1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org> 5 * Copyright (c) 1980, 1986, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)if.c 8.5 (Berkeley) 1/9/95 33 * $FreeBSD$ 34 */ 35 36 #include "opt_bpf.h" 37 #include "opt_inet6.h" 38 #include "opt_inet.h" 39 #include "opt_ddb.h" 40 41 #include <sys/param.h> 42 #include <sys/capsicum.h> 43 #include <sys/conf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/malloc.h> 46 #include <sys/domainset.h> 47 #include <sys/sbuf.h> 48 #include <sys/bus.h> 49 #include <sys/epoch.h> 50 #include <sys/mbuf.h> 51 #include <sys/systm.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/protosw.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/refcount.h> 60 #include <sys/module.h> 61 #include <sys/nv.h> 62 #include <sys/rwlock.h> 63 #include <sys/sockio.h> 64 #include <sys/syslog.h> 65 #include <sys/sysctl.h> 66 #include <sys/sysent.h> 67 #include <sys/taskqueue.h> 68 #include <sys/domain.h> 69 #include <sys/jail.h> 70 #include <sys/priv.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <machine/stdarg.h> 77 #include <vm/uma.h> 78 79 #include <net/bpf.h> 80 #include <net/ethernet.h> 81 #include <net/if.h> 82 #include <net/if_arp.h> 83 #include <net/if_clone.h> 84 #include <net/if_dl.h> 85 #include <net/if_types.h> 86 #include <net/if_var.h> 87 #include <net/if_media.h> 88 #include <net/if_mib.h> 89 #include <net/if_vlan_var.h> 90 #include <net/radix.h> 91 #include <net/route.h> 92 #include <net/route/route_ctl.h> 93 #include <net/vnet.h> 94 95 #if defined(INET) || defined(INET6) 96 #include <net/ethernet.h> 97 #include <netinet/in.h> 98 #include <netinet/in_var.h> 99 #include <netinet/ip.h> 100 #include <netinet/ip_carp.h> 101 #ifdef INET 102 #include <net/debugnet.h> 103 #include <netinet/if_ether.h> 104 #endif /* INET */ 105 #ifdef INET6 106 #include <netinet6/in6_var.h> 107 #include <netinet6/in6_ifattach.h> 108 #endif /* INET6 */ 109 #endif /* INET || INET6 */ 110 111 #include <security/mac/mac_framework.h> 112 113 /* 114 * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name 115 * and ifr_ifru when it is used in SIOCGIFCONF. 116 */ 117 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) == 118 offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru"); 119 120 __read_mostly epoch_t net_epoch_preempt; 121 #ifdef COMPAT_FREEBSD32 122 #include <sys/mount.h> 123 #include <compat/freebsd32/freebsd32.h> 124 125 struct ifreq_buffer32 { 126 uint32_t length; /* (size_t) */ 127 uint32_t buffer; /* (void *) */ 128 }; 129 130 /* 131 * Interface request structure used for socket 132 * ioctl's. All interface ioctl's must have parameter 133 * definitions which begin with ifr_name. The 134 * remainder may be interface specific. 135 */ 136 struct ifreq32 { 137 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ 138 union { 139 struct sockaddr ifru_addr; 140 struct sockaddr ifru_dstaddr; 141 struct sockaddr ifru_broadaddr; 142 struct ifreq_buffer32 ifru_buffer; 143 short ifru_flags[2]; 144 short ifru_index; 145 int ifru_jid; 146 int ifru_metric; 147 int ifru_mtu; 148 int ifru_phys; 149 int ifru_media; 150 uint32_t ifru_data; 151 int ifru_cap[2]; 152 u_int ifru_fib; 153 u_char ifru_vlan_pcp; 154 } ifr_ifru; 155 }; 156 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32)); 157 CTASSERT(__offsetof(struct ifreq, ifr_ifru) == 158 __offsetof(struct ifreq32, ifr_ifru)); 159 160 struct ifconf32 { 161 int32_t ifc_len; 162 union { 163 uint32_t ifcu_buf; 164 uint32_t ifcu_req; 165 } ifc_ifcu; 166 }; 167 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 168 169 struct ifdrv32 { 170 char ifd_name[IFNAMSIZ]; 171 uint32_t ifd_cmd; 172 uint32_t ifd_len; 173 uint32_t ifd_data; 174 }; 175 #define SIOCSDRVSPEC32 _IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32) 176 #define SIOCGDRVSPEC32 _IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32) 177 178 struct ifgroupreq32 { 179 char ifgr_name[IFNAMSIZ]; 180 u_int ifgr_len; 181 union { 182 char ifgru_group[IFNAMSIZ]; 183 uint32_t ifgru_groups; 184 } ifgr_ifgru; 185 }; 186 #define SIOCAIFGROUP32 _IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32) 187 #define SIOCGIFGROUP32 _IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32) 188 #define SIOCDIFGROUP32 _IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32) 189 #define SIOCGIFGMEMB32 _IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32) 190 191 struct ifmediareq32 { 192 char ifm_name[IFNAMSIZ]; 193 int ifm_current; 194 int ifm_mask; 195 int ifm_status; 196 int ifm_active; 197 int ifm_count; 198 uint32_t ifm_ulist; /* (int *) */ 199 }; 200 #define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32) 201 #define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32) 202 #endif /* COMPAT_FREEBSD32 */ 203 204 union ifreq_union { 205 struct ifreq ifr; 206 #ifdef COMPAT_FREEBSD32 207 struct ifreq32 ifr32; 208 #endif 209 }; 210 211 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 212 "Link layers"); 213 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 214 "Generic link-management"); 215 216 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 217 &ifqmaxlen, 0, "max send queue size"); 218 219 /* Log link state change events */ 220 static int log_link_state_change = 1; 221 222 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 223 &log_link_state_change, 0, 224 "log interface link state change events"); 225 226 /* Log promiscuous mode change events */ 227 static int log_promisc_mode_change = 1; 228 229 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN, 230 &log_promisc_mode_change, 1, 231 "log promiscuous mode change events"); 232 233 /* Interface description */ 234 static unsigned int ifdescr_maxlen = 1024; 235 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 236 &ifdescr_maxlen, 0, 237 "administrative maximum length for interface description"); 238 239 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 240 241 /* global sx for non-critical path ifdescr */ 242 static struct sx ifdescr_sx; 243 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 244 245 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 246 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 247 /* These are external hooks for CARP. */ 248 void (*carp_linkstate_p)(struct ifnet *ifp); 249 void (*carp_demote_adj_p)(int, char *); 250 int (*carp_master_p)(struct ifaddr *); 251 #if defined(INET) || defined(INET6) 252 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 253 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 254 const struct sockaddr *sa); 255 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 256 int (*carp_attach_p)(struct ifaddr *, int); 257 void (*carp_detach_p)(struct ifaddr *, bool); 258 #endif 259 #ifdef INET 260 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 261 #endif 262 #ifdef INET6 263 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 264 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 265 const struct in6_addr *taddr); 266 #endif 267 268 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 269 270 /* 271 * XXX: Style; these should be sorted alphabetically, and unprototyped 272 * static functions should be prototyped. Currently they are sorted by 273 * declaration order. 274 */ 275 static void if_attachdomain(void *); 276 static void if_attachdomain1(struct ifnet *); 277 static int ifconf(u_long, caddr_t); 278 static void if_input_default(struct ifnet *, struct mbuf *); 279 static int if_requestencap_default(struct ifnet *, struct if_encap_req *); 280 static void if_route(struct ifnet *, int flag, int fam); 281 static int if_setflag(struct ifnet *, int, int, int *, int); 282 static int if_transmit(struct ifnet *ifp, struct mbuf *m); 283 static void if_unroute(struct ifnet *, int flag, int fam); 284 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 285 static void do_link_state_change(void *, int); 286 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 287 static int if_getgroupmembers(struct ifgroupreq *); 288 static void if_delgroups(struct ifnet *); 289 static void if_attach_internal(struct ifnet *, bool); 290 static int if_detach_internal(struct ifnet *, bool); 291 static void if_siocaddmulti(void *, int); 292 static void if_link_ifnet(struct ifnet *); 293 static bool if_unlink_ifnet(struct ifnet *, bool); 294 #ifdef VIMAGE 295 static int if_vmove(struct ifnet *, struct vnet *); 296 #endif 297 298 #ifdef INET6 299 /* 300 * XXX: declare here to avoid to include many inet6 related files.. 301 * should be more generalized? 302 */ 303 extern void nd6_setmtu(struct ifnet *); 304 #endif 305 306 /* ipsec helper hooks */ 307 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); 308 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); 309 310 int ifqmaxlen = IFQ_MAXLEN; 311 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 312 VNET_DEFINE(struct ifgrouphead, ifg_head); 313 314 /* Table of ifnet by index. */ 315 static int if_index; 316 static int if_indexlim = 8; 317 static struct ifindex_entry { 318 struct ifnet *ife_ifnet; 319 uint16_t ife_gencnt; 320 } *ifindex_table; 321 322 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system, 323 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 324 "Variables global to all interfaces"); 325 static int 326 sysctl_ifcount(SYSCTL_HANDLER_ARGS) 327 { 328 int rv = 0; 329 330 IFNET_RLOCK(); 331 for (int i = 1; i <= if_index; i++) 332 if (ifindex_table[i].ife_ifnet != NULL && 333 ifindex_table[i].ife_ifnet->if_vnet == curvnet) 334 rv = i; 335 IFNET_RUNLOCK(); 336 337 return (sysctl_handle_int(oidp, &rv, 0, req)); 338 } 339 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount, 340 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I", 341 "Maximum known interface index"); 342 343 /* 344 * The global network interface list (V_ifnet) and related state (such as 345 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock. 346 * This may be acquired to stabilise the list, or we may rely on NET_EPOCH. 347 */ 348 struct sx ifnet_sxlock; 349 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 350 351 struct sx ifnet_detach_sxlock; 352 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx", 353 SX_RECURSE); 354 355 #ifdef VIMAGE 356 #define VNET_IS_SHUTTING_DOWN(_vnet) \ 357 ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE) 358 #endif 359 360 static if_com_alloc_t *if_com_alloc[256]; 361 static if_com_free_t *if_com_free[256]; 362 363 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 364 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 365 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 366 367 struct ifnet * 368 ifnet_byindex(u_int idx) 369 { 370 struct ifnet *ifp; 371 372 NET_EPOCH_ASSERT(); 373 374 if (__predict_false(idx > if_index)) 375 return (NULL); 376 377 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 378 379 if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet) 380 ifp = NULL; 381 382 return (ifp); 383 } 384 385 struct ifnet * 386 ifnet_byindex_ref(u_int idx) 387 { 388 struct ifnet *ifp; 389 390 ifp = ifnet_byindex(idx); 391 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) 392 return (NULL); 393 if (!if_try_ref(ifp)) 394 return (NULL); 395 return (ifp); 396 } 397 398 struct ifnet * 399 ifnet_byindexgen(uint16_t idx, uint16_t gen) 400 { 401 struct ifnet *ifp; 402 403 NET_EPOCH_ASSERT(); 404 405 if (__predict_false(idx > if_index)) 406 return (NULL); 407 408 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 409 410 if (ifindex_table[idx].ife_gencnt == gen) 411 return (ifp); 412 else 413 return (NULL); 414 } 415 416 /* 417 * Network interface utility routines. 418 * 419 * Routines with ifa_ifwith* names take sockaddr *'s as 420 * parameters. 421 */ 422 423 static void 424 if_init(void *arg __unused) 425 { 426 427 ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table), 428 M_IFNET, M_WAITOK | M_ZERO); 429 } 430 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init, NULL); 431 432 static void 433 vnet_if_init(const void *unused __unused) 434 { 435 436 CK_STAILQ_INIT(&V_ifnet); 437 CK_STAILQ_INIT(&V_ifg_head); 438 vnet_if_clone_init(); 439 } 440 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 441 NULL); 442 443 static void 444 if_link_ifnet(struct ifnet *ifp) 445 { 446 447 IFNET_WLOCK(); 448 CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 449 #ifdef VIMAGE 450 curvnet->vnet_ifcnt++; 451 #endif 452 IFNET_WUNLOCK(); 453 } 454 455 static bool 456 if_unlink_ifnet(struct ifnet *ifp, bool vmove) 457 { 458 struct ifnet *iter; 459 int found = 0; 460 461 IFNET_WLOCK(); 462 CK_STAILQ_FOREACH(iter, &V_ifnet, if_link) 463 if (iter == ifp) { 464 CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link); 465 if (!vmove) 466 ifp->if_flags |= IFF_DYING; 467 found = 1; 468 break; 469 } 470 #ifdef VIMAGE 471 curvnet->vnet_ifcnt--; 472 #endif 473 IFNET_WUNLOCK(); 474 475 return (found); 476 } 477 478 #ifdef VIMAGE 479 static void 480 vnet_if_return(const void *unused __unused) 481 { 482 struct ifnet *ifp, *nifp; 483 struct ifnet **pending; 484 int found __diagused; 485 int i; 486 487 i = 0; 488 489 /* 490 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd 491 * enter NET_EPOCH, but that's not possible, because if_vmove() calls 492 * if_detach_internal(), which waits for NET_EPOCH callbacks to 493 * complete. We can't do that from within NET_EPOCH. 