1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org> 5 * Copyright (c) 1980, 1986, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include "opt_bpf.h" 34 #include "opt_inet6.h" 35 #include "opt_inet.h" 36 #include "opt_ddb.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/conf.h> 41 #include <sys/eventhandler.h> 42 #include <sys/malloc.h> 43 #include <sys/domainset.h> 44 #include <sys/sbuf.h> 45 #include <sys/bus.h> 46 #include <sys/epoch.h> 47 #include <sys/mbuf.h> 48 #include <sys/systm.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/protosw.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/refcount.h> 57 #include <sys/module.h> 58 #include <sys/nv.h> 59 #include <sys/rwlock.h> 60 #include <sys/sockio.h> 61 #include <sys/stdarg.h> 62 #include <sys/syslog.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysent.h> 65 #include <sys/taskqueue.h> 66 #include <sys/domain.h> 67 #include <sys/jail.h> 68 #include <sys/priv.h> 69 70 #ifdef DDB 71 #include <ddb/ddb.h> 72 #endif 73 74 #include <vm/uma.h> 75 76 #include <net/bpf.h> 77 #include <net/ethernet.h> 78 #include <net/if.h> 79 #include <net/if_arp.h> 80 #include <net/if_clone.h> 81 #include <net/if_dl.h> 82 #include <net/if_strings.h> 83 #include <net/if_types.h> 84 #include <net/if_var.h> 85 #include <net/if_media.h> 86 #include <net/if_mib.h> 87 #include <net/if_private.h> 88 #include <net/if_vlan_var.h> 89 #include <net/radix.h> 90 #include <net/route.h> 91 #include <net/route/route_ctl.h> 92 #include <net/vnet.h> 93 94 #if defined(INET) || defined(INET6) 95 #include <net/ethernet.h> 96 #include <netinet/in.h> 97 #include <netinet/in_var.h> 98 #include <netinet/ip.h> 99 #include <netinet/ip_carp.h> 100 #ifdef INET 101 #include <net/debugnet.h> 102 #include <netinet/if_ether.h> 103 #endif /* INET */ 104 #ifdef INET6 105 #include <netinet6/in6_var.h> 106 #include <netinet6/in6_ifattach.h> 107 #endif /* INET6 */ 108 #endif /* INET || INET6 */ 109 110 #include <security/mac/mac_framework.h> 111 112 /* 113 * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name 114 * and ifr_ifru when it is used in SIOCGIFCONF. 115 */ 116 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) == 117 offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru"); 118 119 __read_mostly epoch_t net_epoch_preempt; 120 #ifdef COMPAT_FREEBSD32 121 #include <sys/mount.h> 122 #include <compat/freebsd32/freebsd32.h> 123 124 struct ifreq_buffer32 { 125 uint32_t length; /* (size_t) */ 126 uint32_t buffer; /* (void *) */ 127 }; 128 129 /* 130 * Interface request structure used for socket 131 * ioctl's. All interface ioctl's must have parameter 132 * definitions which begin with ifr_name. The 133 * remainder may be interface specific. 134 */ 135 struct ifreq32 { 136 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ 137 union { 138 struct sockaddr ifru_addr; 139 struct sockaddr ifru_dstaddr; 140 struct sockaddr ifru_broadaddr; 141 struct ifreq_buffer32 ifru_buffer; 142 short ifru_flags[2]; 143 short ifru_index; 144 int ifru_jid; 145 int ifru_metric; 146 int ifru_mtu; 147 int ifru_phys; 148 int ifru_media; 149 uint32_t ifru_data; 150 int ifru_cap[2]; 151 u_int ifru_fib; 152 u_char ifru_vlan_pcp; 153 } ifr_ifru; 154 }; 155 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32)); 156 CTASSERT(__offsetof(struct ifreq, ifr_ifru) == 157 __offsetof(struct ifreq32, ifr_ifru)); 158 159 struct ifconf32 { 160 int32_t ifc_len; 161 union { 162 uint32_t ifcu_buf; 163 uint32_t ifcu_req; 164 } ifc_ifcu; 165 }; 166 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 167 168 struct ifdrv32 { 169 char ifd_name[IFNAMSIZ]; 170 uint32_t ifd_cmd; 171 uint32_t ifd_len; 172 uint32_t ifd_data; 173 }; 174 #define SIOCSDRVSPEC32 _IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32) 175 #define SIOCGDRVSPEC32 _IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32) 176 177 struct ifgroupreq32 { 178 char ifgr_name[IFNAMSIZ]; 179 u_int ifgr_len; 180 union { 181 char ifgru_group[IFNAMSIZ]; 182 uint32_t ifgru_groups; 183 } ifgr_ifgru; 184 }; 185 #define SIOCAIFGROUP32 _IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32) 186 #define SIOCGIFGROUP32 _IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32) 187 #define SIOCDIFGROUP32 _IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32) 188 #define SIOCGIFGMEMB32 _IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32) 189 190 struct ifmediareq32 { 191 char ifm_name[IFNAMSIZ]; 192 int ifm_current; 193 int ifm_mask; 194 int ifm_status; 195 int ifm_active; 196 int ifm_count; 197 uint32_t ifm_ulist; /* (int *) */ 198 }; 199 #define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32) 200 #define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32) 201 #endif /* COMPAT_FREEBSD32 */ 202 203 union ifreq_union { 204 struct ifreq ifr; 205 #ifdef COMPAT_FREEBSD32 206 struct ifreq32 ifr32; 207 #endif 208 }; 209 210 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 211 "Link layers"); 212 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 213 "Generic link-management"); 214 215 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 216 &ifqmaxlen, 0, "max send queue size"); 217 218 /* Log link state change events */ 219 static int log_link_state_change = 1; 220 221 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 222 &log_link_state_change, 0, 223 "log interface link state change events"); 224 225 /* Log promiscuous mode change events */ 226 static int log_promisc_mode_change = 1; 227 228 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN, 229 &log_promisc_mode_change, 1, 230 "log promiscuous mode change events"); 231 232 /* Interface description */ 233 static unsigned int ifdescr_maxlen = 1024; 234 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 235 &ifdescr_maxlen, 0, 236 "administrative maximum length for interface description"); 237 238 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 239 240 /* global sx for non-critical path ifdescr */ 241 static struct sx ifdescr_sx; 242 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 243 244 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 245 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 246 /* These are external hooks for CARP. */ 247 void (*carp_linkstate_p)(struct ifnet *ifp); 248 void (*carp_demote_adj_p)(int, char *); 249 int (*carp_master_p)(struct ifaddr *); 250 #if defined(INET) || defined(INET6) 251 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 252 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 253 const struct sockaddr *sa); 254 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 255 int (*carp_attach_p)(struct ifaddr *, int); 256 void (*carp_detach_p)(struct ifaddr *, bool); 257 #endif 258 #ifdef INET 259 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 260 #endif 261 #ifdef INET6 262 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 263 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 264 const struct in6_addr *taddr); 265 #endif 266 267 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 268 269 /* 270 * XXX: Style; these should be sorted alphabetically, and unprototyped 271 * static functions should be prototyped. Currently they are sorted by 272 * declaration order. 273 */ 274 static void if_attachdomain(void *); 275 static void if_attachdomain1(struct ifnet *); 276 static int ifconf(u_long, caddr_t); 277 static void if_input_default(struct ifnet *, struct mbuf *); 278 static int if_requestencap_default(struct ifnet *, struct if_encap_req *); 279 static int if_setflag(struct ifnet *, int, int, int *, int); 280 static int if_transmit_default(struct ifnet *ifp, struct mbuf *m); 281 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 282 static void do_link_state_change(void *, int); 283 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 284 static int if_getgroupmembers(struct ifgroupreq *); 285 static void if_delgroups(struct ifnet *); 286 static void if_attach_internal(struct ifnet *, bool); 287 static void if_detach_internal(struct ifnet *, bool); 288 static void if_siocaddmulti(void *, int); 289 static void if_link_ifnet(struct ifnet *); 290 static bool if_unlink_ifnet(struct ifnet *, bool); 291 #ifdef VIMAGE 292 static void if_vmove(struct ifnet *, struct vnet *); 293 #endif 294 295 #ifdef INET6 296 /* 297 * XXX: declare here to avoid to include many inet6 related files.. 298 * should be more generalized? 299 */ 300 extern void nd6_setmtu(struct ifnet *); 301 #endif 302 303 /* ipsec helper hooks */ 304 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); 305 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); 306 307 int ifqmaxlen = IFQ_MAXLEN; 308 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 309 VNET_DEFINE(struct ifgrouphead, ifg_head); 310 311 /* Table of ifnet by index. */ 312 static int if_index; 313 static int if_indexlim = 8; 314 static struct ifindex_entry { 315 struct ifnet *ife_ifnet; 316 uint16_t ife_gencnt; 317 } *ifindex_table; 318 319 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system, 320 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 321 "Variables global to all interfaces"); 322 static int 323 sysctl_ifcount(SYSCTL_HANDLER_ARGS) 324 { 325 int rv = 0; 326 327 IFNET_RLOCK(); 328 for (int i = 1; i <= if_index; i++) 329 if (ifindex_table[i].ife_ifnet != NULL && 330 ifindex_table[i].ife_ifnet->if_vnet == curvnet) 331 rv = i; 332 IFNET_RUNLOCK(); 333 334 return (sysctl_handle_int(oidp, &rv, 0, req)); 335 } 336 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount, 337 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I", 338 "Maximum known interface index"); 339 340 /* 341 * The global network interface list (V_ifnet) and related state (such as 342 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock. 343 * This may be acquired to stabilise the list, or we may rely on NET_EPOCH. 344 */ 345 struct sx ifnet_sxlock; 346 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 347 348 struct sx ifnet_detach_sxlock; 349 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx", 350 SX_RECURSE); 351 352 #ifdef VIMAGE 353 #define VNET_IS_SHUTTING_DOWN(_vnet) \ 354 ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE) 355 #endif 356 357 static if_com_alloc_t *if_com_alloc[256]; 358 static if_com_free_t *if_com_free[256]; 359 360 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 361 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 362 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 363 364 struct ifnet * 365 ifnet_byindex(u_int idx) 366 { 367 struct ifnet *ifp; 368 369 NET_EPOCH_ASSERT(); 370 371 if (__predict_false(idx > if_index)) 372 return (NULL); 373 374 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 375 376 if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet) 377 ifp = NULL; 378 379 return (ifp); 380 } 381 382 struct ifnet * 383 ifnet_byindex_ref(u_int idx) 384 { 385 struct ifnet *ifp; 386 387 ifp = ifnet_byindex(idx); 388 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) 389 return (NULL); 390 if (!if_try_ref(ifp)) 391 return (NULL); 392 return (ifp); 393 } 394 395 struct ifnet * 396 ifnet_byindexgen(uint16_t idx, uint16_t gen) 397 { 398 struct ifnet *ifp; 399 400 NET_EPOCH_ASSERT(); 401 402 if (__predict_false(idx > if_index)) 403 return (NULL); 404 405 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 406 407 if (ifindex_table[idx].ife_gencnt == gen) 408 return (ifp); 409 else 410 return (NULL); 411 } 412 413 /* 414 * Network interface utility routines. 415 * 416 * Routines with ifa_ifwith* names take sockaddr *'s as 417 * parameters. 418 */ 419 420 static void 421 if_init_idxtable(void *arg __unused) 422 { 423 424 ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table), 425 M_IFNET, M_WAITOK | M_ZERO); 426 } 427 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init_idxtable, NULL); 428 429 static void 430 vnet_if_init(const void *unused __unused) 431 { 432 433 CK_STAILQ_INIT(&V_ifnet); 434 CK_STAILQ_INIT(&V_ifg_head); 435 } 436 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 437 NULL); 438 439 static void 440 if_link_ifnet(struct ifnet *ifp) 441 { 442 443 IFNET_WLOCK(); 444 CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 445 #ifdef VIMAGE 446 curvnet->vnet_ifcnt++; 447 #endif 448 IFNET_WUNLOCK(); 449 } 450 451 static bool 452 if_unlink_ifnet(struct ifnet *ifp, bool vmove) 453 { 454 struct ifnet *iter; 455 int found = 0; 456 457 IFNET_WLOCK(); 458 CK_STAILQ_FOREACH(iter, &V_ifnet, if_link) 459 if (iter == ifp) { 460 CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link); 461 if (!vmove) 462 ifp->if_flags |= IFF_DYING; 463 found = 1; 464 break; 465 } 466 #ifdef VIMAGE 467 curvnet->vnet_ifcnt--; 468 #endif 469 IFNET_WUNLOCK(); 470 471 return (found); 472 } 473 474 #ifdef VIMAGE 475 static void 476 vnet_if_return(const void *unused __unused) 477 { 478 struct ifnet *ifp, *nifp; 479 struct ifnet **pending; 480 int found __diagused; 481 int i; 482 483 i = 0; 484 485 /* 486 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd 487 * enter NET_EPOCH, but that's not possible, because if_vmove() calls 488 * if_detach_internal(), which waits for NET_EPOCH callbacks to 489 * complete. We can't do that from within NET_EPOCH. 490 * 491 * However, we can also use the IFNET_xLOCK, which is the V_ifnet 492 * read/write lock. We cannot hold the lock as we call if_vmove() 493 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib 494 * ctx lock. 495 */ 496 IFNET_WLOCK(); 497 498 pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt, 499 M_IFNET, M_WAITOK | M_ZERO); 500 501 /* Return all inherited interfaces to their parent vnets. */ 502 CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 503 if (ifp->if_home_vnet != ifp->if_vnet) { 504 found = if_unlink_ifnet(ifp, true); 505 MPASS(found); 506 507 pending[i++] = ifp; 508 } 509 } 510 IFNET_WUNLOCK(); 511 512 for (int j = 0; j < i; j++) { 513 sx_xlock(&ifnet_detach_sxlock); 514 if_vmove(pending[j], pending[j]->if_home_vnet); 515 sx_xunlock(&ifnet_detach_sxlock); 516 } 517 518 free(pending, M_IFNET); 519 } 520 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, 521 vnet_if_return, NULL); 522 #endif 523 524 /* 525 * Allocate a struct ifnet and an index for an interface. A layer 2 526 * common structure will also be allocated if an allocation routine is 527 * registered for the passed type. 528 */ 529 static struct ifnet * 530 if_alloc_domain(u_char type, int numa_domain) 531 { 532 struct ifnet *ifp; 533 u_short idx; 534 535 KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large")); 536 if (numa_domain == IF_NODOM) 537 ifp = malloc(sizeof(struct ifnet), M_IFNET, 538 M_WAITOK | M_ZERO); 539 else 540 ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET, 541 DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO); 542 ifp->if_type = type; 543 ifp->if_alloctype = type; 544 ifp->if_numa_domain = numa_domain; 545 #ifdef VIMAGE 546 ifp->if_vnet = curvnet; 547 #endif 548 if (if_com_alloc[type] != NULL) { 549 ifp->if_l2com = if_com_alloc[type](type, ifp); 550 KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__, 551 type)); 552 } 553 554 IF_ADDR_LOCK_INIT(ifp); 555 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 556 TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp); 557 ifp->if_afdata_initialized = 0; 558 IF_AFDATA_LOCK_INIT(ifp); 559 CK_STAILQ_INIT(&ifp->if_addrhead); 560 CK_STAILQ_INIT(&ifp->if_multiaddrs); 561 CK_STAILQ_INIT(&ifp->if_groups); 562 #ifdef MAC 563 mac_ifnet_init(ifp); 564 #endif 565 ifq_init(&ifp->if_snd, ifp); 566 567 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 568 for (int i = 0; i < IFCOUNTERS; i++) 569 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 570 ifp->if_get_counter = if_get_counter_default; 571 ifp->if_pcp = IFNET_PCP_NONE; 572 573 /* Allocate an ifindex array entry. */ 574 IFNET_WLOCK(); 575 /* 576 * Try to find an empty slot below if_index. If we fail, take the 577 * next slot. 578 */ 579 for (idx = 1; idx <= if_index; idx++) { 580 if (ifindex_table[idx].ife_ifnet == NULL) 581 break; 582 } 583 584 /* Catch if_index overflow. */ 585 if (idx >= if_indexlim) { 586 struct ifindex_entry *new, *old; 587 int newlim; 588 589 newlim = if_indexlim * 2; 590 new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO); 591 memcpy(new, ifindex_table, if_indexlim * sizeof(*new)); 592 old = ifindex_table; 593 ck_pr_store_ptr(&ifindex_table, new); 594 if_indexlim = newlim; 595 NET_EPOCH_WAIT(); 596 free(old, M_IFNET); 597 } 598 if (idx > if_index) 599 if_index = idx; 600 601 ifp->if_index = idx; 602 ifp->if_idxgen = ifindex_table[idx].ife_gencnt; 603 ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp); 604 IFNET_WUNLOCK(); 605 606 return (ifp); 607 } 608 609 struct ifnet * 610 if_alloc_dev(u_char type, device_t dev) 611 { 612 int numa_domain; 613 614 if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0) 615 return (if_alloc_domain(type, IF_NODOM)); 616 return (if_alloc_domain(type, numa_domain)); 617 } 618 619 struct ifnet * 620 if_alloc(u_char type) 621 { 622 623 return (if_alloc_domain(type, IF_NODOM)); 624 } 625 /* 626 * Do the actual work of freeing a struct ifnet, and layer 2 common 627 * structure. This call is made when the network epoch guarantees 628 * us that nobody holds a pointer to the interface. 