_ifdetach(ifp);
1197 #endif
1198 
1199 #ifdef INET6
1200 	/*
1201 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
1202 	 * before removing routing entries below, since IPv6 interface direct
1203 	 * routes are expected to be removed by the IPv6-specific kernel API.
1204 	 * Otherwise, the kernel will detect some inconsistency and bark it.
1205 	 */
1206 	in6_ifdetach(ifp);
1207 #endif
1208 	if_purgemaddrs(ifp);
1209 
1210 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1211 	if (IS_DEFAULT_VNET(curvnet))
1212 		devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
1213 
1214 	if (!vmove) {
1215 		/*
1216 		 * Prevent further calls into the device driver via ifnet.
1217 		 */
1218 		if_dead(ifp);
1219 
1220 		/*
1221 		 * Clean up all addresses.
1222 		 */
1223 		IF_ADDR_WLOCK(ifp);
1224 		if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) {
1225 			ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
1226 			CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1227 			IF_ADDR_WUNLOCK(ifp);
1228 			ifa_free(ifa);
1229 		} else
1230 			IF_ADDR_WUNLOCK(ifp);
1231 	}
1232 
1233 	rt_flushifroutes(ifp);
1234 
1235 #ifdef VIMAGE
1236 finish_vnet_shutdown:
1237 #endif
1238 	/*
1239 	 * We cannot hold the lock over dom_ifdetach calls as they might
1240 	 * sleep, for example trying to drain a callout, thus open up the
1241 	 * theoretical race with re-attaching.
1242 	 */
1243 	IF_AFDATA_LOCK(ifp);
1244 	i = ifp->if_afdata_initialized;
1245 	ifp->if_afdata_initialized = 0;
1246 	IF_AFDATA_UNLOCK(ifp);
1247 	if (i == 0)
1248 		return (0);
1249 	SLIST_FOREACH(dp, &domains, dom_next) {
1250 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) {
1251 			(*dp->dom_ifdetach)(ifp,
1252 			    ifp->if_afdata[dp->dom_family]);
1253 			ifp->if_afdata[dp->dom_family] = NULL;
1254 		}
1255 	}
1256 
1257 	return (0);
1258 }
1259 
1260 #ifdef VIMAGE
1261 /*
1262  * if_vmove() performs a limited version of if_detach() in current
1263  * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg.
1264  */
1265 static int
1266 if_vmove(struct ifnet *ifp, struct vnet *new_vnet)
1267 {
1268 #ifdef DEV_BPF
1269 	u_int bif_dlt, bif_hdrlen;
1270 #endif
1271 	int rc;
1272 
1273 #ifdef DEV_BPF
1274  	/*
1275 	 * if_detach_internal() will call the eventhandler to notify
1276 	 * interface departure.  That will detach if_bpf.  We need to
1277 	 * safe the dlt and hdrlen so we can re-attach it later.
1278 	 */
1279 	bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen);
1280 #endif
1281 
1282 	/*
1283 	 * Detach from current vnet, but preserve LLADDR info, do not
1284 	 * mark as dead etc. so that the ifnet can be reattached later.
1285 	 * If we cannot find it, we lost the race to someone else.
1286 	 */
1287 	rc = if_detach_internal(ifp, true);
1288 	if (rc != 0)
1289 		return (rc);
1290 
1291 	/*
1292 	 * Perform interface-specific reassignment tasks, if provided by
1293 	 * the driver.
1294 	 */
1295 	if (ifp->if_reassign != NULL)
1296 		ifp->if_reassign(ifp, new_vnet, NULL);
1297 
1298 	/*
1299 	 * Switch to the context of the target vnet.
1300 	 */
1301 	CURVNET_SET_QUIET(new_vnet);
1302 	if_attach_internal(ifp, true);
1303 
1304 #ifdef DEV_BPF
1305 	if (ifp->if_bpf == NULL)
1306 		bpfattach(ifp, bif_dlt, bif_hdrlen);
1307 #endif
1308 
1309 	CURVNET_RESTORE();
1310 	return (0);
1311 }
1312 
1313 /*
1314  * Move an ifnet to or from another child prison/vnet, specified by the jail id.
1315  */
1316 static int
1317 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid)
1318 {
1319 	struct prison *pr;
1320 	struct ifnet *difp;
1321 	int error;
1322 	bool found __diagused;
1323 	bool shutdown;
1324 
1325 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
1326 
1327 	/* Try to find the prison within our visibility. */
1328 	sx_slock(&allprison_lock);
1329 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1330 	sx_sunlock(&allprison_lock);
1331 	if (pr == NULL)
1332 		return (ENXIO);
1333 	prison_hold_locked(pr);
1334 	mtx_unlock(&pr->pr_mtx);
1335 
1336 	/* Do not try to move the iface from and to the same prison. */
1337 	if (pr->pr_vnet == ifp->if_vnet) {
1338 		prison_free(pr);
1339 		return (EEXIST);
1340 	}
1341 
1342 	/* Make sure the named iface does not exists in the dst. prison/vnet. */
1343 	/* XXX Lock interfaces to avoid races. */
1344 	CURVNET_SET_QUIET(pr->pr_vnet);
1345 	difp = ifunit(ifname);
1346 	if (difp != NULL) {
1347 		CURVNET_RESTORE();
1348 		prison_free(pr);
1349 		return (EEXIST);
1350 	}
1351 	sx_xlock(&ifnet_detach_sxlock);
1352 
1353 	/* Make sure the VNET is stable. */
1354 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1355 	if (shutdown) {
1356 		sx_xunlock(&ifnet_detach_sxlock);
1357 		CURVNET_RESTORE();
1358 		prison_free(pr);
1359 		return (EBUSY);
1360 	}
1361 	CURVNET_RESTORE();
1362 
1363 	found = if_unlink_ifnet(ifp, true);
1364 	if (! found) {
1365 		sx_xunlock(&ifnet_detach_sxlock);
1366 		CURVNET_RESTORE();
1367 		prison_free(pr);
1368 		return (ENODEV);
1369 	}
1370 
1371 	/* Move the interface into the child jail/vnet. */
1372 	error = if_vmove(ifp, pr->pr_vnet);
1373 
1374 	/* Report the new if_xname back to the userland on success. */
1375 	if (error == 0)
1376 		sprintf(ifname, "%s", ifp->if_xname);
1377 
1378 	sx_xunlock(&ifnet_detach_sxlock);
1379 
1380 	prison_free(pr);
1381 	return (error);
1382 }
1383 
1384 static int
1385 if_vmove_reclaim(struct thread *td, char *ifname, int jid)
1386 {
1387 	struct prison *pr;
1388 	struct vnet *vnet_dst;
1389 	struct ifnet *ifp;
1390 	int error, found __diagused;
1391  	bool shutdown;
1392 
1393 	/* Try to find the prison within our visibility. */
1394 	sx_slock(&allprison_lock);
1395 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1396 	sx_sunlock(&allprison_lock);
1397 	if (pr == NULL)
1398 		return (ENXIO);
1399 	prison_hold_locked(pr);
1400 	mtx_unlock(&pr->pr_mtx);
1401 
1402 	/* Make sure the named iface exists in the source prison/vnet. */
1403 	CURVNET_SET(pr->pr_vnet);
1404 	ifp = ifunit(ifname);		/* XXX Lock to avoid races. */
1405 	if (ifp == NULL) {
1406 		CURVNET_RESTORE();
1407 		prison_free(pr);
1408 		return (ENXIO);
1409 	}
1410 
1411 	/* Do not try to move the iface from and to the same prison. */
1412 	vnet_dst = TD_TO_VNET(td);
1413 	if (vnet_dst == ifp->if_vnet) {
1414 		CURVNET_RESTORE();
1415 		prison_free(pr);
1416 		return (EEXIST);
1417 	}
1418 
1419 	/* Make sure the VNET is stable. */
1420 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1421 	if (shutdown) {
1422 		CURVNET_RESTORE();
1423 		prison_free(pr);
1424 		return (EBUSY);
1425 	}
1426 
1427 	/* Get interface back from child jail/vnet. */
1428 	found = if_unlink_ifnet(ifp, true);
1429 	MPASS(found);
1430 	sx_xlock(&ifnet_detach_sxlock);
1431 	error = if_vmove(ifp, vnet_dst);
1432 	sx_xunlock(&ifnet_detach_sxlock);
1433 	CURVNET_RESTORE();
1434 
1435 	/* Report the new if_xname back to the userland on success. */
1436 	if (error == 0)
1437 		sprintf(ifname, "%s", ifp->if_xname);
1438 
1439 	prison_free(pr);
1440 	return (error);
1441 }
1442 #endif /* VIMAGE */
1443 
1444 /*
1445  * Add a group to an interface
1446  */
1447 int
1448 if_addgroup(struct ifnet *ifp, const char *groupname)
1449 {
1450 	struct ifg_list		*ifgl;
1451 	struct ifg_group	*ifg = NULL;
1452 	struct ifg_member	*ifgm;
1453 	int 			 new = 0;
1454 
1455 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1456 	    groupname[strlen(groupname) - 1] <= '9')
1457 		return (EINVAL);
1458 
1459 	IFNET_WLOCK();
1460 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1461 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) {
1462 			IFNET_WUNLOCK();
1463 			return (EEXIST);
1464 		}
1465 
1466 	if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) {
1467 	    	IFNET_WUNLOCK();
1468 		return (ENOMEM);
1469 	}
1470 
1471 	if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1472 		free(ifgl, M_TEMP);
1473 		IFNET_WUNLOCK();
1474 		return (ENOMEM);
1475 	}
1476 
1477 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1478 		if (!strcmp(ifg->ifg_group, groupname))
1479 			break;
1480 
1481 	if (ifg == NULL) {
1482 		if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) {
1483 			free(ifgl, M_TEMP);
1484 			free(ifgm, M_TEMP);
1485 			IFNET_WUNLOCK();
1486 			return (ENOMEM);
1487 		}
1488 		strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1489 		ifg->ifg_refcnt = 0;
1490 		CK_STAILQ_INIT(&ifg->ifg_members);
1491 		CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next);
1492 		new = 1;
1493 	}
1494 
1495 	ifg->ifg_refcnt++;
1496 	ifgl->ifgl_group = ifg;
1497 	ifgm->ifgm_ifp = ifp;
1498 
1499 	IF_ADDR_WLOCK(ifp);
1500 	CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1501 	CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1502 	IF_ADDR_WUNLOCK(ifp);
1503 
1504 	IFNET_WUNLOCK();
1505 
1506 	if (new)
1507 		EVENTHANDLER_INVOKE(group_attach_event, ifg);
1508 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1509 
1510 	return (0);
1511 }
1512 
1513 /*
1514  * Helper function to remove a group out of an interface.  Expects the global
1515  * ifnet lock to be write-locked, and drops it before returning.
1516  */
1517 static void
1518 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl,
1519     const char *groupname)
1520 {
1521 	struct ifg_member *ifgm;
1522 	bool freeifgl;
1523 
1524 	IFNET_WLOCK_ASSERT();
1525 
1526 	IF_ADDR_WLOCK(ifp);
1527 	CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next);
1528 	IF_ADDR_WUNLOCK(ifp);
1529 
1530 	CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) {
1531 		if (ifgm->ifgm_ifp == ifp) {
1532 			CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm,
1533 			    ifg_member, ifgm_next);
1534 			break;
1535 		}
1536 	}
1537 
1538 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1539 		CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group,
1540 		    ifg_next);
1541 		freeifgl = true;
1542 	} else {
1543 		freeifgl = false;
1544 	}
1545 	IFNET_WUNLOCK();
1546 
1547 	epoch_wait_preempt(net_epoch_preempt);
1548 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1549 	if (freeifgl) {
1550 		EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group);
1551 		free(ifgl->ifgl_group, M_TEMP);
1552 	}
1553 	free(ifgm, M_TEMP);
1554 	free(ifgl, M_TEMP);
1555 }
1556 
1557 /*
1558  * Remove a group from an interface
1559  */
1560 int
1561 if_delgroup(struct ifnet *ifp, const char *groupname)
1562 {
1563 	struct ifg_list *ifgl;
1564 
1565 	IFNET_WLOCK();
1566 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1567 		if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0)
1568 			break;
1569 	if (ifgl == NULL) {
1570 		IFNET_WUNLOCK();
1571 		return (ENOENT);
1572 	}
1573 
1574 	_if_delgroup_locked(ifp, ifgl, groupname);
1575 
1576 	return (0);
1577 }
1578 
1579 /*
1580  * Remove an interface from all groups
1581  */
1582 static void
1583 if_delgroups(struct ifnet *ifp)
1584 {
1585 	struct ifg_list *ifgl;
1586 	char groupname[IFNAMSIZ];
1587 
1588 	IFNET_WLOCK();
1589 	while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) {
1590 		strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ);
1591 		_if_delgroup_locked(ifp, ifgl, groupname);
1592 		IFNET_WLOCK();
1593 	}
1594 	IFNET_WUNLOCK();
1595 }
1596 
1597 /*
1598  * Stores all groups from an interface in memory pointed to by ifgr.
1599  */
1600 static int
1601 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp)
1602 {
1603 	int			 len, error;
1604 	struct ifg_list		*ifgl;
1605 	struct ifg_req		 ifgrq, *ifgp;
1606 
1607 	NET_EPOCH_ASSERT();
1608 
1609 	if (ifgr->ifgr_len == 0) {
1610 		CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1611 			ifgr->ifgr_len += sizeof(struct ifg_req);
1612 		return (0);
1613 	}
1614 
1615 	len = ifgr->ifgr_len;
1616 	ifgp = ifgr->ifgr_groups;
1617 	/* XXX: wire */
1618 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1619 		if (len < sizeof(ifgrq))
1620 			return (EINVAL);
1621 		bzero(&ifgrq, sizeof ifgrq);
1622 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1623 		    sizeof(ifgrq.ifgrq_group));
1624 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req))))
1625 			return (error);
1626 		len -= sizeof(ifgrq);
1627 		ifgp++;
1628 	}
1629 
1630 	return (0);
1631 }
1632 
1633 /*
1634  * Stores all members of a group in memory pointed to by igfr
1635  */
1636 static int
1637 if_getgroupmembers(struct ifgroupreq *ifgr)
1638 {
1639 	struct ifg_group	*ifg;
1640 	struct ifg_member	*ifgm;
1641 	struct ifg_req		 ifgrq, *ifgp;
1642 	int			 len, error;
1643 
1644 	IFNET_RLOCK();
1645 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1646 		if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0)
1647 			break;
1648 	if (ifg == NULL) {
1649 		IFNET_RUNLOCK();
1650 		return (ENOENT);
1651 	}
1652 
1653 	if (ifgr->ifgr_len == 0) {
1654 		CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1655 			ifgr->ifgr_len += sizeof(ifgrq);
1656 		IFNET_RUNLOCK();
1657 		return (0);
1658 	}
1659 
1660 	len = ifgr->ifgr_len;
1661 	ifgp = ifgr->ifgr_groups;
1662 	CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1663 		if (len < sizeof(ifgrq)) {
1664 			IFNET_RUNLOCK();
1665 			return (EINVAL);
1666 		}
1667 		bzero(&ifgrq, sizeof ifgrq);
1668 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1669 		    sizeof(ifgrq.ifgrq_member));
1670 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
1671 			IFNET_RUNLOCK();
1672 			return (error);
1673 		}
1674 		len -= sizeof(ifgrq);
1675 		ifgp++;
1676 	}
1677 	IFNET_RUNLOCK();
1678 
1679 	return (0);
1680 }
1681 
1682 /*
1683  * Return counter values from counter(9)s stored in ifnet.
1684  */
1685 uint64_t
1686 if_get_counter_default(struct ifnet *ifp, ift_counter cnt)
1687 {
1688 
1689 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1690 
1691 	return (counter_u64_fetch(ifp->if_counters[cnt]));
1692 }
1693 
1694 /*
1695  * Increase an ifnet counter. Usually used for counters shared
1696  * between the stack and a driver, but function supports them all.
1697  */
1698 void
1699 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc)
1700 {
1701 
1702 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1703 
1704 	counter_u64_add(ifp->if_counters[cnt], inc);
1705 }
1706 
1707 /*
1708  * Copy data from ifnet to userland API structure if_data.