494 * 495 * However, we can also use the IFNET_xLOCK, which is the V_ifnet 496 * read/write lock. We cannot hold the lock as we call if_vmove() 497 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib 498 * ctx lock. 499 */ 500 IFNET_WLOCK(); 501 502 pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt, 503 M_IFNET, M_WAITOK | M_ZERO); 504 505 /* Return all inherited interfaces to their parent vnets. */ 506 CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 507 if (ifp->if_home_vnet != ifp->if_vnet) { 508 found = if_unlink_ifnet(ifp, true); 509 MPASS(found); 510 511 pending[i++] = ifp; 512 } 513 } 514 IFNET_WUNLOCK(); 515 516 for (int j = 0; j < i; j++) { 517 sx_xlock(&ifnet_detach_sxlock); 518 if_vmove(pending[j], pending[j]->if_home_vnet); 519 sx_xunlock(&ifnet_detach_sxlock); 520 } 521 522 free(pending, M_IFNET); 523 } 524 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, 525 vnet_if_return, NULL); 526 #endif 527 528 /* 529 * Allocate a struct ifnet and an index for an interface. A layer 2 530 * common structure will also be allocated if an allocation routine is 531 * registered for the passed type. 532 */ 533 static struct ifnet * 534 if_alloc_domain(u_char type, int numa_domain) 535 { 536 struct ifnet *ifp; 537 u_short idx; 538 539 KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large")); 540 if (numa_domain == IF_NODOM) 541 ifp = malloc(sizeof(struct ifnet), M_IFNET, 542 M_WAITOK | M_ZERO); 543 else 544 ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET, 545 DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO); 546 ifp->if_type = type; 547 ifp->if_alloctype = type; 548 ifp->if_numa_domain = numa_domain; 549 #ifdef VIMAGE 550 ifp->if_vnet = curvnet; 551 #endif 552 if (if_com_alloc[type] != NULL) { 553 ifp->if_l2com = if_com_alloc[type](type, ifp); 554 KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__, 555 type)); 556 } 557 558 IF_ADDR_LOCK_INIT(ifp); 559 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 560 TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp); 561 ifp->if_afdata_initialized = 0; 562 IF_AFDATA_LOCK_INIT(ifp); 563 CK_STAILQ_INIT(&ifp->if_addrhead); 564 CK_STAILQ_INIT(&ifp->if_multiaddrs); 565 CK_STAILQ_INIT(&ifp->if_groups); 566 #ifdef MAC 567 mac_ifnet_init(ifp); 568 #endif 569 ifq_init(&ifp->if_snd, ifp); 570 571 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 572 for (int i = 0; i < IFCOUNTERS; i++) 573 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 574 ifp->if_get_counter = if_get_counter_default; 575 ifp->if_pcp = IFNET_PCP_NONE; 576 577 /* Allocate an ifindex array entry. */ 578 IFNET_WLOCK(); 579 /* 580 * Try to find an empty slot below if_index. If we fail, take the 581 * next slot. 582 */ 583 for (idx = 1; idx <= if_index; idx++) { 584 if (ifindex_table[idx].ife_ifnet == NULL) 585 break; 586 } 587 588 /* Catch if_index overflow. */ 589 if (idx >= if_indexlim) { 590 struct ifindex_entry *new, *old; 591 int newlim; 592 593 newlim = if_indexlim * 2; 594 new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO); 595 memcpy(new, ifindex_table, if_indexlim * sizeof(*new)); 596 old = ifindex_table; 597 ck_pr_store_ptr(&ifindex_table, new); 598 if_indexlim = newlim; 599 epoch_wait_preempt(net_epoch_preempt); 600 free(old, M_IFNET); 601 } 602 if (idx > if_index) 603 if_index = idx; 604 605 ifp->if_index = idx; 606 ifp->if_idxgen = ifindex_table[idx].ife_gencnt; 607 ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp); 608 IFNET_WUNLOCK(); 609 610 return (ifp); 611 } 612 613 struct ifnet * 614 if_alloc_dev(u_char type, device_t dev) 615 { 616 int numa_domain; 617 618 if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0) 619 return (if_alloc_domain(type, IF_NODOM)); 620 return (if_alloc_domain(type, numa_domain)); 621 } 622 623 struct ifnet * 624 if_alloc(u_char type) 625 { 626 627 return (if_alloc_domain(type, IF_NODOM)); 628 } 629 /* 630 * Do the actual work of freeing a struct ifnet, and layer 2 common 631 * structure. This call is made when the network epoch guarantees 632 * us that nobody holds a pointer to the interface. 633 */ 634 static void 635 if_free_deferred(epoch_context_t ctx) 636 { 637 struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx); 638 639 KASSERT((ifp->if_flags & IFF_DYING), 640 ("%s: interface not dying", __func__)); 641 642 if (if_com_free[ifp->if_alloctype] != NULL) 643 if_com_free[ifp->if_alloctype](ifp->if_l2com, 644 ifp->if_alloctype); 645 646 #ifdef MAC 647 mac_ifnet_destroy(ifp); 648 #endif /* MAC */ 649 IF_AFDATA_DESTROY(ifp); 650 IF_ADDR_LOCK_DESTROY(ifp); 651 ifq_delete(&ifp->if_snd); 652 653 for (int i = 0; i < IFCOUNTERS; i++) 654 counter_u64_free(ifp->if_counters[i]); 655 656 free(ifp->if_description, M_IFDESCR); 657 free(ifp->if_hw_addr, M_IFADDR); 658 free(ifp, M_IFNET); 659 } 660 661 /* 662 * Deregister an interface and free the associated storage. 663 */ 664 void 665 if_free(struct ifnet *ifp) 666 { 667 668 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 669 670 /* 671 * XXXGL: An interface index is really an alias to ifp pointer. 672 * Why would we clear the alias now, and not in the deferred 673 * context? Indeed there is nothing wrong with some network 674 * thread obtaining ifp via ifnet_byindex() inside the network 675 * epoch and then dereferencing ifp while we perform if_free(), 676 * and after if_free() finished, too. 677 * 678 * This early index freeing was important back when ifindex was 679 * virtualized and interface would outlive the vnet. 680 */ 681 IFNET_WLOCK(); 682 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 683 ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL); 684 ifindex_table[ifp->if_index].ife_gencnt++; 685 while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL) 686 if_index--; 687 IFNET_WUNLOCK(); 688 689 if (refcount_release(&ifp->if_refcount)) 690 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 691 } 692 693 /* 694 * Interfaces to keep an ifnet type-stable despite the possibility of the 695 * driver calling if_free(). If there are additional references, we defer 696 * freeing the underlying data structure. 697 */ 698 void 699 if_ref(struct ifnet *ifp) 700 { 701 u_int old __diagused; 702 703 /* We don't assert the ifnet list lock here, but arguably should. */ 704 old = refcount_acquire(&ifp->if_refcount); 705 KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp)); 706 } 707 708 bool 709 if_try_ref(struct ifnet *ifp) 710 { 711 NET_EPOCH_ASSERT(); 712 return (refcount_acquire_if_not_zero(&ifp->if_refcount)); 713 } 714 715 void 716 if_rele(struct ifnet *ifp) 717 { 718 719 if (!refcount_release(&ifp->if_refcount)) 720 return; 721 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 722 } 723 724 void 725 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 726 { 727 728 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 729 730 if (ifq->ifq_maxlen == 0) 731 ifq->ifq_maxlen = ifqmaxlen; 732 733 ifq->altq_type = 0; 734 ifq->altq_disc = NULL; 735 ifq->altq_flags &= ALTQF_CANTCHANGE; 736 ifq->altq_tbr = NULL; 737 ifq->altq_ifp = ifp; 738 } 739 740 void 741 ifq_delete(struct ifaltq *ifq) 742 { 743 mtx_destroy(&ifq->ifq_mtx); 744 } 745 746 /* 747 * Perform generic interface initialization tasks and attach the interface 748 * to the list of "active" interfaces. If vmove flag is set on entry 749 * to if_attach_internal(), perform only a limited subset of initialization 750 * tasks, given that we are moving from one vnet to another an ifnet which 751 * has already been fully initialized. 752 * 753 * Note that if_detach_internal() removes group membership unconditionally 754 * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. 755 * Thus, when if_vmove() is applied to a cloned interface, group membership 756 * is lost while a cloned one always joins a group whose name is 757 * ifc->ifc_name. To recover this after if_detach_internal() and 758 * if_attach_internal(), the cloner should be specified to 759 * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() 760 * attempts to join a group whose name is ifc->ifc_name. 761 * 762 * XXX: 763 * - The decision to return void and thus require this function to 764 * succeed is questionable. 765 * - We should probably do more sanity checking. For instance we don't 766 * do anything to insure if_xname is unique or non-empty. 767 */ 768 void 769 if_attach(struct ifnet *ifp) 770 { 771 772 if_attach_internal(ifp, false); 773 } 774 775 /* 776 * Compute the least common TSO limit. 777 */ 778 void 779 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 780 { 781 /* 782 * 1) If there is no limit currently, take the limit from 783 * the network adapter. 784 * 785 * 2) If the network adapter has a limit below the current 786 * limit, apply it. 787 */ 788 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 789 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 790 pmax->tsomaxbytes = ifp->if_hw_tsomax; 791 } 792 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 793 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 794 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 795 } 796 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 797 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 798 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 799 } 800 } 801 802 /* 803 * Update TSO limit of a network adapter. 804 * 805 * Returns zero if no change. Else non-zero. 806 */ 807 int 808 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 809 { 810 int retval = 0; 811 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 812 ifp->if_hw_tsomax = pmax->tsomaxbytes; 813 retval++; 814 } 815 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 816 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 817 retval++; 818 } 819 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 820 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 821 retval++; 822 } 823 return (retval); 824 } 825 826 static void 827 if_attach_internal(struct ifnet *ifp, bool vmove) 828 { 829 unsigned socksize, ifasize; 830 int namelen, masklen; 831 struct sockaddr_dl *sdl; 832 struct ifaddr *ifa; 833 834 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 835 836 #ifdef VIMAGE 837 ifp->if_vnet = curvnet; 838 if (ifp->if_home_vnet == NULL) 839 ifp->if_home_vnet = curvnet; 840 #endif 841 842 if_addgroup(ifp, IFG_ALL); 843 844 #ifdef VIMAGE 845 /* Restore group membership for cloned interface. */ 846 if (vmove) 847 if_clone_restoregroup(ifp); 848 #endif 849 850 getmicrotime(&ifp->if_lastchange); 851 ifp->if_epoch = time_uptime; 852 853 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 854 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 855 ("transmit and qflush must both either be set or both be NULL")); 856 if (ifp->if_transmit == NULL) { 857 ifp->if_transmit = if_transmit; 858 ifp->if_qflush = if_qflush; 859 } 860 if (ifp->if_input == NULL) 861 ifp->if_input = if_input_default; 862 863 if (ifp->if_requestencap == NULL) 864 ifp->if_requestencap = if_requestencap_default; 865 866 if (!vmove) { 867 #ifdef MAC 868 mac_ifnet_create(ifp); 869 #endif 870 871 /* 872 * Create a Link Level name for this device. 873 */ 874 namelen = strlen(ifp->if_xname); 875 /* 876 * Always save enough space for any possiable name so we 877 * can do a rename in place later. 878 */ 879 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 880 socksize = masklen + ifp->if_addrlen; 881 if (socksize < sizeof(*sdl)) 882 socksize = sizeof(*sdl); 883 socksize = roundup2(socksize, sizeof(long)); 884 ifasize = sizeof(*ifa) + 2 * socksize; 885 ifa = ifa_alloc(ifasize, M_WAITOK); 886 sdl = (struct sockaddr_dl *)(ifa + 1); 887 sdl->sdl_len = socksize; 888 sdl->sdl_family = AF_LINK; 889 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 890 sdl->sdl_nlen = namelen; 891 sdl->sdl_index = ifp->if_index; 892 sdl->sdl_type = ifp->if_type; 893 ifp->if_addr = ifa; 894 ifa->ifa_ifp = ifp; 895 ifa->ifa_addr = (struct sockaddr *)sdl; 896 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 897 ifa->ifa_netmask = (struct sockaddr *)sdl; 898 sdl->sdl_len = masklen; 899 while (namelen != 0) 900 sdl->sdl_data[--namelen] = 0xff; 901 CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 902 /* Reliably crash if used uninitialized. */ 903 ifp->if_broadcastaddr = NULL; 904 905 if (ifp->if_type == IFT_ETHER) { 906 ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR, 907 M_WAITOK | M_ZERO); 908 } 909 910 #if defined(INET) || defined(INET6) 911 /* Use defaults for TSO, if nothing is set */ 912 if (ifp->if_hw_tsomax == 0 && 913 ifp->if_hw_tsomaxsegcount == 0 && 914 ifp->if_hw_tsomaxsegsize == 0) { 915 /* 916 * The TSO defaults needs to be such that an 917 * NFS mbuf list of 35 mbufs totalling just 918 * below 64K works and that a chain of mbufs 919 * can be defragged into at most 32 segments: 920 */ 921 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 922 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 923 ifp->if_hw_tsomaxsegcount = 35; 924 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 925 926 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 927 if (ifp->if_capabilities & IFCAP_TSO) { 928 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 929 ifp->if_hw_tsomax, 930 ifp->if_hw_tsomaxsegcount, 931 ifp->if_hw_tsomaxsegsize); 932 } 933 } 934 #endif 935 } 936 #ifdef VIMAGE 937 else { 938 /* 939 * Update the interface index in the link layer address 940 * of the interface. 941 */ 942 for (ifa = ifp->if_addr; ifa != NULL; 943 ifa = CK_STAILQ_NEXT(ifa, ifa_link)) { 944 if (ifa->ifa_addr->sa_family == AF_LINK) { 945 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 946 sdl->sdl_index = ifp->if_index; 947 } 948 } 949 } 950 #endif 951 952 if_link_ifnet(ifp); 953 954 if (domain_init_status >= 2) 955 if_attachdomain1(ifp); 956 957 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 958 if (IS_DEFAULT_VNET(curvnet)) 959 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 960 961 /* Announce the interface. */ 962 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 963 } 964 965 static void 966 if_epochalloc(void *dummy __unused) 967 { 968 969 net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT); 970 } 971 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL); 972 973 static void 974 if_attachdomain(void *dummy) 975 { 976 struct ifnet *ifp; 977 978 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 979 if_attachdomain1(ifp); 980 } 981 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 982 if_attachdomain, NULL); 983 984 static void 985 if_attachdomain1(struct ifnet *ifp) 986 { 987 struct domain *dp; 988 989 /* 990 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 991 * cannot lock ifp->if_afdata initialization, entirely. 992 */ 993 IF_AFDATA_LOCK(ifp); 994 if (ifp->if_afdata_initialized >= domain_init_status) { 995 IF_AFDATA_UNLOCK(ifp); 996 log(LOG_WARNING, "%s called more than once on %s\n", 997 __func__, ifp->if_xname); 998 return; 999 } 1000 ifp->if_afdata_initialized = domain_init_status; 1001 IF_AFDATA_UNLOCK(ifp); 1002 1003 /* address family dependent data region */ 1004 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 1005 for (dp = domains; dp; dp = dp->dom_next) { 1006 if (dp->dom_ifattach) 1007 ifp->if_afdata[dp->dom_family] = 1008 (*dp->dom_ifattach)(ifp); 1009 } 1010 } 1011 1012 /* 1013 * Remove any unicast or broadcast network addresses from an interface. 