629 */ 630 static void 631 if_free_deferred(epoch_context_t ctx) 632 { 633 struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx); 634 635 KASSERT((ifp->if_flags & IFF_DYING), 636 ("%s: interface not dying", __func__)); 637 638 if (if_com_free[ifp->if_alloctype] != NULL) 639 if_com_free[ifp->if_alloctype](ifp->if_l2com, 640 ifp->if_alloctype); 641 642 #ifdef MAC 643 mac_ifnet_destroy(ifp); 644 #endif /* MAC */ 645 IF_AFDATA_DESTROY(ifp); 646 IF_ADDR_LOCK_DESTROY(ifp); 647 ifq_delete(&ifp->if_snd); 648 649 for (int i = 0; i < IFCOUNTERS; i++) 650 counter_u64_free(ifp->if_counters[i]); 651 652 if_freedescr(ifp->if_description); 653 free(ifp->if_hw_addr, M_IFADDR); 654 free(ifp, M_IFNET); 655 } 656 657 /* 658 * Deregister an interface and free the associated storage. 659 */ 660 void 661 if_free(struct ifnet *ifp) 662 { 663 664 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 665 666 /* 667 * XXXGL: An interface index is really an alias to ifp pointer. 668 * Why would we clear the alias now, and not in the deferred 669 * context? Indeed there is nothing wrong with some network 670 * thread obtaining ifp via ifnet_byindex() inside the network 671 * epoch and then dereferencing ifp while we perform if_free(), 672 * and after if_free() finished, too. 673 * 674 * This early index freeing was important back when ifindex was 675 * virtualized and interface would outlive the vnet. 676 */ 677 IFNET_WLOCK(); 678 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 679 ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL); 680 ifindex_table[ifp->if_index].ife_gencnt++; 681 while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL) 682 if_index--; 683 IFNET_WUNLOCK(); 684 685 if (refcount_release(&ifp->if_refcount)) 686 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 687 } 688 689 /* 690 * Interfaces to keep an ifnet type-stable despite the possibility of the 691 * driver calling if_free(). If there are additional references, we defer 692 * freeing the underlying data structure. 693 */ 694 void 695 if_ref(struct ifnet *ifp) 696 { 697 u_int old __diagused; 698 699 /* We don't assert the ifnet list lock here, but arguably should. */ 700 old = refcount_acquire(&ifp->if_refcount); 701 KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp)); 702 } 703 704 bool 705 if_try_ref(struct ifnet *ifp) 706 { 707 NET_EPOCH_ASSERT(); 708 return (refcount_acquire_if_not_zero(&ifp->if_refcount)); 709 } 710 711 void 712 if_rele(struct ifnet *ifp) 713 { 714 715 if (!refcount_release(&ifp->if_refcount)) 716 return; 717 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 718 } 719 720 void 721 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 722 { 723 724 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 725 726 if (ifq->ifq_maxlen == 0) 727 ifq->ifq_maxlen = ifqmaxlen; 728 729 ifq->altq_type = 0; 730 ifq->altq_disc = NULL; 731 ifq->altq_flags &= ALTQF_CANTCHANGE; 732 ifq->altq_tbr = NULL; 733 ifq->altq_ifp = ifp; 734 } 735 736 void 737 ifq_delete(struct ifaltq *ifq) 738 { 739 mtx_destroy(&ifq->ifq_mtx); 740 } 741 742 /* 743 * Perform generic interface initialization tasks and attach the interface 744 * to the list of "active" interfaces. If vmove flag is set on entry 745 * to if_attach_internal(), perform only a limited subset of initialization 746 * tasks, given that we are moving from one vnet to another an ifnet which 747 * has already been fully initialized. 748 * 749 * Note that if_detach_internal() removes group membership unconditionally 750 * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. 751 * Thus, when if_vmove() is applied to a cloned interface, group membership 752 * is lost while a cloned one always joins a group whose name is 753 * ifc->ifc_name. To recover this after if_detach_internal() and 754 * if_attach_internal(), the cloner should be specified to 755 * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() 756 * attempts to join a group whose name is ifc->ifc_name. 757 * 758 * XXX: 759 * - The decision to return void and thus require this function to 760 * succeed is questionable. 761 * - We should probably do more sanity checking. For instance we don't 762 * do anything to insure if_xname is unique or non-empty. 763 */ 764 void 765 if_attach(struct ifnet *ifp) 766 { 767 768 if_attach_internal(ifp, false); 769 } 770 771 /* 772 * Compute the least common TSO limit. 773 */ 774 void 775 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 776 { 777 /* 778 * 1) If there is no limit currently, take the limit from 779 * the network adapter. 780 * 781 * 2) If the network adapter has a limit below the current 782 * limit, apply it. 783 */ 784 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 785 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 786 pmax->tsomaxbytes = ifp->if_hw_tsomax; 787 } 788 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 789 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 790 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 791 } 792 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 793 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 794 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 795 } 796 } 797 798 /* 799 * Update TSO limit of a network adapter. 800 * 801 * Returns zero if no change. Else non-zero. 802 */ 803 int 804 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 805 { 806 int retval = 0; 807 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 808 ifp->if_hw_tsomax = pmax->tsomaxbytes; 809 retval++; 810 } 811 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 812 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 813 retval++; 814 } 815 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 816 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 817 retval++; 818 } 819 return (retval); 820 } 821 822 static void 823 if_attach_internal(struct ifnet *ifp, bool vmove) 824 { 825 unsigned socksize, ifasize; 826 int namelen, masklen; 827 struct sockaddr_dl *sdl; 828 struct ifaddr *ifa; 829 830 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 831 832 #ifdef VIMAGE 833 CURVNET_ASSERT_SET(); 834 ifp->if_vnet = curvnet; 835 if (ifp->if_home_vnet == NULL) 836 ifp->if_home_vnet = curvnet; 837 #endif 838 839 if_addgroup(ifp, IFG_ALL); 840 841 #ifdef VIMAGE 842 /* Restore group membership for cloned interface. */ 843 if (vmove) 844 if_clone_restoregroup(ifp); 845 #endif 846 847 getmicrotime(&ifp->if_lastchange); 848 ifp->if_epoch = time_uptime; 849 850 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 851 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 852 ("transmit and qflush must both either be set or both be NULL")); 853 if (ifp->if_transmit == NULL) { 854 ifp->if_transmit = if_transmit_default; 855 ifp->if_qflush = if_qflush; 856 } 857 if (ifp->if_input == NULL) 858 ifp->if_input = if_input_default; 859 860 if (ifp->if_requestencap == NULL) 861 ifp->if_requestencap = if_requestencap_default; 862 863 if (!vmove) { 864 #ifdef MAC 865 mac_ifnet_create(ifp); 866 #endif 867 868 /* 869 * Create a Link Level name for this device. 870 */ 871 namelen = strlen(ifp->if_xname); 872 /* 873 * Always save enough space for any possible name so we 874 * can do a rename in place later. 875 */ 876 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 877 socksize = masklen + ifp->if_addrlen; 878 if (socksize < sizeof(*sdl)) 879 socksize = sizeof(*sdl); 880 socksize = roundup2(socksize, sizeof(long)); 881 ifasize = sizeof(*ifa) + 2 * socksize; 882 ifa = ifa_alloc(ifasize, M_WAITOK); 883 sdl = (struct sockaddr_dl *)(ifa + 1); 884 sdl->sdl_len = socksize; 885 sdl->sdl_family = AF_LINK; 886 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 887 sdl->sdl_nlen = namelen; 888 sdl->sdl_index = ifp->if_index; 889 sdl->sdl_type = ifp->if_type; 890 ifp->if_addr = ifa; 891 ifa->ifa_ifp = ifp; 892 ifa->ifa_addr = (struct sockaddr *)sdl; 893 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 894 ifa->ifa_netmask = (struct sockaddr *)sdl; 895 sdl->sdl_len = masklen; 896 while (namelen != 0) 897 sdl->sdl_data[--namelen] = 0xff; 898 CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 899 /* Reliably crash if used uninitialized. */ 900 ifp->if_broadcastaddr = NULL; 901 902 if (ifp->if_type == IFT_ETHER) { 903 ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR, 904 M_WAITOK | M_ZERO); 905 } 906 907 #if defined(INET) || defined(INET6) 908 /* Use defaults for TSO, if nothing is set */ 909 if (ifp->if_hw_tsomax == 0 && 910 ifp->if_hw_tsomaxsegcount == 0 && 911 ifp->if_hw_tsomaxsegsize == 0) { 912 /* 913 * The TSO defaults needs to be such that an 914 * NFS mbuf list of 35 mbufs totalling just 915 * below 64K works and that a chain of mbufs 916 * can be defragged into at most 32 segments: 917 */ 918 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 919 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 920 ifp->if_hw_tsomaxsegcount = 35; 921 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 922 923 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 924 if (ifp->if_capabilities & IFCAP_TSO) { 925 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 926 ifp->if_hw_tsomax, 927 ifp->if_hw_tsomaxsegcount, 928 ifp->if_hw_tsomaxsegsize); 929 } 930 } 931 #endif 932 } 933 934 if (domain_init_status >= 2) 935 if_attachdomain1(ifp); 936 937 if_link_ifnet(ifp); 938 939 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 940 if (IS_DEFAULT_VNET(curvnet)) 941 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 942 } 943 944 static void 945 if_epochalloc(void *dummy __unused) 946 { 947 948 net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT); 949 } 950 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL); 951 952 static void 953 if_attachdomain(void *dummy) 954 { 955 struct ifnet *ifp; 956 957 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 958 if_attachdomain1(ifp); 959 } 960 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 961 if_attachdomain, NULL); 962 963 static void 964 if_attachdomain1(struct ifnet *ifp) 965 { 966 struct domain *dp; 967 968 /* 969 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 970 * cannot lock ifp->if_afdata initialization, entirely. 971 */ 972 IF_AFDATA_LOCK(ifp); 973 if (ifp->if_afdata_initialized >= domain_init_status) { 974 IF_AFDATA_UNLOCK(ifp); 975 log(LOG_WARNING, "%s called more than once on %s\n", 976 __func__, ifp->if_xname); 977 return; 978 } 979 ifp->if_afdata_initialized = domain_init_status; 980 IF_AFDATA_UNLOCK(ifp); 981 982 /* address family dependent data region */ 983 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 984 SLIST_FOREACH(dp, &domains, dom_next) { 985 if (dp->dom_ifattach) 986 ifp->if_afdata[dp->dom_family] = 987 (*dp->dom_ifattach)(ifp); 988 } 989 } 990 991 /* 992 * Remove any unicast or broadcast network addresses from an interface. 993 */ 994 void 995 if_purgeaddrs(struct ifnet *ifp) 996 { 997 struct ifaddr *ifa; 998 999 #ifdef INET6 1000 /* 1001 * Need to leave multicast addresses of proxy NDP llentries 1002 * before in6_purgeifaddr() because the llentries are keys 1003 * for in6_multi objects of proxy NDP entries. 1004 * in6_purgeifaddr()s clean up llentries including proxy NDPs 1005 * then we would lose the keys if they are called earlier. 1006 */ 1007 in6_purge_proxy_ndp(ifp); 1008 #endif 1009 while (1) { 1010 struct epoch_tracker et; 1011 1012 NET_EPOCH_ENTER(et); 1013 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1014 if (ifa->ifa_addr->sa_family != AF_LINK) 1015 break; 1016 } 1017 NET_EPOCH_EXIT(et); 1018 1019 if (ifa == NULL) 1020 break; 1021 #ifdef INET 1022 /* XXX: Ugly!! ad hoc just for INET */ 1023 if (ifa->ifa_addr->sa_family == AF_INET) { 1024 struct ifreq ifr; 1025 1026 bzero(&ifr, sizeof(ifr)); 1027 ifr.ifr_addr = *ifa->ifa_addr; 1028 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 1029 NULL) == 0) 1030 continue; 1031 } 1032 #endif /* INET */ 1033 #ifdef INET6 1034 if (ifa->ifa_addr->sa_family == AF_INET6) { 1035 in6_purgeifaddr((struct in6_ifaddr *)ifa); 1036 /* ifp_addrhead is already updated */ 1037 continue; 1038 } 1039 #endif /* INET6 */ 1040 IF_ADDR_WLOCK(ifp); 1041 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1042 IF_ADDR_WUNLOCK(ifp); 1043 ifa_free(ifa); 1044 } 1045 } 1046 1047 /* 1048 * Remove any multicast network addresses from an interface when an ifnet 1049 * is going away. 1050 */ 1051 static void 1052 if_purgemaddrs(struct ifnet *ifp) 1053 { 1054 struct ifmultiaddr *ifma; 1055 1056 IF_ADDR_WLOCK(ifp); 1057 while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) { 1058 ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs); 1059 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 1060 if_delmulti_locked(ifp, ifma, 1); 1061 } 1062 IF_ADDR_WUNLOCK(ifp); 1063 } 1064 1065 /* 1066 * Detach an interface, removing it from the list of "active" interfaces. 1067 * If vmove flag is set on entry to if_detach_internal(), perform only a 1068 * limited subset of cleanup tasks, given that we are moving an ifnet from 1069 * one vnet to another, where it must be fully operational. 1070 * 1071 * XXXRW: There are some significant questions about event ordering, and 1072 * how to prevent things from starting to use the interface during detach. 1073 */ 1074 void 1075 if_detach(struct ifnet *ifp) 1076 { 1077 bool found; 1078 1079 CURVNET_SET_QUIET(ifp->if_vnet); 1080 found = if_unlink_ifnet(ifp, false); 1081 if (found) { 1082 sx_xlock(&ifnet_detach_sxlock); 1083 if_detach_internal(ifp, false); 1084 sx_xunlock(&ifnet_detach_sxlock); 1085 } 1086 CURVNET_RESTORE(); 1087 } 1088 1089 /* 1090 * The vmove flag, if set, indicates that we are called from a callpath 1091 * that is moving an interface to a different vnet instance. 1092 * 1093 * The shutdown flag, if set, indicates that we are called in the 1094 * process of shutting down a vnet instance. Currently only the 1095 * vnet_if_return SYSUNINIT function sets it. Note: we can be called 1096 * on a vnet instance shutdown without this flag being set, e.g., when 1097 * the cloned interfaces are destoyed as first thing of teardown. 1098 */ 1099 static void 1100 if_detach_internal(struct ifnet *ifp, bool vmove) 1101 { 1102 struct ifaddr *ifa; 1103 int i; 1104 struct domain *dp; 1105 #ifdef VIMAGE 1106 bool shutdown; 1107 1108 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1109 #endif 1110 1111 sx_assert(&ifnet_detach_sxlock, SX_XLOCKED); 1112 1113 /* 1114 * At this point we know the interface still was on the ifnet list 1115 * and we removed it so we are in a stable state. 1116 */ 1117 NET_EPOCH_WAIT(); 1118 1119 /* 1120 * Ensure all pending EPOCH(9) callbacks have been executed. This 1121 * fixes issues about late destruction of multicast options 1122 * which lead to leave group calls, which in turn access the 1123 * belonging ifnet structure: 1124 */ 1125 NET_EPOCH_DRAIN_CALLBACKS(); 1126 1127 /* 1128 * In any case (destroy or vmove) detach us from the groups 1129 * and remove/wait for pending events on the taskq. 1130 * XXX-BZ in theory an interface could still enqueue a taskq change? 1131 */ 1132 if_delgroups(ifp); 1133 1134 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 1135 taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask); 1136 1137 if_down(ifp); 1138 1139 #ifdef VIMAGE 1140 /* 1141 * On VNET shutdown abort here as the stack teardown will do all 1142 * the work top-down for us. 1143 */ 1144 if (shutdown) { 1145 /* Give interface users the chance to clean up. */ 1146 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1147 1148 /* 1149 * In case of a vmove we are done here without error. 1150 * If we would signal an error it would lead to the same 1151 * abort as if we did not find the ifnet anymore. 1152 * if_detach() calls us in void context and does not care 1153 * about an early abort notification, so life is splendid :) 1154 */ 1155 goto finish_vnet_shutdown; 1156 } 1157 #endif 1158 1159 /* 1160 * At this point we are not tearing down a VNET and are either 1161 * going to destroy or vmove the interface and have to cleanup 1162 * accordingly. 1163 */ 1164 1165 /* 1166 * Remove routes and flush queues. 1167 */ 1168 #ifdef ALTQ 1169 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1170 altq_disable(&ifp->if_snd); 1171 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1172 altq_detach(&ifp->if_snd); 1173 #endif 1174 1175 if_purgeaddrs(ifp); 1176 1177 #ifdef INET 1178 in_ifdetach(ifp); 1179 #endif 1180 1181 #ifdef INET6 1182 /* 1183 * Remove all IPv6 kernel structs related to ifp. This should be done 1184 * before removing routing entries below, since IPv6 interface direct 1185 * routes are expected to be removed by the IPv6-specific kernel API. 1186 * Otherwise, the kernel will detect some inconsistency and bark it. 1187 */ 1188 in6_ifdetach(ifp); 1189 #endif 1190 if_purgemaddrs(ifp); 1191 1192 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1193 if (IS_DEFAULT_VNET(curvnet)) 1194 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 1195 1196 if (!vmove) { 1197 /* 1198 * Prevent further calls into the device driver via ifnet. 