1709  */
1710 void
1711 if_data_copy(struct ifnet *ifp, struct if_data *ifd)
1712 {
1713 
1714 	ifd->ifi_type = ifp->if_type;
1715 	ifd->ifi_physical = 0;
1716 	ifd->ifi_addrlen = ifp->if_addrlen;
1717 	ifd->ifi_hdrlen = ifp->if_hdrlen;
1718 	ifd->ifi_link_state = ifp->if_link_state;
1719 	ifd->ifi_vhid = 0;
1720 	ifd->ifi_datalen = sizeof(struct if_data);
1721 	ifd->ifi_mtu = ifp->if_mtu;
1722 	ifd->ifi_metric = ifp->if_metric;
1723 	ifd->ifi_baudrate = ifp->if_baudrate;
1724 	ifd->ifi_hwassist = ifp->if_hwassist;
1725 	ifd->ifi_epoch = ifp->if_epoch;
1726 	ifd->ifi_lastchange = ifp->if_lastchange;
1727 
1728 	ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
1729 	ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS);
1730 	ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
1731 	ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS);
1732 	ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS);
1733 	ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES);
1734 	ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES);
1735 	ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS);
1736 	ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS);
1737 	ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS);
1738 	ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS);
1739 	ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO);
1740 }
1741 
1742 /*
1743  * Initialization, destruction and refcounting functions for ifaddrs.
1744  */
1745 struct ifaddr *
1746 ifa_alloc(size_t size, int flags)
1747 {
1748 	struct ifaddr *ifa;
1749 
1750 	KASSERT(size >= sizeof(struct ifaddr),
1751 	    ("%s: invalid size %zu", __func__, size));
1752 
1753 	ifa = malloc(size, M_IFADDR, M_ZERO | flags);
1754 	if (ifa == NULL)
1755 		return (NULL);
1756 
1757 	if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL)
1758 		goto fail;
1759 	if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL)
1760 		goto fail;
1761 	if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL)
1762 		goto fail;
1763 	if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL)
1764 		goto fail;
1765 
1766 	refcount_init(&ifa->ifa_refcnt, 1);
1767 
1768 	return (ifa);
1769 
1770 fail:
1771 	/* free(NULL) is okay */
1772 	counter_u64_free(ifa->ifa_opackets);
1773 	counter_u64_free(ifa->ifa_ipackets);
1774 	counter_u64_free(ifa->ifa_obytes);
1775 	counter_u64_free(ifa->ifa_ibytes);
1776 	free(ifa, M_IFADDR);
1777 
1778 	return (NULL);
1779 }
1780 
1781 void
1782 ifa_ref(struct ifaddr *ifa)
1783 {
1784 	u_int old __diagused;
1785 
1786 	old = refcount_acquire(&ifa->ifa_refcnt);
1787 	KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa));
1788 }
1789 
1790 int
1791 ifa_try_ref(struct ifaddr *ifa)
1792 {
1793 
1794 	NET_EPOCH_ASSERT();
1795 	return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt));
1796 }
1797 
1798 static void
1799 ifa_destroy(epoch_context_t ctx)
1800 {
1801 	struct ifaddr *ifa;
1802 
1803 	ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx);
1804 	counter_u64_free(ifa->ifa_opackets);
1805 	counter_u64_free(ifa->ifa_ipackets);
1806 	counter_u64_free(ifa->ifa_obytes);
1807 	counter_u64_free(ifa->ifa_ibytes);
1808 	free(ifa, M_IFADDR);
1809 }
1810 
1811 void
1812 ifa_free(struct ifaddr *ifa)
1813 {
1814 
1815 	if (refcount_release(&ifa->ifa_refcnt))
1816 		NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx);
1817 }
1818 
1819 /*
1820  * XXX: Because sockaddr_dl has deeper structure than the sockaddr
1821  * structs used to represent other address families, it is necessary
1822  * to perform a different comparison.
1823  */
1824 
1825 #define	sa_dl_equal(a1, a2)	\
1826 	((((const struct sockaddr_dl *)(a1))->sdl_len ==		\
1827 	 ((const struct sockaddr_dl *)(a2))->sdl_len) &&		\
1828 	 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)),		\
1829 	       CLLADDR((const struct sockaddr_dl *)(a2)),		\
1830 	       ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0))
1831 
1832 /*
1833  * Locate an interface based on a complete address.
1834  */
1835 /*ARGSUSED*/
1836 struct ifaddr *
1837 ifa_ifwithaddr(const struct sockaddr *addr)
1838 {
1839 	struct ifnet *ifp;
1840 	struct ifaddr *ifa;
1841 
1842 	NET_EPOCH_ASSERT();
1843 
1844 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1845 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1846 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1847 				continue;
1848 			if (sa_equal(addr, ifa->ifa_addr)) {
1849 				goto done;
1850 			}
1851 			/* IP6 doesn't have broadcast */
1852 			if ((ifp->if_flags & IFF_BROADCAST) &&
1853 			    ifa->ifa_broadaddr &&
1854 			    ifa->ifa_broadaddr->sa_len != 0 &&
1855 			    sa_equal(ifa->ifa_broadaddr, addr)) {
1856 				goto done;
1857 			}
1858 		}
1859 	}
1860 	ifa = NULL;
1861 done:
1862 	return (ifa);
1863 }
1864 
1865 int
1866 ifa_ifwithaddr_check(const struct sockaddr *addr)
1867 {
1868 	struct epoch_tracker et;
1869 	int rc;
1870 
1871 	NET_EPOCH_ENTER(et);
1872 	rc = (ifa_ifwithaddr(addr) != NULL);
1873 	NET_EPOCH_EXIT(et);
1874 	return (rc);
1875 }
1876 
1877 /*
1878  * Locate an interface based on the broadcast address.
1879  */
1880 /* ARGSUSED */
1881 struct ifaddr *
1882 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum)
1883 {
1884 	struct ifnet *ifp;
1885 	struct ifaddr *ifa;
1886 
1887 	NET_EPOCH_ASSERT();
1888 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1889 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1890 			continue;
1891 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1892 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1893 				continue;
1894 			if ((ifp->if_flags & IFF_BROADCAST) &&
1895 			    ifa->ifa_broadaddr &&
1896 			    ifa->ifa_broadaddr->sa_len != 0 &&
1897 			    sa_equal(ifa->ifa_broadaddr, addr)) {
1898 				goto done;
1899 			}
1900 		}
1901 	}
1902 	ifa = NULL;
1903 done:
1904 	return (ifa);
1905 }
1906 
1907 /*
1908  * Locate the point to point interface with a given destination address.
1909  */
1910 /*ARGSUSED*/
1911 struct ifaddr *
1912 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum)
1913 {
1914 	struct ifnet *ifp;
1915 	struct ifaddr *ifa;
1916 
1917 	NET_EPOCH_ASSERT();
1918 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1919 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1920 			continue;
1921 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1922 			continue;
1923 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1924 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1925 				continue;
1926 			if (ifa->ifa_dstaddr != NULL &&
1927 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1928 				goto done;
1929 			}
1930 		}
1931 	}
1932 	ifa = NULL;
1933 done:
1934 	return (ifa);
1935 }
1936 
1937 /*
1938  * Find an interface on a specific network.  If many, choice
1939  * is most specific found.
1940  */
1941 struct ifaddr *
1942 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum)
1943 {
1944 	struct ifnet *ifp;
1945 	struct ifaddr *ifa;
1946 	struct ifaddr *ifa_maybe = NULL;
1947 	u_int af = addr->sa_family;
1948 	const char *addr_data = addr->sa_data, *cplim;
1949 
1950 	NET_EPOCH_ASSERT();
1951 	/*
1952 	 * AF_LINK addresses can be looked up directly by their index number,
1953 	 * so do that if we can.
1954 	 */
1955 	if (af == AF_LINK) {
1956 		ifp = ifnet_byindex(
1957 		    ((const struct sockaddr_dl *)addr)->sdl_index);
1958 		return (ifp ? ifp->if_addr : NULL);
1959 	}
1960 
1961 	/*
1962 	 * Scan though each interface, looking for ones that have addresses
1963 	 * in this address family and the requested fib.
1964 	 */
1965 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1966 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1967 			continue;
1968 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1969 			const char *cp, *cp2, *cp3;
1970 
1971 			if (ifa->ifa_addr->sa_family != af)
1972 next:				continue;
1973 			if (af == AF_INET &&
1974 			    ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) {
1975 				/*
1976 				 * This is a bit broken as it doesn't
1977 				 * take into account that the remote end may
1978 				 * be a single node in the network we are
1979 				 * looking for.
1980 				 * The trouble is that we don't know the
1981 				 * netmask for the remote end.
1982 				 */
1983 				if (ifa->ifa_dstaddr != NULL &&
1984 				    sa_equal(addr, ifa->ifa_dstaddr)) {
1985 					goto done;
1986 				}
1987 			} else {
1988 				/*
1989 				 * Scan all the bits in the ifa's address.
1990 				 * If a bit dissagrees with what we are
1991 				 * looking for, mask it with the netmask
1992 				 * to see if it really matters.
1993 				 * (A byte at a time)
1994 				 */
1995 				if (ifa->ifa_netmask == 0)
1996 					continue;
1997 				cp = addr_data;
1998 				cp2 = ifa->ifa_addr->sa_data;
1999 				cp3 = ifa->ifa_netmask->sa_data;
2000 				cplim = ifa->ifa_netmask->sa_len
2001 					+ (char *)ifa->ifa_netmask;
2002 				while (cp3 < cplim)
2003 					if ((*cp++ ^ *cp2++) & *cp3++)
2004 						goto next; /* next address! */
2005 				/*
2006 				 * If the netmask of what we just found
2007 				 * is more specific than what we had before
2008 				 * (if we had one), or if the virtual status
2009 				 * of new prefix is better than of the old one,
2010 				 * then remember the new one before continuing
2011 				 * to search for an even better one.
2012 				 */
2013 				if (ifa_maybe == NULL ||
2014 				    ifa_preferred(ifa_maybe, ifa) ||
2015 				    rn_refines((caddr_t)ifa->ifa_netmask,
2016 				    (caddr_t)ifa_maybe->ifa_netmask)) {
2017 					ifa_maybe = ifa;
2018 				}
2019 			}
2020 		}
2021 	}
2022 	ifa = ifa_maybe;
2023 	ifa_maybe = NULL;
2024 done:
2025 	return (ifa);
2026 }
2027 
2028 /*
2029  * Find an interface address specific to an interface best matching
2030  * a given address.
2031  */
2032 struct ifaddr *
2033 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2034 {
2035 	struct ifaddr *ifa;
2036 	const char *cp, *cp2, *cp3;
2037 	char *cplim;
2038 	struct ifaddr *ifa_maybe = NULL;
2039 	u_int af = addr->sa_family;
2040 
2041 	if (af >= AF_MAX)
2042 		return (NULL);
2043 
2044 	NET_EPOCH_ASSERT();
2045 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2046 		if (ifa->ifa_addr->sa_family != af)
2047 			continue;
2048 		if (ifa_maybe == NULL)
2049 			ifa_maybe = ifa;
2050 		if (ifa->ifa_netmask == 0) {
2051 			if (sa_equal(addr, ifa->ifa_addr) ||
2052 			    (ifa->ifa_dstaddr &&
2053 			    sa_equal(addr, ifa->ifa_dstaddr)))
2054 				goto done;
2055 			continue;
2056 		}
2057 		if (ifp->if_flags & IFF_POINTOPOINT) {
2058 			if (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))
2059 				goto done;
2060 		} else {
2061 			cp = addr->sa_data;
2062 			cp2 = ifa->ifa_addr->sa_data;
2063 			cp3 = ifa->ifa_netmask->sa_data;
2064 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2065 			for (; cp3 < cplim; cp3++)
2066 				if ((*cp++ ^ *cp2++) & *cp3)
2067 					break;
2068 			if (cp3 == cplim)
2069 				goto done;
2070 		}
2071 	}
2072 	ifa = ifa_maybe;
2073 done:
2074 	return (ifa);
2075 }
2076 
2077 /*
2078  * See whether new ifa is better than current one:
2079  * 1) A non-virtual one is preferred over virtual.
2080  * 2) A virtual in master state preferred over any other state.
2081  *
2082  * Used in several address selecting functions.
2083  */
2084 int
2085 ifa_preferred(struct ifaddr *cur, struct ifaddr *next)
2086 {
2087 
2088 	return (cur->ifa_carp && (!next->ifa_carp ||
2089 	    ((*carp_master_p)(next) && !(*carp_master_p)(cur))));
2090 }
2091 
2092 struct sockaddr_dl *
2093 link_alloc_sdl(size_t size, int flags)
2094 {
2095 
2096 	return (malloc(size, M_TEMP, flags));
2097 }
2098 
2099 void
2100 link_free_sdl(struct sockaddr *sa)
2101 {
2102 	free(sa, M_TEMP);
2103 }
2104 
2105 /*
2106  * Fills in given sdl with interface basic info.
2107  * Returns pointer to filled sdl.
2108  */
2109 struct sockaddr_dl *
2110 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype)
2111 {
2112 	struct sockaddr_dl *sdl;
2113 
2114 	sdl = (struct sockaddr_dl *)paddr;
2115 	memset(sdl, 0, sizeof(struct sockaddr_dl));
2116 	sdl->sdl_len = sizeof(struct sockaddr_dl);
2117 	sdl->sdl_family = AF_LINK;
2118 	sdl->sdl_index = ifp->if_index;
2119 	sdl->sdl_type = iftype;
2120 
2121 	return (sdl);
2122 }
2123 
2124 /*
2125  * Mark an interface down and notify protocols of
2126  * the transition.
2127  */
2128 static void
2129 if_unroute(struct ifnet *ifp, int flag, int fam)
2130 {
2131 
2132 	KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP"));
2133 
2134 	ifp->if_flags &= ~flag;
2135 	getmicrotime(&ifp->if_lastchange);
2136 	ifp->if_qflush(ifp);
2137 
2138 	if (ifp->if_carp)
2139 		(*carp_linkstate_p)(ifp);
2140 	rt_ifmsg(ifp, IFF_UP);
2141 }
2142 
2143 void	(*vlan_link_state_p)(struct ifnet *);	/* XXX: private from if_vlan */
2144 void	(*vlan_trunk_cap_p)(struct ifnet *);		/* XXX: private from if_vlan */
2145 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *);
2146 struct	ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t);
2147 int	(*vlan_tag_p)(struct ifnet *, uint16_t *);
2148 int	(*vlan_pcp_p)(struct ifnet *, uint16_t *);
2149 int	(*vlan_setcookie_p)(struct ifnet *, void *);
2150 void	*(*vlan_cookie_p)(struct ifnet *);
2151 
2152 /*
2153  * Handle a change in the interface link state. To avoid LORs
2154  * between driver lock and upper layer locks, as well as possible
2155  * recursions, we post event to taskqueue, and all job
2156  * is done in static do_link_state_change().
2157  */
2158 void
2159 if_link_state_change(struct ifnet *ifp, int link_state)
2160 {
2161 	/* Return if state hasn't changed. */
2162 	if (ifp->if_link_state == link_state)
2163 		return;
2164 
2165 	ifp->if_link_state = link_state;
2166 
2167 	/* XXXGL: reference ifp? */
2168 	taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask);
2169 }
2170 
2171 static void
2172 do_link_state_change(void *arg, int pending)
2173 {
2174 	struct ifnet *ifp;
2175 	int link_state;
2176 
2177 	ifp = arg;
2178 	link_state = ifp->if_link_state;
2179 
2180 	CURVNET_SET(ifp->if_vnet);
2181 	rt_ifmsg(ifp, 0);
2182 	if (ifp->if_vlantrunk != NULL)
2183 		(*vlan_link_state_p)(ifp);
2184 
2185 	if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) &&
2186 	    ifp->if_l2com != NULL)
2187 		(*ng_ether_link_state_p)(ifp, link_state);
2188 	if (ifp->if_carp)
2189 		(*carp_linkstate_p)(ifp);
2190 	if (ifp->if_bridge)
2191 		ifp->if_bridge_linkstate(ifp);
2192 	if (ifp->if_lagg)
2193 		(*lagg_linkstate_p)(ifp, link_state);
2194 
2195 	if (IS_DEFAULT_VNET(curvnet))
2196 		devctl_notify("IFNET", ifp->if_xname,
2197 		    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN",
2198 		    NULL);
2199 	if (pending > 1)
2200 		if_printf(ifp, "%d link states coalesced\n", pending);
2201 	if (log_link_state_change)
2202 		if_printf(ifp, "link state changed to %s\n",
2203 		    (link_state == LINK_STATE_UP) ? "UP" : "DOWN" );
2204 	EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
2205 	CURVNET_RESTORE();
2206 }
2207 
2208 /*
2209  * Mark an interface down and notify protocols of
2210  * the transition.
2211  */
2212 void
2213 if_down(struct ifnet *ifp)
2214 {
2215 
2216 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN);
2217 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
2218 }
2219 
2220 /*
2221  * Mark an interface up and notify protocols of
2222  * the transition.