1014 */ 1015 void 1016 if_purgeaddrs(struct ifnet *ifp) 1017 { 1018 struct ifaddr *ifa; 1019 1020 while (1) { 1021 struct epoch_tracker et; 1022 1023 NET_EPOCH_ENTER(et); 1024 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1025 if (ifa->ifa_addr->sa_family != AF_LINK) 1026 break; 1027 } 1028 NET_EPOCH_EXIT(et); 1029 1030 if (ifa == NULL) 1031 break; 1032 #ifdef INET 1033 /* XXX: Ugly!! ad hoc just for INET */ 1034 if (ifa->ifa_addr->sa_family == AF_INET) { 1035 struct ifaliasreq ifr; 1036 1037 bzero(&ifr, sizeof(ifr)); 1038 ifr.ifra_addr = *ifa->ifa_addr; 1039 if (ifa->ifa_dstaddr) 1040 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 1041 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 1042 NULL) == 0) 1043 continue; 1044 } 1045 #endif /* INET */ 1046 #ifdef INET6 1047 if (ifa->ifa_addr->sa_family == AF_INET6) { 1048 in6_purgeifaddr((struct in6_ifaddr *)ifa); 1049 /* ifp_addrhead is already updated */ 1050 continue; 1051 } 1052 #endif /* INET6 */ 1053 IF_ADDR_WLOCK(ifp); 1054 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1055 IF_ADDR_WUNLOCK(ifp); 1056 ifa_free(ifa); 1057 } 1058 } 1059 1060 /* 1061 * Remove any multicast network addresses from an interface when an ifnet 1062 * is going away. 1063 */ 1064 static void 1065 if_purgemaddrs(struct ifnet *ifp) 1066 { 1067 struct ifmultiaddr *ifma; 1068 1069 IF_ADDR_WLOCK(ifp); 1070 while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) { 1071 ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs); 1072 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 1073 if_delmulti_locked(ifp, ifma, 1); 1074 } 1075 IF_ADDR_WUNLOCK(ifp); 1076 } 1077 1078 /* 1079 * Detach an interface, removing it from the list of "active" interfaces. 1080 * If vmove flag is set on entry to if_detach_internal(), perform only a 1081 * limited subset of cleanup tasks, given that we are moving an ifnet from 1082 * one vnet to another, where it must be fully operational. 1083 * 1084 * XXXRW: There are some significant questions about event ordering, and 1085 * how to prevent things from starting to use the interface during detach. 1086 */ 1087 void 1088 if_detach(struct ifnet *ifp) 1089 { 1090 bool found; 1091 1092 CURVNET_SET_QUIET(ifp->if_vnet); 1093 found = if_unlink_ifnet(ifp, false); 1094 if (found) { 1095 sx_xlock(&ifnet_detach_sxlock); 1096 if_detach_internal(ifp, false); 1097 sx_xunlock(&ifnet_detach_sxlock); 1098 } 1099 CURVNET_RESTORE(); 1100 } 1101 1102 /* 1103 * The vmove flag, if set, indicates that we are called from a callpath 1104 * that is moving an interface to a different vnet instance. 1105 * 1106 * The shutdown flag, if set, indicates that we are called in the 1107 * process of shutting down a vnet instance. Currently only the 1108 * vnet_if_return SYSUNINIT function sets it. Note: we can be called 1109 * on a vnet instance shutdown without this flag being set, e.g., when 1110 * the cloned interfaces are destoyed as first thing of teardown. 1111 */ 1112 static int 1113 if_detach_internal(struct ifnet *ifp, bool vmove) 1114 { 1115 struct ifaddr *ifa; 1116 int i; 1117 struct domain *dp; 1118 #ifdef VIMAGE 1119 bool shutdown; 1120 1121 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1122 #endif 1123 1124 /* 1125 * At this point we know the interface still was on the ifnet list 1126 * and we removed it so we are in a stable state. 1127 */ 1128 epoch_wait_preempt(net_epoch_preempt); 1129 1130 /* 1131 * Ensure all pending EPOCH(9) callbacks have been executed. This 1132 * fixes issues about late destruction of multicast options 1133 * which lead to leave group calls, which in turn access the 1134 * belonging ifnet structure: 1135 */ 1136 epoch_drain_callbacks(net_epoch_preempt); 1137 1138 /* 1139 * In any case (destroy or vmove) detach us from the groups 1140 * and remove/wait for pending events on the taskq. 1141 * XXX-BZ in theory an interface could still enqueue a taskq change? 1142 */ 1143 if_delgroups(ifp); 1144 1145 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 1146 taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask); 1147 1148 if_down(ifp); 1149 1150 #ifdef VIMAGE 1151 /* 1152 * On VNET shutdown abort here as the stack teardown will do all 1153 * the work top-down for us. 1154 */ 1155 if (shutdown) { 1156 /* Give interface users the chance to clean up. */ 1157 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1158 1159 /* 1160 * In case of a vmove we are done here without error. 1161 * If we would signal an error it would lead to the same 1162 * abort as if we did not find the ifnet anymore. 1163 * if_detach() calls us in void context and does not care 1164 * about an early abort notification, so life is splendid :) 1165 */ 1166 goto finish_vnet_shutdown; 1167 } 1168 #endif 1169 1170 /* 1171 * At this point we are not tearing down a VNET and are either 1172 * going to destroy or vmove the interface and have to cleanup 1173 * accordingly. 1174 */ 1175 1176 /* 1177 * Remove routes and flush queues. 1178 */ 1179 #ifdef ALTQ 1180 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1181 altq_disable(&ifp->if_snd); 1182 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1183 altq_detach(&ifp->if_snd); 1184 #endif 1185 1186 if_purgeaddrs(ifp); 1187 1188 #ifdef INET 1189 in_ifdetach(ifp); 1190 #endif 1191 1192 #ifdef INET6 1193 /* 1194 * Remove all IPv6 kernel structs related to ifp. This should be done 1195 * before removing routing entries below, since IPv6 interface direct 1196 * routes are expected to be removed by the IPv6-specific kernel API. 1197 * Otherwise, the kernel will detect some inconsistency and bark it. 1198 */ 1199 in6_ifdetach(ifp); 1200 #endif 1201 if_purgemaddrs(ifp); 1202 1203 /* Announce that the interface is gone. */ 1204 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1205 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1206 if (IS_DEFAULT_VNET(curvnet)) 1207 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 1208 1209 if (!vmove) { 1210 /* 1211 * Prevent further calls into the device driver via ifnet. 1212 */ 1213 if_dead(ifp); 1214 1215 /* 1216 * Clean up all addresses. 1217 */ 1218 IF_ADDR_WLOCK(ifp); 1219 if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) { 1220 ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); 1221 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1222 IF_ADDR_WUNLOCK(ifp); 1223 ifa_free(ifa); 1224 } else 1225 IF_ADDR_WUNLOCK(ifp); 1226 } 1227 1228 rt_flushifroutes(ifp); 1229 1230 #ifdef VIMAGE 1231 finish_vnet_shutdown: 1232 #endif 1233 /* 1234 * We cannot hold the lock over dom_ifdetach calls as they might 1235 * sleep, for example trying to drain a callout, thus open up the 1236 * theoretical race with re-attaching. 1237 */ 1238 IF_AFDATA_LOCK(ifp); 1239 i = ifp->if_afdata_initialized; 1240 ifp->if_afdata_initialized = 0; 1241 IF_AFDATA_UNLOCK(ifp); 1242 for (dp = domains; i > 0 && dp; dp = dp->dom_next) { 1243 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) { 1244 (*dp->dom_ifdetach)(ifp, 1245 ifp->if_afdata[dp->dom_family]); 1246 ifp->if_afdata[dp->dom_family] = NULL; 1247 } 1248 } 1249 1250 return (0); 1251 } 1252 1253 #ifdef VIMAGE 1254 /* 1255 * if_vmove() performs a limited version of if_detach() in current 1256 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1257 */ 1258 static int 1259 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1260 { 1261 #ifdef DEV_BPF 1262 u_int bif_dlt, bif_hdrlen; 1263 #endif 1264 int rc; 1265 1266 #ifdef DEV_BPF 1267 /* 1268 * if_detach_internal() will call the eventhandler to notify 1269 * interface departure. That will detach if_bpf. We need to 1270 * safe the dlt and hdrlen so we can re-attach it later. 1271 */ 1272 bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen); 1273 #endif 1274 1275 /* 1276 * Detach from current vnet, but preserve LLADDR info, do not 1277 * mark as dead etc. so that the ifnet can be reattached later. 1278 * If we cannot find it, we lost the race to someone else. 1279 */ 1280 rc = if_detach_internal(ifp, true); 1281 if (rc != 0) 1282 return (rc); 1283 1284 /* 1285 * Perform interface-specific reassignment tasks, if provided by 1286 * the driver. 1287 */ 1288 if (ifp->if_reassign != NULL) 1289 ifp->if_reassign(ifp, new_vnet, NULL); 1290 1291 /* 1292 * Switch to the context of the target vnet. 1293 */ 1294 CURVNET_SET_QUIET(new_vnet); 1295 if_attach_internal(ifp, true); 1296 1297 #ifdef DEV_BPF 1298 if (ifp->if_bpf == NULL) 1299 bpfattach(ifp, bif_dlt, bif_hdrlen); 1300 #endif 1301 1302 CURVNET_RESTORE(); 1303 return (0); 1304 } 1305 1306 /* 1307 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1308 */ 1309 static int 1310 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1311 { 1312 struct prison *pr; 1313 struct ifnet *difp; 1314 int error; 1315 bool found __diagused; 1316 bool shutdown; 1317 1318 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 1319 1320 /* Try to find the prison within our visibility. */ 1321 sx_slock(&allprison_lock); 1322 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1323 sx_sunlock(&allprison_lock); 1324 if (pr == NULL) 1325 return (ENXIO); 1326 prison_hold_locked(pr); 1327 mtx_unlock(&pr->pr_mtx); 1328 1329 /* Do not try to move the iface from and to the same prison. */ 1330 if (pr->pr_vnet == ifp->if_vnet) { 1331 prison_free(pr); 1332 return (EEXIST); 1333 } 1334 1335 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1336 /* XXX Lock interfaces to avoid races. */ 1337 CURVNET_SET_QUIET(pr->pr_vnet); 1338 difp = ifunit(ifname); 1339 if (difp != NULL) { 1340 CURVNET_RESTORE(); 1341 prison_free(pr); 1342 return (EEXIST); 1343 } 1344 sx_xlock(&ifnet_detach_sxlock); 1345 1346 /* Make sure the VNET is stable. */ 1347 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1348 if (shutdown) { 1349 sx_xunlock(&ifnet_detach_sxlock); 1350 CURVNET_RESTORE(); 1351 prison_free(pr); 1352 return (EBUSY); 1353 } 1354 CURVNET_RESTORE(); 1355 1356 found = if_unlink_ifnet(ifp, true); 1357 if (! found) { 1358 sx_xunlock(&ifnet_detach_sxlock); 1359 CURVNET_RESTORE(); 1360 prison_free(pr); 1361 return (ENODEV); 1362 } 1363 1364 /* Move the interface into the child jail/vnet. */ 1365 error = if_vmove(ifp, pr->pr_vnet); 1366 1367 /* Report the new if_xname back to the userland on success. */ 1368 if (error == 0) 1369 sprintf(ifname, "%s", ifp->if_xname); 1370 1371 sx_xunlock(&ifnet_detach_sxlock); 1372 1373 prison_free(pr); 1374 return (error); 1375 } 1376 1377 static int 1378 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1379 { 1380 struct prison *pr; 1381 struct vnet *vnet_dst; 1382 struct ifnet *ifp; 1383 int error, found __diagused; 1384 bool shutdown; 1385 1386 /* Try to find the prison within our visibility. */ 1387 sx_slock(&allprison_lock); 1388 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1389 sx_sunlock(&allprison_lock); 1390 if (pr == NULL) 1391 return (ENXIO); 1392 prison_hold_locked(pr); 1393 mtx_unlock(&pr->pr_mtx); 1394 1395 /* Make sure the named iface exists in the source prison/vnet. */ 1396 CURVNET_SET(pr->pr_vnet); 1397 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1398 if (ifp == NULL) { 1399 CURVNET_RESTORE(); 1400 prison_free(pr); 1401 return (ENXIO); 1402 } 1403 1404 /* Do not try to move the iface from and to the same prison. */ 1405 vnet_dst = TD_TO_VNET(td); 1406 if (vnet_dst == ifp->if_vnet) { 1407 CURVNET_RESTORE(); 1408 prison_free(pr); 1409 return (EEXIST); 1410 } 1411 1412 /* Make sure the VNET is stable. */ 1413 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1414 if (shutdown) { 1415 CURVNET_RESTORE(); 1416 prison_free(pr); 1417 return (EBUSY); 1418 } 1419 1420 /* Get interface back from child jail/vnet. */ 1421 found = if_unlink_ifnet(ifp, true); 1422 MPASS(found); 1423 sx_xlock(&ifnet_detach_sxlock); 1424 error = if_vmove(ifp, vnet_dst); 1425 sx_xunlock(&ifnet_detach_sxlock); 1426 CURVNET_RESTORE(); 1427 1428 /* Report the new if_xname back to the userland on success. */ 1429 if (error == 0) 1430 sprintf(ifname, "%s", ifp->if_xname); 1431 1432 prison_free(pr); 1433 return (error); 1434 } 1435 #endif /* VIMAGE */ 1436 1437 /* 1438 * Add a group to an interface 1439 */ 1440 int 1441 if_addgroup(struct ifnet *ifp, const char *groupname) 1442 { 1443 struct ifg_list *ifgl; 1444 struct ifg_group *ifg = NULL; 1445 struct ifg_member *ifgm; 1446 int new = 0; 1447 1448 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1449 groupname[strlen(groupname) - 1] <= '9') 1450 return (EINVAL); 1451 1452 IFNET_WLOCK(); 1453 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1454 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1455 IFNET_WUNLOCK(); 1456 return (EEXIST); 1457 } 1458 1459 if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) { 1460 IFNET_WUNLOCK(); 1461 return (ENOMEM); 1462 } 1463 1464 if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 1465 free(ifgl, M_TEMP); 1466 IFNET_WUNLOCK(); 1467 return (ENOMEM); 1468 } 1469 1470 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1471 if (!strcmp(ifg->ifg_group, groupname)) 1472 break; 1473 1474 if (ifg == NULL) { 1475 if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) { 1476 free(ifgl, M_TEMP); 1477 free(ifgm, M_TEMP); 1478 IFNET_WUNLOCK(); 1479 return (ENOMEM); 1480 } 1481 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1482 ifg->ifg_refcnt = 0; 1483 CK_STAILQ_INIT(&ifg->ifg_members); 1484 CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1485 new = 1; 1486 } 1487 1488 ifg->ifg_refcnt++; 1489 ifgl->ifgl_group = ifg; 1490 ifgm->ifgm_ifp = ifp; 1491 1492 IF_ADDR_WLOCK(ifp); 1493 CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1494 CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1495 IF_ADDR_WUNLOCK(ifp); 1496 1497 IFNET_WUNLOCK(); 1498 1499 if (new) 1500 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1501 EVENTHANDLER_INVOKE(group_change_event, groupname); 1502 1503 return (0); 1504 } 1505 1506 /* 1507 * Helper function to remove a group out of an interface. Expects the global 1508 * ifnet lock to be write-locked, and drops it before returning. 