1199 */ 1200 if_dead(ifp); 1201 1202 /* 1203 * Clean up all addresses. 1204 */ 1205 IF_ADDR_WLOCK(ifp); 1206 if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) { 1207 ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); 1208 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1209 IF_ADDR_WUNLOCK(ifp); 1210 ifa_free(ifa); 1211 } else 1212 IF_ADDR_WUNLOCK(ifp); 1213 } 1214 1215 rt_flushifroutes(ifp); 1216 1217 #ifdef VIMAGE 1218 finish_vnet_shutdown: 1219 #endif 1220 /* 1221 * We cannot hold the lock over dom_ifdetach calls as they might 1222 * sleep, for example trying to drain a callout, thus open up the 1223 * theoretical race with re-attaching. 1224 */ 1225 IF_AFDATA_LOCK(ifp); 1226 i = ifp->if_afdata_initialized; 1227 ifp->if_afdata_initialized = 0; 1228 IF_AFDATA_UNLOCK(ifp); 1229 if (i == 0) 1230 return; 1231 SLIST_FOREACH(dp, &domains, dom_next) { 1232 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) { 1233 (*dp->dom_ifdetach)(ifp, 1234 ifp->if_afdata[dp->dom_family]); 1235 ifp->if_afdata[dp->dom_family] = NULL; 1236 } 1237 } 1238 } 1239 1240 #ifdef VIMAGE 1241 /* 1242 * if_vmove() performs a limited version of if_detach() in current 1243 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1244 */ 1245 static void 1246 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1247 { 1248 #ifdef DEV_BPF 1249 /* 1250 * Detach BPF file descriptors from its interface. 1251 */ 1252 bpf_ifdetach(ifp); 1253 #endif 1254 1255 /* 1256 * Detach from current vnet, but preserve LLADDR info, do not 1257 * mark as dead etc. so that the ifnet can be reattached later. 1258 */ 1259 if_detach_internal(ifp, true); 1260 1261 /* 1262 * Perform interface-specific reassignment tasks, if provided by 1263 * the driver. 1264 */ 1265 if (ifp->if_reassign != NULL) 1266 ifp->if_reassign(ifp, new_vnet, NULL); 1267 1268 /* 1269 * Switch to the context of the target vnet. 1270 */ 1271 CURVNET_SET_QUIET(new_vnet); 1272 if_attach_internal(ifp, true); 1273 CURVNET_RESTORE(); 1274 } 1275 1276 /* 1277 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1278 */ 1279 static int 1280 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1281 { 1282 struct prison *pr; 1283 struct ifnet *difp; 1284 bool found; 1285 bool shutdown; 1286 1287 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 1288 1289 /* Try to find the prison within our visibility. */ 1290 sx_slock(&allprison_lock); 1291 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1292 sx_sunlock(&allprison_lock); 1293 if (pr == NULL) 1294 return (ENXIO); 1295 prison_hold_locked(pr); 1296 mtx_unlock(&pr->pr_mtx); 1297 1298 /* Do not try to move the iface from and to the same prison. */ 1299 if (pr->pr_vnet == ifp->if_vnet) { 1300 prison_free(pr); 1301 return (EEXIST); 1302 } 1303 1304 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1305 /* XXX Lock interfaces to avoid races. */ 1306 CURVNET_SET_QUIET(pr->pr_vnet); 1307 difp = ifunit(ifname); 1308 CURVNET_RESTORE(); 1309 if (difp != NULL) { 1310 prison_free(pr); 1311 return (EEXIST); 1312 } 1313 sx_xlock(&ifnet_detach_sxlock); 1314 1315 /* Make sure the VNET is stable. */ 1316 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1317 if (shutdown) { 1318 sx_xunlock(&ifnet_detach_sxlock); 1319 prison_free(pr); 1320 return (EBUSY); 1321 } 1322 1323 found = if_unlink_ifnet(ifp, true); 1324 if (! found) { 1325 sx_xunlock(&ifnet_detach_sxlock); 1326 prison_free(pr); 1327 return (ENODEV); 1328 } 1329 1330 /* Move the interface into the child jail/vnet. */ 1331 if_vmove(ifp, pr->pr_vnet); 1332 1333 /* Report the new if_xname back to the userland. */ 1334 sprintf(ifname, "%s", ifp->if_xname); 1335 1336 sx_xunlock(&ifnet_detach_sxlock); 1337 1338 prison_free(pr); 1339 return (0); 1340 } 1341 1342 static int 1343 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1344 { 1345 struct prison *pr; 1346 struct vnet *vnet_dst; 1347 struct ifnet *ifp; 1348 int found __diagused; 1349 bool shutdown; 1350 1351 /* Try to find the prison within our visibility. */ 1352 sx_slock(&allprison_lock); 1353 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1354 sx_sunlock(&allprison_lock); 1355 if (pr == NULL) 1356 return (ENXIO); 1357 prison_hold_locked(pr); 1358 mtx_unlock(&pr->pr_mtx); 1359 1360 /* Make sure the named iface exists in the source prison/vnet. */ 1361 CURVNET_SET(pr->pr_vnet); 1362 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1363 if (ifp == NULL) { 1364 CURVNET_RESTORE(); 1365 prison_free(pr); 1366 return (ENXIO); 1367 } 1368 1369 /* Do not try to move the iface from and to the same prison. */ 1370 vnet_dst = TD_TO_VNET(td); 1371 if (vnet_dst == ifp->if_vnet) { 1372 CURVNET_RESTORE(); 1373 prison_free(pr); 1374 return (EEXIST); 1375 } 1376 1377 /* Make sure the VNET is stable. */ 1378 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1379 if (shutdown) { 1380 CURVNET_RESTORE(); 1381 prison_free(pr); 1382 return (EBUSY); 1383 } 1384 1385 /* Get interface back from child jail/vnet. */ 1386 found = if_unlink_ifnet(ifp, true); 1387 MPASS(found); 1388 sx_xlock(&ifnet_detach_sxlock); 1389 if_vmove(ifp, vnet_dst); 1390 sx_xunlock(&ifnet_detach_sxlock); 1391 CURVNET_RESTORE(); 1392 1393 /* Report the new if_xname back to the userland. */ 1394 sprintf(ifname, "%s", ifp->if_xname); 1395 1396 prison_free(pr); 1397 return (0); 1398 } 1399 #endif /* VIMAGE */ 1400 1401 /* 1402 * Add a group to an interface 1403 */ 1404 int 1405 if_addgroup(struct ifnet *ifp, const char *groupname) 1406 { 1407 struct ifg_list *ifgl; 1408 struct ifg_group *ifg = NULL; 1409 struct ifg_member *ifgm; 1410 int new = 0; 1411 1412 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1413 groupname[strlen(groupname) - 1] <= '9') 1414 return (EINVAL); 1415 1416 IFNET_WLOCK(); 1417 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1418 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1419 IFNET_WUNLOCK(); 1420 return (EEXIST); 1421 } 1422 1423 if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) { 1424 IFNET_WUNLOCK(); 1425 return (ENOMEM); 1426 } 1427 1428 if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 1429 free(ifgl, M_TEMP); 1430 IFNET_WUNLOCK(); 1431 return (ENOMEM); 1432 } 1433 1434 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1435 if (!strcmp(ifg->ifg_group, groupname)) 1436 break; 1437 1438 if (ifg == NULL) { 1439 if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) { 1440 free(ifgl, M_TEMP); 1441 free(ifgm, M_TEMP); 1442 IFNET_WUNLOCK(); 1443 return (ENOMEM); 1444 } 1445 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1446 ifg->ifg_refcnt = 0; 1447 CK_STAILQ_INIT(&ifg->ifg_members); 1448 CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1449 new = 1; 1450 } 1451 1452 ifg->ifg_refcnt++; 1453 ifgl->ifgl_group = ifg; 1454 ifgm->ifgm_ifp = ifp; 1455 1456 IF_ADDR_WLOCK(ifp); 1457 CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1458 CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1459 IF_ADDR_WUNLOCK(ifp); 1460 1461 IFNET_WUNLOCK(); 1462 1463 if (new) 1464 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1465 EVENTHANDLER_INVOKE(group_change_event, groupname); 1466 1467 return (0); 1468 } 1469 1470 /* 1471 * Helper function to remove a group out of an interface. Expects the global 1472 * ifnet lock to be write-locked, and drops it before returning. 1473 */ 1474 static void 1475 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl, 1476 const char *groupname) 1477 { 1478 struct ifg_member *ifgm; 1479 bool freeifgl; 1480 1481 IFNET_WLOCK_ASSERT(); 1482 1483 IF_ADDR_WLOCK(ifp); 1484 CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next); 1485 IF_ADDR_WUNLOCK(ifp); 1486 1487 CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { 1488 if (ifgm->ifgm_ifp == ifp) { 1489 CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1490 ifg_member, ifgm_next); 1491 break; 1492 } 1493 } 1494 1495 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1496 CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, 1497 ifg_next); 1498 freeifgl = true; 1499 } else { 1500 freeifgl = false; 1501 } 1502 IFNET_WUNLOCK(); 1503 1504 NET_EPOCH_WAIT(); 1505 EVENTHANDLER_INVOKE(group_change_event, groupname); 1506 if (freeifgl) { 1507 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1508 free(ifgl->ifgl_group, M_TEMP); 1509 } 1510 free(ifgm, M_TEMP); 1511 free(ifgl, M_TEMP); 1512 } 1513 1514 /* 1515 * Remove a group from an interface 1516 */ 1517 int 1518 if_delgroup(struct ifnet *ifp, const char *groupname) 1519 { 1520 struct ifg_list *ifgl; 1521 1522 IFNET_WLOCK(); 1523 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1524 if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) 1525 break; 1526 if (ifgl == NULL) { 1527 IFNET_WUNLOCK(); 1528 return (ENOENT); 1529 } 1530 1531 _if_delgroup_locked(ifp, ifgl, groupname); 1532 1533 return (0); 1534 } 1535 1536 /* 1537 * Remove an interface from all groups 1538 */ 1539 static void 1540 if_delgroups(struct ifnet *ifp) 1541 { 1542 struct ifg_list *ifgl; 1543 char groupname[IFNAMSIZ]; 1544 1545 IFNET_WLOCK(); 1546 while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) { 1547 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1548 _if_delgroup_locked(ifp, ifgl, groupname); 1549 IFNET_WLOCK(); 1550 } 1551 IFNET_WUNLOCK(); 1552 } 1553 1554 /* 1555 * Stores all groups from an interface in memory pointed to by ifgr. 1556 */ 1557 static int 1558 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp) 1559 { 1560 int len, error; 1561 struct ifg_list *ifgl; 1562 struct ifg_req ifgrq, *ifgp; 1563 1564 NET_EPOCH_ASSERT(); 1565 1566 if (ifgr->ifgr_len == 0) { 1567 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1568 ifgr->ifgr_len += sizeof(struct ifg_req); 1569 return (0); 1570 } 1571 1572 len = ifgr->ifgr_len; 1573 ifgp = ifgr->ifgr_groups; 1574 /* XXX: wire */ 1575 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1576 if (len < sizeof(ifgrq)) 1577 return (EINVAL); 1578 bzero(&ifgrq, sizeof ifgrq); 1579 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1580 sizeof(ifgrq.ifgrq_group)); 1581 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) 1582 return (error); 1583 len -= sizeof(ifgrq); 1584 ifgp++; 1585 } 1586 1587 return (0); 1588 } 1589 1590 /* 1591 * Stores all members of a group in memory pointed to by igfr 1592 */ 1593 static int 1594 if_getgroupmembers(struct ifgroupreq *ifgr) 1595 { 1596 struct ifg_group *ifg; 1597 struct ifg_member *ifgm; 1598 struct ifg_req ifgrq, *ifgp; 1599 int len, error; 1600 1601 IFNET_RLOCK(); 1602 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1603 if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) 1604 break; 1605 if (ifg == NULL) { 1606 IFNET_RUNLOCK(); 1607 return (ENOENT); 1608 } 1609 1610 if (ifgr->ifgr_len == 0) { 1611 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1612 ifgr->ifgr_len += sizeof(ifgrq); 1613 IFNET_RUNLOCK(); 1614 return (0); 1615 } 1616 1617 len = ifgr->ifgr_len; 1618 ifgp = ifgr->ifgr_groups; 1619 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1620 if (len < sizeof(ifgrq)) { 1621 IFNET_RUNLOCK(); 1622 return (EINVAL); 1623 } 1624 bzero(&ifgrq, sizeof ifgrq); 1625 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1626 sizeof(ifgrq.ifgrq_member)); 1627 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1628 IFNET_RUNLOCK(); 1629 return (error); 1630 } 1631 len -= sizeof(ifgrq); 1632 ifgp++; 1633 } 1634 IFNET_RUNLOCK(); 1635 1636 return (0); 1637 } 1638 1639 /* 1640 * Return counter values from counter(9)s stored in ifnet. 1641 */ 1642 uint64_t 1643 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1644 { 1645 1646 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1647 1648 return (counter_u64_fetch(ifp->if_counters[cnt])); 1649 } 1650 1651 /* 1652 * Increase an ifnet counter. Usually used for counters shared 1653 * between the stack and a driver, but function supports them all. 1654 */ 1655 void 1656 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1657 { 1658 1659 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1660 1661 counter_u64_add(ifp->if_counters[cnt], inc); 1662 } 1663 1664 /* 1665 * Copy data from ifnet to userland API structure if_data. 1666 */ 1667 void 1668 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1669 { 1670 1671 ifd->ifi_type = ifp->if_type; 1672 ifd->ifi_physical = 0; 1673 ifd->ifi_addrlen = ifp->if_addrlen; 1674 ifd->ifi_hdrlen = ifp->if_hdrlen; 1675 ifd->ifi_link_state = ifp->if_link_state; 1676 ifd->ifi_vhid = 0; 1677 ifd->ifi_datalen = sizeof(struct if_data); 1678 ifd->ifi_mtu = ifp->if_mtu; 1679 ifd->ifi_metric = ifp->if_metric; 1680 ifd->ifi_baudrate = ifp->if_baudrate; 1681 ifd->ifi_hwassist = ifp->if_hwassist; 1682 ifd->ifi_epoch = ifp->if_epoch; 1683 ifd->ifi_lastchange = ifp->if_lastchange; 1684 1685 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1686 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1687 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1688 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1689 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1690 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1691 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1692 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1693 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1694 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1695 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1696 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1697 } 1698 1699 /* 1700 * Initialization, destruction and refcounting functions for ifaddrs. 1701 */ 1702 struct ifaddr * 1703 ifa_alloc(size_t size, int flags) 1704 { 1705 struct ifaddr *ifa; 1706 1707 KASSERT(size >= sizeof(struct ifaddr), 1708 ("%s: invalid size %zu", __func__, size)); 1709 1710 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1711 if (ifa == NULL) 1712 return (NULL); 1713 1714 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1715 goto fail; 1716 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1717 goto fail; 1718 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1719 goto fail; 1720 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1721 goto fail; 1722 1723 refcount_init(&ifa->ifa_refcnt, 1); 1724 1725 return (ifa); 1726 1727 fail: 1728 /* free(NULL) is okay */ 1729 counter_u64_free(ifa->ifa_opackets); 1730 counter_u64_free(ifa->ifa_ipackets); 1731 counter_u64_free(ifa->ifa_obytes); 1732 counter_u64_free(ifa->ifa_ibytes); 1733 free(ifa, M_IFADDR); 1734 1735 return (NULL); 1736 } 1737 1738 void 1739 ifa_ref(struct ifaddr *ifa) 1740 { 1741 u_int old __diagused; 1742 1743 old = refcount_acquire(&ifa->ifa_refcnt); 1744 KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa)); 1745 } 1746 1747 int 1748 ifa_try_ref(struct ifaddr *ifa) 1749 { 1750 1751 NET_EPOCH_ASSERT(); 1752 return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt)); 1753 } 1754 1755 static void 1756 ifa_destroy(epoch_context_t ctx) 1757 { 1758 struct ifaddr *ifa; 1759 1760 ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx); 1761 counter_u64_free(ifa->ifa_opackets); 1762 counter_u64_free(ifa->ifa_ipackets); 1763 counter_u64_free(ifa->ifa_obytes); 1764 counter_u64_free(ifa->ifa_ibytes); 1765 free(ifa, M_IFADDR); 1766 } 1767 1768 void 1769 ifa_free(struct ifaddr *ifa) 1770 { 1771 1772 if (refcount_release(&ifa->ifa_refcnt)) 1773 NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx); 1774 } 1775 1776 /* 1777 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1778 * structs used to represent other address families, it is necessary 1779 * to perform a different comparison. 1780 */ 1781 static bool 1782 sa_dl_equal(const struct sockaddr *a, const struct sockaddr *b) 1783 { 1784 const struct sockaddr_dl *sdl1 = (const struct sockaddr_dl *)a; 1785 const struct sockaddr_dl *sdl2 = (const struct sockaddr_dl *)b; 1786 1787 return (sdl1->sdl_len == sdl2->sdl_len && 1788 bcmp(sdl1->sdl_data + sdl1->sdl_nlen, 1789 sdl2->sdl_data + sdl2->sdl_nlen, sdl1->sdl_alen) == 0); 1790 } 1791 1792 /* 1793 * Locate an interface based on a complete address. 1794 */ 1795 /*ARGSUSED*/ 1796 struct ifaddr * 1797 ifa_ifwithaddr(const struct sockaddr *addr) 1798 { 1799 struct ifnet *ifp; 1800 struct ifaddr *ifa; 1801 1802 NET_EPOCH_ASSERT(); 1803 1804 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1805 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1806 if (ifa->ifa_addr->sa_family != addr->sa_family) 1807 continue; 1808 if (sa_equal(addr, ifa->ifa_addr)) { 1809 goto done; 1810 } 1811 /* IP6 doesn't have broadcast */ 1812 if ((ifp->if_flags & IFF_BROADCAST) && 1813 ifa->ifa_broadaddr && 1814 ifa->ifa_broadaddr->sa_len != 0 && 1815 sa_equal(ifa->ifa_broadaddr, addr)) { 1816 goto done; 1817 } 1818 } 1819 } 1820 ifa = NULL; 1821 done: 1822 return (ifa); 1823 } 1824 1825 int 1826 ifa_ifwithaddr_check(const struct sockaddr *addr) 1827 { 1828 struct epoch_tracker et; 1829 int rc; 1830 1831 NET_EPOCH_ENTER(et); 1832 rc = (ifa_ifwithaddr(addr) != NULL); 1833 NET_EPOCH_EXIT(et); 1834 return (rc); 1835 } 1836 1837 /* 1838 * Locate an interface based on the broadcast address. 