2223  */
2224 void
2225 if_up(struct ifnet *ifp)
2226 {
2227 
2228 	ifp->if_flags |= IFF_UP;
2229 	getmicrotime(&ifp->if_lastchange);
2230 	if (ifp->if_carp)
2231 		(*carp_linkstate_p)(ifp);
2232 	rt_ifmsg(ifp, IFF_UP);
2233 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP);
2234 }
2235 
2236 /*
2237  * Flush an interface queue.
2238  */
2239 void
2240 if_qflush(struct ifnet *ifp)
2241 {
2242 	struct mbuf *m, *n;
2243 	struct ifaltq *ifq;
2244 
2245 	ifq = &ifp->if_snd;
2246 	IFQ_LOCK(ifq);
2247 #ifdef ALTQ
2248 	if (ALTQ_IS_ENABLED(ifq))
2249 		ALTQ_PURGE(ifq);
2250 #endif
2251 	n = ifq->ifq_head;
2252 	while ((m = n) != NULL) {
2253 		n = m->m_nextpkt;
2254 		m_freem(m);
2255 	}
2256 	ifq->ifq_head = 0;
2257 	ifq->ifq_tail = 0;
2258 	ifq->ifq_len = 0;
2259 	IFQ_UNLOCK(ifq);
2260 }
2261 
2262 /*
2263  * Map interface name to interface structure pointer, with or without
2264  * returning a reference.
2265  */
2266 struct ifnet *
2267 ifunit_ref(const char *name)
2268 {
2269 	struct epoch_tracker et;
2270 	struct ifnet *ifp;
2271 
2272 	NET_EPOCH_ENTER(et);
2273 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2274 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 &&
2275 		    !(ifp->if_flags & IFF_DYING))
2276 			break;
2277 	}
2278 	if (ifp != NULL) {
2279 		if_ref(ifp);
2280 		MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
2281 	}
2282 
2283 	NET_EPOCH_EXIT(et);
2284 	return (ifp);
2285 }
2286 
2287 struct ifnet *
2288 ifunit(const char *name)
2289 {
2290 	struct epoch_tracker et;
2291 	struct ifnet *ifp;
2292 
2293 	NET_EPOCH_ENTER(et);
2294 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2295 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0)
2296 			break;
2297 	}
2298 	NET_EPOCH_EXIT(et);
2299 	return (ifp);
2300 }
2301 
2302 void *
2303 ifr_buffer_get_buffer(void *data)
2304 {
2305 	union ifreq_union *ifrup;
2306 
2307 	ifrup = data;
2308 #ifdef COMPAT_FREEBSD32
2309 	if (SV_CURPROC_FLAG(SV_ILP32))
2310 		return ((void *)(uintptr_t)
2311 		    ifrup->ifr32.ifr_ifru.ifru_buffer.buffer);
2312 #endif
2313 	return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer);
2314 }
2315 
2316 static void
2317 ifr_buffer_set_buffer_null(void *data)
2318 {
2319 	union ifreq_union *ifrup;
2320 
2321 	ifrup = data;
2322 #ifdef COMPAT_FREEBSD32
2323 	if (SV_CURPROC_FLAG(SV_ILP32))
2324 		ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0;
2325 	else
2326 #endif
2327 		ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL;
2328 }
2329 
2330 size_t
2331 ifr_buffer_get_length(void *data)
2332 {
2333 	union ifreq_union *ifrup;
2334 
2335 	ifrup = data;
2336 #ifdef COMPAT_FREEBSD32
2337 	if (SV_CURPROC_FLAG(SV_ILP32))
2338 		return (ifrup->ifr32.ifr_ifru.ifru_buffer.length);
2339 #endif
2340 	return (ifrup->ifr.ifr_ifru.ifru_buffer.length);
2341 }
2342 
2343 static void
2344 ifr_buffer_set_length(void *data, size_t len)
2345 {
2346 	union ifreq_union *ifrup;
2347 
2348 	ifrup = data;
2349 #ifdef COMPAT_FREEBSD32
2350 	if (SV_CURPROC_FLAG(SV_ILP32))
2351 		ifrup->ifr32.ifr_ifru.ifru_buffer.length = len;
2352 	else
2353 #endif
2354 		ifrup->ifr.ifr_ifru.ifru_buffer.length = len;
2355 }
2356 
2357 void *
2358 ifr_data_get_ptr(void *ifrp)
2359 {
2360 	union ifreq_union *ifrup;
2361 
2362 	ifrup = ifrp;
2363 #ifdef COMPAT_FREEBSD32
2364 	if (SV_CURPROC_FLAG(SV_ILP32))
2365 		return ((void *)(uintptr_t)
2366 		    ifrup->ifr32.ifr_ifru.ifru_data);
2367 #endif
2368 		return (ifrup->ifr.ifr_ifru.ifru_data);
2369 }
2370 
2371 struct ifcap_nv_bit_name {
2372 	uint64_t cap_bit;
2373 	const char *cap_name;
2374 };
2375 #define CAPNV(x) {.cap_bit = IFCAP_##x, \
2376     .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) }
2377 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = {
2378 	CAPNV(RXCSUM),
2379 	CAPNV(TXCSUM),
2380 	CAPNV(NETCONS),
2381 	CAPNV(VLAN_MTU),
2382 	CAPNV(VLAN_HWTAGGING),
2383 	CAPNV(JUMBO_MTU),
2384 	CAPNV(POLLING),
2385 	CAPNV(VLAN_HWCSUM),
2386 	CAPNV(TSO4),
2387 	CAPNV(TSO6),
2388 	CAPNV(LRO),
2389 	CAPNV(WOL_UCAST),
2390 	CAPNV(WOL_MCAST),
2391 	CAPNV(WOL_MAGIC),
2392 	CAPNV(TOE4),
2393 	CAPNV(TOE6),
2394 	CAPNV(VLAN_HWFILTER),
2395 	CAPNV(VLAN_HWTSO),
2396 	CAPNV(LINKSTATE),
2397 	CAPNV(NETMAP),
2398 	CAPNV(RXCSUM_IPV6),
2399 	CAPNV(TXCSUM_IPV6),
2400 	CAPNV(HWSTATS),
2401 	CAPNV(TXRTLMT),
2402 	CAPNV(HWRXTSTMP),
2403 	CAPNV(MEXTPG),
2404 	CAPNV(TXTLS4),
2405 	CAPNV(TXTLS6),
2406 	CAPNV(VXLAN_HWCSUM),
2407 	CAPNV(VXLAN_HWTSO),
2408 	CAPNV(TXTLS_RTLMT),
2409 	{0, NULL}
2410 };
2411 #define CAP2NV(x) {.cap_bit = IFCAP2_BIT(IFCAP2_##x), \
2412     .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) }
2413 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = {
2414 	CAP2NV(RXTLS4),
2415 	CAP2NV(RXTLS6),
2416 	{0, NULL}
2417 };
2418 #undef CAPNV
2419 #undef CAP2NV
2420 
2421 int
2422 if_capnv_to_capint(const nvlist_t *nv, int *old_cap,
2423     const struct ifcap_nv_bit_name *nn, bool all)
2424 {
2425 	int i, res;
2426 
2427 	res = 0;
2428 	for (i = 0; nn[i].cap_name != NULL; i++) {
2429 		if (nvlist_exists_bool(nv, nn[i].cap_name)) {
2430 			if (all || nvlist_get_bool(nv, nn[i].cap_name))
2431 				res |= nn[i].cap_bit;
2432 		} else {
2433 			res |= *old_cap & nn[i].cap_bit;
2434 		}
2435 	}
2436 	return (res);
2437 }
2438 
2439 void
2440 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn,
2441     int ifr_cap, int ifr_req)
2442 {
2443 	int i;
2444 
2445 	for (i = 0; nn[i].cap_name != NULL; i++) {
2446 		if ((nn[i].cap_bit & ifr_cap) != 0) {
2447 			nvlist_add_bool(nv, nn[i].cap_name,
2448 			    (nn[i].cap_bit & ifr_req) != 0);
2449 		}
2450 	}
2451 }
2452 
2453 /*
2454  * Hardware specific interface ioctls.
2455  */
2456 int
2457 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
2458 {
2459 	struct ifreq *ifr;
2460 	int error = 0, do_ifup = 0;
2461 	int new_flags, temp_flags;
2462 	size_t descrlen, nvbuflen;
2463 	char *descrbuf;
2464 	char new_name[IFNAMSIZ];
2465 	void *buf;
2466 	nvlist_t *nvcap;
2467 	struct siocsifcapnv_driver_data drv_ioctl_data;
2468 
2469 	ifr = (struct ifreq *)data;
2470 	switch (cmd) {
2471 	case SIOCGIFINDEX:
2472 		ifr->ifr_index = ifp->if_index;
2473 		break;
2474 
2475 	case SIOCGIFFLAGS:
2476 		temp_flags = ifp->if_flags | ifp->if_drv_flags;
2477 		ifr->ifr_flags = temp_flags & 0xffff;
2478 		ifr->ifr_flagshigh = temp_flags >> 16;
2479 		break;
2480 
2481 	case SIOCGIFCAP:
2482 		ifr->ifr_reqcap = ifp->if_capabilities;
2483 		ifr->ifr_curcap = ifp->if_capenable;
2484 		break;
2485 
2486 	case SIOCGIFCAPNV:
2487 		if ((ifp->if_capabilities & IFCAP_NV) == 0) {
2488 			error = EINVAL;
2489 			break;
2490 		}
2491 		buf = NULL;
2492 		nvcap = nvlist_create(0);
2493 		for (;;) {
2494 			if_capint_to_capnv(nvcap, ifcap_nv_bit_names,
2495 			    ifp->if_capabilities, ifp->if_capenable);
2496 			if_capint_to_capnv(nvcap, ifcap2_nv_bit_names,
2497 			    ifp->if_capabilities2, ifp->if_capenable2);
2498 			error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV,
2499 			    __DECONST(caddr_t, nvcap));
2500 			if (error != 0) {
2501 				if_printf(ifp,
2502 			    "SIOCGIFCAPNV driver mistake: nvlist error %d\n",
2503 				    error);
2504 				break;
2505 			}
2506 			buf = nvlist_pack(nvcap, &nvbuflen);
2507 			if (buf == NULL) {
2508 				error = nvlist_error(nvcap);
2509 				if (error == 0)
2510 					error = EDOOFUS;
2511 				break;
2512 			}
2513 			if (nvbuflen > ifr->ifr_cap_nv.buf_length) {
2514 				ifr->ifr_cap_nv.length = nvbuflen;
2515 				ifr->ifr_cap_nv.buffer = NULL;
2516 				error = EFBIG;
2517 				break;
2518 			}
2519 			ifr->ifr_cap_nv.length = nvbuflen;
2520 			error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen);
2521 			break;
2522 		}
2523 		free(buf, M_NVLIST);
2524 		nvlist_destroy(nvcap);
2525 		break;
2526 
2527 	case SIOCGIFDATA:
2528 	{
2529 		struct if_data ifd;
2530 
2531 		/* Ensure uninitialised padding is not leaked. */
2532 		memset(&ifd, 0, sizeof(ifd));
2533 
2534 		if_data_copy(ifp, &ifd);
2535 		error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd));
2536 		break;
2537 	}
2538 
2539 #ifdef MAC
2540 	case SIOCGIFMAC:
2541 		error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp);
2542 		break;
2543 #endif
2544 
2545 	case SIOCGIFMETRIC:
2546 		ifr->ifr_metric = ifp->if_metric;
2547 		break;
2548 
2549 	case SIOCGIFMTU:
2550 		ifr->ifr_mtu = ifp->if_mtu;
2551 		break;
2552 
2553 	case SIOCGIFPHYS:
2554 		/* XXXGL: did this ever worked? */
2555 		ifr->ifr_phys = 0;
2556 		break;
2557 
2558 	case SIOCGIFDESCR:
2559 		error = 0;
2560 		sx_slock(&ifdescr_sx);
2561 		if (ifp->if_description == NULL)
2562 			error = ENOMSG;
2563 		else {
2564 			/* space for terminating nul */
2565 			descrlen = strlen(ifp->if_description) + 1;
2566 			if (ifr_buffer_get_length(ifr) < descrlen)
2567 				ifr_buffer_set_buffer_null(ifr);
2568 			else
2569 				error = copyout(ifp->if_description,
2570 				    ifr_buffer_get_buffer(ifr), descrlen);
2571 			ifr_buffer_set_length(ifr, descrlen);
2572 		}
2573 		sx_sunlock(&ifdescr_sx);
2574 		break;
2575 
2576 	case SIOCSIFDESCR:
2577 		error = priv_check(td, PRIV_NET_SETIFDESCR);
2578 		if (error)
2579 			return (error);
2580 
2581 		/*
2582 		 * Copy only (length-1) bytes to make sure that
2583 		 * if_description is always nul terminated.  The
2584 		 * length parameter is supposed to count the
2585 		 * terminating nul in.
2586 		 */
2587 		if (ifr_buffer_get_length(ifr) > ifdescr_maxlen)
2588 			return (ENAMETOOLONG);
2589 		else if (ifr_buffer_get_length(ifr) == 0)
2590 			descrbuf = NULL;
2591 		else {
2592 			descrbuf = if_allocdescr(ifr_buffer_get_length(ifr), M_WAITOK);
2593 			error = copyin(ifr_buffer_get_buffer(ifr), descrbuf,
2594 			    ifr_buffer_get_length(ifr) - 1);
2595 			if (error) {
2596 				if_freedescr(descrbuf);
2597 				break;
2598 			}
2599 		}
2600 
2601 		if_setdescr(ifp, descrbuf);
2602 		getmicrotime(&ifp->if_lastchange);
2603 		break;
2604 
2605 	case SIOCGIFFIB:
2606 		ifr->ifr_fib = ifp->if_fib;
2607 		break;
2608 
2609 	case SIOCSIFFIB:
2610 		error = priv_check(td, PRIV_NET_SETIFFIB);
2611 		if (error)
2612 			return (error);
2613 		if (ifr->ifr_fib >= rt_numfibs)
2614 			return (EINVAL);
2615 
2616 		ifp->if_fib = ifr->ifr_fib;
2617 		break;
2618 
2619 	case SIOCSIFFLAGS:
2620 		error = priv_check(td, PRIV_NET_SETIFFLAGS);
2621 		if (error)
2622 			return (error);
2623 		/*
2624 		 * Currently, no driver owned flags pass the IFF_CANTCHANGE
2625 		 * check, so we don't need special handling here yet.
2626 		 */
2627 		new_flags = (ifr->ifr_flags & 0xffff) |
2628 		    (ifr->ifr_flagshigh << 16);
2629 		if (ifp->if_flags & IFF_UP &&
2630 		    (new_flags & IFF_UP) == 0) {
2631 			if_down(ifp);
2632 		} else if (new_flags & IFF_UP &&
2633 		    (ifp->if_flags & IFF_UP) == 0) {
2634 			do_ifup = 1;
2635 		}
2636 		/* See if permanently promiscuous mode bit is about to flip */
2637 		if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) {
2638 			if (new_flags & IFF_PPROMISC)
2639 				ifp->if_flags |= IFF_PROMISC;
2640 			else if (ifp->if_pcount == 0)
2641 				ifp->if_flags &= ~IFF_PROMISC;
2642 			if (log_promisc_mode_change)
2643                                 if_printf(ifp, "permanently promiscuous mode %s\n",
2644                                     ((new_flags & IFF_PPROMISC) ?