1509 */ 1510 static void 1511 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl, 1512 const char *groupname) 1513 { 1514 struct ifg_member *ifgm; 1515 bool freeifgl; 1516 1517 IFNET_WLOCK_ASSERT(); 1518 1519 IF_ADDR_WLOCK(ifp); 1520 CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next); 1521 IF_ADDR_WUNLOCK(ifp); 1522 1523 CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { 1524 if (ifgm->ifgm_ifp == ifp) { 1525 CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1526 ifg_member, ifgm_next); 1527 break; 1528 } 1529 } 1530 1531 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1532 CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, 1533 ifg_next); 1534 freeifgl = true; 1535 } else { 1536 freeifgl = false; 1537 } 1538 IFNET_WUNLOCK(); 1539 1540 epoch_wait_preempt(net_epoch_preempt); 1541 if (freeifgl) { 1542 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1543 free(ifgl->ifgl_group, M_TEMP); 1544 } 1545 free(ifgm, M_TEMP); 1546 free(ifgl, M_TEMP); 1547 1548 EVENTHANDLER_INVOKE(group_change_event, groupname); 1549 } 1550 1551 /* 1552 * Remove a group from an interface 1553 */ 1554 int 1555 if_delgroup(struct ifnet *ifp, const char *groupname) 1556 { 1557 struct ifg_list *ifgl; 1558 1559 IFNET_WLOCK(); 1560 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1561 if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) 1562 break; 1563 if (ifgl == NULL) { 1564 IFNET_WUNLOCK(); 1565 return (ENOENT); 1566 } 1567 1568 _if_delgroup_locked(ifp, ifgl, groupname); 1569 1570 return (0); 1571 } 1572 1573 /* 1574 * Remove an interface from all groups 1575 */ 1576 static void 1577 if_delgroups(struct ifnet *ifp) 1578 { 1579 struct ifg_list *ifgl; 1580 char groupname[IFNAMSIZ]; 1581 1582 IFNET_WLOCK(); 1583 while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) { 1584 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1585 _if_delgroup_locked(ifp, ifgl, groupname); 1586 IFNET_WLOCK(); 1587 } 1588 IFNET_WUNLOCK(); 1589 } 1590 1591 /* 1592 * Stores all groups from an interface in memory pointed to by ifgr. 1593 */ 1594 static int 1595 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp) 1596 { 1597 int len, error; 1598 struct ifg_list *ifgl; 1599 struct ifg_req ifgrq, *ifgp; 1600 1601 NET_EPOCH_ASSERT(); 1602 1603 if (ifgr->ifgr_len == 0) { 1604 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1605 ifgr->ifgr_len += sizeof(struct ifg_req); 1606 return (0); 1607 } 1608 1609 len = ifgr->ifgr_len; 1610 ifgp = ifgr->ifgr_groups; 1611 /* XXX: wire */ 1612 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1613 if (len < sizeof(ifgrq)) 1614 return (EINVAL); 1615 bzero(&ifgrq, sizeof ifgrq); 1616 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1617 sizeof(ifgrq.ifgrq_group)); 1618 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) 1619 return (error); 1620 len -= sizeof(ifgrq); 1621 ifgp++; 1622 } 1623 1624 return (0); 1625 } 1626 1627 /* 1628 * Stores all members of a group in memory pointed to by igfr 1629 */ 1630 static int 1631 if_getgroupmembers(struct ifgroupreq *ifgr) 1632 { 1633 struct ifg_group *ifg; 1634 struct ifg_member *ifgm; 1635 struct ifg_req ifgrq, *ifgp; 1636 int len, error; 1637 1638 IFNET_RLOCK(); 1639 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1640 if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) 1641 break; 1642 if (ifg == NULL) { 1643 IFNET_RUNLOCK(); 1644 return (ENOENT); 1645 } 1646 1647 if (ifgr->ifgr_len == 0) { 1648 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1649 ifgr->ifgr_len += sizeof(ifgrq); 1650 IFNET_RUNLOCK(); 1651 return (0); 1652 } 1653 1654 len = ifgr->ifgr_len; 1655 ifgp = ifgr->ifgr_groups; 1656 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1657 if (len < sizeof(ifgrq)) { 1658 IFNET_RUNLOCK(); 1659 return (EINVAL); 1660 } 1661 bzero(&ifgrq, sizeof ifgrq); 1662 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1663 sizeof(ifgrq.ifgrq_member)); 1664 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1665 IFNET_RUNLOCK(); 1666 return (error); 1667 } 1668 len -= sizeof(ifgrq); 1669 ifgp++; 1670 } 1671 IFNET_RUNLOCK(); 1672 1673 return (0); 1674 } 1675 1676 /* 1677 * Return counter values from counter(9)s stored in ifnet. 1678 */ 1679 uint64_t 1680 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1681 { 1682 1683 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1684 1685 return (counter_u64_fetch(ifp->if_counters[cnt])); 1686 } 1687 1688 /* 1689 * Increase an ifnet counter. Usually used for counters shared 1690 * between the stack and a driver, but function supports them all. 1691 */ 1692 void 1693 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1694 { 1695 1696 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1697 1698 counter_u64_add(ifp->if_counters[cnt], inc); 1699 } 1700 1701 /* 1702 * Copy data from ifnet to userland API structure if_data. 1703 */ 1704 void 1705 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1706 { 1707 1708 ifd->ifi_type = ifp->if_type; 1709 ifd->ifi_physical = 0; 1710 ifd->ifi_addrlen = ifp->if_addrlen; 1711 ifd->ifi_hdrlen = ifp->if_hdrlen; 1712 ifd->ifi_link_state = ifp->if_link_state; 1713 ifd->ifi_vhid = 0; 1714 ifd->ifi_datalen = sizeof(struct if_data); 1715 ifd->ifi_mtu = ifp->if_mtu; 1716 ifd->ifi_metric = ifp->if_metric; 1717 ifd->ifi_baudrate = ifp->if_baudrate; 1718 ifd->ifi_hwassist = ifp->if_hwassist; 1719 ifd->ifi_epoch = ifp->if_epoch; 1720 ifd->ifi_lastchange = ifp->if_lastchange; 1721 1722 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1723 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1724 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1725 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1726 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1727 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1728 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1729 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1730 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1731 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1732 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1733 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1734 } 1735 1736 /* 1737 * Initialization, destruction and refcounting functions for ifaddrs. 1738 */ 1739 struct ifaddr * 1740 ifa_alloc(size_t size, int flags) 1741 { 1742 struct ifaddr *ifa; 1743 1744 KASSERT(size >= sizeof(struct ifaddr), 1745 ("%s: invalid size %zu", __func__, size)); 1746 1747 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1748 if (ifa == NULL) 1749 return (NULL); 1750 1751 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1752 goto fail; 1753 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1754 goto fail; 1755 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1756 goto fail; 1757 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1758 goto fail; 1759 1760 refcount_init(&ifa->ifa_refcnt, 1); 1761 1762 return (ifa); 1763 1764 fail: 1765 /* free(NULL) is okay */ 1766 counter_u64_free(ifa->ifa_opackets); 1767 counter_u64_free(ifa->ifa_ipackets); 1768 counter_u64_free(ifa->ifa_obytes); 1769 counter_u64_free(ifa->ifa_ibytes); 1770 free(ifa, M_IFADDR); 1771 1772 return (NULL); 1773 } 1774 1775 void 1776 ifa_ref(struct ifaddr *ifa) 1777 { 1778 u_int old __diagused; 1779 1780 old = refcount_acquire(&ifa->ifa_refcnt); 1781 KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa)); 1782 } 1783 1784 int 1785 ifa_try_ref(struct ifaddr *ifa) 1786 { 1787 1788 NET_EPOCH_ASSERT(); 1789 return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt)); 1790 } 1791 1792 static void 1793 ifa_destroy(epoch_context_t ctx) 1794 { 1795 struct ifaddr *ifa; 1796 1797 ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx); 1798 counter_u64_free(ifa->ifa_opackets); 1799 counter_u64_free(ifa->ifa_ipackets); 1800 counter_u64_free(ifa->ifa_obytes); 1801 counter_u64_free(ifa->ifa_ibytes); 1802 free(ifa, M_IFADDR); 1803 } 1804 1805 void 1806 ifa_free(struct ifaddr *ifa) 1807 { 1808 1809 if (refcount_release(&ifa->ifa_refcnt)) 1810 NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx); 1811 } 1812 1813 /* 1814 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1815 * structs used to represent other address families, it is necessary 1816 * to perform a different comparison. 1817 */ 1818 1819 #define sa_dl_equal(a1, a2) \ 1820 ((((const struct sockaddr_dl *)(a1))->sdl_len == \ 1821 ((const struct sockaddr_dl *)(a2))->sdl_len) && \ 1822 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \ 1823 CLLADDR((const struct sockaddr_dl *)(a2)), \ 1824 ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1825 1826 /* 1827 * Locate an interface based on a complete address. 1828 */ 1829 /*ARGSUSED*/ 1830 struct ifaddr * 1831 ifa_ifwithaddr(const struct sockaddr *addr) 1832 { 1833 struct ifnet *ifp; 1834 struct ifaddr *ifa; 1835 1836 NET_EPOCH_ASSERT(); 1837 1838 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1839 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1840 if (ifa->ifa_addr->sa_family != addr->sa_family) 1841 continue; 1842 if (sa_equal(addr, ifa->ifa_addr)) { 1843 goto done; 1844 } 1845 /* IP6 doesn't have broadcast */ 1846 if ((ifp->if_flags & IFF_BROADCAST) && 1847 ifa->ifa_broadaddr && 1848 ifa->ifa_broadaddr->sa_len != 0 && 1849 sa_equal(ifa->ifa_broadaddr, addr)) { 1850 goto done; 1851 } 1852 } 1853 } 1854 ifa = NULL; 1855 done: 1856 return (ifa); 1857 } 1858 1859 int 1860 ifa_ifwithaddr_check(const struct sockaddr *addr) 1861 { 1862 struct epoch_tracker et; 1863 int rc; 1864 1865 NET_EPOCH_ENTER(et); 1866 rc = (ifa_ifwithaddr(addr) != NULL); 1867 NET_EPOCH_EXIT(et); 1868 return (rc); 1869 } 1870 1871 /* 1872 * Locate an interface based on the broadcast address. 1873 */ 1874 /* ARGSUSED */ 1875 struct ifaddr * 1876 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) 1877 { 1878 struct ifnet *ifp; 1879 struct ifaddr *ifa; 1880 1881 NET_EPOCH_ASSERT(); 1882 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1883 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1884 continue; 1885 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1886 if (ifa->ifa_addr->sa_family != addr->sa_family) 1887 continue; 1888 if ((ifp->if_flags & IFF_BROADCAST) && 1889 ifa->ifa_broadaddr && 1890 ifa->ifa_broadaddr->sa_len != 0 && 1891 sa_equal(ifa->ifa_broadaddr, addr)) { 1892 goto done; 1893 } 1894 } 1895 } 1896 ifa = NULL; 1897 done: 1898 return (ifa); 1899 } 1900 1901 /* 1902 * Locate the point to point interface with a given destination address. 1903 */ 1904 /*ARGSUSED*/ 1905 struct ifaddr * 1906 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) 1907 { 1908 struct ifnet *ifp; 1909 struct ifaddr *ifa; 1910 1911 NET_EPOCH_ASSERT(); 1912 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1913 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1914 continue; 1915 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1916 continue; 1917 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1918 if (ifa->ifa_addr->sa_family != addr->sa_family) 1919 continue; 1920 if (ifa->ifa_dstaddr != NULL && 1921 sa_equal(addr, ifa->ifa_dstaddr)) { 1922 goto done; 1923 } 1924 } 1925 } 1926 ifa = NULL; 1927 done: 1928 return (ifa); 1929 } 1930 1931 /* 1932 * Find an interface on a specific network. If many, choice 1933 * is most specific found. 1934 */ 1935 struct ifaddr * 1936 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) 1937 { 1938 struct ifnet *ifp; 1939 struct ifaddr *ifa; 1940 struct ifaddr *ifa_maybe = NULL; 1941 u_int af = addr->sa_family; 1942 const char *addr_data = addr->sa_data, *cplim; 1943 1944 NET_EPOCH_ASSERT(); 1945 /* 1946 * AF_LINK addresses can be looked up directly by their index number, 1947 * so do that if we can. 1948 */ 1949 if (af == AF_LINK) { 1950 ifp = ifnet_byindex( 1951 ((const struct sockaddr_dl *)addr)->sdl_index); 1952 return (ifp ? ifp->if_addr : NULL); 1953 } 1954 1955 /* 1956 * Scan though each interface, looking for ones that have addresses 1957 * in this address family and the requested fib. 1958 */ 1959 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1960 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1961 continue; 1962 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1963 const char *cp, *cp2, *cp3; 1964 1965 if (ifa->ifa_addr->sa_family != af) 1966 next: continue; 1967 if (af == AF_INET && 1968 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1969 /* 1970 * This is a bit broken as it doesn't 1971 * take into account that the remote end may 1972 * be a single node in the network we are 1973 * looking for. 1974 * The trouble is that we don't know the 1975 * netmask for the remote end. 1976 */ 1977 if (ifa->ifa_dstaddr != NULL && 1978 sa_equal(addr, ifa->ifa_dstaddr)) { 1979 goto done; 1980 } 1981 } else { 1982 /* 1983 * Scan all the bits in the ifa's address. 1984 * If a bit dissagrees with what we are 1985 * looking for, mask it with the netmask 1986 * to see if it really matters. 1987 * (A byte at a time) 1988 */ 1989 if (ifa->ifa_netmask == 0) 1990 continue; 1991 cp = addr_data; 1992 cp2 = ifa->ifa_addr->sa_data; 1993 cp3 = ifa->ifa_netmask->sa_data; 1994 cplim = ifa->ifa_netmask->sa_len 1995 + (char *)ifa->ifa_netmask; 1996 while (cp3 < cplim) 1997 if ((*cp++ ^ *cp2++) & *cp3++) 1998 goto next; /* next address! */ 1999 /* 2000 * If the netmask of what we just found 2001 * is more specific than what we had before 2002 * (if we had one), or if the virtual status 2003 * of new prefix is better than of the old one, 2004 * then remember the new one before continuing 2005 * to search for an even better one. 2006 */ 2007 if (ifa_maybe == NULL || 2008 ifa_preferred(ifa_maybe, ifa) || 2009 rn_refines((caddr_t)ifa->ifa_netmask, 2010 (caddr_t)ifa_maybe->ifa_netmask)) { 2011 ifa_maybe = ifa; 2012 } 2013 } 2014 } 2015 } 2016 ifa = ifa_maybe; 2017 ifa_maybe = NULL; 2018 done: 2019 return (ifa); 2020 } 2021 2022 /* 2023 * Find an interface address specific to an interface best matching 2024 * a given address. 2025 */ 2026 struct ifaddr * 2027 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2028 { 2029 struct ifaddr *ifa; 2030 const char *cp, *cp2, *cp3; 2031 char *cplim; 2032 struct ifaddr *ifa_maybe = NULL; 2033 u_int af = addr->sa_family; 2034 2035 if (af >= AF_MAX) 2036 return (NULL); 2037 2038 NET_EPOCH_ASSERT(); 2039 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2040 if (ifa->ifa_addr->sa_family != af) 2041 continue; 2042 if (ifa_maybe == NULL) 2043 ifa_maybe = ifa; 2044 if (ifa->ifa_netmask == 0) { 2045 if (sa_equal(addr, ifa->ifa_addr) || 2046 (ifa->ifa_dstaddr && 2047 sa_equal(addr, ifa->ifa_dstaddr))) 2048 goto done; 2049 continue; 2050 } 2051 if (ifp->if_flags & IFF_POINTOPOINT) { 2052 if (sa_equal(addr, ifa->ifa_dstaddr)) 2053 goto done; 2054 } else { 2055 cp = addr->sa_data; 2056 cp2 = ifa->ifa_addr->sa_data; 2057 cp3 = ifa->ifa_netmask->sa_data; 2058 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2059 for (; cp3 < cplim; cp3++) 2060 if ((*cp++ ^ *cp2++) & *cp3) 2061 break; 2062 if (cp3 == cplim) 2063 goto done; 2064 } 2065 } 2066 ifa = ifa_maybe; 2067 done: 2068 return (ifa); 2069 } 2070 2071 /* 2072 * See whether new ifa is better than current one: 2073 * 1) A non-virtual one is preferred over virtual. 