1839 */ 1840 /* ARGSUSED */ 1841 struct ifaddr * 1842 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) 1843 { 1844 struct ifnet *ifp; 1845 struct ifaddr *ifa; 1846 1847 NET_EPOCH_ASSERT(); 1848 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1849 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1850 continue; 1851 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1852 if (ifa->ifa_addr->sa_family != addr->sa_family) 1853 continue; 1854 if ((ifp->if_flags & IFF_BROADCAST) && 1855 ifa->ifa_broadaddr && 1856 ifa->ifa_broadaddr->sa_len != 0 && 1857 sa_equal(ifa->ifa_broadaddr, addr)) { 1858 goto done; 1859 } 1860 } 1861 } 1862 ifa = NULL; 1863 done: 1864 return (ifa); 1865 } 1866 1867 /* 1868 * Locate the point to point interface with a given destination address. 1869 */ 1870 /*ARGSUSED*/ 1871 struct ifaddr * 1872 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) 1873 { 1874 struct ifnet *ifp; 1875 struct ifaddr *ifa; 1876 1877 NET_EPOCH_ASSERT(); 1878 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1879 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1880 continue; 1881 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1882 continue; 1883 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1884 if (ifa->ifa_addr->sa_family != addr->sa_family) 1885 continue; 1886 if (ifa->ifa_dstaddr != NULL && 1887 sa_equal(addr, ifa->ifa_dstaddr)) { 1888 goto done; 1889 } 1890 } 1891 } 1892 ifa = NULL; 1893 done: 1894 return (ifa); 1895 } 1896 1897 /* 1898 * Find an interface on a specific network. If many, choice 1899 * is most specific found. 1900 */ 1901 struct ifaddr * 1902 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) 1903 { 1904 struct ifnet *ifp; 1905 struct ifaddr *ifa; 1906 struct ifaddr *ifa_maybe = NULL; 1907 u_int af = addr->sa_family; 1908 const char *addr_data = addr->sa_data, *cplim; 1909 1910 NET_EPOCH_ASSERT(); 1911 /* 1912 * AF_LINK addresses can be looked up directly by their index number, 1913 * so do that if we can. 1914 */ 1915 if (af == AF_LINK) { 1916 ifp = ifnet_byindex( 1917 ((const struct sockaddr_dl *)addr)->sdl_index); 1918 return (ifp ? ifp->if_addr : NULL); 1919 } 1920 1921 /* 1922 * Scan though each interface, looking for ones that have addresses 1923 * in this address family and the requested fib. 1924 */ 1925 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1926 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1927 continue; 1928 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1929 const char *cp, *cp2, *cp3; 1930 1931 if (ifa->ifa_addr->sa_family != af) 1932 next: continue; 1933 if (af == AF_INET && 1934 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1935 /* 1936 * This is a bit broken as it doesn't 1937 * take into account that the remote end may 1938 * be a single node in the network we are 1939 * looking for. 1940 * The trouble is that we don't know the 1941 * netmask for the remote end. 1942 */ 1943 if (ifa->ifa_dstaddr != NULL && 1944 sa_equal(addr, ifa->ifa_dstaddr)) { 1945 goto done; 1946 } 1947 } else { 1948 /* 1949 * Scan all the bits in the ifa's address. 1950 * If a bit dissagrees with what we are 1951 * looking for, mask it with the netmask 1952 * to see if it really matters. 1953 * (A byte at a time) 1954 */ 1955 if (ifa->ifa_netmask == 0) 1956 continue; 1957 cp = addr_data; 1958 cp2 = ifa->ifa_addr->sa_data; 1959 cp3 = ifa->ifa_netmask->sa_data; 1960 cplim = ifa->ifa_netmask->sa_len 1961 + (char *)ifa->ifa_netmask; 1962 while (cp3 < cplim) 1963 if ((*cp++ ^ *cp2++) & *cp3++) 1964 goto next; /* next address! */ 1965 /* 1966 * If the netmask of what we just found 1967 * is more specific than what we had before 1968 * (if we had one), or if the virtual status 1969 * of new prefix is better than of the old one, 1970 * then remember the new one before continuing 1971 * to search for an even better one. 1972 */ 1973 if (ifa_maybe == NULL || 1974 ifa_preferred(ifa_maybe, ifa) || 1975 rn_refines((caddr_t)ifa->ifa_netmask, 1976 (caddr_t)ifa_maybe->ifa_netmask)) { 1977 ifa_maybe = ifa; 1978 } 1979 } 1980 } 1981 } 1982 ifa = ifa_maybe; 1983 ifa_maybe = NULL; 1984 done: 1985 return (ifa); 1986 } 1987 1988 /* 1989 * Find an interface address specific to an interface best matching 1990 * a given address. 1991 */ 1992 struct ifaddr * 1993 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 1994 { 1995 struct ifaddr *ifa; 1996 const char *cp, *cp2, *cp3; 1997 char *cplim; 1998 struct ifaddr *ifa_maybe = NULL; 1999 u_int af = addr->sa_family; 2000 2001 if (af >= AF_MAX) 2002 return (NULL); 2003 2004 NET_EPOCH_ASSERT(); 2005 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2006 if (ifa->ifa_addr->sa_family != af) 2007 continue; 2008 if (ifa_maybe == NULL) 2009 ifa_maybe = ifa; 2010 if (ifa->ifa_netmask == 0) { 2011 if (sa_equal(addr, ifa->ifa_addr) || 2012 (ifa->ifa_dstaddr && 2013 sa_equal(addr, ifa->ifa_dstaddr))) 2014 goto done; 2015 continue; 2016 } 2017 if (ifp->if_flags & IFF_POINTOPOINT) { 2018 if (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr)) 2019 goto done; 2020 } else { 2021 cp = addr->sa_data; 2022 cp2 = ifa->ifa_addr->sa_data; 2023 cp3 = ifa->ifa_netmask->sa_data; 2024 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2025 for (; cp3 < cplim; cp3++) 2026 if ((*cp++ ^ *cp2++) & *cp3) 2027 break; 2028 if (cp3 == cplim) 2029 goto done; 2030 } 2031 } 2032 ifa = ifa_maybe; 2033 done: 2034 return (ifa); 2035 } 2036 2037 /* 2038 * See whether new ifa is better than current one: 2039 * 1) A non-virtual one is preferred over virtual. 2040 * 2) A virtual in master state preferred over any other state. 2041 * 2042 * Used in several address selecting functions. 2043 */ 2044 int 2045 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 2046 { 2047 2048 return (cur->ifa_carp && (!next->ifa_carp || 2049 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 2050 } 2051 2052 struct sockaddr_dl * 2053 link_alloc_sdl(size_t size, int flags) 2054 { 2055 2056 return (malloc(size, M_TEMP, flags)); 2057 } 2058 2059 void 2060 link_free_sdl(struct sockaddr *sa) 2061 { 2062 free(sa, M_TEMP); 2063 } 2064 2065 /* 2066 * Fills in given sdl with interface basic info. 2067 * Returns pointer to filled sdl. 2068 */ 2069 struct sockaddr_dl * 2070 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2071 { 2072 struct sockaddr_dl *sdl; 2073 2074 sdl = (struct sockaddr_dl *)paddr; 2075 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2076 sdl->sdl_len = sizeof(struct sockaddr_dl); 2077 sdl->sdl_family = AF_LINK; 2078 sdl->sdl_index = ifp->if_index; 2079 sdl->sdl_type = iftype; 2080 2081 return (sdl); 2082 } 2083 2084 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2085 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2086 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2087 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2088 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2089 int (*vlan_pcp_p)(struct ifnet *, uint16_t *); 2090 int (*vlan_setcookie_p)(struct ifnet *, void *); 2091 void *(*vlan_cookie_p)(struct ifnet *); 2092 void (*vlan_input_p)(struct ifnet *, struct mbuf *); 2093 2094 /* 2095 * Handle a change in the interface link state. To avoid LORs 2096 * between driver lock and upper layer locks, as well as possible 2097 * recursions, we post event to taskqueue, and all job 2098 * is done in static do_link_state_change(). 2099 */ 2100 void 2101 if_link_state_change(struct ifnet *ifp, int link_state) 2102 { 2103 /* Return if state hasn't changed. */ 2104 if (ifp->if_link_state == link_state) 2105 return; 2106 2107 ifp->if_link_state = link_state; 2108 2109 /* XXXGL: reference ifp? */ 2110 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2111 } 2112 2113 static void 2114 do_link_state_change(void *arg, int pending) 2115 { 2116 struct ifnet *ifp; 2117 int link_state; 2118 2119 ifp = arg; 2120 link_state = ifp->if_link_state; 2121 2122 CURVNET_SET(ifp->if_vnet); 2123 rt_ifmsg(ifp, 0); 2124 if (ifp->if_vlantrunk != NULL) 2125 (*vlan_link_state_p)(ifp); 2126 2127 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2128 ifp->if_l2com != NULL) 2129 (*ng_ether_link_state_p)(ifp, link_state); 2130 if (ifp->if_carp) 2131 (*carp_linkstate_p)(ifp); 2132 if (ifp->if_bridge) 2133 ifp->if_bridge_linkstate(ifp); 2134 if (ifp->if_lagg) 2135 (*lagg_linkstate_p)(ifp, link_state); 2136 2137 if (IS_DEFAULT_VNET(curvnet)) 2138 devctl_notify("IFNET", ifp->if_xname, 2139 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2140 NULL); 2141 if (pending > 1) 2142 if_printf(ifp, "%d link states coalesced\n", pending); 2143 if (log_link_state_change) 2144 if_printf(ifp, "link state changed to %s\n", 2145 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2146 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); 2147 CURVNET_RESTORE(); 2148 } 2149 2150 /* 2151 * Mark an interface down and notify protocols of 2152 * the transition. 2153 */ 2154 void 2155 if_down(struct ifnet *ifp) 2156 { 2157 2158 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); 2159 2160 ifp->if_flags &= ~IFF_UP; 2161 getmicrotime(&ifp->if_lastchange); 2162 ifp->if_qflush(ifp); 2163 2164 if (ifp->if_carp) 2165 (*carp_linkstate_p)(ifp); 2166 rt_ifmsg(ifp, IFF_UP); 2167 } 2168 2169 /* 2170 * Mark an interface up and notify protocols of 2171 * the transition. 2172 */ 2173 void 2174 if_up(struct ifnet *ifp) 2175 { 2176 2177 ifp->if_flags |= IFF_UP; 2178 getmicrotime(&ifp->if_lastchange); 2179 if (ifp->if_carp) 2180 (*carp_linkstate_p)(ifp); 2181 rt_ifmsg(ifp, IFF_UP); 2182 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); 2183 } 2184 2185 /* 2186 * Flush an interface queue. 2187 */ 2188 void 2189 if_qflush(struct ifnet *ifp) 2190 { 2191 struct mbuf *m, *n; 2192 struct ifaltq *ifq; 2193 2194 ifq = &ifp->if_snd; 2195 IFQ_LOCK(ifq); 2196 #ifdef ALTQ 2197 if (ALTQ_IS_ENABLED(ifq)) 2198 ALTQ_PURGE(ifq); 2199 #endif 2200 n = ifq->ifq_head; 2201 while ((m = n) != NULL) { 2202 n = m->m_nextpkt; 2203 m_freem(m); 2204 } 2205 ifq->ifq_head = 0; 2206 ifq->ifq_tail = 0; 2207 ifq->ifq_len = 0; 2208 IFQ_UNLOCK(ifq); 2209 } 2210 2211 /* 2212 * Map interface name to interface structure pointer, with or without 2213 * returning a reference. 2214 */ 2215 struct ifnet * 2216 ifunit_ref(const char *name) 2217 { 2218 struct epoch_tracker et; 2219 struct ifnet *ifp; 2220 2221 NET_EPOCH_ENTER(et); 2222 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2223 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2224 !(ifp->if_flags & IFF_DYING)) 2225 break; 2226 } 2227 if (ifp != NULL) { 2228 if_ref(ifp); 2229 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 2230 } 2231 2232 NET_EPOCH_EXIT(et); 2233 return (ifp); 2234 } 2235 2236 struct ifnet * 2237 ifunit(const char *name) 2238 { 2239 struct epoch_tracker et; 2240 struct ifnet *ifp; 2241 2242 NET_EPOCH_ENTER(et); 2243 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2244 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2245 break; 2246 } 2247 NET_EPOCH_EXIT(et); 2248 return (ifp); 2249 } 2250 2251 void * 2252 ifr_buffer_get_buffer(void *data) 2253 { 2254 union ifreq_union *ifrup; 2255 2256 ifrup = data; 2257 #ifdef COMPAT_FREEBSD32 2258 if (SV_CURPROC_FLAG(SV_ILP32)) 2259 return ((void *)(uintptr_t) 2260 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer); 2261 #endif 2262 return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer); 2263 } 2264 2265 static void 2266 ifr_buffer_set_buffer_null(void *data) 2267 { 2268 union ifreq_union *ifrup; 2269 2270 ifrup = data; 2271 #ifdef COMPAT_FREEBSD32 2272 if (SV_CURPROC_FLAG(SV_ILP32)) 2273 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0; 2274 else 2275 #endif 2276 ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL; 2277 } 2278 2279 size_t 2280 ifr_buffer_get_length(void *data) 2281 { 2282 union ifreq_union *ifrup; 2283 2284 ifrup = data; 2285 #ifdef COMPAT_FREEBSD32 2286 if (SV_CURPROC_FLAG(SV_ILP32)) 2287 return (ifrup->ifr32.ifr_ifru.ifru_buffer.length); 2288 #endif 2289 return (ifrup->ifr.ifr_ifru.ifru_buffer.length); 2290 } 2291 2292 static void 2293 ifr_buffer_set_length(void *data, size_t len) 2294 { 2295 union ifreq_union *ifrup; 2296 2297 ifrup = data; 2298 #ifdef COMPAT_FREEBSD32 2299 if (SV_CURPROC_FLAG(SV_ILP32)) 2300 ifrup->ifr32.ifr_ifru.ifru_buffer.length = len; 2301 else 2302 #endif 2303 ifrup->ifr.ifr_ifru.ifru_buffer.length = len; 2304 } 2305 2306 void * 2307 ifr_data_get_ptr(void *ifrp) 2308 { 2309 union ifreq_union *ifrup; 2310 2311 ifrup = ifrp; 2312 #ifdef COMPAT_FREEBSD32 2313 if (SV_CURPROC_FLAG(SV_ILP32)) 2314 return ((void *)(uintptr_t) 2315 ifrup->ifr32.ifr_ifru.ifru_data); 2316 #endif 2317 return (ifrup->ifr.ifr_ifru.ifru_data); 2318 } 2319 2320 struct ifcap_nv_bit_name { 2321 uint64_t cap_bit; 2322 const char *cap_name; 2323 }; 2324 #define CAPNV(x) {.cap_bit = IFCAP_##x, \ 2325 .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) } 2326 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = { 2327 CAPNV(RXCSUM), 2328 CAPNV(TXCSUM), 2329 CAPNV(NETCONS), 2330 CAPNV(VLAN_MTU), 2331 CAPNV(VLAN_HWTAGGING), 2332 CAPNV(JUMBO_MTU), 2333 CAPNV(POLLING), 2334 CAPNV(VLAN_HWCSUM), 2335 CAPNV(TSO4), 2336 CAPNV(TSO6), 2337 CAPNV(LRO), 2338 CAPNV(WOL_UCAST), 2339 CAPNV(WOL_MCAST), 2340 CAPNV(WOL_MAGIC), 2341 CAPNV(TOE4), 2342 CAPNV(TOE6), 2343 CAPNV(VLAN_HWFILTER), 2344 CAPNV(VLAN_HWTSO), 2345 CAPNV(LINKSTATE), 2346 CAPNV(NETMAP), 2347 CAPNV(RXCSUM_IPV6), 2348 CAPNV(TXCSUM_IPV6), 2349 CAPNV(HWSTATS), 2350 CAPNV(TXRTLMT), 2351 CAPNV(HWRXTSTMP), 2352 CAPNV(MEXTPG), 2353 CAPNV(TXTLS4), 2354 CAPNV(TXTLS6), 2355 CAPNV(VXLAN_HWCSUM), 2356 CAPNV(VXLAN_HWTSO), 2357 CAPNV(TXTLS_RTLMT), 2358 {0, NULL} 2359 }; 2360 #define CAP2NV(x) {.cap_bit = IFCAP2_BIT(IFCAP2_##x), \ 2361 .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) } 2362 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = { 2363 CAP2NV(RXTLS4), 2364 CAP2NV(RXTLS6), 2365 CAP2NV(IPSEC_OFFLOAD), 2366 {0, NULL} 2367 }; 2368 #undef CAPNV 2369 #undef CAP2NV 2370 2371 int 2372 if_capnv_to_capint(const nvlist_t *nv, int *old_cap, 2373 const struct ifcap_nv_bit_name *nn, bool all) 2374 { 2375 int i, res; 2376 2377 res = 0; 2378 for (i = 0; nn[i].cap_name != NULL; i++) { 2379 if (nvlist_exists_bool(nv, nn[i].cap_name)) { 2380 if (all || nvlist_get_bool(nv, nn[i].cap_name)) 2381 res |= nn[i].cap_bit; 2382 } else { 2383 res |= *old_cap & nn[i].cap_bit; 2384 } 2385 } 2386 return (res); 2387 } 2388 2389 void 2390 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn, 2391 int ifr_cap, int ifr_req) 2392 { 2393 int i; 2394 2395 for (i = 0; nn[i].cap_name != NULL; i++) { 2396 if ((nn[i].cap_bit & ifr_cap) != 0) { 2397 nvlist_add_bool(nv, nn[i].cap_name, 2398 (nn[i].cap_bit & ifr_req) != 0); 2399 } 2400 } 2401 } 2402 2403 /* 2404 * Hardware specific interface ioctls. 