2645                                      "enabled" : "disabled"));
2646 		}
2647 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2648 			(new_flags &~ IFF_CANTCHANGE);
2649 		if (ifp->if_ioctl) {
2650 			(void) (*ifp->if_ioctl)(ifp, cmd, data);
2651 		}
2652 		if (do_ifup)
2653 			if_up(ifp);
2654 		getmicrotime(&ifp->if_lastchange);
2655 		break;
2656 
2657 	case SIOCSIFCAP:
2658 		error = priv_check(td, PRIV_NET_SETIFCAP);
2659 		if (error != 0)
2660 			return (error);
2661 		if (ifp->if_ioctl == NULL)
2662 			return (EOPNOTSUPP);
2663 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
2664 			return (EINVAL);
2665 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2666 		if (error == 0)
2667 			getmicrotime(&ifp->if_lastchange);
2668 		break;
2669 
2670 	case SIOCSIFCAPNV:
2671 		error = priv_check(td, PRIV_NET_SETIFCAP);
2672 		if (error != 0)
2673 			return (error);
2674 		if (ifp->if_ioctl == NULL)
2675 			return (EOPNOTSUPP);
2676 		if ((ifp->if_capabilities & IFCAP_NV) == 0)
2677 			return (EINVAL);
2678 		if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE)
2679 			return (EINVAL);
2680 		nvcap = NULL;
2681 		buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK);
2682 		for (;;) {
2683 			error = copyin(ifr->ifr_cap_nv.buffer, buf,
2684 			    ifr->ifr_cap_nv.length);
2685 			if (error != 0)
2686 				break;
2687 			nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0);
2688 			if (nvcap == NULL) {
2689 				error = EINVAL;
2690 				break;
2691 			}
2692 			drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap,
2693 			    &ifp->if_capenable, ifcap_nv_bit_names, false);
2694 			if ((drv_ioctl_data.reqcap &
2695 			    ~ifp->if_capabilities) != 0) {
2696 				error = EINVAL;
2697 				break;
2698 			}
2699 			drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap,
2700 			    &ifp->if_capenable2, ifcap2_nv_bit_names, false);
2701 			if ((drv_ioctl_data.reqcap2 &
2702 			    ~ifp->if_capabilities2) != 0) {
2703 				error = EINVAL;
2704 				break;
2705 			}
2706 			drv_ioctl_data.nvcap = nvcap;
2707 			error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV,
2708 			    (caddr_t)&drv_ioctl_data);
2709 			break;
2710 		}
2711 		nvlist_destroy(nvcap);
2712 		free(buf, M_TEMP);
2713 		if (error == 0)
2714 			getmicrotime(&ifp->if_lastchange);
2715 		break;
2716 
2717 #ifdef MAC
2718 	case SIOCSIFMAC:
2719 		error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp);
2720 		break;
2721 #endif
2722 
2723 	case SIOCSIFNAME:
2724 		error = priv_check(td, PRIV_NET_SETIFNAME);
2725 		if (error)
2726 			return (error);
2727 		error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ,
2728 		    NULL);
2729 		if (error != 0)
2730 			return (error);
2731 		error = if_rename(ifp, new_name);
2732 		break;
2733 
2734 #ifdef VIMAGE
2735 	case SIOCSIFVNET:
2736 		error = priv_check(td, PRIV_NET_SETIFVNET);
2737 		if (error)
2738 			return (error);
2739 		error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid);
2740 		break;
2741 #endif
2742 
2743 	case SIOCSIFMETRIC:
2744 		error = priv_check(td, PRIV_NET_SETIFMETRIC);
2745 		if (error)
2746 			return (error);
2747 		ifp->if_metric = ifr->ifr_metric;
2748 		getmicrotime(&ifp->if_lastchange);
2749 		break;
2750 
2751 	case SIOCSIFPHYS:
2752 		error = priv_check(td, PRIV_NET_SETIFPHYS);
2753 		if (error)
2754 			return (error);
2755 		if (ifp->if_ioctl == NULL)
2756 			return (EOPNOTSUPP);
2757 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2758 		if (error == 0)
2759 			getmicrotime(&ifp->if_lastchange);
2760 		break;
2761 
2762 	case SIOCSIFMTU:
2763 	{
2764 		u_long oldmtu = ifp->if_mtu;
2765 
2766 		error = priv_check(td, PRIV_NET_SETIFMTU);
2767 		if (error)
2768 			return (error);
2769 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
2770 			return (EINVAL);
2771 		if (ifp->if_ioctl == NULL)
2772 			return (EOPNOTSUPP);
2773 		/* Disallow MTU changes on bridge member interfaces. */
2774 		if (ifp->if_bridge)
2775 			return (EOPNOTSUPP);
2776 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2777 		if (error == 0) {
2778 			getmicrotime(&ifp->if_lastchange);
2779 			rt_ifmsg(ifp, 0);
2780 #ifdef INET
2781 			DEBUGNET_NOTIFY_MTU(ifp);
2782 #endif
2783 		}
2784 		/*
2785 		 * If the link MTU changed, do network layer specific procedure.
2786 		 */
2787 		if (ifp->if_mtu != oldmtu)
2788 			if_notifymtu(ifp);
2789 		break;
2790 	}
2791 
2792 	case SIOCADDMULTI:
2793 	case SIOCDELMULTI:
2794 		if (cmd == SIOCADDMULTI)
2795 			error = priv_check(td, PRIV_NET_ADDMULTI);
2796 		else
2797 			error = priv_check(td, PRIV_NET_DELMULTI);
2798 		if (error)
2799 			return (error);
2800 
2801 		/* Don't allow group membership on non-multicast interfaces. */
2802 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
2803 			return (EOPNOTSUPP);
2804 
2805 		/* Don't let users screw up protocols' entries. */
2806 		if (ifr->ifr_addr.sa_family != AF_LINK)
2807 			return (EINVAL);
2808 
2809 		if (cmd == SIOCADDMULTI) {
2810 			struct epoch_tracker et;
2811 			struct ifmultiaddr *ifma;
2812 
2813 			/*
2814 			 * Userland is only permitted to join groups once
2815 			 * via the if_addmulti() KPI, because it cannot hold
2816 			 * struct ifmultiaddr * between calls. It may also
2817 			 * lose a race while we check if the membership
2818 			 * already exists.
2819 			 */
2820 			NET_EPOCH_ENTER(et);
2821 			ifma = if_findmulti(ifp, &ifr->ifr_addr);
2822 			NET_EPOCH_EXIT(et);
2823 			if (ifma != NULL)
2824 				error = EADDRINUSE;
2825 			else
2826 				error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2827 		} else {
2828 			error = if_delmulti(ifp, &ifr->ifr_addr);
2829 		}
2830 		if (error == 0)
2831 			getmicrotime(&ifp->if_lastchange);
2832 		break;
2833 
2834 	case SIOCSIFPHYADDR:
2835 	case SIOCDIFPHYADDR:
2836 #ifdef INET6
2837 	case SIOCSIFPHYADDR_IN6:
2838 #endif
2839 	case SIOCSIFMEDIA:
2840 	case SIOCSIFGENERIC:
2841 		error = priv_check(td, PRIV_NET_HWIOCTL);
2842 		if (error)
2843 			return (error);
2844 		if (ifp->if_ioctl == NULL)
2845 			return (EOPNOTSUPP);
2846 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2847 		if (error == 0)
2848 			getmicrotime(&ifp->if_lastchange);
2849 		break;
2850 
2851 	case SIOCGIFSTATUS:
2852 	case SIOCGIFPSRCADDR:
2853 	case SIOCGIFPDSTADDR:
2854 	case SIOCGIFMEDIA:
2855 	case SIOCGIFXMEDIA:
2856 	case SIOCGIFGENERIC:
2857 	case SIOCGIFRSSKEY:
2858 	case SIOCGIFRSSHASH:
2859 	case SIOCGIFDOWNREASON:
2860 		if (ifp->if_ioctl == NULL)
2861 			return (EOPNOTSUPP);
2862 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2863 		break;
2864 
2865 	case SIOCSIFLLADDR:
2866 		error = priv_check(td, PRIV_NET_SETLLADDR);
2867 		if (error)
2868 			return (error);
2869 		error = if_setlladdr(ifp,
2870 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
2871 		break;
2872 
2873 	case SIOCGHWADDR:
2874 		error = if_gethwaddr(ifp, ifr);
2875 		break;
2876 
2877 	case SIOCAIFGROUP:
2878 		error = priv_check(td, PRIV_NET_ADDIFGROUP);
2879 		if (error)
2880 			return (error);
2881 		error = if_addgroup(ifp,
2882 		    ((struct ifgroupreq *)data)->ifgr_group);
2883 		if (error != 0)
2884 			return (error);
2885 		break;
2886 
2887 	case SIOCGIFGROUP:
2888 	{
2889 		struct epoch_tracker et;
2890 
2891 		NET_EPOCH_ENTER(et);
2892 		error = if_getgroup((struct ifgroupreq *)data, ifp);
2893 		NET_EPOCH_EXIT(et);
2894 		break;
2895 	}
2896 
2897 	case SIOCDIFGROUP:
2898 		error = priv_check(td, PRIV_NET_DELIFGROUP);
2899 		if (error)
2900 			return (error);
2901 		error = if_delgroup(ifp,
2902 		    ((struct ifgroupreq *)data)->ifgr_group);
2903 		if (error != 0)
2904 			return (error);
2905 		break;
2906 
2907 	default:
2908 		error = ENOIOCTL;
2909 		break;
2910 	}
2911 	return (error);
2912 }
2913 
2914 /*
2915  * Interface ioctls.
2916  */
2917 int
2918 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td)
2919 {
2920 #ifdef COMPAT_FREEBSD32
2921 	union {
2922 		struct ifconf ifc;
2923 		struct ifdrv ifd;
2924 		struct ifgroupreq ifgr;
2925 		struct ifmediareq ifmr;
2926 	} thunk;
2927 	u_long saved_cmd;
2928 	struct ifconf32 *ifc32;
2929 	struct ifdrv32 *ifd32;
2930 	struct ifgroupreq32 *ifgr32;
2931 	struct ifmediareq32 *ifmr32;
2932 #endif
2933 	struct ifnet *ifp;
2934 	struct ifreq *ifr;
2935 	int error;
2936 	int oif_flags;
2937 #ifdef VIMAGE
2938 	bool shutdown;
2939 #endif
2940 
2941 	CURVNET_SET(so->so_vnet);
2942 #ifdef VIMAGE
2943 	/* Make sure the VNET is stable. */
2944 	shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet);
2945 	if (shutdown) {
2946 		CURVNET_RESTORE();
2947 		return (EBUSY);
2948 	}
2949 #endif
2950 
2951 #ifdef COMPAT_FREEBSD32
2952 	saved_cmd = cmd;
2953 	switch (cmd) {
2954 	case SIOCGIFCONF32:
2955 		ifc32 = (struct ifconf32 *)data;
2956 		thunk.ifc.ifc_len = ifc32->ifc_len;
2957 		thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf);
2958 		data = (caddr_t)&thunk.ifc;
2959 		cmd = SIOCGIFCONF;
2960 		break;
2961 	case SIOCGDRVSPEC32:
2962 	case SIOCSDRVSPEC32:
2963 		ifd32 = (struct ifdrv32 *)data;
2964 		memcpy(thunk.ifd.ifd_name, ifd32->ifd_name,
2965 		    sizeof(thunk.ifd.ifd_name));
2966 		thunk.ifd.ifd_cmd = ifd32->ifd_cmd;
2967 		thunk.ifd.ifd_len = ifd32->ifd_len;
2968 		thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data);
2969 		data = (caddr_t)&thunk.ifd;
2970 		cmd = _IOC_NEWTYPE(cmd, struct ifdrv);
2971 		break;
2972 	case SIOCAIFGROUP32:
2973 	case SIOCGIFGROUP32:
2974 	case SIOCDIFGROUP32:
2975 	case SIOCGIFGMEMB32:
2976 		ifgr32 = (struct ifgroupreq32 *)data;
2977 		memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name,
2978 		    sizeof(thunk.ifgr.ifgr_name));
2979 		thunk.ifgr.ifgr_len = ifgr32->ifgr_len;
2980 		switch (cmd) {
2981 		case SIOCAIFGROUP32:
2982 		case SIOCDIFGROUP32:
2983 			memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group,
2984 			    sizeof(thunk.ifgr.ifgr_group));
2985 			break;
2986 		case SIOCGIFGROUP32:
2987 		case SIOCGIFGMEMB32:
2988 			thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups);
2989 			break;
2990 		}
2991 		data = (caddr_t)&thunk.ifgr;
2992 		cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq);
2993 		break;
2994 	case SIOCGIFMEDIA32:
2995 	case SIOCGIFXMEDIA32:
2996 		ifmr32 = (struct ifmediareq32 *)data;
2997 		memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name,
2998 		    sizeof(thunk.ifmr.ifm_name));
2999 		thunk.ifmr.ifm_current = ifmr32->ifm_current;
3000 		thunk.ifmr.ifm_mask = ifmr32->ifm_mask;
3001 		thunk.ifmr.ifm_status = ifmr32->ifm_status;
3002 		thunk.ifmr.ifm_active = ifmr32->ifm_active;
3003 		thunk.ifmr.ifm_count = ifmr32->ifm_count;
3004 		thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist);
3005 		data = (caddr_t)&thunk.ifmr;
3006 		cmd = _IOC_NEWTYPE(cmd, struct ifmediareq);
3007 		break;
3008 	}
3009 #endif
3010 
3011 	switch (cmd) {
3012 	case SIOCGIFCONF:
3013 		error = ifconf(cmd, data);
3014 		goto out_noref;
3015 	}
3016 
3017 	ifr = (struct ifreq *)data;
3018 	switch (cmd) {
3019 #ifdef VIMAGE
3020 	case SIOCSIFRVNET:
3021 		error = priv_check(td, PRIV_NET_SETIFVNET);
3022 		if (error == 0)
3023 			error = if_vmove_reclaim(td, ifr->ifr_name,
3024 			    ifr->ifr_jid);
3025 		goto out_noref;
3026 #endif
3027 	case SIOCIFCREATE:
3028 	case SIOCIFCREATE2:
3029 		error = priv_check(td, PRIV_NET_IFCREATE);
3030 		if (error == 0)
3031 			error = if_clone_create(ifr->ifr_name,
3032 			    sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ?
3033 			    ifr_data_get_ptr(ifr) : NULL);
3034 		goto out_noref;
3035 	case SIOCIFDESTROY:
3036 		error = priv_check(td, PRIV_NET_IFDESTROY);
3037 
3038 		if (error == 0) {
3039 			sx_xlock(&ifnet_detach_sxlock);
3040 			error = if_clone_destroy(ifr->ifr_name);
3041 			sx_xunlock(&ifnet_detach_sxlock);
3042 		}
3043 		goto out_noref;
3044 
3045 	case SIOCIFGCLONERS:
3046 		error = if_clone_list((struct if_clonereq *)data);
3047 		goto out_noref;
3048 
3049 	case SIOCGIFGMEMB:
3050 		error = if_getgroupmembers((struct ifgroupreq *)data);
3051 		goto out_noref;
3052 
3053 #if defined(INET) || defined(INET6)
3054 	case SIOCSVH:
3055 	case SIOCGVH:
3056 		if (carp_ioctl_p == NULL)
3057 			error = EPROTONOSUPPORT;
3058 		else
3059 			error = (*carp_ioctl_p)(ifr, cmd, td);
3060 		goto out_noref;
3061 #endif
3062 	}
3063 
3064 	ifp = ifunit_ref(ifr->ifr_name);
3065 	if (ifp == NULL) {
3066 		error = ENXIO;
3067 		goto out_noref;
3068 	}
3069 
3070 	error = ifhwioctl(cmd, ifp, data, td);
3071 	if (error != ENOIOCTL)
3072 		goto out_ref;
3073 
3074 	oif_flags = ifp->if_flags;
3075 	if (so->so_proto == NULL) {
3076 		error = EOPNOTSUPP;
3077 		goto out_ref;
3078 	}
3079 
3080 	/*
3081 	 * Pass the request on to the socket control method, and if the
3082 	 * latter returns EOPNOTSUPP, directly to the interface.
3083 	 *
3084 	 * Make an exception for the legacy SIOCSIF* requests.  Drivers
3085 	 * trust SIOCSIFADDR et al to come from an already privileged
3086 	 * layer, and do not perform any credentials checks or input
3087 	 * validation.
3088 	 */
3089 	error = so->so_proto->pr_control(so, cmd, data, ifp, td);
3090 	if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL &&
3091 	    cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR &&
3092 	    cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK)
3093 		error = (*ifp->if_ioctl)(ifp, cmd, data);
3094 
3095 	if (!(oif_flags & IFF_UP) && (ifp->if_flags & IFF_UP))
3096 		if_up(ifp);
3097 out_ref:
3098 	if_rele(ifp);
3099 out_noref:
3100 	CURVNET_RESTORE();
3101 #ifdef COMPAT_FREEBSD32
3102 	if (error != 0)
3103 		return (error);
3104 	switch (saved_cmd) {
3105 	case SIOCGIFCONF32:
3106 		ifc32->ifc_len = thunk.ifc.ifc_len;
3107 		break;
3108 	case SIOCGDRVSPEC32:
3109 		/*
3110 		 * SIOCGDRVSPEC is IOWR, but nothing actually touches
3111 		 * the struct so just assert that ifd_len (the only
3112 		 * field it might make sense to update) hasn't
3113 		 * changed.