2074 * 2) A virtual in master state preferred over any other state. 2075 * 2076 * Used in several address selecting functions. 2077 */ 2078 int 2079 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 2080 { 2081 2082 return (cur->ifa_carp && (!next->ifa_carp || 2083 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 2084 } 2085 2086 struct sockaddr_dl * 2087 link_alloc_sdl(size_t size, int flags) 2088 { 2089 2090 return (malloc(size, M_TEMP, flags)); 2091 } 2092 2093 void 2094 link_free_sdl(struct sockaddr *sa) 2095 { 2096 free(sa, M_TEMP); 2097 } 2098 2099 /* 2100 * Fills in given sdl with interface basic info. 2101 * Returns pointer to filled sdl. 2102 */ 2103 struct sockaddr_dl * 2104 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2105 { 2106 struct sockaddr_dl *sdl; 2107 2108 sdl = (struct sockaddr_dl *)paddr; 2109 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2110 sdl->sdl_len = sizeof(struct sockaddr_dl); 2111 sdl->sdl_family = AF_LINK; 2112 sdl->sdl_index = ifp->if_index; 2113 sdl->sdl_type = iftype; 2114 2115 return (sdl); 2116 } 2117 2118 /* 2119 * Mark an interface down and notify protocols of 2120 * the transition. 2121 */ 2122 static void 2123 if_unroute(struct ifnet *ifp, int flag, int fam) 2124 { 2125 struct ifaddr *ifa; 2126 struct epoch_tracker et; 2127 2128 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 2129 2130 ifp->if_flags &= ~flag; 2131 getmicrotime(&ifp->if_lastchange); 2132 NET_EPOCH_ENTER(et); 2133 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2134 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2135 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2136 NET_EPOCH_EXIT(et); 2137 ifp->if_qflush(ifp); 2138 2139 if (ifp->if_carp) 2140 (*carp_linkstate_p)(ifp); 2141 rt_ifmsg(ifp); 2142 } 2143 2144 /* 2145 * Mark an interface up and notify protocols of 2146 * the transition. 2147 */ 2148 static void 2149 if_route(struct ifnet *ifp, int flag, int fam) 2150 { 2151 struct ifaddr *ifa; 2152 struct epoch_tracker et; 2153 2154 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 2155 2156 ifp->if_flags |= flag; 2157 getmicrotime(&ifp->if_lastchange); 2158 NET_EPOCH_ENTER(et); 2159 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2160 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2161 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2162 NET_EPOCH_EXIT(et); 2163 if (ifp->if_carp) 2164 (*carp_linkstate_p)(ifp); 2165 rt_ifmsg(ifp); 2166 #ifdef INET6 2167 in6_if_up(ifp); 2168 #endif 2169 } 2170 2171 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2172 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2173 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2174 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2175 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2176 int (*vlan_pcp_p)(struct ifnet *, uint16_t *); 2177 int (*vlan_setcookie_p)(struct ifnet *, void *); 2178 void *(*vlan_cookie_p)(struct ifnet *); 2179 2180 /* 2181 * Handle a change in the interface link state. To avoid LORs 2182 * between driver lock and upper layer locks, as well as possible 2183 * recursions, we post event to taskqueue, and all job 2184 * is done in static do_link_state_change(). 2185 */ 2186 void 2187 if_link_state_change(struct ifnet *ifp, int link_state) 2188 { 2189 /* Return if state hasn't changed. */ 2190 if (ifp->if_link_state == link_state) 2191 return; 2192 2193 ifp->if_link_state = link_state; 2194 2195 /* XXXGL: reference ifp? */ 2196 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2197 } 2198 2199 static void 2200 do_link_state_change(void *arg, int pending) 2201 { 2202 struct ifnet *ifp; 2203 int link_state; 2204 2205 ifp = arg; 2206 link_state = ifp->if_link_state; 2207 2208 CURVNET_SET(ifp->if_vnet); 2209 rt_ifmsg(ifp); 2210 if (ifp->if_vlantrunk != NULL) 2211 (*vlan_link_state_p)(ifp); 2212 2213 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2214 ifp->if_l2com != NULL) 2215 (*ng_ether_link_state_p)(ifp, link_state); 2216 if (ifp->if_carp) 2217 (*carp_linkstate_p)(ifp); 2218 if (ifp->if_bridge) 2219 ifp->if_bridge_linkstate(ifp); 2220 if (ifp->if_lagg) 2221 (*lagg_linkstate_p)(ifp, link_state); 2222 2223 if (IS_DEFAULT_VNET(curvnet)) 2224 devctl_notify("IFNET", ifp->if_xname, 2225 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2226 NULL); 2227 if (pending > 1) 2228 if_printf(ifp, "%d link states coalesced\n", pending); 2229 if (log_link_state_change) 2230 if_printf(ifp, "link state changed to %s\n", 2231 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2232 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); 2233 CURVNET_RESTORE(); 2234 } 2235 2236 /* 2237 * Mark an interface down and notify protocols of 2238 * the transition. 2239 */ 2240 void 2241 if_down(struct ifnet *ifp) 2242 { 2243 2244 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); 2245 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2246 } 2247 2248 /* 2249 * Mark an interface up and notify protocols of 2250 * the transition. 2251 */ 2252 void 2253 if_up(struct ifnet *ifp) 2254 { 2255 2256 if_route(ifp, IFF_UP, AF_UNSPEC); 2257 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); 2258 } 2259 2260 /* 2261 * Flush an interface queue. 2262 */ 2263 void 2264 if_qflush(struct ifnet *ifp) 2265 { 2266 struct mbuf *m, *n; 2267 struct ifaltq *ifq; 2268 2269 ifq = &ifp->if_snd; 2270 IFQ_LOCK(ifq); 2271 #ifdef ALTQ 2272 if (ALTQ_IS_ENABLED(ifq)) 2273 ALTQ_PURGE(ifq); 2274 #endif 2275 n = ifq->ifq_head; 2276 while ((m = n) != NULL) { 2277 n = m->m_nextpkt; 2278 m_freem(m); 2279 } 2280 ifq->ifq_head = 0; 2281 ifq->ifq_tail = 0; 2282 ifq->ifq_len = 0; 2283 IFQ_UNLOCK(ifq); 2284 } 2285 2286 /* 2287 * Map interface name to interface structure pointer, with or without 2288 * returning a reference. 2289 */ 2290 struct ifnet * 2291 ifunit_ref(const char *name) 2292 { 2293 struct epoch_tracker et; 2294 struct ifnet *ifp; 2295 2296 NET_EPOCH_ENTER(et); 2297 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2298 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2299 !(ifp->if_flags & IFF_DYING)) 2300 break; 2301 } 2302 if (ifp != NULL) { 2303 if_ref(ifp); 2304 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 2305 } 2306 2307 NET_EPOCH_EXIT(et); 2308 return (ifp); 2309 } 2310 2311 struct ifnet * 2312 ifunit(const char *name) 2313 { 2314 struct epoch_tracker et; 2315 struct ifnet *ifp; 2316 2317 NET_EPOCH_ENTER(et); 2318 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2319 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2320 break; 2321 } 2322 NET_EPOCH_EXIT(et); 2323 return (ifp); 2324 } 2325 2326 void * 2327 ifr_buffer_get_buffer(void *data) 2328 { 2329 union ifreq_union *ifrup; 2330 2331 ifrup = data; 2332 #ifdef COMPAT_FREEBSD32 2333 if (SV_CURPROC_FLAG(SV_ILP32)) 2334 return ((void *)(uintptr_t) 2335 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer); 2336 #endif 2337 return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer); 2338 } 2339 2340 static void 2341 ifr_buffer_set_buffer_null(void *data) 2342 { 2343 union ifreq_union *ifrup; 2344 2345 ifrup = data; 2346 #ifdef COMPAT_FREEBSD32 2347 if (SV_CURPROC_FLAG(SV_ILP32)) 2348 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0; 2349 else 2350 #endif 2351 ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL; 2352 } 2353 2354 size_t 2355 ifr_buffer_get_length(void *data) 2356 { 2357 union ifreq_union *ifrup; 2358 2359 ifrup = data; 2360 #ifdef COMPAT_FREEBSD32 2361 if (SV_CURPROC_FLAG(SV_ILP32)) 2362 return (ifrup->ifr32.ifr_ifru.ifru_buffer.length); 2363 #endif 2364 return (ifrup->ifr.ifr_ifru.ifru_buffer.length); 2365 } 2366 2367 static void 2368 ifr_buffer_set_length(void *data, size_t len) 2369 { 2370 union ifreq_union *ifrup; 2371 2372 ifrup = data; 2373 #ifdef COMPAT_FREEBSD32 2374 if (SV_CURPROC_FLAG(SV_ILP32)) 2375 ifrup->ifr32.ifr_ifru.ifru_buffer.length = len; 2376 else 2377 #endif 2378 ifrup->ifr.ifr_ifru.ifru_buffer.length = len; 2379 } 2380 2381 void * 2382 ifr_data_get_ptr(void *ifrp) 2383 { 2384 union ifreq_union *ifrup; 2385 2386 ifrup = ifrp; 2387 #ifdef COMPAT_FREEBSD32 2388 if (SV_CURPROC_FLAG(SV_ILP32)) 2389 return ((void *)(uintptr_t) 2390 ifrup->ifr32.ifr_ifru.ifru_data); 2391 #endif 2392 return (ifrup->ifr.ifr_ifru.ifru_data); 2393 } 2394 2395 struct ifcap_nv_bit_name { 2396 int cap_bit; 2397 const char *cap_name; 2398 }; 2399 #define CAPNV(x) {.cap_bit = IFCAP_##x, \ 2400 .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) } 2401 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = { 2402 CAPNV(RXCSUM), 2403 CAPNV(TXCSUM), 2404 CAPNV(NETCONS), 2405 CAPNV(VLAN_MTU), 2406 CAPNV(VLAN_HWTAGGING), 2407 CAPNV(JUMBO_MTU), 2408 CAPNV(POLLING), 2409 CAPNV(VLAN_HWCSUM), 2410 CAPNV(TSO4), 2411 CAPNV(TSO6), 2412 CAPNV(LRO), 2413 CAPNV(WOL_UCAST), 2414 CAPNV(WOL_MCAST), 2415 CAPNV(WOL_MAGIC), 2416 CAPNV(TOE4), 2417 CAPNV(TOE6), 2418 CAPNV(VLAN_HWFILTER), 2419 CAPNV(VLAN_HWTSO), 2420 CAPNV(LINKSTATE), 2421 CAPNV(NETMAP), 2422 CAPNV(RXCSUM_IPV6), 2423 CAPNV(TXCSUM_IPV6), 2424 CAPNV(HWSTATS), 2425 CAPNV(TXRTLMT), 2426 CAPNV(HWRXTSTMP), 2427 CAPNV(MEXTPG), 2428 CAPNV(TXTLS4), 2429 CAPNV(TXTLS6), 2430 CAPNV(VXLAN_HWCSUM), 2431 CAPNV(VXLAN_HWTSO), 2432 CAPNV(TXTLS_RTLMT), 2433 {0, NULL} 2434 }; 2435 #define CAP2NV(x) {.cap_bit = IFCAP2_##x, \ 2436 .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) } 2437 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = { 2438 CAP2NV(RXTLS4), 2439 CAP2NV(RXTLS6), 2440 {0, NULL} 2441 }; 2442 #undef CAPNV 2443 #undef CAP2NV 2444 2445 int 2446 if_capnv_to_capint(const nvlist_t *nv, int *old_cap, 2447 const struct ifcap_nv_bit_name *nn, bool all) 2448 { 2449 int i, res; 2450 2451 res = 0; 2452 for (i = 0; nn[i].cap_name != NULL; i++) { 2453 if (nvlist_exists_bool(nv, nn[i].cap_name)) { 2454 if (all || nvlist_get_bool(nv, nn[i].cap_name)) 2455 res |= nn[i].cap_bit; 2456 } else { 2457 res |= *old_cap & nn[i].cap_bit; 2458 } 2459 } 2460 return (res); 2461 } 2462 2463 void 2464 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn, 2465 int ifr_cap, int ifr_req) 2466 { 2467 int i; 2468 2469 for (i = 0; nn[i].cap_name != NULL; i++) { 2470 if ((nn[i].cap_bit & ifr_cap) != 0) { 2471 nvlist_add_bool(nv, nn[i].cap_name, 2472 (nn[i].cap_bit & ifr_req) != 0); 2473 } 2474 } 2475 } 2476 2477 /* 2478 * Hardware specific interface ioctls. 2479 */ 2480 int 2481 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2482 { 2483 struct ifreq *ifr; 2484 int error = 0, do_ifup = 0; 2485 int new_flags, temp_flags; 2486 size_t namelen, onamelen; 2487 size_t descrlen, nvbuflen; 2488 char *descrbuf, *odescrbuf; 2489 char new_name[IFNAMSIZ]; 2490 char old_name[IFNAMSIZ], strbuf[IFNAMSIZ + 8]; 2491 struct ifaddr *ifa; 2492 struct sockaddr_dl *sdl; 2493 void *buf; 2494 nvlist_t *nvcap; 2495 struct siocsifcapnv_driver_data drv_ioctl_data; 2496 2497 ifr = (struct ifreq *)data; 2498 switch (cmd) { 2499 case SIOCGIFINDEX: 2500 ifr->ifr_index = ifp->if_index; 2501 break; 2502 2503 case SIOCGIFFLAGS: 2504 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2505 ifr->ifr_flags = temp_flags & 0xffff; 2506 ifr->ifr_flagshigh = temp_flags >> 16; 2507 break; 2508 2509 case SIOCGIFCAP: 2510 ifr->ifr_reqcap = ifp->if_capabilities; 2511 ifr->ifr_curcap = ifp->if_capenable; 2512 break; 2513 2514 case SIOCGIFCAPNV: 2515 if ((ifp->if_capabilities & IFCAP_NV) == 0) { 2516 error = EINVAL; 2517 break; 2518 } 2519 buf = NULL; 2520 nvcap = nvlist_create(0); 2521 for (;;) { 2522 if_capint_to_capnv(nvcap, ifcap_nv_bit_names, 2523 ifp->if_capabilities, ifp->if_capenable); 2524 if_capint_to_capnv(nvcap, ifcap2_nv_bit_names, 2525 ifp->if_capabilities2, ifp->if_capenable2); 2526 error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV, 2527 __DECONST(caddr_t, nvcap)); 2528 if (error != 0) { 2529 if_printf(ifp, 2530 "SIOCGIFCAPNV driver mistake: nvlist error %d\n", 2531 error); 2532 break; 2533 } 2534 buf = nvlist_pack(nvcap, &nvbuflen); 2535 if (buf == NULL) { 2536 error = nvlist_error(nvcap); 2537 if (error == 0) 2538 error = EDOOFUS; 2539 break; 2540 } 2541 if (nvbuflen > ifr->ifr_cap_nv.buf_length) { 2542 ifr->ifr_cap_nv.length = nvbuflen; 2543 ifr->ifr_cap_nv.buffer = NULL; 2544 error = EFBIG; 2545 break; 2546 } 2547 ifr->ifr_cap_nv.length = nvbuflen; 2548 error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen); 2549 break; 2550 } 2551 free(buf, M_NVLIST); 2552 nvlist_destroy(nvcap); 2553 break; 2554 2555 case SIOCGIFDATA: 2556 { 2557 struct if_data ifd; 2558 2559 /* Ensure uninitialised padding is not leaked. */ 2560 memset(&ifd, 0, sizeof(ifd)); 2561 2562 if_data_copy(ifp, &ifd); 2563 error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd)); 2564 break; 2565 } 2566 2567 #ifdef MAC 2568 case SIOCGIFMAC: 2569 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2570 break; 2571 #endif 2572 2573 case SIOCGIFMETRIC: 2574 ifr->ifr_metric = ifp->if_metric; 2575 break; 2576 2577 case SIOCGIFMTU: 2578 ifr->ifr_mtu = ifp->if_mtu; 2579 break; 2580 2581 case SIOCGIFPHYS: 2582 /* XXXGL: did this ever worked? */ 2583 ifr->ifr_phys = 0; 2584 break; 2585 2586 case SIOCGIFDESCR: 2587 error = 0; 2588 sx_slock(&ifdescr_sx); 2589 if (ifp->if_description == NULL) 2590 error = ENOMSG; 2591 else { 2592 /* space for terminating nul */ 2593 descrlen = strlen(ifp->if_description) + 1; 2594 if (ifr_buffer_get_length(ifr) < descrlen) 2595 ifr_buffer_set_buffer_null(ifr); 2596 else 2597 error = copyout(ifp->if_description, 2598 ifr_buffer_get_buffer(ifr), descrlen); 2599 ifr_buffer_set_length(ifr, descrlen); 2600 } 2601 sx_sunlock(&ifdescr_sx); 2602 break; 2603 2604 case SIOCSIFDESCR: 2605 error = priv_check(td, PRIV_NET_SETIFDESCR); 2606 if (error) 2607 return (error); 2608 2609 /* 2610 * Copy only (length-1) bytes to make sure that 2611 * if_description is always nul terminated. The 2612 * length parameter is supposed to count the 2613 * terminating nul in. 2614 */ 2615 if (ifr_buffer_get_length(ifr) > ifdescr_maxlen) 2616 return (ENAMETOOLONG); 2617 else if (ifr_buffer_get_length(ifr) == 0) 2618 descrbuf = NULL; 2619 else { 2620 descrbuf = malloc(ifr_buffer_get_length(ifr), 2621 M_IFDESCR, M_WAITOK | M_ZERO); 2622 error = copyin(ifr_buffer_get_buffer(ifr), descrbuf, 2623 ifr_buffer_get_length(ifr) - 1); 2624 if (error) { 2625 free(descrbuf, M_IFDESCR); 2626 break; 2627 } 2628 } 2629 2630 sx_xlock(&ifdescr_sx); 2631 odescrbuf = ifp->if_description; 2632 ifp->if_description = descrbuf; 2633 sx_xunlock(&ifdescr_sx); 2634 2635 getmicrotime(&ifp->if_lastchange); 2636 free(odescrbuf, M_IFDESCR); 2637 break; 2638 2639 case SIOCGIFFIB: 2640 ifr->ifr_fib = ifp->if_fib; 2641 break; 2642 2643 case SIOCSIFFIB: 2644 error = priv_check(td, PRIV_NET_SETIFFIB); 2645 if (error) 2646 return (error); 2647 if (ifr->ifr_fib >= rt_numfibs) 2648 return (EINVAL); 2649 2650 ifp->if_fib = ifr->ifr_fib; 2651 break; 2652 2653 case SIOCSIFFLAGS: 2654 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2655 if (error) 2656 return (error); 2657 /* 2658 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2659 * check, so we don't need special handling here yet. 2660 */ 2661 new_flags = (ifr->ifr_flags & 0xffff) | 2662 (ifr->ifr_flagshigh << 16); 2663 if (ifp->if_flags & IFF_UP && 2664 (new_flags & IFF_UP) == 0) { 2665 if_down(ifp); 2666 } else if (new_flags & IFF_UP && 2667 (ifp->if_flags & IFF_UP) == 0) { 2668 do_ifup = 1; 2669 } 2670 /* See if permanently promiscuous mode bit is about to flip */ 2671 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2672 if (new_flags & IFF_PPROMISC) 2673 ifp->if_flags |= IFF_PROMISC; 2674 else if (ifp->if_pcount == 0) 2675 ifp->if_flags &= ~IFF_PROMISC; 2676 if (log_promisc_mode_change) 2677 if_printf(ifp, "permanently promiscuous mode %s\n", 2678 ((new_flags & IFF_PPROMISC) ? 