2405 */ 2406 int 2407 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2408 { 2409 struct ifreq *ifr; 2410 int error = 0, do_ifup = 0; 2411 int new_flags, temp_flags; 2412 size_t descrlen, nvbuflen; 2413 char *descrbuf; 2414 char new_name[IFNAMSIZ]; 2415 void *buf; 2416 nvlist_t *nvcap; 2417 struct siocsifcapnv_driver_data drv_ioctl_data; 2418 2419 ifr = (struct ifreq *)data; 2420 switch (cmd) { 2421 case SIOCGIFINDEX: 2422 ifr->ifr_index = ifp->if_index; 2423 break; 2424 2425 case SIOCGIFFLAGS: 2426 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2427 ifr->ifr_flags = temp_flags & 0xffff; 2428 ifr->ifr_flagshigh = temp_flags >> 16; 2429 break; 2430 2431 case SIOCGIFCAP: 2432 ifr->ifr_reqcap = ifp->if_capabilities; 2433 ifr->ifr_curcap = ifp->if_capenable; 2434 break; 2435 2436 case SIOCGIFCAPNV: 2437 if ((ifp->if_capabilities & IFCAP_NV) == 0) { 2438 error = EINVAL; 2439 break; 2440 } 2441 buf = NULL; 2442 nvcap = nvlist_create(0); 2443 for (;;) { 2444 if_capint_to_capnv(nvcap, ifcap_nv_bit_names, 2445 ifp->if_capabilities, ifp->if_capenable); 2446 if_capint_to_capnv(nvcap, ifcap2_nv_bit_names, 2447 ifp->if_capabilities2, ifp->if_capenable2); 2448 error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV, 2449 __DECONST(caddr_t, nvcap)); 2450 if (error != 0) { 2451 if_printf(ifp, 2452 "SIOCGIFCAPNV driver mistake: nvlist error %d\n", 2453 error); 2454 break; 2455 } 2456 buf = nvlist_pack(nvcap, &nvbuflen); 2457 if (buf == NULL) { 2458 error = nvlist_error(nvcap); 2459 if (error == 0) 2460 error = EDOOFUS; 2461 break; 2462 } 2463 if (nvbuflen > ifr->ifr_cap_nv.buf_length) { 2464 ifr->ifr_cap_nv.length = nvbuflen; 2465 ifr->ifr_cap_nv.buffer = NULL; 2466 error = EFBIG; 2467 break; 2468 } 2469 ifr->ifr_cap_nv.length = nvbuflen; 2470 error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen); 2471 break; 2472 } 2473 free(buf, M_NVLIST); 2474 nvlist_destroy(nvcap); 2475 break; 2476 2477 case SIOCGIFDATA: 2478 { 2479 struct if_data ifd; 2480 2481 /* Ensure uninitialised padding is not leaked. */ 2482 memset(&ifd, 0, sizeof(ifd)); 2483 2484 if_data_copy(ifp, &ifd); 2485 error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd)); 2486 break; 2487 } 2488 2489 #ifdef MAC 2490 case SIOCGIFMAC: 2491 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2492 break; 2493 #endif 2494 2495 case SIOCGIFMETRIC: 2496 ifr->ifr_metric = ifp->if_metric; 2497 break; 2498 2499 case SIOCGIFMTU: 2500 ifr->ifr_mtu = ifp->if_mtu; 2501 break; 2502 2503 case SIOCGIFPHYS: 2504 /* XXXGL: did this ever worked? */ 2505 ifr->ifr_phys = 0; 2506 break; 2507 2508 case SIOCGIFDESCR: 2509 error = 0; 2510 sx_slock(&ifdescr_sx); 2511 if (ifp->if_description == NULL) 2512 error = ENOMSG; 2513 else { 2514 /* space for terminating nul */ 2515 descrlen = strlen(ifp->if_description) + 1; 2516 if (ifr_buffer_get_length(ifr) < descrlen) 2517 ifr_buffer_set_buffer_null(ifr); 2518 else 2519 error = copyout(ifp->if_description, 2520 ifr_buffer_get_buffer(ifr), descrlen); 2521 ifr_buffer_set_length(ifr, descrlen); 2522 } 2523 sx_sunlock(&ifdescr_sx); 2524 break; 2525 2526 case SIOCSIFDESCR: 2527 error = priv_check(td, PRIV_NET_SETIFDESCR); 2528 if (error) 2529 return (error); 2530 2531 /* 2532 * Copy only (length-1) bytes to make sure that 2533 * if_description is always nul terminated. The 2534 * length parameter is supposed to count the 2535 * terminating nul in. 2536 */ 2537 if (ifr_buffer_get_length(ifr) > ifdescr_maxlen) 2538 return (ENAMETOOLONG); 2539 else if (ifr_buffer_get_length(ifr) == 0) 2540 descrbuf = NULL; 2541 else { 2542 descrbuf = if_allocdescr(ifr_buffer_get_length(ifr), M_WAITOK); 2543 error = copyin(ifr_buffer_get_buffer(ifr), descrbuf, 2544 ifr_buffer_get_length(ifr) - 1); 2545 if (error) { 2546 if_freedescr(descrbuf); 2547 break; 2548 } 2549 } 2550 2551 if_setdescr(ifp, descrbuf); 2552 getmicrotime(&ifp->if_lastchange); 2553 break; 2554 2555 case SIOCGIFFIB: 2556 ifr->ifr_fib = ifp->if_fib; 2557 break; 2558 2559 case SIOCSIFFIB: 2560 error = priv_check(td, PRIV_NET_SETIFFIB); 2561 if (error) 2562 return (error); 2563 if (ifr->ifr_fib >= rt_numfibs) 2564 return (EINVAL); 2565 2566 ifp->if_fib = ifr->ifr_fib; 2567 break; 2568 2569 case SIOCSIFFLAGS: 2570 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2571 if (error) 2572 return (error); 2573 /* 2574 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2575 * check, so we don't need special handling here yet. 2576 */ 2577 new_flags = (ifr->ifr_flags & 0xffff) | 2578 (ifr->ifr_flagshigh << 16); 2579 if (ifp->if_flags & IFF_UP && 2580 (new_flags & IFF_UP) == 0) { 2581 if_down(ifp); 2582 } else if (new_flags & IFF_UP && 2583 (ifp->if_flags & IFF_UP) == 0) { 2584 do_ifup = 1; 2585 } 2586 2587 /* 2588 * See if the promiscuous mode or allmulti bits are about to 2589 * flip. They require special handling because in-kernel 2590 * consumers may indepdently toggle them. 2591 */ 2592 if_setppromisc(ifp, new_flags & IFF_PPROMISC); 2593 if ((ifp->if_flags ^ new_flags) & IFF_PALLMULTI) { 2594 if (new_flags & IFF_PALLMULTI) 2595 ifp->if_flags |= IFF_ALLMULTI; 2596 else if (ifp->if_amcount == 0) 2597 ifp->if_flags &= ~IFF_ALLMULTI; 2598 } 2599 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2600 (new_flags &~ IFF_CANTCHANGE); 2601 if (ifp->if_ioctl) { 2602 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2603 } 2604 if (do_ifup) 2605 if_up(ifp); 2606 getmicrotime(&ifp->if_lastchange); 2607 break; 2608 2609 case SIOCSIFCAP: 2610 error = priv_check(td, PRIV_NET_SETIFCAP); 2611 if (error != 0) 2612 return (error); 2613 if (ifp->if_ioctl == NULL) 2614 return (EOPNOTSUPP); 2615 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2616 return (EINVAL); 2617 error = (*ifp->if_ioctl)(ifp, cmd, data); 2618 if (error == 0) 2619 getmicrotime(&ifp->if_lastchange); 2620 break; 2621 2622 case SIOCSIFCAPNV: 2623 error = priv_check(td, PRIV_NET_SETIFCAP); 2624 if (error != 0) 2625 return (error); 2626 if (ifp->if_ioctl == NULL) 2627 return (EOPNOTSUPP); 2628 if ((ifp->if_capabilities & IFCAP_NV) == 0) 2629 return (EINVAL); 2630 if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE) 2631 return (EINVAL); 2632 nvcap = NULL; 2633 buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK); 2634 for (;;) { 2635 error = copyin(ifr->ifr_cap_nv.buffer, buf, 2636 ifr->ifr_cap_nv.length); 2637 if (error != 0) 2638 break; 2639 nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0); 2640 if (nvcap == NULL) { 2641 error = EINVAL; 2642 break; 2643 } 2644 drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap, 2645 &ifp->if_capenable, ifcap_nv_bit_names, false); 2646 if ((drv_ioctl_data.reqcap & 2647 ~ifp->if_capabilities) != 0) { 2648 error = EINVAL; 2649 break; 2650 } 2651 drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap, 2652 &ifp->if_capenable2, ifcap2_nv_bit_names, false); 2653 if ((drv_ioctl_data.reqcap2 & 2654 ~ifp->if_capabilities2) != 0) { 2655 error = EINVAL; 2656 break; 2657 } 2658 drv_ioctl_data.nvcap = nvcap; 2659 error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV, 2660 (caddr_t)&drv_ioctl_data); 2661 break; 2662 } 2663 nvlist_destroy(nvcap); 2664 free(buf, M_TEMP); 2665 if (error == 0) 2666 getmicrotime(&ifp->if_lastchange); 2667 break; 2668 2669 #ifdef MAC 2670 case SIOCSIFMAC: 2671 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2672 break; 2673 #endif 2674 2675 case SIOCSIFNAME: 2676 error = priv_check(td, PRIV_NET_SETIFNAME); 2677 if (error) 2678 return (error); 2679 error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ, 2680 NULL); 2681 if (error != 0) 2682 return (error); 2683 error = if_rename(ifp, new_name); 2684 break; 2685 2686 #ifdef VIMAGE 2687 case SIOCSIFVNET: 2688 error = priv_check(td, PRIV_NET_SETIFVNET); 2689 if (error) 2690 return (error); 2691 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2692 break; 2693 #endif 2694 2695 case SIOCSIFMETRIC: 2696 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2697 if (error) 2698 return (error); 2699 ifp->if_metric = ifr->ifr_metric; 2700 getmicrotime(&ifp->if_lastchange); 2701 break; 2702 2703 case SIOCSIFPHYS: 2704 error = priv_check(td, PRIV_NET_SETIFPHYS); 2705 if (error) 2706 return (error); 2707 if (ifp->if_ioctl == NULL) 2708 return (EOPNOTSUPP); 2709 error = (*ifp->if_ioctl)(ifp, cmd, data); 2710 if (error == 0) 2711 getmicrotime(&ifp->if_lastchange); 2712 break; 2713 2714 case SIOCSIFMTU: 2715 { 2716 u_long oldmtu = ifp->if_mtu; 2717 2718 error = priv_check(td, PRIV_NET_SETIFMTU); 2719 if (error) 2720 return (error); 2721 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2722 return (EINVAL); 2723 if (ifp->if_ioctl == NULL) 2724 return (EOPNOTSUPP); 2725 /* Disallow MTU changes on bridge member interfaces. */ 2726 if (ifp->if_bridge) 2727 return (EOPNOTSUPP); 2728 error = (*ifp->if_ioctl)(ifp, cmd, data); 2729 if (error == 0) { 2730 getmicrotime(&ifp->if_lastchange); 2731 rt_ifmsg(ifp, 0); 2732 #ifdef INET 2733 DEBUGNET_NOTIFY_MTU(ifp); 2734 #endif 2735 } 2736 /* 2737 * If the link MTU changed, do network layer specific procedure. 2738 */ 2739 if (ifp->if_mtu != oldmtu) 2740 if_notifymtu(ifp); 2741 break; 2742 } 2743 2744 case SIOCADDMULTI: 2745 case SIOCDELMULTI: 2746 if (cmd == SIOCADDMULTI) 2747 error = priv_check(td, PRIV_NET_ADDMULTI); 2748 else 2749 error = priv_check(td, PRIV_NET_DELMULTI); 2750 if (error) 2751 return (error); 2752 2753 /* Don't allow group membership on non-multicast interfaces. */ 2754 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2755 return (EOPNOTSUPP); 2756 2757 /* Don't let users screw up protocols' entries. */ 2758 if (ifr->ifr_addr.sa_family != AF_LINK) 2759 return (EINVAL); 2760 2761 if (cmd == SIOCADDMULTI) { 2762 struct epoch_tracker et; 2763 struct ifmultiaddr *ifma; 2764 2765 /* 2766 * Userland is only permitted to join groups once 2767 * via the if_addmulti() KPI, because it cannot hold 2768 * struct ifmultiaddr * between calls. It may also 2769 * lose a race while we check if the membership 2770 * already exists. 2771 */ 2772 NET_EPOCH_ENTER(et); 2773 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2774 NET_EPOCH_EXIT(et); 2775 if (ifma != NULL) 2776 error = EADDRINUSE; 2777 else 2778 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2779 } else { 2780 error = if_delmulti(ifp, &ifr->ifr_addr); 2781 } 2782 if (error == 0) 2783 getmicrotime(&ifp->if_lastchange); 2784 break; 2785 2786 case SIOCSIFPHYADDR: 2787 case SIOCDIFPHYADDR: 2788 #ifdef INET6 2789 case SIOCSIFPHYADDR_IN6: 2790 #endif 2791 case SIOCSIFMEDIA: 2792 case SIOCSIFGENERIC: 2793 error = priv_check(td, PRIV_NET_HWIOCTL); 2794 if (error) 2795 return (error); 2796 if (ifp->if_ioctl == NULL) 2797 return (EOPNOTSUPP); 2798 error = (*ifp->if_ioctl)(ifp, cmd, data); 2799 if (error == 0) 2800 getmicrotime(&ifp->if_lastchange); 2801 break; 2802 2803 case SIOCGIFSTATUS: 2804 case SIOCGIFPSRCADDR: 2805 case SIOCGIFPDSTADDR: 2806 case SIOCGIFMEDIA: 2807 case SIOCGIFXMEDIA: 2808 case SIOCGIFGENERIC: 2809 case SIOCGIFRSSKEY: 2810 case SIOCGIFRSSHASH: 2811 case SIOCGIFDOWNREASON: 2812 if (ifp->if_ioctl == NULL) 2813 return (EOPNOTSUPP); 2814 error = (*ifp->if_ioctl)(ifp, cmd, data); 2815 break; 2816 2817 case SIOCSIFLLADDR: 2818 error = priv_check(td, PRIV_NET_SETLLADDR); 2819 if (error) 2820 return (error); 2821 error = if_setlladdr(ifp, 2822 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2823 break; 2824 2825 case SIOCGHWADDR: 2826 error = if_gethwaddr(ifp, ifr); 2827 break; 2828 2829 case SIOCAIFGROUP: 2830 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2831 if (error) 2832 return (error); 2833 error = if_addgroup(ifp, 2834 ((struct ifgroupreq *)data)->ifgr_group); 2835 if (error != 0) 2836 return (error); 2837 break; 2838 2839 case SIOCGIFGROUP: 2840 { 2841 struct epoch_tracker et; 2842 2843 NET_EPOCH_ENTER(et); 2844 error = if_getgroup((struct ifgroupreq *)data, ifp); 2845 NET_EPOCH_EXIT(et); 2846 break; 2847 } 2848 2849 case SIOCDIFGROUP: 2850 error = priv_check(td, PRIV_NET_DELIFGROUP); 2851 if (error) 2852 return (error); 2853 error = if_delgroup(ifp, 2854 ((struct ifgroupreq *)data)->ifgr_group); 2855 if (error != 0) 2856 return (error); 2857 break; 2858 2859 default: 2860 error = ENOIOCTL; 2861 break; 2862 } 2863 return (error); 2864 } 2865 2866 /* 2867 * Interface ioctls. 2868 */ 2869 int 2870 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2871 { 2872 #ifdef COMPAT_FREEBSD32 2873 union { 2874 struct ifconf ifc; 2875 struct ifdrv ifd; 2876 struct ifgroupreq ifgr; 2877 struct ifmediareq ifmr; 2878 } thunk; 2879 u_long saved_cmd; 2880 struct ifconf32 *ifc32; 2881 struct ifdrv32 *ifd32; 2882 struct ifgroupreq32 *ifgr32; 2883 struct ifmediareq32 *ifmr32; 2884 #endif 2885 struct ifnet *ifp; 2886 struct ifreq *ifr; 2887 int error; 2888 int oif_flags; 2889 #ifdef VIMAGE 2890 bool shutdown; 2891 #endif 2892 2893 CURVNET_SET(so->so_vnet); 2894 #ifdef VIMAGE 2895 /* Make sure the VNET is stable. */ 2896 shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet); 2897 if (shutdown) { 2898 CURVNET_RESTORE(); 2899 return (EBUSY); 2900 } 2901 #endif 2902 2903 #ifdef COMPAT_FREEBSD32 2904 saved_cmd = cmd; 2905 switch (cmd) { 2906 case SIOCGIFCONF32: 2907 ifc32 = (struct ifconf32 *)data; 2908 thunk.ifc.ifc_len = ifc32->ifc_len; 2909 thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2910 data = (caddr_t)&thunk.ifc; 2911 cmd = SIOCGIFCONF; 2912 break; 2913 case SIOCGDRVSPEC32: 2914 case SIOCSDRVSPEC32: 2915 ifd32 = (struct ifdrv32 *)data; 2916 memcpy(thunk.ifd.ifd_name, ifd32->ifd_name, 2917 sizeof(thunk.ifd.ifd_name)); 2918 thunk.ifd.ifd_cmd = ifd32->ifd_cmd; 2919 thunk.ifd.ifd_len = ifd32->ifd_len; 2920 thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data); 2921 data = (caddr_t)&thunk.ifd; 2922 cmd = _IOC_NEWTYPE(cmd, struct ifdrv); 2923 break; 2924 case SIOCAIFGROUP32: 2925 case SIOCGIFGROUP32: 2926 case SIOCDIFGROUP32: 2927 case SIOCGIFGMEMB32: 2928 ifgr32 = (struct ifgroupreq32 *)data; 2929 memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name, 2930 sizeof(thunk.ifgr.ifgr_name)); 2931 thunk.ifgr.ifgr_len = ifgr32->ifgr_len; 2932 switch (cmd) { 2933 case SIOCAIFGROUP32: 2934 case SIOCDIFGROUP32: 2935 memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group, 2936 sizeof(thunk.ifgr.ifgr_group)); 2937 break; 2938 case SIOCGIFGROUP32: 2939 case SIOCGIFGMEMB32: 2940 thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups); 2941 break; 2942 } 2943 data = (caddr_t)&thunk.ifgr; 2944 cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq); 2945 break; 2946 case SIOCGIFMEDIA32: 2947 case SIOCGIFXMEDIA32: 2948 ifmr32 = (struct ifmediareq32 *)data; 2949 memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name, 2950 sizeof(thunk.ifmr.ifm_name)); 2951 thunk.ifmr.ifm_current = ifmr32->ifm_current; 2952 thunk.ifmr.ifm_mask = ifmr32->ifm_mask; 2953 thunk.ifmr.ifm_status = ifmr32->ifm_status; 2954 thunk.ifmr.ifm_active = ifmr32->ifm_active; 2955 thunk.ifmr.ifm_count = ifmr32->ifm_count; 2956 thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist); 2957 data = (caddr_t)&thunk.ifmr; 2958 cmd = _IOC_NEWTYPE(cmd, struct ifmediareq); 2959 break; 2960 } 2961 #endif 2962 2963 switch (cmd) { 2964 case SIOCGIFCONF: 2965 error = ifconf(cmd, data); 2966 goto out_noref; 2967 } 2968 2969 ifr = (struct ifreq *)data; 2970 switch (cmd) { 2971 #ifdef VIMAGE 2972 case SIOCSIFRVNET: 2973 error = priv_check(td, PRIV_NET_SETIFVNET); 2974 if (error == 0) 2975 error = if_vmove_reclaim(td, ifr->ifr_name, 2976 ifr->ifr_jid); 2977 goto out_noref; 2978 #endif 2979 case SIOCIFCREATE: 2980 case SIOCIFCREATE2: 2981 error = priv_check(td, PRIV_NET_IFCREATE); 2982 if (error == 0) 2983 error = if_clone_create(ifr->ifr_name, 2984 sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? 2985 ifr_data_get_ptr(ifr) : NULL); 2986 goto out_noref; 2987 case SIOCIFDESTROY: 2988 error = priv_check(td, PRIV_NET_IFDESTROY); 2989 2990 if (error == 0) { 2991 sx_xlock(&ifnet_detach_sxlock); 2992 error = if_clone_destroy(ifr->ifr_name); 2993 sx_xunlock(&ifnet_detach_sxlock); 2994 } 2995 goto out_noref; 2996 2997 case SIOCIFGCLONERS: 2998 error = if_clone_list((struct if_clonereq *)data); 2999 goto out_noref; 3000 3001 case SIOCGIFGMEMB: 3002 error = if_getgroupmembers((struct ifgroupreq *)data); 3003 goto out_noref; 3004 3005 #if defined(INET) || defined(INET6) 3006 case SIOCSVH: 3007 case SIOCGVH: 3008 if (carp_ioctl_p == NULL) 3009 error = EPROTONOSUPPORT; 3010 else 3011 error = (*carp_ioctl_p)(ifr, cmd, td); 3012 goto out_noref; 3013 #endif 3014 } 3015 3016 ifp = ifunit_ref(ifr->ifr_name); 3017 if (ifp == NULL) { 3018 error = ENXIO; 3019 goto out_noref; 3020 } 3021 3022 error = ifhwioctl(cmd, ifp, data, td); 3023 if (error != ENOIOCTL) 3024 goto out_ref; 3025 3026 oif_flags = ifp->if_flags; 3027 if (so->so_proto == NULL) { 3028 error = EOPNOTSUPP; 3029 goto out_ref; 3030 } 3031 3032 /* 3033 * Pass the request on to the socket control method, and if the 3034 * latter returns EOPNOTSUPP, directly to the interface. 3035 * 3036 * Make an exception for the legacy SIOCSIF* requests. Drivers 3037 * trust SIOCSIFADDR et al to come from an already privileged 3038 * layer, and do not perform any credentials checks or input 3039 * validation. 3040 */ 3041 error = so->so_proto->pr_control(so, cmd, data, ifp, td); 3042 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 3043 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 3044 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 3045 error = (*ifp->if_ioctl)(ifp, cmd, data); 3046 3047 if (!(oif_flags & IFF_UP) && (ifp->if_flags & IFF_UP)) 3048 if_up(ifp); 3049 out_ref: 3050 if_rele(ifp); 3051 out_noref: 3052 CURVNET_RESTORE(); 3053 #ifdef COMPAT_FREEBSD32 3054 if (error != 0) 3055 return (error); 3056 switch (saved_cmd) { 3057 case SIOCGIFCONF32: 3058 ifc32->ifc_len = thunk.ifc.ifc_len; 3059 break; 3060 case SIOCGDRVSPEC32: 3061 /* 3062 * SIOCGDRVSPEC is IOWR, but nothing actually touches 3063 * the struct so just assert that ifd_len (the only 3064 * field it might make sense to update) hasn't 3065 * changed. 3066 */ 3067 KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len, 3068 ("ifd_len was updated %u -> %zu", ifd32->ifd_len, 3069 thunk.ifd.ifd_len)); 3070 break; 3071 case SIOCGIFGROUP32: 3072 case SIOCGIFGMEMB32: 3073 ifgr32->ifgr_len = thunk.ifgr.ifgr_len; 3074 break; 3075 case SIOCGIFMEDIA32: 3076 case SIOCGIFXMEDIA32: 3077 ifmr32->ifm_current = thunk.ifmr.ifm_current; 3078 ifmr32->ifm_mask = thunk.ifmr.ifm_mask; 3079 ifmr32->ifm_status = thunk.ifmr.ifm_status; 3080 ifmr32->ifm_active = thunk.ifmr.ifm_active; 3081 ifmr32->ifm_count = thunk.ifmr.ifm_count; 3082 break; 3083 } 3084 #endif 3085 return (error); 3086 } 3087 3088 int 3089 if_rename(struct ifnet *ifp, char *new_name) 3090 { 3091 struct ifaddr *ifa; 3092 struct sockaddr_dl *sdl; 3093 size_t namelen, onamelen; 3094 char old_name[IFNAMSIZ]; 3095 char strbuf[IFNAMSIZ + 8]; 3096 3097 if (new_name[0] == '\0') 3098 return (EINVAL); 3099 if (strcmp(new_name, ifp->if_xname) == 0) 3100 return (0); 3101 if (ifunit(new_name) != NULL) 3102 return (EEXIST); 3103 3104 /* 3105 * XXX: Locking. Nothing else seems to lock if_flags, 3106 * and there are numerous other races with the 3107 * ifunit() checks not being atomic with namespace 3108 * changes (renames, vmoves, if_attach, etc). 3109 */ 3110 ifp->if_flags |= IFF_RENAMING; 3111 3112 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 3113 3114 if_printf(ifp, "changing name to '%s'\n", new_name); 3115 3116 IF_ADDR_WLOCK(ifp); 3117 strlcpy(old_name, ifp->if_xname, sizeof(old_name)); 3118 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 3119 ifa = ifp->if_addr; 3120 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3121 namelen = strlen(new_name); 3122 onamelen = sdl->sdl_nlen; 3123 /* 3124 * Move the address if needed. This is safe because we 3125 * allocate space for a name of length IFNAMSIZ when we 3126 * create this in if_attach(). 