3114 		 */
3115 		KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len,
3116 		    ("ifd_len was updated %u -> %zu", ifd32->ifd_len,
3117 			thunk.ifd.ifd_len));
3118 		break;
3119 	case SIOCGIFGROUP32:
3120 	case SIOCGIFGMEMB32:
3121 		ifgr32->ifgr_len = thunk.ifgr.ifgr_len;
3122 		break;
3123 	case SIOCGIFMEDIA32:
3124 	case SIOCGIFXMEDIA32:
3125 		ifmr32->ifm_current = thunk.ifmr.ifm_current;
3126 		ifmr32->ifm_mask = thunk.ifmr.ifm_mask;
3127 		ifmr32->ifm_status = thunk.ifmr.ifm_status;
3128 		ifmr32->ifm_active = thunk.ifmr.ifm_active;
3129 		ifmr32->ifm_count = thunk.ifmr.ifm_count;
3130 		break;
3131 	}
3132 #endif
3133 	return (error);
3134 }
3135 
3136 int
3137 if_rename(struct ifnet *ifp, char *new_name)
3138 {
3139 	struct ifaddr *ifa;
3140 	struct sockaddr_dl *sdl;
3141 	size_t namelen, onamelen;
3142 	char old_name[IFNAMSIZ];
3143 	char strbuf[IFNAMSIZ + 8];
3144 
3145 	if (new_name[0] == '\0')
3146 		return (EINVAL);
3147 	if (strcmp(new_name, ifp->if_xname) == 0)
3148 		return (0);
3149 	if (ifunit(new_name) != NULL)
3150 		return (EEXIST);
3151 
3152 	/*
3153 	 * XXX: Locking.  Nothing else seems to lock if_flags,
3154 	 * and there are numerous other races with the
3155 	 * ifunit() checks not being atomic with namespace
3156 	 * changes (renames, vmoves, if_attach, etc).
3157 	 */
3158 	ifp->if_flags |= IFF_RENAMING;
3159 
3160 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
3161 
3162 	if_printf(ifp, "changing name to '%s'\n", new_name);
3163 
3164 	IF_ADDR_WLOCK(ifp);
3165 	strlcpy(old_name, ifp->if_xname, sizeof(old_name));
3166 	strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
3167 	ifa = ifp->if_addr;
3168 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
3169 	namelen = strlen(new_name);
3170 	onamelen = sdl->sdl_nlen;
3171 	/*
3172 	 * Move the address if needed.  This is safe because we
3173 	 * allocate space for a name of length IFNAMSIZ when we
3174 	 * create this in if_attach().
3175 	 */
3176 	if (namelen != onamelen) {
3177 		bcopy(sdl->sdl_data + onamelen,
3178 		    sdl->sdl_data + namelen, sdl->sdl_alen);
3179 	}
3180 	bcopy(new_name, sdl->sdl_data, namelen);
3181 	sdl->sdl_nlen = namelen;
3182 	sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
3183 	bzero(sdl->sdl_data, onamelen);
3184 	while (namelen != 0)
3185 		sdl->sdl_data[--namelen] = 0xff;
3186 	IF_ADDR_WUNLOCK(ifp);
3187 
3188 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
3189 
3190 	ifp->if_flags &= ~IFF_RENAMING;
3191 
3192 	snprintf(strbuf, sizeof(strbuf), "name=%s", new_name);
3193 	devctl_notify("IFNET", old_name, "RENAME", strbuf);
3194 
3195 	return (0);
3196 }
3197 
3198 /*
3199  * The code common to handling reference counted flags,
3200  * e.g., in ifpromisc() and if_allmulti().
3201  * The "pflag" argument can specify a permanent mode flag to check,
3202  * such as IFF_PPROMISC for promiscuous mode; should be 0 if none.
3203  *
3204  * Only to be used on stack-owned flags, not driver-owned flags.
3205  */
3206 static int
3207 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch)
3208 {
3209 	struct ifreq ifr;
3210 	int error;
3211 	int oldflags, oldcount;
3212 
3213 	/* Sanity checks to catch programming errors */
3214 	KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0,
3215 	    ("%s: setting driver-owned flag %d", __func__, flag));
3216 
3217 	if (onswitch)
3218 		KASSERT(*refcount >= 0,
3219 		    ("%s: increment negative refcount %d for flag %d",
3220 		    __func__, *refcount, flag));
3221 	else
3222 		KASSERT(*refcount > 0,
3223 		    ("%s: decrement non-positive refcount %d for flag %d",
3224 		    __func__, *refcount, flag));
3225 
3226 	/* In case this mode is permanent, just touch refcount */
3227 	if (ifp->if_flags & pflag) {
3228 		*refcount += onswitch ? 1 : -1;
3229 		return (0);
3230 	}
3231 
3232 	/* Save ifnet parameters for if_ioctl() may fail */
3233 	oldcount = *refcount;
3234 	oldflags = ifp->if_flags;
3235 
3236 	/*
3237 	 * See if we aren't the only and touching refcount is enough.
3238 	 * Actually toggle interface flag if we are the first or last.
3239 	 */
3240 	if (onswitch) {
3241 		if ((*refcount)++)
3242 			return (0);
3243 		ifp->if_flags |= flag;
3244 	} else {
3245 		if (--(*refcount))
3246 			return (0);
3247 		ifp->if_flags &= ~flag;
3248 	}
3249 
3250 	/* Call down the driver since we've changed interface flags */
3251 	if (ifp->if_ioctl == NULL) {
3252 		error = EOPNOTSUPP;
3253 		goto recover;
3254 	}
3255 	ifr.ifr_flags = ifp->if_flags & 0xffff;
3256 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
3257 	error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3258 	if (error)
3259 		goto recover;
3260 	/* Notify userland that interface flags have changed */
3261 	rt_ifmsg(ifp, flag);
3262 	return (0);
3263 
3264 recover:
3265 	/* Recover after driver error */
3266 	*refcount = oldcount;
3267 	ifp->if_flags = oldflags;
3268 	return (error);
3269 }
3270 
3271 /*
3272  * Set/clear promiscuous mode on interface ifp based on the truth value
3273  * of pswitch.  The calls are reference counted so that only the first
3274  * "on" request actually has an effect, as does the final "off" request.
3275  * Results are undefined if the "off" and "on" requests are not matched.
3276  */
3277 int
3278 ifpromisc(struct ifnet *ifp, int pswitch)
3279 {
3280 	int error;
3281 	int oldflags = ifp->if_flags;
3282 
3283 	error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC,
3284 			   &ifp->if_pcount, pswitch);
3285 	/* If promiscuous mode status has changed, log a message */
3286 	if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) &&
3287             log_promisc_mode_change)
3288 		if_printf(ifp, "promiscuous mode %s\n",
3289 		    (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
3290 	return (error);
3291 }
3292 
3293 /*
3294  * Return interface configuration
3295  * of system.  List may be used
3296  * in later ioctl's (above) to get
3297  * other information.
3298  */
3299 /*ARGSUSED*/
3300 static int
3301 ifconf(u_long cmd, caddr_t data)
3302 {
3303 	struct ifconf *ifc = (struct ifconf *)data;
3304 	struct ifnet *ifp;
3305 	struct ifaddr *ifa;
3306 	struct ifreq ifr;
3307 	struct sbuf *sb;
3308 	int error, full = 0, valid_len, max_len;
3309 
3310 	/* Limit initial buffer size to maxphys to avoid DoS from userspace. */
3311 	max_len = maxphys - 1;
3312 
3313 	/* Prevent hostile input from being able to crash the system */
3314 	if (ifc->ifc_len <= 0)
3315 		return (EINVAL);
3316 
3317 again:
3318 	if (ifc->ifc_len <= max_len) {
3319 		max_len = ifc->ifc_len;
3320 		full = 1;
3321 	}
3322 	sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN);
3323 	max_len = 0;
3324 	valid_len = 0;
3325 
3326 	IFNET_RLOCK();
3327 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
3328 		struct epoch_tracker et;
3329 		int addrs;
3330 
3331 		/*
3332 		 * Zero the ifr to make sure we don't disclose the contents
3333 		 * of the stack.
3334 		 */
3335 		memset(&ifr, 0, sizeof(ifr));
3336 
3337 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
3338 		    >= sizeof(ifr.ifr_name)) {
3339 			sbuf_delete(sb);
3340 			IFNET_RUNLOCK();
3341 			return (ENAMETOOLONG);
3342 		}
3343 
3344 		addrs = 0;
3345 		NET_EPOCH_ENTER(et);
3346 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
3347 			struct sockaddr *sa = ifa->ifa_addr;
3348 
3349 			if (prison_if(curthread->td_ucred, sa) != 0)
3350 				continue;
3351 			addrs++;
3352 			if (sa->sa_len <= sizeof(*sa)) {
3353 				if (sa->sa_len < sizeof(*sa)) {
3354 					memset(&ifr.ifr_ifru.ifru_addr, 0,
3355 					    sizeof(ifr.ifr_ifru.ifru_addr));
3356 					memcpy(&ifr.ifr_ifru.ifru_addr, sa,
3357 					    sa->sa_len);
3358 				} else
3359 					ifr.ifr_ifru.ifru_addr = *sa;
3360 				sbuf_bcat(sb, &ifr, sizeof(ifr));
3361 				max_len += sizeof(ifr);
3362 			} else {
3363 				sbuf_bcat(sb, &ifr,
3364 				    offsetof(struct ifreq, ifr_addr));
3365 				max_len += offsetof(struct ifreq, ifr_addr);
3366 				sbuf_bcat(sb, sa, sa->sa_len);
3367 				max_len += sa->sa_len;
3368 			}
3369 
3370 			if (sbuf_error(sb) == 0)
3371 				valid_len = sbuf_len(sb);
3372 		}
3373 		NET_EPOCH_EXIT(et);
3374 		if (addrs == 0) {
3375 			sbuf_bcat(sb, &ifr, sizeof(ifr));
3376 			max_len += sizeof(ifr);
3377 
3378 			if (sbuf_error(sb) == 0)
3379 				valid_len = sbuf_len(sb);
3380 		}
3381 	}
3382 	IFNET_RUNLOCK();
3383 
3384 	/*
3385 	 * If we didn't allocate enough space (uncommon), try again.  If
3386 	 * we have already allocated as much space as we are allowed,
3387 	 * return what we've got.
3388 	 */
3389 	if (valid_len != max_len && !full) {
3390 		sbuf_delete(sb);
3391 		goto again;
3392 	}
3393 
3394 	ifc->ifc_len = valid_len;
3395 	sbuf_finish(sb);
3396 	error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len);
3397 	sbuf_delete(sb);
3398 	return (error);
3399 }
3400 
3401 /*
3402  * Just like ifpromisc(), but for all-multicast-reception mode.
3403  */
3404 int
3405 if_allmulti(struct ifnet *ifp, int onswitch)
3406 {
3407 
3408 	return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch));
3409 }
3410 
3411 struct ifmultiaddr *
3412 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa)
3413 {
3414 	struct ifmultiaddr *ifma;
3415 
3416 	IF_ADDR_LOCK_ASSERT(ifp);
3417 
3418 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3419 		if (sa->sa_family == AF_LINK) {
3420 			if (sa_dl_equal(ifma->ifma_addr, sa))
3421 				break;
3422 		} else {
3423 			if (sa_equal(ifma->ifma_addr, sa))
3424 				break;
3425 		}
3426 	}
3427 
3428 	return ifma;
3429 }
3430 
3431 /*
3432  * Allocate a new ifmultiaddr and initialize based on passed arguments.  We
3433  * make copies of passed sockaddrs.  The ifmultiaddr will not be added to
3434  * the ifnet multicast address list here, so the caller must do that and
3435  * other setup work (such as notifying the device driver).  The reference
3436  * count is initialized to 1.
3437  */
3438 static struct ifmultiaddr *
3439 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa,
3440     int mflags)
3441 {
3442 	struct ifmultiaddr *ifma;
3443 	struct sockaddr *dupsa;
3444 
3445 	ifma = malloc(sizeof *ifma, M_IFMADDR, mflags |
3446 	    M_ZERO);
3447 	if (ifma == NULL)
3448 		return (NULL);
3449 
3450 	dupsa = malloc(sa->sa_len, M_IFMADDR, mflags);
3451 	if (dupsa == NULL) {
3452 		free(ifma, M_IFMADDR);
3453 		return (NULL);
3454 	}
3455 	bcopy(sa, dupsa, sa->sa_len);
3456 	ifma->ifma_addr = dupsa;
3457 
3458 	ifma->ifma_ifp = ifp;
3459 	ifma->ifma_refcount = 1;
3460 	ifma->ifma_protospec = NULL;
3461 
3462 	if (llsa == NULL) {
3463 		ifma->ifma_lladdr = NULL;
3464 		return (ifma);
3465 	}
3466 
3467 	dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags);
3468 	if (dupsa == NULL) {
3469 		free(ifma->ifma_addr, M_IFMADDR);
3470 		free(ifma, M_IFMADDR);
3471 		return (NULL);
3472 	}
3473 	bcopy(llsa, dupsa, llsa->sa_len);
3474 	ifma->ifma_lladdr = dupsa;
3475 
3476 	return (ifma);
3477 }
3478 
3479 /*
3480  * if_freemulti: free ifmultiaddr structure and possibly attached related
3481  * addresses.  The caller is responsible for implementing reference
3482  * counting, notifying the driver, handling routing messages, and releasing
3483  * any dependent link layer state.
3484  */
3485 #ifdef MCAST_VERBOSE
3486 extern void kdb_backtrace(void);
3487 #endif
3488 static void
3489 if_freemulti_internal(struct ifmultiaddr *ifma)
3490 {
3491 
3492 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d",
3493 	    ifma->ifma_refcount));
3494 
3495 	if (ifma->ifma_lladdr != NULL)
3496 		free(ifma->ifma_lladdr, M_IFMADDR);
3497 #ifdef MCAST_VERBOSE
3498 	kdb_backtrace();
3499 	printf("%s freeing ifma: %p\n", __func__, ifma);
3500 #endif
3501 	free(ifma->ifma_addr, M_IFMADDR);
3502 	free(ifma, M_IFMADDR);
3503 }
3504 
3505 static void
3506 if_destroymulti(epoch_context_t ctx)
3507 {
3508 	struct ifmultiaddr *ifma;
3509 
3510 	ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx);
3511 	if_freemulti_internal(ifma);
3512 }
3513 
3514 void
3515 if_freemulti(struct ifmultiaddr *ifma)
3516 {
3517 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d",
3518 	    ifma->ifma_refcount));
3519 
3520 	NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx);
3521 }
3522 
3523 /*
3524  * Register an additional multicast address with a network interface.
3525  *
3526  * - If the address is already present, bump the reference count on the
3527  *   address and return.
3528  * - If the address is not link-layer, look up a link layer address.
3529  * - Allocate address structures for one or both addresses, and attach to the
3530  *   multicast address list on the interface.  If automatically adding a link
3531  *   layer address, the protocol address will own a reference to the link
3532  *   layer address, to be freed when it is freed.
3533  * - Notify the network device driver of an addition to the multicast address
3534  *   list.
3535  *
3536  * 'sa' points to caller-owned memory with the desired multicast address.
3537  *
3538  * 'retifma' will be used to return a pointer to the resulting multicast
3539  * address reference, if desired.
3540  */
3541 int
3542 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
3543     struct ifmultiaddr **retifma)
3544 {
3545 	struct ifmultiaddr *ifma, *ll_ifma;
3546 	struct sockaddr *llsa;
3547 	struct sockaddr_dl sdl;
3548 	int error;
3549 
3550 #ifdef INET
3551 	IN_MULTI_LIST_UNLOCK_ASSERT();
3552 #endif
3553 #ifdef INET6
3554 	IN6_MULTI_LIST_UNLOCK_ASSERT();
3555 #endif
3556 	/*
3557 	 * If the address is already present, return a new reference to it;
3558 	 * otherwise, allocate storage and set up a new address.
3559 	 */
3560 	IF_ADDR_WLOCK(ifp);
3561 	ifma = if_findmulti(ifp, sa);
3562 	if (ifma != NULL) {
3563 		ifma->ifma_refcount++;
3564 		if (retifma != NULL)
3565 			*retifma = ifma;
3566 		IF_ADDR_WUNLOCK(ifp);
3567 		return (0);
3568 	}
3569 
3570 	/*
3571 	 * The address isn't already present; resolve the protocol address
3572 	 * into a link layer address, and then look that up, bump its
3573 	 * refcount or allocate an ifma for that also.
3574 	 * Most link layer resolving functions returns address data which
3575 	 * fits inside default sockaddr_dl structure. However callback
3576 	 * can allocate another sockaddr structure, in that case we need to
3577 	 * free it later.
3578 	 */
3579 	llsa = NULL;
3580 	ll_ifma = NULL;
3581 	if (ifp->if_resolvemulti != NULL) {
3582 		/* Provide called function with buffer size information */
3583 		sdl.sdl_len = sizeof(sdl);
3584 		llsa = (struct sockaddr *)&sdl;
3585 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
3586 		if (error)
3587 			goto unlock_out;
3588 	}
3589 
3590 	/*
3591 	 * Allocate the new address.  Don't hook it up yet, as we may also
3592 	 * need to allocate a link layer multicast address.