2679 "enabled" : "disabled")); 2680 } 2681 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2682 (new_flags &~ IFF_CANTCHANGE); 2683 if (ifp->if_ioctl) { 2684 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2685 } 2686 if (do_ifup) 2687 if_up(ifp); 2688 getmicrotime(&ifp->if_lastchange); 2689 break; 2690 2691 case SIOCSIFCAP: 2692 error = priv_check(td, PRIV_NET_SETIFCAP); 2693 if (error != 0) 2694 return (error); 2695 if (ifp->if_ioctl == NULL) 2696 return (EOPNOTSUPP); 2697 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2698 return (EINVAL); 2699 error = (*ifp->if_ioctl)(ifp, cmd, data); 2700 if (error == 0) 2701 getmicrotime(&ifp->if_lastchange); 2702 break; 2703 2704 case SIOCSIFCAPNV: 2705 error = priv_check(td, PRIV_NET_SETIFCAP); 2706 if (error != 0) 2707 return (error); 2708 if (ifp->if_ioctl == NULL) 2709 return (EOPNOTSUPP); 2710 if ((ifp->if_capabilities & IFCAP_NV) == 0) 2711 return (EINVAL); 2712 if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE) 2713 return (EINVAL); 2714 nvcap = NULL; 2715 buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK); 2716 for (;;) { 2717 error = copyin(ifr->ifr_cap_nv.buffer, buf, 2718 ifr->ifr_cap_nv.length); 2719 if (error != 0) 2720 break; 2721 nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0); 2722 if (nvcap == NULL) { 2723 error = EINVAL; 2724 break; 2725 } 2726 drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap, 2727 &ifp->if_capenable, ifcap_nv_bit_names, false); 2728 if ((drv_ioctl_data.reqcap & 2729 ~ifp->if_capabilities) != 0) { 2730 error = EINVAL; 2731 break; 2732 } 2733 drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap, 2734 &ifp->if_capenable2, ifcap2_nv_bit_names, false); 2735 if ((drv_ioctl_data.reqcap2 & 2736 ~ifp->if_capabilities2) != 0) { 2737 error = EINVAL; 2738 break; 2739 } 2740 drv_ioctl_data.nvcap = nvcap; 2741 error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV, 2742 (caddr_t)&drv_ioctl_data); 2743 break; 2744 } 2745 nvlist_destroy(nvcap); 2746 free(buf, M_TEMP); 2747 if (error == 0) 2748 getmicrotime(&ifp->if_lastchange); 2749 break; 2750 2751 #ifdef MAC 2752 case SIOCSIFMAC: 2753 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2754 break; 2755 #endif 2756 2757 case SIOCSIFNAME: 2758 error = priv_check(td, PRIV_NET_SETIFNAME); 2759 if (error) 2760 return (error); 2761 error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ, 2762 NULL); 2763 if (error != 0) 2764 return (error); 2765 if (new_name[0] == '\0') 2766 return (EINVAL); 2767 if (strcmp(new_name, ifp->if_xname) == 0) 2768 break; 2769 if (ifunit(new_name) != NULL) 2770 return (EEXIST); 2771 2772 /* 2773 * XXX: Locking. Nothing else seems to lock if_flags, 2774 * and there are numerous other races with the 2775 * ifunit() checks not being atomic with namespace 2776 * changes (renames, vmoves, if_attach, etc). 2777 */ 2778 ifp->if_flags |= IFF_RENAMING; 2779 2780 /* Announce the departure of the interface. */ 2781 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 2782 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 2783 2784 if_printf(ifp, "changing name to '%s'\n", new_name); 2785 2786 IF_ADDR_WLOCK(ifp); 2787 strlcpy(old_name, ifp->if_xname, sizeof(old_name)); 2788 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 2789 ifa = ifp->if_addr; 2790 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 2791 namelen = strlen(new_name); 2792 onamelen = sdl->sdl_nlen; 2793 /* 2794 * Move the address if needed. This is safe because we 2795 * allocate space for a name of length IFNAMSIZ when we 2796 * create this in if_attach(). 2797 */ 2798 if (namelen != onamelen) { 2799 bcopy(sdl->sdl_data + onamelen, 2800 sdl->sdl_data + namelen, sdl->sdl_alen); 2801 } 2802 bcopy(new_name, sdl->sdl_data, namelen); 2803 sdl->sdl_nlen = namelen; 2804 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 2805 bzero(sdl->sdl_data, onamelen); 2806 while (namelen != 0) 2807 sdl->sdl_data[--namelen] = 0xff; 2808 IF_ADDR_WUNLOCK(ifp); 2809 2810 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 2811 /* Announce the return of the interface. */ 2812 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 2813 2814 ifp->if_flags &= ~IFF_RENAMING; 2815 2816 snprintf(strbuf, sizeof(strbuf), "name=%s", new_name); 2817 devctl_notify("IFNET", old_name, "RENAME", strbuf); 2818 break; 2819 2820 #ifdef VIMAGE 2821 case SIOCSIFVNET: 2822 error = priv_check(td, PRIV_NET_SETIFVNET); 2823 if (error) 2824 return (error); 2825 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2826 break; 2827 #endif 2828 2829 case SIOCSIFMETRIC: 2830 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2831 if (error) 2832 return (error); 2833 ifp->if_metric = ifr->ifr_metric; 2834 getmicrotime(&ifp->if_lastchange); 2835 break; 2836 2837 case SIOCSIFPHYS: 2838 error = priv_check(td, PRIV_NET_SETIFPHYS); 2839 if (error) 2840 return (error); 2841 if (ifp->if_ioctl == NULL) 2842 return (EOPNOTSUPP); 2843 error = (*ifp->if_ioctl)(ifp, cmd, data); 2844 if (error == 0) 2845 getmicrotime(&ifp->if_lastchange); 2846 break; 2847 2848 case SIOCSIFMTU: 2849 { 2850 u_long oldmtu = ifp->if_mtu; 2851 2852 error = priv_check(td, PRIV_NET_SETIFMTU); 2853 if (error) 2854 return (error); 2855 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2856 return (EINVAL); 2857 if (ifp->if_ioctl == NULL) 2858 return (EOPNOTSUPP); 2859 /* Disallow MTU changes on bridge member interfaces. */ 2860 if (ifp->if_bridge) 2861 return (EOPNOTSUPP); 2862 error = (*ifp->if_ioctl)(ifp, cmd, data); 2863 if (error == 0) { 2864 getmicrotime(&ifp->if_lastchange); 2865 rt_ifmsg(ifp); 2866 #ifdef INET 2867 DEBUGNET_NOTIFY_MTU(ifp); 2868 #endif 2869 } 2870 /* 2871 * If the link MTU changed, do network layer specific procedure. 2872 */ 2873 if (ifp->if_mtu != oldmtu) { 2874 #ifdef INET6 2875 nd6_setmtu(ifp); 2876 #endif 2877 rt_updatemtu(ifp); 2878 } 2879 break; 2880 } 2881 2882 case SIOCADDMULTI: 2883 case SIOCDELMULTI: 2884 if (cmd == SIOCADDMULTI) 2885 error = priv_check(td, PRIV_NET_ADDMULTI); 2886 else 2887 error = priv_check(td, PRIV_NET_DELMULTI); 2888 if (error) 2889 return (error); 2890 2891 /* Don't allow group membership on non-multicast interfaces. */ 2892 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2893 return (EOPNOTSUPP); 2894 2895 /* Don't let users screw up protocols' entries. */ 2896 if (ifr->ifr_addr.sa_family != AF_LINK) 2897 return (EINVAL); 2898 2899 if (cmd == SIOCADDMULTI) { 2900 struct epoch_tracker et; 2901 struct ifmultiaddr *ifma; 2902 2903 /* 2904 * Userland is only permitted to join groups once 2905 * via the if_addmulti() KPI, because it cannot hold 2906 * struct ifmultiaddr * between calls. It may also 2907 * lose a race while we check if the membership 2908 * already exists. 2909 */ 2910 NET_EPOCH_ENTER(et); 2911 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2912 NET_EPOCH_EXIT(et); 2913 if (ifma != NULL) 2914 error = EADDRINUSE; 2915 else 2916 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2917 } else { 2918 error = if_delmulti(ifp, &ifr->ifr_addr); 2919 } 2920 if (error == 0) 2921 getmicrotime(&ifp->if_lastchange); 2922 break; 2923 2924 case SIOCSIFPHYADDR: 2925 case SIOCDIFPHYADDR: 2926 #ifdef INET6 2927 case SIOCSIFPHYADDR_IN6: 2928 #endif 2929 case SIOCSIFMEDIA: 2930 case SIOCSIFGENERIC: 2931 error = priv_check(td, PRIV_NET_HWIOCTL); 2932 if (error) 2933 return (error); 2934 if (ifp->if_ioctl == NULL) 2935 return (EOPNOTSUPP); 2936 error = (*ifp->if_ioctl)(ifp, cmd, data); 2937 if (error == 0) 2938 getmicrotime(&ifp->if_lastchange); 2939 break; 2940 2941 case SIOCGIFSTATUS: 2942 case SIOCGIFPSRCADDR: 2943 case SIOCGIFPDSTADDR: 2944 case SIOCGIFMEDIA: 2945 case SIOCGIFXMEDIA: 2946 case SIOCGIFGENERIC: 2947 case SIOCGIFRSSKEY: 2948 case SIOCGIFRSSHASH: 2949 case SIOCGIFDOWNREASON: 2950 if (ifp->if_ioctl == NULL) 2951 return (EOPNOTSUPP); 2952 error = (*ifp->if_ioctl)(ifp, cmd, data); 2953 break; 2954 2955 case SIOCSIFLLADDR: 2956 error = priv_check(td, PRIV_NET_SETLLADDR); 2957 if (error) 2958 return (error); 2959 error = if_setlladdr(ifp, 2960 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2961 break; 2962 2963 case SIOCGHWADDR: 2964 error = if_gethwaddr(ifp, ifr); 2965 break; 2966 2967 case SIOCAIFGROUP: 2968 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2969 if (error) 2970 return (error); 2971 error = if_addgroup(ifp, 2972 ((struct ifgroupreq *)data)->ifgr_group); 2973 if (error != 0) 2974 return (error); 2975 break; 2976 2977 case SIOCGIFGROUP: 2978 { 2979 struct epoch_tracker et; 2980 2981 NET_EPOCH_ENTER(et); 2982 error = if_getgroup((struct ifgroupreq *)data, ifp); 2983 NET_EPOCH_EXIT(et); 2984 break; 2985 } 2986 2987 case SIOCDIFGROUP: 2988 error = priv_check(td, PRIV_NET_DELIFGROUP); 2989 if (error) 2990 return (error); 2991 error = if_delgroup(ifp, 2992 ((struct ifgroupreq *)data)->ifgr_group); 2993 if (error != 0) 2994 return (error); 2995 break; 2996 2997 default: 2998 error = ENOIOCTL; 2999 break; 3000 } 3001 return (error); 3002 } 3003 3004 /* 3005 * Interface ioctls. 3006 */ 3007 int 3008 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 3009 { 3010 #ifdef COMPAT_FREEBSD32 3011 union { 3012 struct ifconf ifc; 3013 struct ifdrv ifd; 3014 struct ifgroupreq ifgr; 3015 struct ifmediareq ifmr; 3016 } thunk; 3017 u_long saved_cmd; 3018 struct ifconf32 *ifc32; 3019 struct ifdrv32 *ifd32; 3020 struct ifgroupreq32 *ifgr32; 3021 struct ifmediareq32 *ifmr32; 3022 #endif 3023 struct ifnet *ifp; 3024 struct ifreq *ifr; 3025 int error; 3026 int oif_flags; 3027 #ifdef VIMAGE 3028 bool shutdown; 3029 #endif 3030 3031 CURVNET_SET(so->so_vnet); 3032 #ifdef VIMAGE 3033 /* Make sure the VNET is stable. */ 3034 shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet); 3035 if (shutdown) { 3036 CURVNET_RESTORE(); 3037 return (EBUSY); 3038 } 3039 #endif 3040 3041 #ifdef COMPAT_FREEBSD32 3042 saved_cmd = cmd; 3043 switch (cmd) { 3044 case SIOCGIFCONF32: 3045 ifc32 = (struct ifconf32 *)data; 3046 thunk.ifc.ifc_len = ifc32->ifc_len; 3047 thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 3048 data = (caddr_t)&thunk.ifc; 3049 cmd = SIOCGIFCONF; 3050 break; 3051 case SIOCGDRVSPEC32: 3052 case SIOCSDRVSPEC32: 3053 ifd32 = (struct ifdrv32 *)data; 3054 memcpy(thunk.ifd.ifd_name, ifd32->ifd_name, 3055 sizeof(thunk.ifd.ifd_name)); 3056 thunk.ifd.ifd_cmd = ifd32->ifd_cmd; 3057 thunk.ifd.ifd_len = ifd32->ifd_len; 3058 thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data); 3059 data = (caddr_t)&thunk.ifd; 3060 cmd = _IOC_NEWTYPE(cmd, struct ifdrv); 3061 break; 3062 case SIOCAIFGROUP32: 3063 case SIOCGIFGROUP32: 3064 case SIOCDIFGROUP32: 3065 case SIOCGIFGMEMB32: 3066 ifgr32 = (struct ifgroupreq32 *)data; 3067 memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name, 3068 sizeof(thunk.ifgr.ifgr_name)); 3069 thunk.ifgr.ifgr_len = ifgr32->ifgr_len; 3070 switch (cmd) { 3071 case SIOCAIFGROUP32: 3072 case SIOCDIFGROUP32: 3073 memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group, 3074 sizeof(thunk.ifgr.ifgr_group)); 3075 break; 3076 case SIOCGIFGROUP32: 3077 case SIOCGIFGMEMB32: 3078 thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups); 3079 break; 3080 } 3081 data = (caddr_t)&thunk.ifgr; 3082 cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq); 3083 break; 3084 case SIOCGIFMEDIA32: 3085 case SIOCGIFXMEDIA32: 3086 ifmr32 = (struct ifmediareq32 *)data; 3087 memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name, 3088 sizeof(thunk.ifmr.ifm_name)); 3089 thunk.ifmr.ifm_current = ifmr32->ifm_current; 3090 thunk.ifmr.ifm_mask = ifmr32->ifm_mask; 3091 thunk.ifmr.ifm_status = ifmr32->ifm_status; 3092 thunk.ifmr.ifm_active = ifmr32->ifm_active; 3093 thunk.ifmr.ifm_count = ifmr32->ifm_count; 3094 thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist); 3095 data = (caddr_t)&thunk.ifmr; 3096 cmd = _IOC_NEWTYPE(cmd, struct ifmediareq); 3097 break; 3098 } 3099 #endif 3100 3101 switch (cmd) { 3102 case SIOCGIFCONF: 3103 error = ifconf(cmd, data); 3104 goto out_noref; 3105 } 3106 3107 ifr = (struct ifreq *)data; 3108 switch (cmd) { 3109 #ifdef VIMAGE 3110 case SIOCSIFRVNET: 3111 error = priv_check(td, PRIV_NET_SETIFVNET); 3112 if (error == 0) 3113 error = if_vmove_reclaim(td, ifr->ifr_name, 3114 ifr->ifr_jid); 3115 goto out_noref; 3116 #endif 3117 case SIOCIFCREATE: 3118 case SIOCIFCREATE2: 3119 error = priv_check(td, PRIV_NET_IFCREATE); 3120 if (error == 0) 3121 error = if_clone_create(ifr->ifr_name, 3122 sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? 