3127 */ 3128 if (namelen != onamelen) { 3129 bcopy(sdl->sdl_data + onamelen, 3130 sdl->sdl_data + namelen, sdl->sdl_alen); 3131 } 3132 bcopy(new_name, sdl->sdl_data, namelen); 3133 sdl->sdl_nlen = namelen; 3134 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 3135 bzero(sdl->sdl_data, onamelen); 3136 while (namelen != 0) 3137 sdl->sdl_data[--namelen] = 0xff; 3138 IF_ADDR_WUNLOCK(ifp); 3139 3140 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 3141 3142 ifp->if_flags &= ~IFF_RENAMING; 3143 3144 snprintf(strbuf, sizeof(strbuf), "name=%s", new_name); 3145 devctl_notify("IFNET", old_name, "RENAME", strbuf); 3146 3147 return (0); 3148 } 3149 3150 /* 3151 * The code common to handling reference counted flags, 3152 * e.g., in ifpromisc() and if_allmulti(). 3153 * The "pflag" argument can specify a permanent mode flag to check, 3154 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 3155 * 3156 * Only to be used on stack-owned flags, not driver-owned flags. 3157 */ 3158 static int 3159 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 3160 { 3161 struct ifreq ifr; 3162 int error; 3163 int oldflags, oldcount; 3164 3165 /* Sanity checks to catch programming errors */ 3166 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 3167 ("%s: setting driver-owned flag %d", __func__, flag)); 3168 3169 if (onswitch) 3170 KASSERT(*refcount >= 0, 3171 ("%s: increment negative refcount %d for flag %d", 3172 __func__, *refcount, flag)); 3173 else 3174 KASSERT(*refcount > 0, 3175 ("%s: decrement non-positive refcount %d for flag %d", 3176 __func__, *refcount, flag)); 3177 3178 /* In case this mode is permanent, just touch refcount */ 3179 if (ifp->if_flags & pflag) { 3180 *refcount += onswitch ? 1 : -1; 3181 return (0); 3182 } 3183 3184 /* Save ifnet parameters for if_ioctl() may fail */ 3185 oldcount = *refcount; 3186 oldflags = ifp->if_flags; 3187 3188 /* 3189 * See if we aren't the only and touching refcount is enough. 3190 * Actually toggle interface flag if we are the first or last. 3191 */ 3192 if (onswitch) { 3193 if ((*refcount)++) 3194 return (0); 3195 ifp->if_flags |= flag; 3196 } else { 3197 if (--(*refcount)) 3198 return (0); 3199 ifp->if_flags &= ~flag; 3200 } 3201 3202 /* Call down the driver since we've changed interface flags */ 3203 if (ifp->if_ioctl == NULL) { 3204 error = EOPNOTSUPP; 3205 goto recover; 3206 } 3207 ifr.ifr_flags = ifp->if_flags & 0xffff; 3208 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3209 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3210 if (error) 3211 goto recover; 3212 /* Notify userland that interface flags have changed */ 3213 rt_ifmsg(ifp, flag); 3214 return (0); 3215 3216 recover: 3217 /* Recover after driver error */ 3218 *refcount = oldcount; 3219 ifp->if_flags = oldflags; 3220 return (error); 3221 } 3222 3223 /* 3224 * Set/clear promiscuous mode on interface ifp based on the truth value 3225 * of pswitch. The calls are reference counted so that only the first 3226 * "on" request actually has an effect, as does the final "off" request. 3227 * Results are undefined if the "off" and "on" requests are not matched. 3228 */ 3229 int 3230 ifpromisc(struct ifnet *ifp, int pswitch) 3231 { 3232 int error; 3233 int oldflags = ifp->if_flags; 3234 3235 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 3236 &ifp->if_pcount, pswitch); 3237 /* If promiscuous mode status has changed, log a message */ 3238 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) && 3239 log_promisc_mode_change) 3240 if_printf(ifp, "promiscuous mode %s\n", 3241 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 3242 return (error); 3243 } 3244 3245 /* 3246 * Return interface configuration 3247 * of system. List may be used 3248 * in later ioctl's (above) to get 3249 * other information. 3250 */ 3251 /*ARGSUSED*/ 3252 static int 3253 ifconf(u_long cmd, caddr_t data) 3254 { 3255 struct ifconf *ifc = (struct ifconf *)data; 3256 struct ifnet *ifp; 3257 struct ifaddr *ifa; 3258 struct ifreq ifr; 3259 struct sbuf *sb; 3260 int error, full = 0, valid_len, max_len; 3261 3262 /* Limit initial buffer size to maxphys to avoid DoS from userspace. */ 3263 max_len = maxphys - 1; 3264 3265 /* Prevent hostile input from being able to crash the system */ 3266 if (ifc->ifc_len <= 0) 3267 return (EINVAL); 3268 3269 again: 3270 if (ifc->ifc_len <= max_len) { 3271 max_len = ifc->ifc_len; 3272 full = 1; 3273 } 3274 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 3275 max_len = 0; 3276 valid_len = 0; 3277 3278 IFNET_RLOCK(); 3279 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 3280 struct epoch_tracker et; 3281 int addrs; 3282 3283 /* 3284 * Zero the ifr to make sure we don't disclose the contents 3285 * of the stack. 3286 */ 3287 memset(&ifr, 0, sizeof(ifr)); 3288 3289 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 3290 >= sizeof(ifr.ifr_name)) { 3291 sbuf_delete(sb); 3292 IFNET_RUNLOCK(); 3293 return (ENAMETOOLONG); 3294 } 3295 3296 addrs = 0; 3297 NET_EPOCH_ENTER(et); 3298 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3299 struct sockaddr *sa = ifa->ifa_addr; 3300 3301 if (prison_if(curthread->td_ucred, sa) != 0) 3302 continue; 3303 addrs++; 3304 if (sa->sa_len <= sizeof(*sa)) { 3305 if (sa->sa_len < sizeof(*sa)) { 3306 memset(&ifr.ifr_ifru.ifru_addr, 0, 3307 sizeof(ifr.ifr_ifru.ifru_addr)); 3308 memcpy(&ifr.ifr_ifru.ifru_addr, sa, 3309 sa->sa_len); 3310 } else 3311 ifr.ifr_ifru.ifru_addr = *sa; 3312 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3313 max_len += sizeof(ifr); 3314 } else { 3315 sbuf_bcat(sb, &ifr, 3316 offsetof(struct ifreq, ifr_addr)); 3317 max_len += offsetof(struct ifreq, ifr_addr); 3318 sbuf_bcat(sb, sa, sa->sa_len); 3319 max_len += sa->sa_len; 3320 } 3321 3322 if (sbuf_error(sb) == 0) 3323 valid_len = sbuf_len(sb); 3324 } 3325 NET_EPOCH_EXIT(et); 3326 if (addrs == 0) { 3327 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3328 max_len += sizeof(ifr); 3329 3330 if (sbuf_error(sb) == 0) 3331 valid_len = sbuf_len(sb); 3332 } 3333 } 3334 IFNET_RUNLOCK(); 3335 3336 /* 3337 * If we didn't allocate enough space (uncommon), try again. If 3338 * we have already allocated as much space as we are allowed, 3339 * return what we've got. 3340 */ 3341 if (valid_len != max_len && !full) { 3342 sbuf_delete(sb); 3343 goto again; 3344 } 3345 3346 ifc->ifc_len = valid_len; 3347 sbuf_finish(sb); 3348 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 3349 sbuf_delete(sb); 3350 return (error); 3351 } 3352 3353 /* 3354 * Just like ifpromisc(), but for all-multicast-reception mode. 3355 */ 3356 int 3357 if_allmulti(struct ifnet *ifp, int onswitch) 3358 { 3359 3360 return (if_setflag(ifp, IFF_ALLMULTI, IFF_PALLMULTI, &ifp->if_amcount, 3361 onswitch)); 3362 } 3363 3364 struct ifmultiaddr * 3365 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) 3366 { 3367 struct ifmultiaddr *ifma; 3368 3369 IF_ADDR_LOCK_ASSERT(ifp); 3370 3371 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3372 if (sa->sa_family == AF_LINK) { 3373 if (sa_dl_equal(ifma->ifma_addr, sa)) 3374 break; 3375 } else { 3376 if (sa_equal(ifma->ifma_addr, sa)) 3377 break; 3378 } 3379 } 3380 3381 return ifma; 3382 } 3383 3384 /* 3385 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 3386 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 3387 * the ifnet multicast address list here, so the caller must do that and 3388 * other setup work (such as notifying the device driver). The reference 3389 * count is initialized to 1. 3390 */ 3391 static struct ifmultiaddr * 3392 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 3393 int mflags) 3394 { 3395 struct ifmultiaddr *ifma; 3396 struct sockaddr *dupsa; 3397 3398 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3399 M_ZERO); 3400 if (ifma == NULL) 3401 return (NULL); 3402 3403 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3404 if (dupsa == NULL) { 3405 free(ifma, M_IFMADDR); 3406 return (NULL); 3407 } 3408 bcopy(sa, dupsa, sa->sa_len); 3409 ifma->ifma_addr = dupsa; 3410 3411 ifma->ifma_ifp = ifp; 3412 ifma->ifma_refcount = 1; 3413 ifma->ifma_protospec = NULL; 3414 3415 if (llsa == NULL) { 3416 ifma->ifma_lladdr = NULL; 3417 return (ifma); 3418 } 3419 3420 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3421 if (dupsa == NULL) { 3422 free(ifma->ifma_addr, M_IFMADDR); 3423 free(ifma, M_IFMADDR); 3424 return (NULL); 3425 } 3426 bcopy(llsa, dupsa, llsa->sa_len); 3427 ifma->ifma_lladdr = dupsa; 3428 3429 return (ifma); 3430 } 3431 3432 /* 3433 * if_freemulti: free ifmultiaddr structure and possibly attached related 3434 * addresses. The caller is responsible for implementing reference 3435 * counting, notifying the driver, handling routing messages, and releasing 3436 * any dependent link layer state. 3437 */ 3438 #ifdef MCAST_VERBOSE 3439 extern void kdb_backtrace(void); 3440 #endif 3441 static void 3442 if_freemulti_internal(struct ifmultiaddr *ifma) 3443 { 3444 3445 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3446 ifma->ifma_refcount)); 3447 3448 if (ifma->ifma_lladdr != NULL) 3449 free(ifma->ifma_lladdr, M_IFMADDR); 3450 #ifdef MCAST_VERBOSE 3451 kdb_backtrace(); 3452 printf("%s freeing ifma: %p\n", __func__, ifma); 3453 #endif 3454 free(ifma->ifma_addr, M_IFMADDR); 3455 free(ifma, M_IFMADDR); 3456 } 3457 3458 static void 3459 if_destroymulti(epoch_context_t ctx) 3460 { 3461 struct ifmultiaddr *ifma; 3462 3463 ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx); 3464 if_freemulti_internal(ifma); 3465 } 3466 3467 void 3468 if_freemulti(struct ifmultiaddr *ifma) 3469 { 3470 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d", 3471 ifma->ifma_refcount)); 3472 3473 NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx); 3474 } 3475 3476 /* 3477 * Register an additional multicast address with a network interface. 3478 * 3479 * - If the address is already present, bump the reference count on the 3480 * address and return. 3481 * - If the address is not link-layer, look up a link layer address. 3482 * - Allocate address structures for one or both addresses, and attach to the 3483 * multicast address list on the interface. If automatically adding a link 3484 * layer address, the protocol address will own a reference to the link 3485 * layer address, to be freed when it is freed. 3486 * - Notify the network device driver of an addition to the multicast address 3487 * list. 3488 * 3489 * 'sa' points to caller-owned memory with the desired multicast address. 3490 * 3491 * 'retifma' will be used to return a pointer to the resulting multicast 3492 * address reference, if desired. 3493 */ 3494 int 3495 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3496 struct ifmultiaddr **retifma) 3497 { 3498 struct ifmultiaddr *ifma, *ll_ifma; 3499 struct sockaddr *llsa; 3500 struct sockaddr_dl sdl; 3501 int error; 3502 3503 #ifdef INET 3504 IN_MULTI_LIST_UNLOCK_ASSERT(); 3505 #endif 3506 #ifdef INET6 3507 IN6_MULTI_LIST_UNLOCK_ASSERT(); 3508 #endif 3509 /* 3510 * If the address is already present, return a new reference to it; 3511 * otherwise, allocate storage and set up a new address. 3512 */ 3513 IF_ADDR_WLOCK(ifp); 3514 ifma = if_findmulti(ifp, sa); 3515 if (ifma != NULL) { 3516 ifma->ifma_refcount++; 3517 if (retifma != NULL) 3518 *retifma = ifma; 3519 IF_ADDR_WUNLOCK(ifp); 3520 return (0); 3521 } 3522 3523 /* 3524 * The address isn't already present; resolve the protocol address 3525 * into a link layer address, and then look that up, bump its 3526 * refcount or allocate an ifma for that also. 3527 * Most link layer resolving functions returns address data which 3528 * fits inside default sockaddr_dl structure. However callback 3529 * can allocate another sockaddr structure, in that case we need to 3530 * free it later. 3531 */ 3532 llsa = NULL; 3533 ll_ifma = NULL; 3534 if (ifp->if_resolvemulti != NULL) { 3535 /* Provide called function with buffer size information */ 3536 sdl.sdl_len = sizeof(sdl); 3537 llsa = (struct sockaddr *)&sdl; 3538 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3539 if (error) 3540 goto unlock_out; 3541 } 3542 3543 /* 3544 * Allocate the new address. Don't hook it up yet, as we may also 3545 * need to allocate a link layer multicast address. 3546 */ 3547 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3548 if (ifma == NULL) { 3549 error = ENOMEM; 3550 goto free_llsa_out; 3551 } 3552 3553 /* 3554 * If a link layer address is found, we'll need to see if it's 3555 * already present in the address list, or allocate is as well. 3556 * When this block finishes, the link layer address will be on the 3557 * list. 3558 */ 3559 if (llsa != NULL) { 3560 ll_ifma = if_findmulti(ifp, llsa); 3561 if (ll_ifma == NULL) { 3562 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3563 if (ll_ifma == NULL) { 3564 --ifma->ifma_refcount; 3565 if_freemulti(ifma); 3566 error = ENOMEM; 3567 goto free_llsa_out; 3568 } 3569 ll_ifma->ifma_flags |= IFMA_F_ENQUEUED; 3570 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3571 ifma_link); 3572 } else 3573 ll_ifma->ifma_refcount++; 3574 ifma->ifma_llifma = ll_ifma; 3575 } 3576 3577 /* 3578 * We now have a new multicast address, ifma, and possibly a new or 3579 * referenced link layer address. Add the primary address to the 3580 * ifnet address list. 3581 */ 3582 ifma->ifma_flags |= IFMA_F_ENQUEUED; 3583 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3584 3585 if (retifma != NULL) 3586 *retifma = ifma; 3587 3588 /* 3589 * Must generate the message while holding the lock so that 'ifma' 3590 * pointer is still valid. 3591 */ 3592 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3593 IF_ADDR_WUNLOCK(ifp); 3594 3595 /* 3596 * We are certain we have added something, so call down to the 3597 * interface to let them know about it. 3598 */ 3599 if (ifp->if_ioctl != NULL) { 3600 if (THREAD_CAN_SLEEP()) 3601 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3602 else 3603 taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask); 3604 } 3605 3606 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3607 link_free_sdl(llsa); 3608 3609 return (0); 3610 3611 free_llsa_out: 3612 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3613 link_free_sdl(llsa); 3614 3615 unlock_out: 3616 IF_ADDR_WUNLOCK(ifp); 3617 return (error); 3618 } 3619 3620 static void 3621 if_siocaddmulti(void *arg, int pending) 3622 { 3623 struct ifnet *ifp; 3624 3625 ifp = arg; 3626 #ifdef DIAGNOSTIC 3627 if (pending > 1) 3628 if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending); 3629 #endif 3630 CURVNET_SET(ifp->if_vnet); 3631 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3632 CURVNET_RESTORE(); 3633 } 3634 3635 /* 3636 * Delete a multicast group membership by network-layer group address. 3637 * 3638 * Returns ENOENT if the entry could not be found. If ifp no longer 3639 * exists, results are undefined. This entry point should only be used 3640 * from subsystems which do appropriate locking to hold ifp for the 3641 * duration of the call. 3642 * Network-layer protocol domains must use if_delmulti_ifma(). 3643 */ 3644 int 3645 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3646 { 3647 struct ifmultiaddr *ifma; 3648 int lastref; 3649 3650 KASSERT(ifp, ("%s: NULL ifp", __func__)); 3651 3652 IF_ADDR_WLOCK(ifp); 3653 lastref = 0; 3654 ifma = if_findmulti(ifp, sa); 3655 if (ifma != NULL) 3656 lastref = if_delmulti_locked(ifp, ifma, 0); 3657 IF_ADDR_WUNLOCK(ifp); 3658 3659 if (ifma == NULL) 3660 return (ENOENT); 3661 3662 if (lastref && ifp->if_ioctl != NULL) { 3663 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3664 } 3665 3666 return (0); 3667 } 3668 3669 /* 3670 * Delete all multicast group membership for an interface. 3671 * Should be used to quickly flush all multicast filters. 3672 */ 3673 void 3674 if_delallmulti(struct ifnet *ifp) 3675 { 3676 struct ifmultiaddr *ifma; 3677 struct ifmultiaddr *next; 3678 3679 IF_ADDR_WLOCK(ifp); 3680 CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3681 if_delmulti_locked(ifp, ifma, 0); 3682 IF_ADDR_WUNLOCK(ifp); 3683 } 3684 3685 void 3686 if_delmulti_ifma(struct ifmultiaddr *ifma) 3687 { 3688 if_delmulti_ifma_flags(ifma, 0); 3689 } 3690 3691 /* 3692 * Delete a multicast group membership by group membership pointer. 3693 * Network-layer protocol domains must use this routine. 3694 * 3695 * It is safe to call this routine if the ifp disappeared. 3696 */ 3697 void 3698 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags) 3699 { 3700 struct ifnet *ifp; 3701 int lastref; 3702 MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma); 3703 #ifdef INET 3704 IN_MULTI_LIST_UNLOCK_ASSERT(); 3705 #endif 3706 ifp = ifma->ifma_ifp; 3707 #ifdef DIAGNOSTIC 3708 if (ifp == NULL) { 3709 printf("%s: ifma_ifp seems to be detached\n", __func__); 3710 } else { 3711 struct epoch_tracker et; 3712 struct ifnet *oifp; 3713 3714 NET_EPOCH_ENTER(et); 3715 CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link) 3716 if (ifp == oifp) 3717 break; 3718 NET_EPOCH_EXIT(et); 3719 if (ifp != oifp) 3720 ifp = NULL; 3721 } 3722 #endif 3723 /* 3724 * If and only if the ifnet instance exists: Acquire the address lock. 3725 */ 3726 if (ifp != NULL) 3727 IF_ADDR_WLOCK(ifp); 3728 3729 lastref = if_delmulti_locked(ifp, ifma, flags); 3730 3731 if (ifp != NULL) { 3732 /* 3733 * If and only if the ifnet instance exists: 3734 * Release the address lock. 3735 * If the group was left: update the hardware hash filter. 