3593 	 */
3594 	ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT);
3595 	if (ifma == NULL) {
3596 		error = ENOMEM;
3597 		goto free_llsa_out;
3598 	}
3599 
3600 	/*
3601 	 * If a link layer address is found, we'll need to see if it's
3602 	 * already present in the address list, or allocate is as well.
3603 	 * When this block finishes, the link layer address will be on the
3604 	 * list.
3605 	 */
3606 	if (llsa != NULL) {
3607 		ll_ifma = if_findmulti(ifp, llsa);
3608 		if (ll_ifma == NULL) {
3609 			ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT);
3610 			if (ll_ifma == NULL) {
3611 				--ifma->ifma_refcount;
3612 				if_freemulti(ifma);
3613 				error = ENOMEM;
3614 				goto free_llsa_out;
3615 			}
3616 			ll_ifma->ifma_flags |= IFMA_F_ENQUEUED;
3617 			CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma,
3618 			    ifma_link);
3619 		} else
3620 			ll_ifma->ifma_refcount++;
3621 		ifma->ifma_llifma = ll_ifma;
3622 	}
3623 
3624 	/*
3625 	 * We now have a new multicast address, ifma, and possibly a new or
3626 	 * referenced link layer address.  Add the primary address to the
3627 	 * ifnet address list.
3628 	 */
3629 	ifma->ifma_flags |= IFMA_F_ENQUEUED;
3630 	CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
3631 
3632 	if (retifma != NULL)
3633 		*retifma = ifma;
3634 
3635 	/*
3636 	 * Must generate the message while holding the lock so that 'ifma'
3637 	 * pointer is still valid.
3638 	 */
3639 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
3640 	IF_ADDR_WUNLOCK(ifp);
3641 
3642 	/*
3643 	 * We are certain we have added something, so call down to the
3644 	 * interface to let them know about it.
3645 	 */
3646 	if (ifp->if_ioctl != NULL) {
3647 		if (THREAD_CAN_SLEEP())
3648 			(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
3649 		else
3650 			taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask);
3651 	}
3652 
3653 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3654 		link_free_sdl(llsa);
3655 
3656 	return (0);
3657 
3658 free_llsa_out:
3659 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3660 		link_free_sdl(llsa);
3661 
3662 unlock_out:
3663 	IF_ADDR_WUNLOCK(ifp);
3664 	return (error);
3665 }
3666 
3667 static void
3668 if_siocaddmulti(void *arg, int pending)
3669 {
3670 	struct ifnet *ifp;
3671 
3672 	ifp = arg;
3673 #ifdef DIAGNOSTIC
3674 	if (pending > 1)
3675 		if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending);
3676 #endif
3677 	CURVNET_SET(ifp->if_vnet);
3678 	(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
3679 	CURVNET_RESTORE();
3680 }
3681 
3682 /*
3683  * Delete a multicast group membership by network-layer group address.
3684  *
3685  * Returns ENOENT if the entry could not be found. If ifp no longer
3686  * exists, results are undefined. This entry point should only be used
3687  * from subsystems which do appropriate locking to hold ifp for the
3688  * duration of the call.
3689  * Network-layer protocol domains must use if_delmulti_ifma().
3690  */
3691 int
3692 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
3693 {
3694 	struct ifmultiaddr *ifma;
3695 	int lastref;
3696 
3697 	KASSERT(ifp, ("%s: NULL ifp", __func__));
3698 
3699 	IF_ADDR_WLOCK(ifp);
3700 	lastref = 0;
3701 	ifma = if_findmulti(ifp, sa);
3702 	if (ifma != NULL)
3703 		lastref = if_delmulti_locked(ifp, ifma, 0);
3704 	IF_ADDR_WUNLOCK(ifp);
3705 
3706 	if (ifma == NULL)
3707 		return (ENOENT);
3708 
3709 	if (lastref && ifp->if_ioctl != NULL) {
3710 		(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3711 	}
3712 
3713 	return (0);
3714 }
3715 
3716 /*
3717  * Delete all multicast group membership for an interface.
3718  * Should be used to quickly flush all multicast filters.
3719  */
3720 void
3721 if_delallmulti(struct ifnet *ifp)
3722 {
3723 	struct ifmultiaddr *ifma;
3724 	struct ifmultiaddr *next;
3725 
3726 	IF_ADDR_WLOCK(ifp);
3727 	CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
3728 		if_delmulti_locked(ifp, ifma, 0);
3729 	IF_ADDR_WUNLOCK(ifp);
3730 }
3731 
3732 void
3733 if_delmulti_ifma(struct ifmultiaddr *ifma)
3734 {
3735 	if_delmulti_ifma_flags(ifma, 0);
3736 }
3737 
3738 /*
3739  * Delete a multicast group membership by group membership pointer.
3740  * Network-layer protocol domains must use this routine.
3741  *
3742  * It is safe to call this routine if the ifp disappeared.
3743  */
3744 void
3745 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags)
3746 {
3747 	struct ifnet *ifp;
3748 	int lastref;
3749 	MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma);
3750 #ifdef INET
3751 	IN_MULTI_LIST_UNLOCK_ASSERT();
3752 #endif
3753 	ifp = ifma->ifma_ifp;
3754 #ifdef DIAGNOSTIC
3755 	if (ifp == NULL) {
3756 		printf("%s: ifma_ifp seems to be detached\n", __func__);
3757 	} else {
3758 		struct epoch_tracker et;
3759 		struct ifnet *oifp;
3760 
3761 		NET_EPOCH_ENTER(et);
3762 		CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link)
3763 			if (ifp == oifp)
3764 				break;
3765 		NET_EPOCH_EXIT(et);
3766 		if (ifp != oifp)
3767 			ifp = NULL;
3768 	}
3769 #endif
3770 	/*
3771 	 * If and only if the ifnet instance exists: Acquire the address lock.
3772 	 */
3773 	if (ifp != NULL)
3774 		IF_ADDR_WLOCK(ifp);
3775 
3776 	lastref = if_delmulti_locked(ifp, ifma, flags);
3777 
3778 	if (ifp != NULL) {
3779 		/*
3780 		 * If and only if the ifnet instance exists:
3781 		 *  Release the address lock.
3782 		 *  If the group was left: update the hardware hash filter.
3783 		 */
3784 		IF_ADDR_WUNLOCK(ifp);
3785 		if (lastref && ifp->if_ioctl != NULL) {
3786 			(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3787 		}
3788 	}
3789 }
3790 
3791 /*
3792  * Perform deletion of network-layer and/or link-layer multicast address.
3793  *
3794  * Return 0 if the reference count was decremented.
3795  * Return 1 if the final reference was released, indicating that the
3796  * hardware hash filter should be reprogrammed.
3797  */
3798 static int
3799 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching)
3800 {
3801 	struct ifmultiaddr *ll_ifma;
3802 
3803 	if (ifp != NULL && ifma->ifma_ifp != NULL) {
3804 		KASSERT(ifma->ifma_ifp == ifp,
3805 		    ("%s: inconsistent ifp %p", __func__, ifp));
3806 		IF_ADDR_WLOCK_ASSERT(ifp);
3807 	}
3808 
3809 	ifp = ifma->ifma_ifp;
3810 	MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : "");
3811 
3812 	/*
3813 	 * If the ifnet is detaching, null out references to ifnet,
3814 	 * so that upper protocol layers will notice, and not attempt
3815 	 * to obtain locks for an ifnet which no longer exists. The
3816 	 * routing socket announcement must happen before the ifnet
3817 	 * instance is detached from the system.
3818 	 */
3819 	if (detaching) {
3820 #ifdef DIAGNOSTIC
3821 		printf("%s: detaching ifnet instance %p\n", __func__, ifp);
3822 #endif
3823 		/*
3824 		 * ifp may already be nulled out if we are being reentered
3825 		 * to delete the ll_ifma.
3826 		 */
3827 		if (ifp != NULL) {
3828 			rt_newmaddrmsg(RTM_DELMADDR, ifma);
3829 			ifma->ifma_ifp = NULL;
3830 		}
3831 	}
3832 
3833 	if (--ifma->ifma_refcount > 0)
3834 		return 0;
3835 
3836 	if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) {
3837 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
3838 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3839 	}
3840 	/*
3841 	 * If this ifma is a network-layer ifma, a link-layer ifma may
3842 	 * have been associated with it. Release it first if so.
3843 	 */
3844 	ll_ifma = ifma->ifma_llifma;
3845 	if (ll_ifma != NULL) {
3846 		KASSERT(ifma->ifma_lladdr != NULL,
3847 		    ("%s: llifma w/o lladdr", __func__));
3848 		if (detaching)
3849 			ll_ifma->ifma_ifp = NULL;	/* XXX */
3850 		if (--ll_ifma->ifma_refcount == 0) {
3851 			if (ifp != NULL) {
3852 				if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
3853 					CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr,
3854 						ifma_link);
3855 					ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3856 				}
3857 			}
3858 			if_freemulti(ll_ifma);
3859 		}
3860 	}
3861 #ifdef INVARIANTS
3862 	if (ifp) {
3863 		struct ifmultiaddr *ifmatmp;
3864 
3865 		CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link)
3866 			MPASS(ifma != ifmatmp);
3867 	}
3868 #endif
3869 	if_freemulti(ifma);
3870 	/*
3871 	 * The last reference to this instance of struct ifmultiaddr
3872 	 * was released; the hardware should be notified of this change.
3873 	 */
3874 	return 1;
3875 }
3876 
3877 /*
3878  * Set the link layer address on an interface.
3879  *
3880  * At this time we only support certain types of interfaces,
3881  * and we don't allow the length of the address to change.
3882  *
3883  * Set noinline to be dtrace-friendly
3884  */
3885 __noinline int
3886 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
3887 {
3888 	struct sockaddr_dl *sdl;
3889 	struct ifaddr *ifa;
3890 	struct ifreq ifr;
3891 
3892 	ifa = ifp->if_addr;
3893 	if (ifa == NULL)
3894 		return (EINVAL);
3895 
3896 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
3897 	if (sdl == NULL)
3898 		return (EINVAL);
3899 
3900 	if (len != sdl->sdl_alen)	/* don't allow length to change */
3901 		return (EINVAL);
3902 
3903 	switch (ifp->if_type) {
3904 	case IFT_ETHER:
3905 	case IFT_XETHER:
3906 	case IFT_L2VLAN:
3907 	case IFT_BRIDGE:
3908 	case IFT_IEEE8023ADLAG:
3909 		bcopy(lladdr, LLADDR(sdl), len);
3910 		break;
3911 	default:
3912 		return (ENODEV);
3913 	}
3914 
3915 	/*
3916 	 * If the interface is already up, we need
3917 	 * to re-init it in order to reprogram its
3918 	 * address filter.
3919 	 */
3920 	if ((ifp->if_flags & IFF_UP) != 0) {
3921 		if (ifp->if_ioctl) {
3922 			ifp->if_flags &= ~IFF_UP;
3923 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3924 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3925 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3926 			ifp->if_flags |= IFF_UP;
3927 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3928 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3929 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3930 		}
3931 	}
3932 	EVENTHANDLER_INVOKE(iflladdr_event, ifp);
3933 
3934 	return (0);
3935 }
3936 
3937 /*
3938  * Compat function for handling basic encapsulation requests.
3939  * Not converted stacks (FDDI, IB, ..) supports traditional
3940  * output model: ARP (and other similar L2 protocols) are handled
3941  * inside output routine, arpresolve/nd6_resolve() returns MAC
3942  * address instead of full prepend.
3943  *
3944  * This function creates calculated header==MAC for IPv4/IPv6 and
3945  * returns EAFNOSUPPORT (which is then handled in ARP code) for other
3946  * address families.
3947  */
3948 static int
3949 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req)
3950 {
3951 	if (req->rtype != IFENCAP_LL)
3952 		return (EOPNOTSUPP);
3953 
3954 	if (req->bufsize < req->lladdr_len)
3955 		return (ENOMEM);
3956 
3957 	switch (req->family) {
3958 	case AF_INET:
3959 	case AF_INET6:
3960 		break;
3961 	default:
3962 		return (EAFNOSUPPORT);
3963 	}
3964 
3965 	/* Copy lladdr to storage as is */
3966 	memmove(req->buf, req->lladdr, req->lladdr_len);
3967 	req->bufsize = req->lladdr_len;
3968 	req->lladdr_off = 0;
3969 
3970 	return (0);
3971 }
3972 
3973 /*
3974  * Tunnel interfaces can nest, also they may cause infinite recursion
3975  * calls when misconfigured. We'll prevent this by detecting loops.
3976  * High nesting level may cause stack exhaustion. We'll prevent this
3977  * by introducing upper limit.
3978  *
3979  * Return 0, if tunnel nesting count is equal or less than limit.
3980  */
3981 int
3982 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie,
3983     int limit)
3984 {
3985 	struct m_tag *mtag;
3986 	int count;
3987 
3988 	count = 1;
3989 	mtag = NULL;
3990 	while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) {
3991 		if (*(struct ifnet **)(mtag + 1) == ifp) {
3992 			log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp));
3993 			return (EIO);
3994 		}
3995 		count++;
3996 	}
3997 	if (count > limit) {
3998 		log(LOG_NOTICE,
3999 		    "%s: if_output recursively called too many times(%d)\n",
4000 		    if_name(ifp), count);
4001 		return (EIO);
4002 	}
4003 	mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT);
4004 	if (mtag == NULL)
4005 		return (ENOMEM);
4006 	*(struct ifnet **)(mtag + 1) = ifp;
4007 	m_tag_prepend(m, mtag);
4008 	return (0);
4009 }
4010 
4011 /*
4012  * Get the link layer address that was read from the hardware at attach.
4013  *
4014  * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type
4015  * their component interfaces as IFT_IEEE8023ADLAG.
4016  */
4017 int
4018 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr)
4019 {
4020 	if (ifp->if_hw_addr == NULL)
4021 		return (ENODEV);
4022 
4023 	switch (ifp->if_type) {
4024 	case IFT_ETHER:
4025 	case IFT_IEEE8023ADLAG:
4026 		bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen);
4027 		return (0);
4028 	default:
4029 		return (ENODEV);
4030 	}
4031 }
4032 
4033 /*
4034  * The name argument must be a pointer to storage which will last as
4035  * long as the interface does.  For physical devices, the result of
4036  * device_get_name(dev) is a good choice and for pseudo-devices a
4037  * static string works well.
4038  */
4039 void
4040 if_initname(struct ifnet *ifp, const char *name, int unit)
4041 {
4042 	ifp->if_dname = name;
4043 	ifp->if_dunit = unit;
4044 	if (unit != IF_DUNIT_NONE)
4045 		snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
4046 	else
4047 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
4048 }
4049 
4050 static int
4051 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap)
4052 {
4053 	char if_fmt[256];
4054 
4055 	snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt);
4056 	vlog(pri, if_fmt, ap);
4057 	return (0);
4058 }
4059 
4060 
4061 int
4062 if_printf(struct ifnet *ifp, const char *fmt, ...)
4063 {
4064 	va_list ap;
4065 
4066 	va_start(ap, fmt);
4067 	if_vlog(ifp, LOG_INFO, fmt, ap);
4068 	va_end(ap);
4069 	return (0);
4070 }
4071 
4072 int
4073 if_log(struct ifnet *ifp, int pri, const char *fmt, ...)