3123 ifr_data_get_ptr(ifr) : NULL); 3124 goto out_noref; 3125 case SIOCIFDESTROY: 3126 error = priv_check(td, PRIV_NET_IFDESTROY); 3127 3128 if (error == 0) { 3129 sx_xlock(&ifnet_detach_sxlock); 3130 error = if_clone_destroy(ifr->ifr_name); 3131 sx_xunlock(&ifnet_detach_sxlock); 3132 } 3133 goto out_noref; 3134 3135 case SIOCIFGCLONERS: 3136 error = if_clone_list((struct if_clonereq *)data); 3137 goto out_noref; 3138 3139 case SIOCGIFGMEMB: 3140 error = if_getgroupmembers((struct ifgroupreq *)data); 3141 goto out_noref; 3142 3143 #if defined(INET) || defined(INET6) 3144 case SIOCSVH: 3145 case SIOCGVH: 3146 if (carp_ioctl_p == NULL) 3147 error = EPROTONOSUPPORT; 3148 else 3149 error = (*carp_ioctl_p)(ifr, cmd, td); 3150 goto out_noref; 3151 #endif 3152 } 3153 3154 ifp = ifunit_ref(ifr->ifr_name); 3155 if (ifp == NULL) { 3156 error = ENXIO; 3157 goto out_noref; 3158 } 3159 3160 error = ifhwioctl(cmd, ifp, data, td); 3161 if (error != ENOIOCTL) 3162 goto out_ref; 3163 3164 oif_flags = ifp->if_flags; 3165 if (so->so_proto == NULL) { 3166 error = EOPNOTSUPP; 3167 goto out_ref; 3168 } 3169 3170 /* 3171 * Pass the request on to the socket control method, and if the 3172 * latter returns EOPNOTSUPP, directly to the interface. 3173 * 3174 * Make an exception for the legacy SIOCSIF* requests. Drivers 3175 * trust SIOCSIFADDR et al to come from an already privileged 3176 * layer, and do not perform any credentials checks or input 3177 * validation. 3178 */ 3179 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, 3180 ifp, td)); 3181 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 3182 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 3183 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 3184 error = (*ifp->if_ioctl)(ifp, cmd, data); 3185 3186 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 3187 #ifdef INET6 3188 if (ifp->if_flags & IFF_UP) 3189 in6_if_up(ifp); 3190 #endif 3191 } 3192 3193 out_ref: 3194 if_rele(ifp); 3195 out_noref: 3196 CURVNET_RESTORE(); 3197 #ifdef COMPAT_FREEBSD32 3198 if (error != 0) 3199 return (error); 3200 switch (saved_cmd) { 3201 case SIOCGIFCONF32: 3202 ifc32->ifc_len = thunk.ifc.ifc_len; 3203 break; 3204 case SIOCGDRVSPEC32: 3205 /* 3206 * SIOCGDRVSPEC is IOWR, but nothing actually touches 3207 * the struct so just assert that ifd_len (the only 3208 * field it might make sense to update) hasn't 3209 * changed. 3210 */ 3211 KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len, 3212 ("ifd_len was updated %u -> %zu", ifd32->ifd_len, 3213 thunk.ifd.ifd_len)); 3214 break; 3215 case SIOCGIFGROUP32: 3216 case SIOCGIFGMEMB32: 3217 ifgr32->ifgr_len = thunk.ifgr.ifgr_len; 3218 break; 3219 case SIOCGIFMEDIA32: 3220 case SIOCGIFXMEDIA32: 3221 ifmr32->ifm_current = thunk.ifmr.ifm_current; 3222 ifmr32->ifm_mask = thunk.ifmr.ifm_mask; 3223 ifmr32->ifm_status = thunk.ifmr.ifm_status; 3224 ifmr32->ifm_active = thunk.ifmr.ifm_active; 3225 ifmr32->ifm_count = thunk.ifmr.ifm_count; 3226 break; 3227 } 3228 #endif 3229 return (error); 3230 } 3231 3232 /* 3233 * The code common to handling reference counted flags, 3234 * e.g., in ifpromisc() and if_allmulti(). 3235 * The "pflag" argument can specify a permanent mode flag to check, 3236 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 3237 * 3238 * Only to be used on stack-owned flags, not driver-owned flags. 3239 */ 3240 static int 3241 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 3242 { 3243 struct ifreq ifr; 3244 int error; 3245 int oldflags, oldcount; 3246 3247 /* Sanity checks to catch programming errors */ 3248 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 3249 ("%s: setting driver-owned flag %d", __func__, flag)); 3250 3251 if (onswitch) 3252 KASSERT(*refcount >= 0, 3253 ("%s: increment negative refcount %d for flag %d", 3254 __func__, *refcount, flag)); 3255 else 3256 KASSERT(*refcount > 0, 3257 ("%s: decrement non-positive refcount %d for flag %d", 3258 __func__, *refcount, flag)); 3259 3260 /* In case this mode is permanent, just touch refcount */ 3261 if (ifp->if_flags & pflag) { 3262 *refcount += onswitch ? 1 : -1; 3263 return (0); 3264 } 3265 3266 /* Save ifnet parameters for if_ioctl() may fail */ 3267 oldcount = *refcount; 3268 oldflags = ifp->if_flags; 3269 3270 /* 3271 * See if we aren't the only and touching refcount is enough. 3272 * Actually toggle interface flag if we are the first or last. 3273 */ 3274 if (onswitch) { 3275 if ((*refcount)++) 3276 return (0); 3277 ifp->if_flags |= flag; 3278 } else { 3279 if (--(*refcount)) 3280 return (0); 3281 ifp->if_flags &= ~flag; 3282 } 3283 3284 /* Call down the driver since we've changed interface flags */ 3285 if (ifp->if_ioctl == NULL) { 3286 error = EOPNOTSUPP; 3287 goto recover; 3288 } 3289 ifr.ifr_flags = ifp->if_flags & 0xffff; 3290 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3291 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3292 if (error) 3293 goto recover; 3294 /* Notify userland that interface flags have changed */ 3295 rt_ifmsg(ifp); 3296 return (0); 3297 3298 recover: 3299 /* Recover after driver error */ 3300 *refcount = oldcount; 3301 ifp->if_flags = oldflags; 3302 return (error); 3303 } 3304 3305 /* 3306 * Set/clear promiscuous mode on interface ifp based on the truth value 3307 * of pswitch. The calls are reference counted so that only the first 3308 * "on" request actually has an effect, as does the final "off" request. 3309 * Results are undefined if the "off" and "on" requests are not matched. 3310 */ 3311 int 3312 ifpromisc(struct ifnet *ifp, int pswitch) 3313 { 3314 int error; 3315 int oldflags = ifp->if_flags; 3316 3317 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 3318 &ifp->if_pcount, pswitch); 3319 /* If promiscuous mode status has changed, log a message */ 3320 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) && 3321 log_promisc_mode_change) 3322 if_printf(ifp, "promiscuous mode %s\n", 3323 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 3324 return (error); 3325 } 3326 3327 /* 3328 * Return interface configuration 3329 * of system. List may be used 3330 * in later ioctl's (above) to get 3331 * other information. 3332 */ 3333 /*ARGSUSED*/ 3334 static int 3335 ifconf(u_long cmd, caddr_t data) 3336 { 3337 struct ifconf *ifc = (struct ifconf *)data; 3338 struct ifnet *ifp; 3339 struct ifaddr *ifa; 3340 struct ifreq ifr; 3341 struct sbuf *sb; 3342 int error, full = 0, valid_len, max_len; 3343 3344 /* Limit initial buffer size to maxphys to avoid DoS from userspace. */ 3345 max_len = maxphys - 1; 3346 3347 /* Prevent hostile input from being able to crash the system */ 3348 if (ifc->ifc_len <= 0) 3349 return (EINVAL); 3350 3351 again: 3352 if (ifc->ifc_len <= max_len) { 3353 max_len = ifc->ifc_len; 3354 full = 1; 3355 } 3356 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 3357 max_len = 0; 3358 valid_len = 0; 3359 3360 IFNET_RLOCK(); 3361 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 3362 struct epoch_tracker et; 3363 int addrs; 3364 3365 /* 3366 * Zero the ifr to make sure we don't disclose the contents 3367 * of the stack. 3368 */ 3369 memset(&ifr, 0, sizeof(ifr)); 3370 3371 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 3372 >= sizeof(ifr.ifr_name)) { 3373 sbuf_delete(sb); 3374 IFNET_RUNLOCK(); 3375 return (ENAMETOOLONG); 3376 } 3377 3378 addrs = 0; 3379 NET_EPOCH_ENTER(et); 3380 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3381 struct sockaddr *sa = ifa->ifa_addr; 3382 3383 if (prison_if(curthread->td_ucred, sa) != 0) 3384 continue; 3385 addrs++; 3386 if (sa->sa_len <= sizeof(*sa)) { 3387 if (sa->sa_len < sizeof(*sa)) { 3388 memset(&ifr.ifr_ifru.ifru_addr, 0, 3389 sizeof(ifr.ifr_ifru.ifru_addr)); 3390 memcpy(&ifr.ifr_ifru.ifru_addr, sa, 3391 sa->sa_len); 3392 } else 3393 ifr.ifr_ifru.ifru_addr = *sa; 3394 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3395 max_len += sizeof(ifr); 3396 } else { 3397 sbuf_bcat(sb, &ifr, 3398 offsetof(struct ifreq, ifr_addr)); 3399 max_len += offsetof(struct ifreq, ifr_addr); 3400 sbuf_bcat(sb, sa, sa->sa_len); 3401 max_len += sa->sa_len; 3402 } 3403 3404 if (sbuf_error(sb) == 0) 3405 valid_len = sbuf_len(sb); 3406 } 3407 NET_EPOCH_EXIT(et); 3408 if (addrs == 0) { 3409 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3410 max_len += sizeof(ifr); 3411 3412 if (sbuf_error(sb) == 0) 3413 valid_len = sbuf_len(sb); 3414 } 3415 } 3416 IFNET_RUNLOCK(); 3417 3418 /* 3419 * If we didn't allocate enough space (uncommon), try again. If 3420 * we have already allocated as much space as we are allowed, 3421 * return what we've got. 3422 */ 3423 if (valid_len != max_len && !full) { 3424 sbuf_delete(sb); 3425 goto again; 3426 } 3427 3428 ifc->ifc_len = valid_len; 3429 sbuf_finish(sb); 3430 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 3431 sbuf_delete(sb); 3432 return (error); 3433 } 3434 3435 /* 3436 * Just like ifpromisc(), but for all-multicast-reception mode. 3437 */ 3438 int 3439 if_allmulti(struct ifnet *ifp, int onswitch) 3440 { 3441 3442 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 3443 } 3444 3445 struct ifmultiaddr * 3446 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) 3447 { 3448 struct ifmultiaddr *ifma; 3449 3450 IF_ADDR_LOCK_ASSERT(ifp); 3451 3452 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3453 if (sa->sa_family == AF_LINK) { 3454 if (sa_dl_equal(ifma->ifma_addr, sa)) 3455 break; 3456 } else { 3457 if (sa_equal(ifma->ifma_addr, sa)) 3458 break; 3459 } 3460 } 3461 3462 return ifma; 3463 } 3464 3465 /* 3466 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 3467 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 3468 * the ifnet multicast address list here, so the caller must do that and 3469 * other setup work (such as notifying the device driver). The reference 3470 * count is initialized to 1. 3471 */ 3472 static struct ifmultiaddr * 3473 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 3474 int mflags) 3475 { 3476 struct ifmultiaddr *ifma; 3477 struct sockaddr *dupsa; 3478 3479 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3480 M_ZERO); 3481 if (ifma == NULL) 3482 return (NULL); 3483 3484 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3485 if (dupsa == NULL) { 3486 free(ifma, M_IFMADDR); 3487 return (NULL); 3488 } 3489 bcopy(sa, dupsa, sa->sa_len); 3490 ifma->ifma_addr = dupsa; 3491 3492 ifma->ifma_ifp = ifp; 3493 ifma->ifma_refcount = 1; 3494 ifma->ifma_protospec = NULL; 3495 3496 if (llsa == NULL) { 3497 ifma->ifma_lladdr = NULL; 3498 return (ifma); 3499 } 3500 3501 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3502 if (dupsa == NULL) { 3503 free(ifma->ifma_addr, M_IFMADDR); 3504 free(ifma, M_IFMADDR); 3505 return (NULL); 3506 } 3507 bcopy(llsa, dupsa, llsa->sa_len); 3508 ifma->ifma_lladdr = dupsa; 3509 3510 return (ifma); 3511 } 3512 3513 /* 3514 * if_freemulti: free ifmultiaddr structure and possibly attached related 3515 * addresses. The caller is responsible for implementing reference 3516 * counting, notifying the driver, handling routing messages, and releasing 3517 * any dependent link layer state. 3518 */ 3519 #ifdef MCAST_VERBOSE 3520 extern void kdb_backtrace(void); 3521 #endif 3522 static void 3523 if_freemulti_internal(struct ifmultiaddr *ifma) 3524 { 3525 3526 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3527 ifma->ifma_refcount)); 3528 3529 if (ifma->ifma_lladdr != NULL) 3530 free(ifma->ifma_lladdr, M_IFMADDR); 3531 #ifdef MCAST_VERBOSE 3532 kdb_backtrace(); 3533 printf("%s freeing ifma: %p\n", __func__, ifma); 3534 #endif 3535 free(ifma->ifma_addr, M_IFMADDR); 3536 free(ifma, M_IFMADDR); 3537 } 3538 3539 static void 3540 if_destroymulti(epoch_context_t ctx) 3541 { 3542 struct ifmultiaddr *ifma; 3543 3544 ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx); 3545 if_freemulti_internal(ifma); 3546 } 3547 3548 void 3549 if_freemulti(struct ifmultiaddr *ifma) 3550 { 3551 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d", 3552 ifma->ifma_refcount)); 3553 3554 NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx); 3555 } 3556 3557 /* 3558 * Register an additional multicast address with a network interface. 3559 * 3560 * - If the address is already present, bump the reference count on the 3561 * address and return. 3562 * - If the address is not link-layer, look up a link layer address. 3563 * - Allocate address structures for one or both addresses, and attach to the 3564 * multicast address list on the interface. If automatically adding a link 3565 * layer address, the protocol address will own a reference to the link 3566 * layer address, to be freed when it is freed. 3567 * - Notify the network device driver of an addition to the multicast address 3568 * list. 3569 * 3570 * 'sa' points to caller-owned memory with the desired multicast address. 3571 * 3572 * 'retifma' will be used to return a pointer to the resulting multicast 3573 * address reference, if desired. 3574 */ 3575 int 3576 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3577 struct ifmultiaddr **retifma) 3578 { 3579 struct ifmultiaddr *ifma, *ll_ifma; 3580 struct sockaddr *llsa; 3581 struct sockaddr_dl sdl; 3582 int error; 3583 3584 #ifdef INET 3585 IN_MULTI_LIST_UNLOCK_ASSERT(); 3586 #endif 3587 #ifdef INET6 3588 IN6_MULTI_LIST_UNLOCK_ASSERT(); 3589 #endif 3590 /* 3591 * If the address is already present, return a new reference to it; 3592 * otherwise, allocate storage and set up a new address. 3593 */ 3594 IF_ADDR_WLOCK(ifp); 3595 ifma = if_findmulti(ifp, sa); 3596 if (ifma != NULL) { 3597 ifma->ifma_refcount++; 3598 if (retifma != NULL) 3599 *retifma = ifma; 3600 IF_ADDR_WUNLOCK(ifp); 3601 return (0); 3602 } 3603 3604 /* 3605 * The address isn't already present; resolve the protocol address 3606 * into a link layer address, and then look that up, bump its 3607 * refcount or allocate an ifma for that also. 3608 * Most link layer resolving functions returns address data which 3609 * fits inside default sockaddr_dl structure. However callback 3610 * can allocate another sockaddr structure, in that case we need to 3611 * free it later. 