3736 */ 3737 IF_ADDR_WUNLOCK(ifp); 3738 if (lastref && ifp->if_ioctl != NULL) { 3739 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3740 } 3741 } 3742 } 3743 3744 /* 3745 * Perform deletion of network-layer and/or link-layer multicast address. 3746 * 3747 * Return 0 if the reference count was decremented. 3748 * Return 1 if the final reference was released, indicating that the 3749 * hardware hash filter should be reprogrammed. 3750 */ 3751 static int 3752 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3753 { 3754 struct ifmultiaddr *ll_ifma; 3755 3756 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3757 KASSERT(ifma->ifma_ifp == ifp, 3758 ("%s: inconsistent ifp %p", __func__, ifp)); 3759 IF_ADDR_WLOCK_ASSERT(ifp); 3760 } 3761 3762 ifp = ifma->ifma_ifp; 3763 MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : ""); 3764 3765 /* 3766 * If the ifnet is detaching, null out references to ifnet, 3767 * so that upper protocol layers will notice, and not attempt 3768 * to obtain locks for an ifnet which no longer exists. The 3769 * routing socket announcement must happen before the ifnet 3770 * instance is detached from the system. 3771 */ 3772 if (detaching) { 3773 #ifdef DIAGNOSTIC 3774 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3775 #endif 3776 /* 3777 * ifp may already be nulled out if we are being reentered 3778 * to delete the ll_ifma. 3779 */ 3780 if (ifp != NULL) { 3781 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3782 ifma->ifma_ifp = NULL; 3783 } 3784 } 3785 3786 if (--ifma->ifma_refcount > 0) 3787 return 0; 3788 3789 if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) { 3790 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 3791 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3792 } 3793 /* 3794 * If this ifma is a network-layer ifma, a link-layer ifma may 3795 * have been associated with it. Release it first if so. 3796 */ 3797 ll_ifma = ifma->ifma_llifma; 3798 if (ll_ifma != NULL) { 3799 KASSERT(ifma->ifma_lladdr != NULL, 3800 ("%s: llifma w/o lladdr", __func__)); 3801 if (detaching) 3802 ll_ifma->ifma_ifp = NULL; /* XXX */ 3803 if (--ll_ifma->ifma_refcount == 0) { 3804 if (ifp != NULL) { 3805 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 3806 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, 3807 ifma_link); 3808 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3809 } 3810 } 3811 if_freemulti(ll_ifma); 3812 } 3813 } 3814 #ifdef INVARIANTS 3815 if (ifp) { 3816 struct ifmultiaddr *ifmatmp; 3817 3818 CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link) 3819 MPASS(ifma != ifmatmp); 3820 } 3821 #endif 3822 if_freemulti(ifma); 3823 /* 3824 * The last reference to this instance of struct ifmultiaddr 3825 * was released; the hardware should be notified of this change. 3826 */ 3827 return 1; 3828 } 3829 3830 /* 3831 * Set the link layer address on an interface. 3832 * 3833 * At this time we only support certain types of interfaces, 3834 * and we don't allow the length of the address to change. 3835 * 3836 * Set noinline to be dtrace-friendly 3837 */ 3838 __noinline int 3839 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3840 { 3841 struct sockaddr_dl *sdl; 3842 struct ifaddr *ifa; 3843 struct ifreq ifr; 3844 3845 ifa = ifp->if_addr; 3846 if (ifa == NULL) 3847 return (EINVAL); 3848 3849 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3850 if (sdl == NULL) 3851 return (EINVAL); 3852 3853 if (len != sdl->sdl_alen) /* don't allow length to change */ 3854 return (EINVAL); 3855 3856 switch (ifp->if_type) { 3857 case IFT_ETHER: 3858 case IFT_XETHER: 3859 case IFT_L2VLAN: 3860 case IFT_BRIDGE: 3861 case IFT_IEEE8023ADLAG: 3862 bcopy(lladdr, LLADDR(sdl), len); 3863 break; 3864 default: 3865 return (ENODEV); 3866 } 3867 3868 /* 3869 * If the interface is already up, we need 3870 * to re-init it in order to reprogram its 3871 * address filter. 3872 */ 3873 if ((ifp->if_flags & IFF_UP) != 0) { 3874 if (ifp->if_ioctl) { 3875 ifp->if_flags &= ~IFF_UP; 3876 ifr.ifr_flags = ifp->if_flags & 0xffff; 3877 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3878 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3879 ifp->if_flags |= IFF_UP; 3880 ifr.ifr_flags = ifp->if_flags & 0xffff; 3881 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3882 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3883 } 3884 } 3885 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 3886 3887 return (0); 3888 } 3889 3890 /* 3891 * Compat function for handling basic encapsulation requests. 3892 * Not converted stacks (FDDI, IB, ..) supports traditional 3893 * output model: ARP (and other similar L2 protocols) are handled 3894 * inside output routine, arpresolve/nd6_resolve() returns MAC 3895 * address instead of full prepend. 3896 * 3897 * This function creates calculated header==MAC for IPv4/IPv6 and 3898 * returns EAFNOSUPPORT (which is then handled in ARP code) for other 3899 * address families. 3900 */ 3901 static int 3902 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) 3903 { 3904 if (req->rtype != IFENCAP_LL) 3905 return (EOPNOTSUPP); 3906 3907 if (req->bufsize < req->lladdr_len) 3908 return (ENOMEM); 3909 3910 switch (req->family) { 3911 case AF_INET: 3912 case AF_INET6: 3913 break; 3914 default: 3915 return (EAFNOSUPPORT); 3916 } 3917 3918 /* Copy lladdr to storage as is */ 3919 memmove(req->buf, req->lladdr, req->lladdr_len); 3920 req->bufsize = req->lladdr_len; 3921 req->lladdr_off = 0; 3922 3923 return (0); 3924 } 3925 3926 /* 3927 * Tunnel interfaces can nest, also they may cause infinite recursion 3928 * calls when misconfigured. We'll prevent this by detecting loops. 3929 * High nesting level may cause stack exhaustion. We'll prevent this 3930 * by introducing upper limit. 3931 * 3932 * Return 0, if tunnel nesting count is equal or less than limit. 3933 */ 3934 int 3935 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie, 3936 int limit) 3937 { 3938 struct m_tag *mtag; 3939 int count; 3940 3941 count = 1; 3942 mtag = NULL; 3943 while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) { 3944 if (*(struct ifnet **)(mtag + 1) == ifp) { 3945 log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp)); 3946 return (EIO); 3947 } 3948 count++; 3949 } 3950 if (count > limit) { 3951 log(LOG_NOTICE, 3952 "%s: if_output recursively called too many times(%d)\n", 3953 if_name(ifp), count); 3954 return (EIO); 3955 } 3956 mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT); 3957 if (mtag == NULL) 3958 return (ENOMEM); 3959 *(struct ifnet **)(mtag + 1) = ifp; 3960 m_tag_prepend(m, mtag); 3961 return (0); 3962 } 3963 3964 /* 3965 * Get the link layer address that was read from the hardware at attach. 3966 * 3967 * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type 3968 * their component interfaces as IFT_IEEE8023ADLAG. 3969 */ 3970 int 3971 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr) 3972 { 3973 if (ifp->if_hw_addr == NULL) 3974 return (ENODEV); 3975 3976 switch (ifp->if_type) { 3977 case IFT_ETHER: 3978 case IFT_IEEE8023ADLAG: 3979 bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen); 3980 return (0); 3981 default: 3982 return (ENODEV); 3983 } 3984 } 3985 3986 /* 3987 * The name argument must be a pointer to storage which will last as 3988 * long as the interface does. For physical devices, the result of 3989 * device_get_name(dev) is a good choice and for pseudo-devices a 3990 * static string works well. 3991 */ 3992 void 3993 if_initname(struct ifnet *ifp, const char *name, int unit) 3994 { 3995 ifp->if_dname = name; 3996 ifp->if_dunit = unit; 3997 if (unit != IF_DUNIT_NONE) 3998 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 3999 else 4000 strlcpy(ifp->if_xname, name, IFNAMSIZ); 4001 } 4002 4003 static int 4004 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap) 4005 { 4006 char if_fmt[256]; 4007 4008 snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt); 4009 vlog(pri, if_fmt, ap); 4010 return (0); 4011 } 4012 4013 4014 int 4015 if_printf(struct ifnet *ifp, const char *fmt, ...) 4016 { 4017 va_list ap; 4018 4019 va_start(ap, fmt); 4020 if_vlog(ifp, LOG_INFO, fmt, ap); 4021 va_end(ap); 4022 return (0); 4023 } 4024 4025 int 4026 if_log(struct ifnet *ifp, int pri, const char *fmt, ...) 4027 { 4028 va_list ap; 4029 4030 va_start(ap, fmt); 4031 if_vlog(ifp, pri, fmt, ap); 4032 va_end(ap); 4033 return (0); 4034 } 4035 4036 void 4037 if_start(struct ifnet *ifp) 4038 { 4039 4040 (*(ifp)->if_start)(ifp); 4041 } 4042 4043 /* 4044 * Backwards compatibility interface for drivers 4045 * that have not implemented it 4046 */ 4047 static int 4048 if_transmit_default(struct ifnet *ifp, struct mbuf *m) 4049 { 4050 int error; 4051 4052 IFQ_HANDOFF(ifp, m, error); 4053 return (error); 4054 } 4055 4056 static void 4057 if_input_default(struct ifnet *ifp __unused, struct mbuf *m) 4058 { 4059 m_freem(m); 4060 } 4061 4062 int 4063 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 4064 { 4065 int active = 0; 4066 4067 IF_LOCK(ifq); 4068 if (_IF_QFULL(ifq)) { 4069 IF_UNLOCK(ifq); 4070 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 4071 m_freem(m); 4072 return (0); 4073 } 4074 if (ifp != NULL) { 4075 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 4076 if (m->m_flags & (M_BCAST|M_MCAST)) 4077 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4078 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 4079 } 4080 _IF_ENQUEUE(ifq, m); 4081 IF_UNLOCK(ifq); 4082 if (ifp != NULL && !active) 4083 (*(ifp)->if_start)(ifp); 4084 return (1); 4085 } 4086 4087 void 4088 if_register_com_alloc(u_char type, 4089 if_com_alloc_t *a, if_com_free_t *f) 4090 { 4091 4092 KASSERT(if_com_alloc[type] == NULL, 4093 ("if_register_com_alloc: %d already registered", type)); 4094 KASSERT(if_com_free[type] == NULL, 4095 ("if_register_com_alloc: %d free already registered", type)); 4096 4097 if_com_alloc[type] = a; 4098 if_com_free[type] = f; 4099 } 4100 4101 void 4102 if_deregister_com_alloc(u_char type) 4103 { 4104 4105 KASSERT(if_com_alloc[type] != NULL, 4106 ("if_deregister_com_alloc: %d not registered", type)); 4107 KASSERT(if_com_free[type] != NULL, 4108 ("if_deregister_com_alloc: %d free not registered", type)); 4109 4110 /* 4111 * Ensure all pending EPOCH(9) callbacks have been executed. This 4112 * fixes issues about late invocation of if_destroy(), which leads 4113 * to memory leak from if_com_alloc[type] allocated if_l2com. 4114 */ 4115 NET_EPOCH_DRAIN_CALLBACKS(); 4116 4117 if_com_alloc[type] = NULL; 4118 if_com_free[type] = NULL; 4119 } 4120 4121 /* API for driver access to network stack owned ifnet.*/ 4122 uint64_t 4123 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 4124 { 4125 uint64_t oldbrate; 4126 4127 oldbrate = ifp->if_baudrate; 4128 ifp->if_baudrate = baudrate; 4129 return (oldbrate); 4130 } 4131 4132 uint64_t 4133 if_getbaudrate(const if_t ifp) 4134 { 4135 return (ifp->if_baudrate); 4136 } 4137 4138 int 4139 if_setcapabilities(if_t ifp, int capabilities) 4140 { 4141 ifp->if_capabilities = capabilities; 4142 return (0); 4143 } 4144 4145 int 4146 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 4147 { 4148 ifp->if_capabilities &= ~clearbit; 4149 ifp->if_capabilities |= setbit; 4150 return (0); 4151 } 4152 4153 int 4154 if_getcapabilities(const if_t ifp) 4155 { 4156 return (ifp->if_capabilities); 4157 } 4158 4159 int 4160 if_setcapenable(if_t ifp, int capabilities) 4161 { 4162 ifp->if_capenable = capabilities; 4163 return (0); 4164 } 4165 4166 int 4167 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 4168 { 4169 ifp->if_capenable &= ~clearcap; 4170 ifp->if_capenable |= setcap; 4171 return (0); 4172 } 4173 4174 int 4175 if_setcapabilities2(if_t ifp, int capabilities) 4176 { 4177 ifp->if_capabilities2 = capabilities; 4178 return (0); 4179 } 4180 4181 int 4182 if_setcapabilities2bit(if_t ifp, int setbit, int clearbit) 4183 { 4184 ifp->if_capabilities2 &= ~clearbit; 4185 ifp->if_capabilities2 |= setbit; 4186 return (0); 4187 } 4188 4189 int 4190 if_getcapabilities2(const if_t ifp) 4191 { 4192 return (ifp->if_capabilities2); 4193 } 4194 4195 int 4196 if_setcapenable2(if_t ifp, int capabilities2) 4197 { 4198 ifp->if_capenable2 = capabilities2; 4199 return (0); 4200 } 4201 4202 int 4203 if_setcapenable2bit(if_t ifp, int setcap, int clearcap) 4204 { 4205 ifp->if_capenable2 &= ~clearcap; 4206 ifp->if_capenable2 |= setcap; 4207 return (0); 4208 } 4209 4210 const char * 4211 if_getdname(const if_t ifp) 4212 { 4213 return (ifp->if_dname); 4214 } 4215 4216 void 4217 if_setdname(if_t ifp, const char *dname) 4218 { 4219 ifp->if_dname = dname; 4220 } 4221 4222 const char * 4223 if_name(if_t ifp) 4224 { 4225 return (ifp->if_xname); 4226 } 4227 4228 int 4229 if_setname(if_t ifp, const char *name) 4230 { 4231 if (strlen(name) > sizeof(ifp->if_xname) - 1) 4232 return (ENAMETOOLONG); 4233 strcpy(ifp->if_xname, name); 4234 4235 return (0); 4236 } 4237 4238 int 4239 if_togglecapenable(if_t ifp, int togglecap) 4240 { 4241 ifp->if_capenable ^= togglecap; 4242 return (0); 4243 } 4244 4245 int 4246 if_getcapenable(const if_t ifp) 4247 { 4248 return (ifp->if_capenable); 4249 } 4250 4251 int 4252 if_togglecapenable2(if_t ifp, int togglecap) 4253 { 4254 ifp->if_capenable2 ^= togglecap; 4255 return (0); 4256 } 4257 4258 int 4259 if_getcapenable2(const if_t ifp) 4260 { 4261 return (ifp->if_capenable2); 4262 } 4263 4264 int 4265 if_getdunit(const if_t ifp) 4266 { 4267 return (ifp->if_dunit); 4268 } 4269 4270 int 4271 if_getindex(const if_t ifp) 4272 { 4273 return (ifp->if_index); 4274 } 4275 4276 int 4277 if_getidxgen(const if_t ifp) 4278 { 4279 return (ifp->if_idxgen); 4280 } 4281 4282 const char * 4283 if_getdescr(if_t ifp) 4284 { 4285 return (ifp->if_description); 4286 } 4287 4288 void 4289 if_setdescr(if_t ifp, char *descrbuf) 4290 { 4291 sx_xlock(&ifdescr_sx); 4292 char *odescrbuf = ifp->if_description; 4293 ifp->if_description = descrbuf; 4294 sx_xunlock(&ifdescr_sx); 4295 4296 if_freedescr(odescrbuf); 4297 } 4298 4299 char * 4300 if_allocdescr(size_t sz, int malloc_flag) 4301 { 4302 malloc_flag &= (M_WAITOK | M_NOWAIT); 4303 return (malloc(sz, M_IFDESCR, M_ZERO | malloc_flag)); 4304 } 4305 4306 void 4307 if_freedescr(char *descrbuf) 4308 { 4309 free(descrbuf, M_IFDESCR); 4310 } 4311 4312 int 4313 if_getalloctype(const if_t ifp) 4314 { 4315 return (ifp->if_alloctype); 4316 } 4317 4318 void 4319 if_setlastchange(if_t ifp) 4320 { 4321 getmicrotime(&ifp->if_lastchange); 4322 } 4323 4324 /* 4325 * This is largely undesirable because it ties ifnet to a device, but does 4326 * provide flexiblity for an embedded product vendor. Should be used with 4327 * the understanding that it violates the interface boundaries, and should be 4328 * a last resort only. 4329 */ 4330 int 4331 if_setdev(if_t ifp, void *dev) 4332 { 4333 return (0); 4334 } 4335 4336 int 4337 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 4338 { 4339 ifp->if_drv_flags &= ~clear_flags; 4340 ifp->if_drv_flags |= set_flags; 4341 4342 return (0); 4343 } 4344 4345 int 4346 if_getdrvflags(const if_t ifp) 4347 { 4348 return (ifp->if_drv_flags); 4349 } 4350 4351 int 4352 if_setdrvflags(if_t ifp, int flags) 4353 { 4354 ifp->if_drv_flags = flags; 4355 return (0); 4356 } 4357 4358 int 4359 if_setflags(if_t ifp, int flags) 4360 { 4361 ifp->if_flags = flags; 4362 return (0); 4363 } 4364 4365 int 4366 if_setflagbits(if_t ifp, int set, int clear) 4367 { 4368 ifp->if_flags &= ~clear; 4369 ifp->if_flags |= set; 4370 return (0); 4371 } 4372 4373 int 4374 if_getflags(const if_t ifp) 4375 { 4376 return (ifp->if_flags); 4377 } 4378 4379 int 4380 if_clearhwassist(if_t ifp) 4381 { 4382 ifp->if_hwassist = 0; 4383 return (0); 4384 } 4385 4386 int 4387 if_sethwassistbits(if_t ifp, int toset, int toclear) 4388 { 4389 ifp->if_hwassist &= ~toclear; 4390 ifp->if_hwassist |= toset; 4391 4392 return (0); 4393 } 4394 4395 int 4396 if_sethwassist(if_t ifp, int hwassist_bit) 4397 { 4398 ifp->if_hwassist = hwassist_bit; 4399 return (0); 4400 } 4401 4402 int 4403 if_gethwassist(const if_t ifp) 4404 { 4405 return (ifp->if_hwassist); 4406 } 4407 4408 int 4409 if_togglehwassist(if_t ifp, int toggle_bits) 4410 { 4411 ifp->if_hwassist ^= toggle_bits; 4412 return (0); 4413 } 4414 4415 int 4416 if_setmtu(if_t ifp, int mtu) 4417 { 4418 ifp->if_mtu = mtu; 4419 return (0); 4420 } 4421 4422 void 4423 if_notifymtu(if_t ifp) 4424 { 4425 #ifdef INET6 4426 nd6_setmtu(ifp); 4427 #endif 4428 rt_updatemtu(ifp); 4429 } 4430 4431 int 4432 if_getmtu(const if_t ifp) 4433 { 4434 return (ifp->if_mtu); 4435 } 4436 4437 int 4438 if_getmtu_family(const if_t ifp, int family) 4439 { 4440 struct domain *dp; 4441 4442 SLIST_FOREACH(dp, &domains, dom_next) { 4443 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 4444 return (dp->dom_ifmtu(ifp)); 4445 } 4446 4447 return (ifp->if_mtu); 4448 } 4449 4450 void 4451 if_setppromisc(if_t ifp, bool ppromisc) 4452 { 4453 int new_flags; 4454 4455 if (ppromisc) 4456 new_flags = ifp->if_flags | IFF_PPROMISC; 4457 else 4458 new_flags = ifp->if_flags & ~IFF_PPROMISC; 4459 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 4460 if (new_flags & IFF_PPROMISC) 4461 new_flags |= IFF_PROMISC; 4462 /* 4463 * Only unset IFF_PROMISC if there are no more consumers of 4464 * promiscuity, i.e. the ifp->if_pcount refcount is 0. 