4074 {
4075 	va_list ap;
4076 
4077 	va_start(ap, fmt);
4078 	if_vlog(ifp, pri, fmt, ap);
4079 	va_end(ap);
4080 	return (0);
4081 }
4082 
4083 void
4084 if_start(struct ifnet *ifp)
4085 {
4086 
4087 	(*(ifp)->if_start)(ifp);
4088 }
4089 
4090 /*
4091  * Backwards compatibility interface for drivers
4092  * that have not implemented it
4093  */
4094 static int
4095 if_transmit_default(struct ifnet *ifp, struct mbuf *m)
4096 {
4097 	int error;
4098 
4099 	IFQ_HANDOFF(ifp, m, error);
4100 	return (error);
4101 }
4102 
4103 static void
4104 if_input_default(struct ifnet *ifp __unused, struct mbuf *m)
4105 {
4106 	m_freem(m);
4107 }
4108 
4109 int
4110 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
4111 {
4112 	int active = 0;
4113 
4114 	IF_LOCK(ifq);
4115 	if (_IF_QFULL(ifq)) {
4116 		IF_UNLOCK(ifq);
4117 		if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4118 		m_freem(m);
4119 		return (0);
4120 	}
4121 	if (ifp != NULL) {
4122 		if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust);
4123 		if (m->m_flags & (M_BCAST|M_MCAST))
4124 			if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4125 		active = ifp->if_drv_flags & IFF_DRV_OACTIVE;
4126 	}
4127 	_IF_ENQUEUE(ifq, m);
4128 	IF_UNLOCK(ifq);
4129 	if (ifp != NULL && !active)
4130 		(*(ifp)->if_start)(ifp);
4131 	return (1);
4132 }
4133 
4134 void
4135 if_register_com_alloc(u_char type,
4136     if_com_alloc_t *a, if_com_free_t *f)
4137 {
4138 
4139 	KASSERT(if_com_alloc[type] == NULL,
4140 	    ("if_register_com_alloc: %d already registered", type));
4141 	KASSERT(if_com_free[type] == NULL,
4142 	    ("if_register_com_alloc: %d free already registered", type));
4143 
4144 	if_com_alloc[type] = a;
4145 	if_com_free[type] = f;
4146 }
4147 
4148 void
4149 if_deregister_com_alloc(u_char type)
4150 {
4151 
4152 	KASSERT(if_com_alloc[type] != NULL,
4153 	    ("if_deregister_com_alloc: %d not registered", type));
4154 	KASSERT(if_com_free[type] != NULL,
4155 	    ("if_deregister_com_alloc: %d free not registered", type));
4156 
4157 	/*
4158 	 * Ensure all pending EPOCH(9) callbacks have been executed. This
4159 	 * fixes issues about late invocation of if_destroy(), which leads
4160 	 * to memory leak from if_com_alloc[type] allocated if_l2com.
4161 	 */
4162 	NET_EPOCH_DRAIN_CALLBACKS();
4163 
4164 	if_com_alloc[type] = NULL;
4165 	if_com_free[type] = NULL;
4166 }
4167 
4168 /* API for driver access to network stack owned ifnet.*/
4169 uint64_t
4170 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate)
4171 {
4172 	uint64_t oldbrate;
4173 
4174 	oldbrate = ifp->if_baudrate;
4175 	ifp->if_baudrate = baudrate;
4176 	return (oldbrate);
4177 }
4178 
4179 uint64_t
4180 if_getbaudrate(const if_t ifp)
4181 {
4182 	return (ifp->if_baudrate);
4183 }
4184 
4185 int
4186 if_setcapabilities(if_t ifp, int capabilities)
4187 {
4188 	ifp->if_capabilities = capabilities;
4189 	return (0);
4190 }
4191 
4192 int
4193 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit)
4194 {
4195 	ifp->if_capabilities &= ~clearbit;
4196 	ifp->if_capabilities |= setbit;
4197 	return (0);
4198 }
4199 
4200 int
4201 if_getcapabilities(const if_t ifp)
4202 {
4203 	return (ifp->if_capabilities);
4204 }
4205 
4206 int
4207 if_setcapenable(if_t ifp, int capabilities)
4208 {
4209 	ifp->if_capenable = capabilities;
4210 	return (0);
4211 }
4212 
4213 int
4214 if_setcapenablebit(if_t ifp, int setcap, int clearcap)
4215 {
4216 	ifp->if_capenable &= ~clearcap;
4217 	ifp->if_capenable |= setcap;
4218 	return (0);
4219 }
4220 
4221 int
4222 if_setcapabilities2(if_t ifp, int capabilities)
4223 {
4224 	ifp->if_capabilities2 = capabilities;
4225 	return (0);
4226 }
4227 
4228 int
4229 if_setcapabilities2bit(if_t ifp, int setbit, int clearbit)
4230 {
4231 	ifp->if_capabilities2 &= ~clearbit;
4232 	ifp->if_capabilities2 |= setbit;
4233 	return (0);
4234 }
4235 
4236 int
4237 if_getcapabilities2(const if_t ifp)
4238 {
4239 	return (ifp->if_capabilities2);
4240 }
4241 
4242 int
4243 if_setcapenable2(if_t ifp, int capabilities2)
4244 {
4245 	ifp->if_capenable2 = capabilities2;
4246 	return (0);
4247 }
4248 
4249 int
4250 if_setcapenable2bit(if_t ifp, int setcap, int clearcap)
4251 {
4252 	ifp->if_capenable2 &= ~clearcap;
4253 	ifp->if_capenable2 |= setcap;
4254 	return (0);
4255 }
4256 
4257 const char *
4258 if_getdname(const if_t ifp)
4259 {
4260 	return (ifp->if_dname);
4261 }
4262 
4263 void
4264 if_setdname(if_t ifp, const char *dname)
4265 {
4266 	ifp->if_dname = dname;
4267 }
4268 
4269 const char *
4270 if_name(if_t ifp)
4271 {
4272 	return (ifp->if_xname);
4273 }
4274 
4275 int
4276 if_setname(if_t ifp, const char *name)
4277 {
4278 	if (strlen(name) > sizeof(ifp->if_xname) - 1)
4279 		return (ENAMETOOLONG);
4280 	strcpy(ifp->if_xname, name);
4281 
4282 	return (0);
4283 }
4284 
4285 int
4286 if_togglecapenable(if_t ifp, int togglecap)
4287 {
4288 	ifp->if_capenable ^= togglecap;
4289 	return (0);
4290 }
4291 
4292 int
4293 if_getcapenable(const if_t ifp)
4294 {
4295 	return (ifp->if_capenable);
4296 }
4297 
4298 int
4299 if_togglecapenable2(if_t ifp, int togglecap)
4300 {
4301 	ifp->if_capenable2 ^= togglecap;
4302 	return (0);
4303 }
4304 
4305 int
4306 if_getcapenable2(const if_t ifp)
4307 {
4308 	return (ifp->if_capenable2);
4309 }
4310 
4311 int
4312 if_getdunit(const if_t ifp)
4313 {
4314 	return (ifp->if_dunit);
4315 }
4316 
4317 int
4318 if_getindex(const if_t ifp)
4319 {
4320 	return (ifp->if_index);
4321 }
4322 
4323 int
4324 if_getidxgen(const if_t ifp)
4325 {
4326 	return (ifp->if_idxgen);
4327 }
4328 
4329 const char *
4330 if_getdescr(if_t ifp)
4331 {
4332 	return (ifp->if_description);
4333 }
4334 
4335 void
4336 if_setdescr(if_t ifp, char *descrbuf)
4337 {
4338 	sx_xlock(&ifdescr_sx);
4339 	char *odescrbuf = ifp->if_description;
4340 	ifp->if_description = descrbuf;
4341 	sx_xunlock(&ifdescr_sx);
4342 
4343 	if_freedescr(odescrbuf);
4344 }
4345 
4346 char *
4347 if_allocdescr(size_t sz, int malloc_flag)
4348 {
4349 	malloc_flag &= (M_WAITOK | M_NOWAIT);
4350 	return (malloc(sz, M_IFDESCR, M_ZERO | malloc_flag));
4351 }
4352 
4353 void
4354 if_freedescr(char *descrbuf)
4355 {
4356 	free(descrbuf, M_IFDESCR);
4357 }
4358 
4359 int
4360 if_getalloctype(const if_t ifp)
4361 {
4362 	return (ifp->if_alloctype);
4363 }
4364 
4365 void
4366 if_setlastchange(if_t ifp)
4367 {
4368 	getmicrotime(&ifp->if_lastchange);
4369 }
4370 
4371 /*
4372  * This is largely undesirable because it ties ifnet to a device, but does
4373  * provide flexiblity for an embedded product vendor. Should be used with
4374  * the understanding that it violates the interface boundaries, and should be
4375  * a last resort only.
4376  */
4377 int
4378 if_setdev(if_t ifp, void *dev)
4379 {
4380 	return (0);
4381 }
4382 
4383 int
4384 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags)
4385 {
4386 	ifp->if_drv_flags &= ~clear_flags;
4387 	ifp->if_drv_flags |= set_flags;
4388 
4389 	return (0);
4390 }
4391 
4392 int
4393 if_getdrvflags(const if_t ifp)
4394 {
4395 	return (ifp->if_drv_flags);
4396 }
4397 
4398 int
4399 if_setdrvflags(if_t ifp, int flags)
4400 {
4401 	ifp->if_drv_flags = flags;
4402 	return (0);
4403 }
4404 
4405 int
4406 if_setflags(if_t ifp, int flags)
4407 {
4408 	ifp->if_flags = flags;
4409 	return (0);
4410 }
4411 
4412 int
4413 if_setflagbits(if_t ifp, int set, int clear)
4414 {
4415 	ifp->if_flags &= ~clear;
4416 	ifp->if_flags |= set;
4417 	return (0);
4418 }
4419 
4420 int
4421 if_getflags(const if_t ifp)
4422 {
4423 	return (ifp->if_flags);
4424 }
4425 
4426 int
4427 if_clearhwassist(if_t ifp)
4428 {
4429 	ifp->if_hwassist = 0;
4430 	return (0);
4431 }
4432 
4433 int
4434 if_sethwassistbits(if_t ifp, int toset, int toclear)
4435 {
4436 	ifp->if_hwassist &= ~toclear;
4437 	ifp->if_hwassist |= toset;
4438 
4439 	return (0);
4440 }
4441 
4442 int
4443 if_sethwassist(if_t ifp, int hwassist_bit)
4444 {
4445 	ifp->if_hwassist = hwassist_bit;
4446 	return (0);
4447 }
4448 
4449 int
4450 if_gethwassist(const if_t ifp)
4451 {
4452 	return (ifp->if_hwassist);
4453 }
4454 
4455 int
4456 if_togglehwassist(if_t ifp, int toggle_bits)
4457 {
4458 	ifp->if_hwassist ^= toggle_bits;
4459 	return (0);
4460 }
4461 
4462 int
4463 if_setmtu(if_t ifp, int mtu)
4464 {
4465 	ifp->if_mtu = mtu;
4466 	return (0);
4467 }
4468 
4469 void
4470 if_notifymtu(if_t ifp)
4471 {
4472 #ifdef INET6
4473 	nd6_setmtu(ifp);
4474 #endif
4475 	rt_updatemtu(ifp);
4476 }
4477 
4478 int
4479 if_getmtu(const if_t ifp)
4480 {
4481 	return (ifp->if_mtu);
4482 }
4483 
4484 int
4485 if_getmtu_family(const if_t ifp, int family)
4486 {
4487 	struct domain *dp;
4488 
4489 	SLIST_FOREACH(dp, &domains, dom_next) {
4490 		if (dp->dom_family == family && dp->dom_ifmtu != NULL)
4491 			return (dp->dom_ifmtu(ifp));
4492 	}
4493 
4494 	return (ifp->if_mtu);
4495 }
4496 
4497 /*
4498  * Methods for drivers to access interface unicast and multicast
4499  * link level addresses.  Driver shall not know 'struct ifaddr' neither
4500  * 'struct ifmultiaddr'.
4501  */
4502 u_int
4503 if_lladdr_count(if_t ifp)
4504 {
4505 	struct epoch_tracker et;
4506 	struct ifaddr *ifa;
4507 	u_int count;
4508 
4509 	count = 0;
4510 	NET_EPOCH_ENTER(et);
4511 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
4512 		if (ifa->ifa_addr->sa_family == AF_LINK)
4513 			count++;
4514 	NET_EPOCH_EXIT(et);
4515 
4516 	return (count);
4517 }
4518 
4519 int
4520 if_foreach(if_foreach_cb_t cb, void *cb_arg)
4521 {
4522 	if_t ifp;
4523 	int error;
4524 
4525 	NET_EPOCH_ASSERT();
4526 	MPASS(cb);
4527 
4528 	error = 0;
4529 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
4530 		error = cb(ifp, cb_arg);
4531 		if (error != 0)
4532 			break;
4533 	}
4534 
4535 	return (error);
4536 }
4537 
4538 /*
4539  * Iterates over the list of interfaces, permitting callback function @cb to sleep.
4540  * Stops iteration if @cb returns non-zero error code.
4541  * Returns the last error code from @cb.
4542  * @match_cb: optional match callback limiting the iteration to only matched interfaces
4543  * @match_arg: argument to pass to @match_cb
4544  * @cb: iteration callback
4545  * @cb_arg: argument to pass to @cb
4546  */
4547 int
4548 if_foreach_sleep(if_foreach_match_t match_cb, void *match_arg, if_foreach_cb_t cb,
4549     void *cb_arg)
4550 {
4551 	int match_count = 0, array_size = 16; /* 128 bytes for malloc */
4552 	struct ifnet **match_array = NULL;
4553 	int error = 0;
4554 
4555 	MPASS(cb);
4556 
4557 	while (true) {
4558 		struct ifnet **new_array;
4559 		int new_size = array_size;
4560 		struct epoch_tracker et;
4561 		struct ifnet *ifp;
4562 
4563 		while (new_size < match_count)
4564 			new_size *= 2;
4565 		new_array = malloc(new_size * sizeof(void *), M_TEMP, M_WAITOK);
4566 		if (match_array != NULL)
4567 			memcpy(new_array, match_array, array_size * sizeof(void *));
4568 		free(match_array, M_TEMP);
4569 		match_array = new_array;
4570 		array_size = new_size;
4571 
4572 		match_count = 0;
4573 		NET_EPOCH_ENTER(et);
4574 		CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
4575 			if (match_cb != NULL && !match_cb(ifp, match_arg))
4576 				continue;
4577 			if (match_count < array_size) {
4578 				if (if_try_ref(ifp))
4579 					match_array[match_count++] = ifp;
4580 			} else
4581 				match_count++;
4582 		}
4583 		NET_EPOCH_EXIT(et);
4584 
4585 		if (match_count > array_size) {
4586 			for (int i = 0; i < array_size; i++)
4587 				if_rele(match_array[i]);
4588 			continue;
4589 		} else {
4590 			for (int i = 0; i < match_count; i++) {
4591 				if (error == 0)
4592 					error = cb(match_array[i], cb_arg);
4593 				if_rele(match_array[i]);
4594 			}
4595 			free(match_array, M_TEMP);
4596 			break;
4597 		}
4598 	}
4599 
4600 	return (error);
4601 }
4602 
4603 
4604 /*
4605  * Uses just 1 pointer of the 4 available in the public struct.