4465 */ 4466 else if (ifp->if_pcount == 0) 4467 new_flags &= ~IFF_PROMISC; 4468 if (log_promisc_mode_change) 4469 if_printf(ifp, "permanently promiscuous mode %s\n", 4470 ((new_flags & IFF_PPROMISC) ? 4471 "enabled" : "disabled")); 4472 } 4473 ifp->if_flags = new_flags; 4474 } 4475 4476 /* 4477 * Methods for drivers to access interface unicast and multicast 4478 * link level addresses. Driver shall not know 'struct ifaddr' neither 4479 * 'struct ifmultiaddr'. 4480 */ 4481 u_int 4482 if_lladdr_count(if_t ifp) 4483 { 4484 struct epoch_tracker et; 4485 struct ifaddr *ifa; 4486 u_int count; 4487 4488 count = 0; 4489 NET_EPOCH_ENTER(et); 4490 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 4491 if (ifa->ifa_addr->sa_family == AF_LINK) 4492 count++; 4493 NET_EPOCH_EXIT(et); 4494 4495 return (count); 4496 } 4497 4498 int 4499 if_foreach(if_foreach_cb_t cb, void *cb_arg) 4500 { 4501 if_t ifp; 4502 int error; 4503 4504 NET_EPOCH_ASSERT(); 4505 MPASS(cb); 4506 4507 error = 0; 4508 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 4509 error = cb(ifp, cb_arg); 4510 if (error != 0) 4511 break; 4512 } 4513 4514 return (error); 4515 } 4516 4517 /* 4518 * Iterates over the list of interfaces, permitting callback function @cb to sleep. 4519 * Stops iteration if @cb returns non-zero error code. 4520 * Returns the last error code from @cb. 4521 * @match_cb: optional match callback limiting the iteration to only matched interfaces 4522 * @match_arg: argument to pass to @match_cb 4523 * @cb: iteration callback 4524 * @cb_arg: argument to pass to @cb 4525 */ 4526 int 4527 if_foreach_sleep(if_foreach_match_t match_cb, void *match_arg, if_foreach_cb_t cb, 4528 void *cb_arg) 4529 { 4530 int match_count = 0, array_size = 16; /* 128 bytes for malloc */ 4531 struct ifnet **match_array = NULL; 4532 int error = 0; 4533 4534 MPASS(cb); 4535 4536 while (true) { 4537 struct ifnet **new_array; 4538 int new_size = array_size; 4539 struct epoch_tracker et; 4540 struct ifnet *ifp; 4541 4542 while (new_size < match_count) 4543 new_size *= 2; 4544 new_array = malloc(new_size * sizeof(void *), M_TEMP, M_WAITOK); 4545 if (match_array != NULL) 4546 memcpy(new_array, match_array, array_size * sizeof(void *)); 4547 free(match_array, M_TEMP); 4548 match_array = new_array; 4549 array_size = new_size; 4550 4551 match_count = 0; 4552 NET_EPOCH_ENTER(et); 4553 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 4554 if (match_cb != NULL && !match_cb(ifp, match_arg)) 4555 continue; 4556 if (match_count < array_size) { 4557 if (if_try_ref(ifp)) 4558 match_array[match_count++] = ifp; 4559 } else 4560 match_count++; 4561 } 4562 NET_EPOCH_EXIT(et); 4563 4564 if (match_count > array_size) { 4565 for (int i = 0; i < array_size; i++) 4566 if_rele(match_array[i]); 4567 continue; 4568 } else { 4569 for (int i = 0; i < match_count; i++) { 4570 if (error == 0) 4571 error = cb(match_array[i], cb_arg); 4572 if_rele(match_array[i]); 4573 } 4574 free(match_array, M_TEMP); 4575 break; 4576 } 4577 } 4578 4579 return (error); 4580 } 4581 4582 4583 /* 4584 * Uses just 1 pointer of the 4 available in the public struct. 4585 */ 4586 if_t 4587 if_iter_start(struct if_iter *iter) 4588 { 4589 if_t ifp; 4590 4591 NET_EPOCH_ASSERT(); 4592 4593 bzero(iter, sizeof(*iter)); 4594 ifp = CK_STAILQ_FIRST(&V_ifnet); 4595 if (ifp != NULL) 4596 iter->context[0] = CK_STAILQ_NEXT(ifp, if_link); 4597 else 4598 iter->context[0] = NULL; 4599 return (ifp); 4600 } 4601 4602 if_t 4603 if_iter_next(struct if_iter *iter) 4604 { 4605 if_t cur_ifp = iter->context[0]; 4606 4607 if (cur_ifp != NULL) 4608 iter->context[0] = CK_STAILQ_NEXT(cur_ifp, if_link); 4609 return (cur_ifp); 4610 } 4611 4612 void 4613 if_iter_finish(struct if_iter *iter) 4614 { 4615 /* Nothing to do here for now. */ 4616 } 4617 4618 u_int 4619 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4620 { 4621 struct epoch_tracker et; 4622 struct ifaddr *ifa; 4623 u_int count; 4624 4625 MPASS(cb); 4626 4627 count = 0; 4628 NET_EPOCH_ENTER(et); 4629 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4630 if (ifa->ifa_addr->sa_family != AF_LINK) 4631 continue; 4632 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr, 4633 count); 4634 } 4635 NET_EPOCH_EXIT(et); 4636 4637 return (count); 4638 } 4639 4640 u_int 4641 if_llmaddr_count(if_t ifp) 4642 { 4643 struct epoch_tracker et; 4644 struct ifmultiaddr *ifma; 4645 int count; 4646 4647 count = 0; 4648 NET_EPOCH_ENTER(et); 4649 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 4650 if (ifma->ifma_addr->sa_family == AF_LINK) 4651 count++; 4652 NET_EPOCH_EXIT(et); 4653 4654 return (count); 4655 } 4656 4657 bool 4658 if_maddr_empty(if_t ifp) 4659 { 4660 4661 return (CK_STAILQ_EMPTY(&ifp->if_multiaddrs)); 4662 } 4663 4664 u_int 4665 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4666 { 4667 struct epoch_tracker et; 4668 struct ifmultiaddr *ifma; 4669 u_int count; 4670 4671 MPASS(cb); 4672 4673 count = 0; 4674 NET_EPOCH_ENTER(et); 4675 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 4676 if (ifma->ifma_addr->sa_family != AF_LINK) 4677 continue; 4678 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr, 4679 count); 4680 } 4681 NET_EPOCH_EXIT(et); 4682 4683 return (count); 4684 } 4685 4686 u_int 4687 if_foreach_addr_type(if_t ifp, int type, if_addr_cb_t cb, void *cb_arg) 4688 { 4689 struct epoch_tracker et; 4690 struct ifaddr *ifa; 4691 u_int count; 4692 4693 MPASS(cb); 4694 4695 count = 0; 4696 NET_EPOCH_ENTER(et); 4697 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4698 if (ifa->ifa_addr->sa_family != type) 4699 continue; 4700 count += (*cb)(cb_arg, ifa, count); 4701 } 4702 NET_EPOCH_EXIT(et); 4703 4704 return (count); 4705 } 4706 4707 struct ifaddr * 4708 ifa_iter_start(if_t ifp, struct ifa_iter *iter) 4709 { 4710 struct ifaddr *ifa; 4711 4712 NET_EPOCH_ASSERT(); 4713 4714 bzero(iter, sizeof(*iter)); 4715 ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); 4716 if (ifa != NULL) 4717 iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link); 4718 else 4719 iter->context[0] = NULL; 4720 return (ifa); 4721 } 4722 4723 struct ifaddr * 4724 ifa_iter_next(struct ifa_iter *iter) 4725 { 4726 struct ifaddr *ifa = iter->context[0]; 4727 4728 if (ifa != NULL) 4729 iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link); 4730 return (ifa); 4731 } 4732 4733 void 4734 ifa_iter_finish(struct ifa_iter *iter) 4735 { 4736 /* Nothing to do here for now. */ 4737 } 4738 4739 int 4740 if_setsoftc(if_t ifp, void *softc) 4741 { 4742 ifp->if_softc = softc; 4743 return (0); 4744 } 4745 4746 void * 4747 if_getsoftc(const if_t ifp) 4748 { 4749 return (ifp->if_softc); 4750 } 4751 4752 void 4753 if_setrcvif(struct mbuf *m, if_t ifp) 4754 { 4755 4756 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 4757 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 4758 } 4759 4760 void 4761 if_setvtag(struct mbuf *m, uint16_t tag) 4762 { 4763 m->m_pkthdr.ether_vtag = tag; 4764 } 4765 4766 uint16_t 4767 if_getvtag(struct mbuf *m) 4768 { 4769 return (m->m_pkthdr.ether_vtag); 4770 } 4771 4772 int 4773 if_sendq_empty(if_t ifp) 4774 { 4775 return (IFQ_DRV_IS_EMPTY(&ifp->if_snd)); 4776 } 4777 4778 struct ifaddr * 4779 if_getifaddr(const if_t ifp) 4780 { 4781 return (ifp->if_addr); 4782 } 4783 4784 int 4785 if_setsendqready(if_t ifp) 4786 { 4787 IFQ_SET_READY(&ifp->if_snd); 4788 return (0); 4789 } 4790 4791 int 4792 if_setsendqlen(if_t ifp, int tx_desc_count) 4793 { 4794 IFQ_SET_MAXLEN(&ifp->if_snd, tx_desc_count); 4795 ifp->if_snd.ifq_drv_maxlen = tx_desc_count; 4796 return (0); 4797 } 4798 4799 void 4800 if_setnetmapadapter(if_t ifp, struct netmap_adapter *na) 4801 { 4802 ifp->if_netmap = na; 4803 } 4804 4805 struct netmap_adapter * 4806 if_getnetmapadapter(if_t ifp) 4807 { 4808 return (ifp->if_netmap); 4809 } 4810 4811 int 4812 if_vlantrunkinuse(if_t ifp) 4813 { 4814 return (ifp->if_vlantrunk != NULL); 4815 } 4816 4817 void 4818 if_init(if_t ifp, void *ctx) 4819 { 4820 (*ifp->if_init)(ctx); 4821 } 4822 4823 void 4824 if_input(if_t ifp, struct mbuf* sendmp) 4825 { 4826 (*ifp->if_input)(ifp, sendmp); 4827 } 4828 4829 int 4830 if_transmit(if_t ifp, struct mbuf *m) 4831 { 4832 return ((*ifp->if_transmit)(ifp, m)); 4833 } 4834 4835 int 4836 if_resolvemulti(if_t ifp, struct sockaddr **srcs, struct sockaddr *dst) 4837 { 4838 if (ifp->if_resolvemulti == NULL) 4839 return (EOPNOTSUPP); 4840 4841 return (ifp->if_resolvemulti(ifp, srcs, dst)); 4842 } 4843 4844 int 4845 if_ioctl(if_t ifp, u_long cmd, void *data) 4846 { 4847 if (ifp->if_ioctl == NULL) 4848 return (EOPNOTSUPP); 4849 4850 return (ifp->if_ioctl(ifp, cmd, data)); 4851 } 4852 4853 struct mbuf * 4854 if_dequeue(if_t ifp) 4855 { 4856 struct mbuf *m; 4857 4858 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 4859 return (m); 4860 } 4861 4862 int 4863 if_sendq_prepend(if_t ifp, struct mbuf *m) 4864 { 4865 IFQ_DRV_PREPEND(&ifp->if_snd, m); 4866 return (0); 4867 } 4868 4869 int 4870 if_setifheaderlen(if_t ifp, int len) 4871 { 4872 ifp->if_hdrlen = len; 4873 return (0); 4874 } 4875 4876 char * 4877 if_getlladdr(const if_t ifp) 4878 { 4879 return (IF_LLADDR(ifp)); 4880 } 4881 4882 void * 4883 if_gethandle(u_char type) 4884 { 4885 return (if_alloc(type)); 4886 } 4887 4888 void 4889 if_vlancap(if_t ifp) 4890 { 4891 VLAN_CAPABILITIES(ifp); 4892 } 4893 4894 int 4895 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax) 4896 { 4897 ifp->if_hw_tsomax = if_hw_tsomax; 4898 return (0); 4899 } 4900 4901 int 4902 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount) 4903 { 4904 ifp->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount; 4905 return (0); 4906 } 4907 4908 int 4909 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize) 4910 { 4911 ifp->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize; 4912 return (0); 4913 } 4914 4915 u_int 4916 if_gethwtsomax(const if_t ifp) 4917 { 4918 return (ifp->if_hw_tsomax); 4919 } 4920 4921 u_int 4922 if_gethwtsomaxsegcount(const if_t ifp) 4923 { 4924 return (ifp->if_hw_tsomaxsegcount); 4925 } 4926 4927 u_int 4928 if_gethwtsomaxsegsize(const if_t ifp) 4929 { 4930 return (ifp->if_hw_tsomaxsegsize); 4931 } 4932 4933 void 4934 if_setinitfn(if_t ifp, if_init_fn_t init_fn) 4935 { 4936 ifp->if_init = init_fn; 4937 } 4938 4939 void 4940 if_setinputfn(if_t ifp, if_input_fn_t input_fn) 4941 { 4942 ifp->if_input = input_fn; 4943 } 4944 4945 if_input_fn_t 4946 if_getinputfn(if_t ifp) 4947 { 4948 return (ifp->if_input); 4949 } 4950 4951 void 4952 if_setioctlfn(if_t ifp, if_ioctl_fn_t ioctl_fn) 4953 { 4954 ifp->if_ioctl = ioctl_fn; 4955 } 4956 4957 void 4958 if_setoutputfn(if_t ifp, if_output_fn_t output_fn) 4959 { 4960 ifp->if_output = output_fn; 4961 } 4962 4963 void 4964 if_setstartfn(if_t ifp, if_start_fn_t start_fn) 4965 { 4966 ifp->if_start = start_fn; 4967 } 4968 4969 if_start_fn_t 4970 if_getstartfn(if_t ifp) 4971 { 4972 return (ifp->if_start); 4973 } 4974 4975 void 4976 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 4977 { 4978 ifp->if_transmit = start_fn; 4979 } 4980 4981 if_transmit_fn_t 4982 if_gettransmitfn(if_t ifp) 4983 { 4984 return (ifp->if_transmit); 4985 } 4986 4987 void 4988 if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 4989 { 4990 ifp->if_qflush = flush_fn; 4991 } 4992 4993 void 4994 if_setsndtagallocfn(if_t ifp, if_snd_tag_alloc_t alloc_fn) 4995 { 4996 ifp->if_snd_tag_alloc = alloc_fn; 4997 } 4998 4999 int 5000 if_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 5001 struct m_snd_tag **mstp) 5002 { 5003 if (ifp->if_snd_tag_alloc == NULL) 5004 return (EOPNOTSUPP); 5005 return (ifp->if_snd_tag_alloc(ifp, params, mstp)); 5006 } 5007 5008 void 5009 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 5010 { 5011 ifp->if_get_counter = fn; 5012 } 5013 5014 void 5015 if_setreassignfn(if_t ifp, if_reassign_fn_t fn) 5016 { 5017 ifp->if_reassign = fn; 5018 } 5019 5020 void 5021 if_setratelimitqueryfn(if_t ifp, if_ratelimit_query_t fn) 5022 { 5023 ifp->if_ratelimit_query = fn; 5024 } 5025 5026 void 5027 if_setdebugnet_methods(if_t ifp, struct debugnet_methods *m) 5028 { 5029 ifp->if_debugnet_methods = m; 5030 } 5031 5032 struct label * 5033 if_getmaclabel(if_t ifp) 5034 { 5035 return (ifp->if_label); 5036 } 5037 5038 void 5039 if_setmaclabel(if_t ifp, struct label *label) 5040 { 5041 ifp->if_label = label; 5042 } 5043 5044 int 5045 if_gettype(if_t ifp) 5046 { 5047 return (ifp->if_type); 5048 } 5049 5050 void * 5051 if_getllsoftc(if_t ifp) 5052 { 5053 return (ifp->if_llsoftc); 5054 } 5055 5056 void 5057 if_setllsoftc(if_t ifp, void *llsoftc) 5058 { 5059 ifp->if_llsoftc = llsoftc; 5060 }; 5061 5062 int 5063 if_getlinkstate(if_t ifp) 5064 { 5065 return (ifp->if_link_state); 5066 } 5067 5068 const uint8_t * 5069 if_getbroadcastaddr(if_t ifp) 5070 { 5071 return (ifp->if_broadcastaddr); 5072 } 5073 5074 void 5075 if_setbroadcastaddr(if_t ifp, const uint8_t *addr) 5076 { 5077 ifp->if_broadcastaddr = addr; 5078 } 5079 5080 int 5081 if_getnumadomain(if_t ifp) 5082 { 5083 return (ifp->if_numa_domain); 5084 } 5085 5086 uint64_t 5087 if_getcounter(if_t ifp, ift_counter counter) 5088 { 5089 return (ifp->if_get_counter(ifp, counter)); 5090 } 5091 5092 bool 5093 if_altq_is_enabled(if_t ifp) 5094 { 5095 return (ALTQ_IS_ENABLED(&ifp->if_snd)); 5096 } 5097 5098 struct vnet * 5099 if_getvnet(if_t ifp) 5100 { 5101 return (ifp->if_vnet); 5102 } 5103 5104 void * 5105 if_getafdata(if_t ifp, int af) 5106 { 5107 return (ifp->if_afdata[af]); 5108 } 5109 5110 u_int 5111 if_getfib(if_t ifp) 5112 { 5113 return (ifp->if_fib); 5114 } 5115 5116 uint8_t 5117 if_getaddrlen(if_t ifp) 5118 { 5119 return (ifp->if_addrlen); 5120 } 5121 5122 struct bpf_if * 5123 if_getbpf(if_t ifp) 5124 { 5125 return (ifp->if_bpf); 5126 } 5127 5128 struct ifvlantrunk * 5129 if_getvlantrunk(if_t ifp) 5130 { 5131 return (ifp->if_vlantrunk); 5132 } 5133 5134 uint8_t 5135 if_getpcp(if_t ifp) 5136 { 5137 return (ifp->if_pcp); 5138 } 5139 5140 void * 5141 if_getl2com(if_t ifp) 5142 { 5143 return (ifp->if_l2com); 5144 } 5145 5146 void 5147 if_setipsec_accel_methods(if_t ifp, const struct if_ipsec_accel_methods *m) 5148 { 5149 ifp->if_ipsec_accel_m = m; 5150 } 5151 5152 #ifdef DDB 5153 static void 5154 if_show_ifnet(struct ifnet *ifp) 5155 { 5156 if (ifp == NULL) 5157 return; 5158 db_printf("%s:\n", ifp->if_xname); 5159 #define IF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, ifp->e); 5160 IF_DB_PRINTF("%s", if_dname); 5161 IF_DB_PRINTF("%d", if_dunit); 5162 IF_DB_PRINTF("%s", if_description); 5163 IF_DB_PRINTF("%u", if_index); 5164 IF_DB_PRINTF("%d", if_idxgen); 5165 IF_DB_PRINTF("%u", if_refcount); 5166 IF_DB_PRINTF("%p", if_softc); 5167 IF_DB_PRINTF("%p", if_l2com); 5168 IF_DB_PRINTF("%p", if_llsoftc); 5169 IF_DB_PRINTF("%d", if_amcount); 5170 IF_DB_PRINTF("%p", if_addr); 5171 IF_DB_PRINTF("%p", if_broadcastaddr); 5172 IF_DB_PRINTF("%p", if_afdata); 5173 IF_DB_PRINTF("%d", if_afdata_initialized); 5174 IF_DB_PRINTF("%u", if_fib); 5175 IF_DB_PRINTF("%p", if_vnet); 5176 IF_DB_PRINTF("%p", if_home_vnet); 5177 IF_DB_PRINTF("%p", if_vlantrunk); 5178 IF_DB_PRINTF("%p", if_bpf); 5179 IF_DB_PRINTF("%u", if_pcount); 5180 IF_DB_PRINTF("%p", if_bridge); 5181 IF_DB_PRINTF("%p", if_lagg); 5182 IF_DB_PRINTF("%p", if_pf_kif); 5183 IF_DB_PRINTF("%p", if_carp); 5184 IF_DB_PRINTF("%p", if_label); 5185 IF_DB_PRINTF("%p", if_netmap); 5186 IF_DB_PRINTF("0x%08x", if_flags); 5187 IF_DB_PRINTF("0x%08x", if_drv_flags); 5188 IF_DB_PRINTF("0x%08x", if_capabilities); 5189 IF_DB_PRINTF("0x%08x", if_capenable); 5190 IF_DB_PRINTF("%p", if_snd.ifq_head); 5191 IF_DB_PRINTF("%p", if_snd.ifq_tail); 5192 IF_DB_PRINTF("%d", if_snd.ifq_len); 5193 IF_DB_PRINTF("%d", if_snd.ifq_maxlen); 5194 IF_DB_PRINTF("%p", if_snd.ifq_drv_head); 5195 IF_DB_PRINTF("%p", if_snd.ifq_drv_tail); 5196 IF_DB_PRINTF("%d", if_snd.ifq_drv_len); 5197 IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen); 5198 IF_DB_PRINTF("%d", if_snd.altq_type); 5199 IF_DB_PRINTF("%x", if_snd.altq_flags); 5200 #undef IF_DB_PRINTF 5201 } 5202 5203 DB_SHOW_COMMAND(ifnet, db_show_ifnet) 5204 { 5205 if (!have_addr) { 5206 db_printf("usage: show ifnet <struct ifnet *>\n"); 5207 return; 5208 } 5209 5210 if_show_ifnet((struct ifnet *)addr); 5211 } 5212 5213 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets) 5214 { 5215 struct ifnet *ifp; 5216 u_short idx; 5217 5218 for (idx = 1; idx <= if_index; idx++) { 5219 ifp = ifindex_table[idx].ife_ifnet; 5220 if (ifp == NULL) 5221 continue; 5222 db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp); 5223 if (db_pager_quit) 5224 break; 5225 } 5226 } 5227 #endif /* DDB */ 5228