4606  */
4607 if_t
4608 if_iter_start(struct if_iter *iter)
4609 {
4610 	if_t ifp;
4611 
4612 	NET_EPOCH_ASSERT();
4613 
4614 	bzero(iter, sizeof(*iter));
4615 	ifp = CK_STAILQ_FIRST(&V_ifnet);
4616 	if (ifp != NULL)
4617 		iter->context[0] = CK_STAILQ_NEXT(ifp, if_link);
4618 	else
4619 		iter->context[0] = NULL;
4620 	return (ifp);
4621 }
4622 
4623 if_t
4624 if_iter_next(struct if_iter *iter)
4625 {
4626 	if_t cur_ifp = iter->context[0];
4627 
4628 	if (cur_ifp != NULL)
4629 		iter->context[0] = CK_STAILQ_NEXT(cur_ifp, if_link);
4630 	return (cur_ifp);
4631 }
4632 
4633 void
4634 if_iter_finish(struct if_iter *iter)
4635 {
4636 	/* Nothing to do here for now. */
4637 }
4638 
4639 u_int
4640 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
4641 {
4642 	struct epoch_tracker et;
4643 	struct ifaddr *ifa;
4644 	u_int count;
4645 
4646 	MPASS(cb);
4647 
4648 	count = 0;
4649 	NET_EPOCH_ENTER(et);
4650 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
4651 		if (ifa->ifa_addr->sa_family != AF_LINK)
4652 			continue;
4653 		count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr,
4654 		    count);
4655 	}
4656 	NET_EPOCH_EXIT(et);
4657 
4658 	return (count);
4659 }
4660 
4661 u_int
4662 if_llmaddr_count(if_t ifp)
4663 {
4664 	struct epoch_tracker et;
4665 	struct ifmultiaddr *ifma;
4666 	int count;
4667 
4668 	count = 0;
4669 	NET_EPOCH_ENTER(et);
4670 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
4671 		if (ifma->ifma_addr->sa_family == AF_LINK)
4672 			count++;
4673 	NET_EPOCH_EXIT(et);
4674 
4675 	return (count);
4676 }
4677 
4678 bool
4679 if_maddr_empty(if_t ifp)
4680 {
4681 
4682 	return (CK_STAILQ_EMPTY(&ifp->if_multiaddrs));
4683 }
4684 
4685 u_int
4686 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
4687 {
4688 	struct epoch_tracker et;
4689 	struct ifmultiaddr *ifma;
4690 	u_int count;
4691 
4692 	MPASS(cb);
4693 
4694 	count = 0;
4695 	NET_EPOCH_ENTER(et);
4696 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4697 		if (ifma->ifma_addr->sa_family != AF_LINK)
4698 			continue;
4699 		count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr,
4700 		    count);
4701 	}
4702 	NET_EPOCH_EXIT(et);
4703 
4704 	return (count);
4705 }
4706 
4707 u_int
4708 if_foreach_addr_type(if_t ifp, int type, if_addr_cb_t cb, void *cb_arg)
4709 {
4710 	struct epoch_tracker et;
4711 	struct ifaddr *ifa;
4712 	u_int count;
4713 
4714 	MPASS(cb);
4715 
4716 	count = 0;
4717 	NET_EPOCH_ENTER(et);
4718 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
4719 		if (ifa->ifa_addr->sa_family != type)
4720 			continue;
4721 		count += (*cb)(cb_arg, ifa, count);
4722 	}
4723 	NET_EPOCH_EXIT(et);
4724 
4725 	return (count);
4726 }
4727 
4728 struct ifaddr *
4729 ifa_iter_start(if_t ifp, struct ifa_iter *iter)
4730 {
4731 	struct ifaddr *ifa;
4732 
4733 	NET_EPOCH_ASSERT();
4734 
4735 	bzero(iter, sizeof(*iter));
4736 	ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
4737 	if (ifa != NULL)
4738 		iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
4739 	else
4740 		iter->context[0] = NULL;
4741 	return (ifa);
4742 }
4743 
4744 struct ifaddr *
4745 ifa_iter_next(struct ifa_iter *iter)
4746 {
4747 	struct ifaddr *ifa = iter->context[0];
4748 
4749 	if (ifa != NULL)
4750 		iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
4751 	return (ifa);
4752 }
4753 
4754 void
4755 ifa_iter_finish(struct ifa_iter *iter)
4756 {
4757 	/* Nothing to do here for now. */
4758 }
4759 
4760 int
4761 if_setsoftc(if_t ifp, void *softc)
4762 {
4763 	ifp->if_softc = softc;
4764 	return (0);
4765 }
4766 
4767 void *
4768 if_getsoftc(const if_t ifp)
4769 {
4770 	return (ifp->if_softc);
4771 }
4772 
4773 void
4774 if_setrcvif(struct mbuf *m, if_t ifp)
4775 {
4776 
4777 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
4778 	m->m_pkthdr.rcvif = (struct ifnet *)ifp;
4779 }
4780 
4781 void
4782 if_setvtag(struct mbuf *m, uint16_t tag)
4783 {
4784 	m->m_pkthdr.ether_vtag = tag;
4785 }
4786 
4787 uint16_t
4788 if_getvtag(struct mbuf *m)
4789 {
4790 	return (m->m_pkthdr.ether_vtag);
4791 }
4792 
4793 int
4794 if_sendq_empty(if_t ifp)
4795 {
4796 	return (IFQ_DRV_IS_EMPTY(&ifp->if_snd));
4797 }
4798 
4799 struct ifaddr *
4800 if_getifaddr(const if_t ifp)
4801 {
4802 	return (ifp->if_addr);
4803 }
4804 
4805 int
4806 if_getamcount(const if_t ifp)
4807 {
4808 	return (ifp->if_amcount);
4809 }
4810 
4811 int
4812 if_setsendqready(if_t ifp)
4813 {
4814 	IFQ_SET_READY(&ifp->if_snd);
4815 	return (0);
4816 }
4817 
4818 int
4819 if_setsendqlen(if_t ifp, int tx_desc_count)
4820 {
4821 	IFQ_SET_MAXLEN(&ifp->if_snd, tx_desc_count);
4822 	ifp->if_snd.ifq_drv_maxlen = tx_desc_count;
4823 	return (0);
4824 }
4825 
4826 void
4827 if_setnetmapadapter(if_t ifp, struct netmap_adapter *na)
4828 {
4829 	ifp->if_netmap = na;
4830 }
4831 
4832 struct netmap_adapter *
4833 if_getnetmapadapter(if_t ifp)
4834 {
4835 	return (ifp->if_netmap);
4836 }
4837 
4838 int
4839 if_vlantrunkinuse(if_t ifp)
4840 {
4841 	return (ifp->if_vlantrunk != NULL);
4842 }
4843 
4844 void
4845 if_init(if_t ifp, void *ctx)
4846 {
4847 	(*ifp->if_init)(ctx);
4848 }
4849 
4850 void
4851 if_input(if_t ifp, struct mbuf* sendmp)
4852 {
4853 	(*ifp->if_input)(ifp, sendmp);
4854 }
4855 
4856 int
4857 if_transmit(if_t ifp, struct mbuf *m)
4858 {
4859 	return ((*ifp->if_transmit)(ifp, m));
4860 }
4861 
4862 int
4863 if_resolvemulti(if_t ifp, struct sockaddr **srcs, struct sockaddr *dst)
4864 {
4865 	if (ifp->if_resolvemulti == NULL)
4866 		return (EOPNOTSUPP);
4867 
4868 	return (ifp->if_resolvemulti(ifp, srcs, dst));
4869 }
4870 
4871 int
4872 if_ioctl(if_t ifp, u_long cmd, void *data)
4873 {
4874 	return (ifp->if_ioctl(ifp, cmd, data));
4875 }
4876 
4877 struct mbuf *
4878 if_dequeue(if_t ifp)
4879 {
4880 	struct mbuf *m;
4881 
4882 	IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
4883 	return (m);
4884 }
4885 
4886 int
4887 if_sendq_prepend(if_t ifp, struct mbuf *m)
4888 {
4889 	IFQ_DRV_PREPEND(&ifp->if_snd, m);
4890 	return (0);
4891 }
4892 
4893 int
4894 if_setifheaderlen(if_t ifp, int len)
4895 {
4896 	ifp->if_hdrlen = len;
4897 	return (0);
4898 }
4899 
4900 caddr_t
4901 if_getlladdr(const if_t ifp)
4902 {
4903 	return (IF_LLADDR(ifp));
4904 }
4905 
4906 void *
4907 if_gethandle(u_char type)
4908 {
4909 	return (if_alloc(type));
4910 }
4911 
4912 void
4913 if_bpfmtap(if_t ifp, struct mbuf *m)
4914 {
4915 	BPF_MTAP(ifp, m);
4916 }
4917 
4918 void
4919 if_etherbpfmtap(if_t ifp, struct mbuf *m)
4920 {
4921 	ETHER_BPF_MTAP(ifp, m);
4922 }
4923 
4924 void
4925 if_vlancap(if_t ifp)
4926 {
4927 	VLAN_CAPABILITIES(ifp);
4928 }
4929 
4930 int
4931 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax)
4932 {
4933 	ifp->if_hw_tsomax = if_hw_tsomax;
4934         return (0);
4935 }
4936 
4937 int
4938 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount)
4939 {
4940 	ifp->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount;
4941         return (0);
4942 }
4943 
4944 int
4945 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize)
4946 {
4947 	ifp->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize;
4948         return (0);
4949 }
4950 
4951 u_int
4952 if_gethwtsomax(const if_t ifp)
4953 {
4954 	return (ifp->if_hw_tsomax);
4955 }
4956 
4957 u_int
4958 if_gethwtsomaxsegcount(const if_t ifp)
4959 {
4960 	return (ifp->if_hw_tsomaxsegcount);
4961 }
4962 
4963 u_int
4964 if_gethwtsomaxsegsize(const if_t ifp)
4965 {
4966 	return (ifp->if_hw_tsomaxsegsize);
4967 }
4968 
4969 void
4970 if_setinitfn(if_t ifp, if_init_fn_t init_fn)
4971 {
4972 	ifp->if_init = init_fn;
4973 }
4974 
4975 void
4976 if_setinputfn(if_t ifp, if_input_fn_t input_fn)
4977 {
4978 	ifp->if_input = input_fn;
4979 }
4980 
4981 if_input_fn_t
4982 if_getinputfn(if_t ifp)
4983 {
4984 	return (ifp->if_input);
4985 }
4986 
4987 void
4988 if_setioctlfn(if_t ifp, if_ioctl_fn_t ioctl_fn)
4989 {
4990 	ifp->if_ioctl = ioctl_fn;
4991 }
4992 
4993 void
4994 if_setoutputfn(if_t ifp, if_output_fn_t output_fn)
4995 {
4996 	ifp->if_output = output_fn;
4997 }
4998 
4999 void
5000 if_setstartfn(if_t ifp, if_start_fn_t start_fn)
5001 {
5002 	ifp->if_start = start_fn;
5003 }
5004 
5005 if_start_fn_t
5006 if_getstartfn(if_t ifp)
5007 {
5008 	return (ifp->if_start);
5009 }
5010 
5011 void
5012 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn)
5013 {
5014 	ifp->if_transmit = start_fn;
5015 }
5016 
5017 if_transmit_fn_t
5018 if_gettransmitfn(if_t ifp)
5019 {
5020 	return (ifp->if_transmit);
5021 }
5022 
5023 void
5024 if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn)
5025 {
5026 	ifp->if_qflush = flush_fn;
5027 }
5028 
5029 void
5030 if_setsndtagallocfn(if_t ifp, if_snd_tag_alloc_t alloc_fn)
5031 {
5032 	ifp->if_snd_tag_alloc = alloc_fn;
5033 }
5034 
5035 int
5036 if_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
5037     struct m_snd_tag **mstp)
5038 {
5039 	if (ifp->if_snd_tag_alloc == NULL)
5040 		return (EOPNOTSUPP);
5041 	return (ifp->if_snd_tag_alloc(ifp, params, mstp));
5042 }
5043 
5044 void
5045 if_setgetcounterfn(if_t ifp, if_get_counter_t fn)
5046 {
5047 	ifp->if_get_counter = fn;
5048 }
5049 
5050 void
5051 if_setreassignfn(if_t ifp, if_reassign_fn_t fn)
5052 {
5053 	ifp->if_reassign = fn;
5054 }
5055 
5056 void
5057 if_setratelimitqueryfn(if_t ifp, if_ratelimit_query_t fn)
5058 {
5059 	ifp->if_ratelimit_query = fn;
5060 }
5061 
5062 void
5063 if_setdebugnet_methods(if_t ifp, struct debugnet_methods *m)
5064 {
5065 	ifp->if_debugnet_methods = m;
5066 }
5067 
5068 struct label *
5069 if_getmaclabel(if_t ifp)
5070 {
5071 	return (ifp->if_label);
5072 }
5073 
5074 void
5075 if_setmaclabel(if_t ifp, struct label *label)
5076 {
5077 	ifp->if_label = label;
5078 }
5079 
5080 int
5081 if_gettype(if_t ifp)
5082 {
5083 	return (ifp->if_type);
5084 }
5085 
5086 void *
5087 if_getllsoftc(if_t ifp)
5088 {
5089 	return (ifp->if_llsoftc);
5090 }
5091 
5092 void
5093 if_setllsoftc(if_t ifp, void *llsoftc)
5094 {
5095 	ifp->if_llsoftc = llsoftc;
5096 };
5097 
5098 int
5099 if_getlinkstate(if_t ifp)
5100 {
5101 	return (ifp->if_link_state);
5102 }
5103 
5104 const uint8_t *
5105 if_getbroadcastaddr(if_t ifp)
5106 {
5107 	return (ifp->if_broadcastaddr);
5108 }
5109 
5110 void
5111 if_setbroadcastaddr(if_t ifp, const uint8_t *addr)
5112 {
5113 	ifp->if_broadcastaddr = addr;
5114 }
5115 
5116 int
5117 if_getnumadomain(if_t ifp)
5118 {
5119 	return (ifp->if_numa_domain);
5120 }
5121 
5122 uint64_t
5123 if_getcounter(if_t ifp, ift_counter counter)
5124 {
5125 	return (ifp->if_get_counter(ifp, counter));
5126 }
5127 
5128 bool
5129 if_altq_is_enabled(if_t ifp)
5130 {
5131 	return (ALTQ_IS_ENABLED(&ifp->if_snd));
5132 }
5133 
5134 struct vnet *
5135 if_getvnet(if_t ifp)
5136 {
5137 	return (ifp->if_vnet);
5138 }
5139 
5140 void *
5141 if_getafdata(if_t ifp, int af)
5142 {
5143 	return (ifp->if_afdata[af]);
5144 }
5145 
5146 u_int
5147 if_getfib(if_t ifp)
5148 {
5149 	return (ifp->if_fib);
5150 }
5151 
5152 uint8_t
5153 if_getaddrlen(if_t ifp)
5154 {
5155 	return (ifp->if_addrlen);
5156 }
5157 
5158 struct bpf_if *
5159 if_getbpf(if_t ifp)
5160 {
5161 	return (ifp->if_bpf);
5162 }
5163 
5164 struct ifvlantrunk *
5165 if_getvlantrunk(if_t ifp)
5166 {
5167 	return (ifp->if_vlantrunk);
5168 }
5169 
5170 uint8_t
5171 if_getpcp(if_t ifp)
5172 {
5173 	return (ifp->if_pcp);
5174 }
5175 
5176 void *
5177 if_getl2com(if_t ifp)
5178 {
5179 	return (ifp->if_l2com);
5180 }
5181 
5182 #ifdef DDB
5183 static void
5184 if_show_ifnet(struct ifnet *ifp)
5185 {
5186 	if (ifp == NULL)
5187 		return;
5188 	db_printf("%s:\n", ifp->if_xname);
5189 #define	IF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, ifp->e);
5190 	IF_DB_PRINTF("%s", if_dname);
5191 	IF_DB_PRINTF("%d", if_dunit);
5192 	IF_DB_PRINTF("%s", if_description);
5193 	IF_DB_PRINTF("%u", if_index);
5194 	IF_DB_PRINTF("%d", if_idxgen);
5195 	IF_DB_PRINTF("%u", if_refcount);
5196 	IF_DB_PRINTF("%p", if_softc);
5197 	IF_DB_PRINTF("%p", if_l2com);
5198 	IF_DB_PRINTF("%p", if_llsoftc);
5199 	IF_DB_PRINTF("%d", if_amcount);
5200 	IF_DB_PRINTF("%p", if_addr);
5201 	IF_DB_PRINTF("%p", if_broadcastaddr);
5202 	IF_DB_PRINTF("%p", if_afdata);
5203 	IF_DB_PRINTF("%d", if_afdata_initialized);
5204 	IF_DB_PRINTF("%u", if_fib);
5205 	IF_DB_PRINTF("%p", if_vnet);
5206 	IF_DB_PRINTF("%p", if_home_vnet);
5207 	IF_DB_PRINTF("%p", if_vlantrunk);
5208 	IF_DB_PRINTF("%p", if_bpf);
5209 	IF_DB_PRINTF("%u", if_pcount);
5210 	IF_DB_PRINTF("%p", if_bridge);
5211 	IF_DB_PRINTF("%p", if_lagg);
5212 	IF_DB_PRINTF("%p", if_pf_kif);
5213 	IF_DB_PRINTF("%p", if_carp);
5214 	IF_DB_PRINTF("%p", if_label);
5215 	IF_DB_PRINTF("%p", if_netmap);
5216 	IF_DB_PRINTF("0x%08x", if_flags);
5217 	IF_DB_PRINTF("0x%08x", if_drv_flags);
5218 	IF_DB_PRINTF("0x%08x", if_capabilities);
5219 	IF_DB_PRINTF("0x%08x", if_capenable);
5220 	IF_DB_PRINTF("%p", if_snd.ifq_head);
5221 	IF_DB_PRINTF("%p", if_snd.ifq_tail);
5222 	IF_DB_PRINTF("%d", if_snd.ifq_len);
5223 	IF_DB_PRINTF("%d", if_snd.ifq_maxlen);
5224 	IF_DB_PRINTF("%p", if_snd.ifq_drv_head);
5225 	IF_DB_PRINTF("%p", if_snd.ifq_drv_tail);
5226 	IF_DB_PRINTF("%d", if_snd.ifq_drv_len);
5227 	IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen);
5228 	IF_DB_PRINTF("%d", if_snd.altq_type);
5229 	IF_DB_PRINTF("%x", if_snd.altq_flags);
5230 #undef IF_DB_PRINTF
5231 }
5232 
5233 DB_SHOW_COMMAND(ifnet, db_show_ifnet)
5234 {
5235 	if (!have_addr) {
5236 		db_printf("usage: show ifnet <struct ifnet *>\n");
5237 		return;
5238 	}
5239 
5240 	if_show_ifnet((struct ifnet *)addr);
5241 }
5242 
5243 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets)
5244 {
5245 	struct ifnet *ifp;
5246 	u_short idx;
5247 
5248 	for (idx = 1; idx <= if_index; idx++) {
5249 		ifp = ifindex_table[idx].ife_ifnet;
5250 		if (ifp == NULL)
5251 			continue;
5252 		db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp);
5253 		if (db_pager_quit)
5254 			break;
5255 	}
5256 }
5257 #endif	/* DDB */
5258