3612 */ 3613 llsa = NULL; 3614 ll_ifma = NULL; 3615 if (ifp->if_resolvemulti != NULL) { 3616 /* Provide called function with buffer size information */ 3617 sdl.sdl_len = sizeof(sdl); 3618 llsa = (struct sockaddr *)&sdl; 3619 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3620 if (error) 3621 goto unlock_out; 3622 } 3623 3624 /* 3625 * Allocate the new address. Don't hook it up yet, as we may also 3626 * need to allocate a link layer multicast address. 3627 */ 3628 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3629 if (ifma == NULL) { 3630 error = ENOMEM; 3631 goto free_llsa_out; 3632 } 3633 3634 /* 3635 * If a link layer address is found, we'll need to see if it's 3636 * already present in the address list, or allocate is as well. 3637 * When this block finishes, the link layer address will be on the 3638 * list. 3639 */ 3640 if (llsa != NULL) { 3641 ll_ifma = if_findmulti(ifp, llsa); 3642 if (ll_ifma == NULL) { 3643 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3644 if (ll_ifma == NULL) { 3645 --ifma->ifma_refcount; 3646 if_freemulti(ifma); 3647 error = ENOMEM; 3648 goto free_llsa_out; 3649 } 3650 ll_ifma->ifma_flags |= IFMA_F_ENQUEUED; 3651 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3652 ifma_link); 3653 } else 3654 ll_ifma->ifma_refcount++; 3655 ifma->ifma_llifma = ll_ifma; 3656 } 3657 3658 /* 3659 * We now have a new multicast address, ifma, and possibly a new or 3660 * referenced link layer address. Add the primary address to the 3661 * ifnet address list. 3662 */ 3663 ifma->ifma_flags |= IFMA_F_ENQUEUED; 3664 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3665 3666 if (retifma != NULL) 3667 *retifma = ifma; 3668 3669 /* 3670 * Must generate the message while holding the lock so that 'ifma' 3671 * pointer is still valid. 3672 */ 3673 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3674 IF_ADDR_WUNLOCK(ifp); 3675 3676 /* 3677 * We are certain we have added something, so call down to the 3678 * interface to let them know about it. 3679 */ 3680 if (ifp->if_ioctl != NULL) { 3681 if (THREAD_CAN_SLEEP()) 3682 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3683 else 3684 taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask); 3685 } 3686 3687 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3688 link_free_sdl(llsa); 3689 3690 return (0); 3691 3692 free_llsa_out: 3693 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3694 link_free_sdl(llsa); 3695 3696 unlock_out: 3697 IF_ADDR_WUNLOCK(ifp); 3698 return (error); 3699 } 3700 3701 static void 3702 if_siocaddmulti(void *arg, int pending) 3703 { 3704 struct ifnet *ifp; 3705 3706 ifp = arg; 3707 #ifdef DIAGNOSTIC 3708 if (pending > 1) 3709 if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending); 3710 #endif 3711 CURVNET_SET(ifp->if_vnet); 3712 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3713 CURVNET_RESTORE(); 3714 } 3715 3716 /* 3717 * Delete a multicast group membership by network-layer group address. 3718 * 3719 * Returns ENOENT if the entry could not be found. If ifp no longer 3720 * exists, results are undefined. This entry point should only be used 3721 * from subsystems which do appropriate locking to hold ifp for the 3722 * duration of the call. 3723 * Network-layer protocol domains must use if_delmulti_ifma(). 3724 */ 3725 int 3726 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3727 { 3728 struct ifmultiaddr *ifma; 3729 int lastref; 3730 3731 KASSERT(ifp, ("%s: NULL ifp", __func__)); 3732 3733 IF_ADDR_WLOCK(ifp); 3734 lastref = 0; 3735 ifma = if_findmulti(ifp, sa); 3736 if (ifma != NULL) 3737 lastref = if_delmulti_locked(ifp, ifma, 0); 3738 IF_ADDR_WUNLOCK(ifp); 3739 3740 if (ifma == NULL) 3741 return (ENOENT); 3742 3743 if (lastref && ifp->if_ioctl != NULL) { 3744 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3745 } 3746 3747 return (0); 3748 } 3749 3750 /* 3751 * Delete all multicast group membership for an interface. 3752 * Should be used to quickly flush all multicast filters. 3753 */ 3754 void 3755 if_delallmulti(struct ifnet *ifp) 3756 { 3757 struct ifmultiaddr *ifma; 3758 struct ifmultiaddr *next; 3759 3760 IF_ADDR_WLOCK(ifp); 3761 CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3762 if_delmulti_locked(ifp, ifma, 0); 3763 IF_ADDR_WUNLOCK(ifp); 3764 } 3765 3766 void 3767 if_delmulti_ifma(struct ifmultiaddr *ifma) 3768 { 3769 if_delmulti_ifma_flags(ifma, 0); 3770 } 3771 3772 /* 3773 * Delete a multicast group membership by group membership pointer. 3774 * Network-layer protocol domains must use this routine. 3775 * 3776 * It is safe to call this routine if the ifp disappeared. 3777 */ 3778 void 3779 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags) 3780 { 3781 struct ifnet *ifp; 3782 int lastref; 3783 MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma); 3784 #ifdef INET 3785 IN_MULTI_LIST_UNLOCK_ASSERT(); 3786 #endif 3787 ifp = ifma->ifma_ifp; 3788 #ifdef DIAGNOSTIC 3789 if (ifp == NULL) { 3790 printf("%s: ifma_ifp seems to be detached\n", __func__); 3791 } else { 3792 struct epoch_tracker et; 3793 struct ifnet *oifp; 3794 3795 NET_EPOCH_ENTER(et); 3796 CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link) 3797 if (ifp == oifp) 3798 break; 3799 NET_EPOCH_EXIT(et); 3800 if (ifp != oifp) 3801 ifp = NULL; 3802 } 3803 #endif 3804 /* 3805 * If and only if the ifnet instance exists: Acquire the address lock. 3806 */ 3807 if (ifp != NULL) 3808 IF_ADDR_WLOCK(ifp); 3809 3810 lastref = if_delmulti_locked(ifp, ifma, flags); 3811 3812 if (ifp != NULL) { 3813 /* 3814 * If and only if the ifnet instance exists: 3815 * Release the address lock. 3816 * If the group was left: update the hardware hash filter. 3817 */ 3818 IF_ADDR_WUNLOCK(ifp); 3819 if (lastref && ifp->if_ioctl != NULL) { 3820 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3821 } 3822 } 3823 } 3824 3825 /* 3826 * Perform deletion of network-layer and/or link-layer multicast address. 3827 * 3828 * Return 0 if the reference count was decremented. 3829 * Return 1 if the final reference was released, indicating that the 3830 * hardware hash filter should be reprogrammed. 3831 */ 3832 static int 3833 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3834 { 3835 struct ifmultiaddr *ll_ifma; 3836 3837 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3838 KASSERT(ifma->ifma_ifp == ifp, 3839 ("%s: inconsistent ifp %p", __func__, ifp)); 3840 IF_ADDR_WLOCK_ASSERT(ifp); 3841 } 3842 3843 ifp = ifma->ifma_ifp; 3844 MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : ""); 3845 3846 /* 3847 * If the ifnet is detaching, null out references to ifnet, 3848 * so that upper protocol layers will notice, and not attempt 3849 * to obtain locks for an ifnet which no longer exists. The 3850 * routing socket announcement must happen before the ifnet 3851 * instance is detached from the system. 3852 */ 3853 if (detaching) { 3854 #ifdef DIAGNOSTIC 3855 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3856 #endif 3857 /* 3858 * ifp may already be nulled out if we are being reentered 3859 * to delete the ll_ifma. 3860 */ 3861 if (ifp != NULL) { 3862 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3863 ifma->ifma_ifp = NULL; 3864 } 3865 } 3866 3867 if (--ifma->ifma_refcount > 0) 3868 return 0; 3869 3870 if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) { 3871 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 3872 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3873 } 3874 /* 3875 * If this ifma is a network-layer ifma, a link-layer ifma may 3876 * have been associated with it. Release it first if so. 3877 */ 3878 ll_ifma = ifma->ifma_llifma; 3879 if (ll_ifma != NULL) { 3880 KASSERT(ifma->ifma_lladdr != NULL, 3881 ("%s: llifma w/o lladdr", __func__)); 3882 if (detaching) 3883 ll_ifma->ifma_ifp = NULL; /* XXX */ 3884 if (--ll_ifma->ifma_refcount == 0) { 3885 if (ifp != NULL) { 3886 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 3887 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, 3888 ifma_link); 3889 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3890 } 3891 } 3892 if_freemulti(ll_ifma); 3893 } 3894 } 3895 #ifdef INVARIANTS 3896 if (ifp) { 3897 struct ifmultiaddr *ifmatmp; 3898 3899 CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link) 3900 MPASS(ifma != ifmatmp); 3901 } 3902 #endif 3903 if_freemulti(ifma); 3904 /* 3905 * The last reference to this instance of struct ifmultiaddr 3906 * was released; the hardware should be notified of this change. 3907 */ 3908 return 1; 3909 } 3910 3911 /* 3912 * Set the link layer address on an interface. 3913 * 3914 * At this time we only support certain types of interfaces, 3915 * and we don't allow the length of the address to change. 3916 * 3917 * Set noinline to be dtrace-friendly 3918 */ 3919 __noinline int 3920 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3921 { 3922 struct sockaddr_dl *sdl; 3923 struct ifaddr *ifa; 3924 struct ifreq ifr; 3925 3926 ifa = ifp->if_addr; 3927 if (ifa == NULL) 3928 return (EINVAL); 3929 3930 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3931 if (sdl == NULL) 3932 return (EINVAL); 3933 3934 if (len != sdl->sdl_alen) /* don't allow length to change */ 3935 return (EINVAL); 3936 3937 switch (ifp->if_type) { 3938 case IFT_ETHER: 3939 case IFT_XETHER: 3940 case IFT_L2VLAN: 3941 case IFT_BRIDGE: 3942 case IFT_IEEE8023ADLAG: 3943 bcopy(lladdr, LLADDR(sdl), len); 3944 break; 3945 default: 3946 return (ENODEV); 3947 } 3948 3949 /* 3950 * If the interface is already up, we need 3951 * to re-init it in order to reprogram its 3952 * address filter. 3953 */ 3954 if ((ifp->if_flags & IFF_UP) != 0) { 3955 if (ifp->if_ioctl) { 3956 ifp->if_flags &= ~IFF_UP; 3957 ifr.ifr_flags = ifp->if_flags & 0xffff; 3958 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3959 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3960 ifp->if_flags |= IFF_UP; 3961 ifr.ifr_flags = ifp->if_flags & 0xffff; 3962 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3963 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3964 } 3965 } 3966 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 3967 3968 return (0); 3969 } 3970 3971 /* 3972 * Compat function for handling basic encapsulation requests. 3973 * Not converted stacks (FDDI, IB, ..) supports traditional 3974 * output model: ARP (and other similar L2 protocols) are handled 3975 * inside output routine, arpresolve/nd6_resolve() returns MAC 3976 * address instead of full prepend. 3977 * 3978 * This function creates calculated header==MAC for IPv4/IPv6 and 3979 * returns EAFNOSUPPORT (which is then handled in ARP code) for other 3980 * address families. 3981 */ 3982 static int 3983 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) 3984 { 3985 3986 if (req->rtype != IFENCAP_LL) 3987 return (EOPNOTSUPP); 3988 3989 if (req->bufsize < req->lladdr_len) 3990 return (ENOMEM); 3991 3992 switch (req->family) { 3993 case AF_INET: 3994 case AF_INET6: 3995 break; 3996 default: 3997 return (EAFNOSUPPORT); 3998 } 3999 4000 /* Copy lladdr to storage as is */ 4001 memmove(req->buf, req->lladdr, req->lladdr_len); 4002 req->bufsize = req->lladdr_len; 4003 req->lladdr_off = 0; 4004 4005 return (0); 4006 } 4007 4008 /* 4009 * Tunnel interfaces can nest, also they may cause infinite recursion 4010 * calls when misconfigured. We'll prevent this by detecting loops. 4011 * High nesting level may cause stack exhaustion. We'll prevent this 4012 * by introducing upper limit. 4013 * 4014 * Return 0, if tunnel nesting count is equal or less than limit. 4015 */ 4016 int 4017 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie, 4018 int limit) 4019 { 4020 struct m_tag *mtag; 4021 int count; 4022 4023 count = 1; 4024 mtag = NULL; 4025 while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) { 4026 if (*(struct ifnet **)(mtag + 1) == ifp) { 4027 log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp)); 4028 return (EIO); 4029 } 4030 count++; 4031 } 4032 if (count > limit) { 4033 log(LOG_NOTICE, 4034 "%s: if_output recursively called too many times(%d)\n", 4035 if_name(ifp), count); 4036 return (EIO); 4037 } 4038 mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT); 4039 if (mtag == NULL) 4040 return (ENOMEM); 4041 *(struct ifnet **)(mtag + 1) = ifp; 4042 m_tag_prepend(m, mtag); 4043 return (0); 4044 } 4045 4046 /* 4047 * Get the link layer address that was read from the hardware at attach. 4048 * 4049 * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type 4050 * their component interfaces as IFT_IEEE8023ADLAG. 4051 */ 4052 int 4053 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr) 4054 { 4055 4056 if (ifp->if_hw_addr == NULL) 4057 return (ENODEV); 4058 4059 switch (ifp->if_type) { 4060 case IFT_ETHER: 4061 case IFT_IEEE8023ADLAG: 4062 bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen); 4063 return (0); 4064 default: 4065 return (ENODEV); 4066 } 4067 } 4068 4069 /* 4070 * The name argument must be a pointer to storage which will last as 4071 * long as the interface does. For physical devices, the result of 4072 * device_get_name(dev) is a good choice and for pseudo-devices a 4073 * static string works well. 4074 */ 4075 void 4076 if_initname(struct ifnet *ifp, const char *name, int unit) 4077 { 4078 ifp->if_dname = name; 4079 ifp->if_dunit = unit; 4080 if (unit != IF_DUNIT_NONE) 4081 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 4082 else 4083 strlcpy(ifp->if_xname, name, IFNAMSIZ); 4084 } 4085 4086 static int 4087 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap) 4088 { 4089 char if_fmt[256]; 4090 4091 snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt); 4092 vlog(pri, if_fmt, ap); 4093 return (0); 4094 } 4095 4096 4097 int 4098 if_printf(struct ifnet *ifp, const char *fmt, ...) 4099 { 4100 va_list ap; 4101 4102 va_start(ap, fmt); 4103 if_vlog(ifp, LOG_INFO, fmt, ap); 4104 va_end(ap); 4105 return (0); 4106 } 4107 4108 int 4109 if_log(struct ifnet *ifp, int pri, const char *fmt, ...) 4110 { 4111 va_list ap; 4112 4113 va_start(ap, fmt); 4114 if_vlog(ifp, pri, fmt, ap); 4115 va_end(ap); 4116 return (0); 4117 } 4118 4119 void 4120 if_start(struct ifnet *ifp) 4121 { 4122 4123 (*(ifp)->if_start)(ifp); 4124 } 4125 4126 /* 4127 * Backwards compatibility interface for drivers 4128 * that have not implemented it 4129 */ 4130 static int 4131 if_transmit(struct ifnet *ifp, struct mbuf *m) 4132 { 4133 int error; 4134 4135 IFQ_HANDOFF(ifp, m, error); 4136 return (error); 4137 } 4138 4139 static void 4140 if_input_default(struct ifnet *ifp __unused, struct mbuf *m) 4141 { 4142 4143 m_freem(m); 4144 } 4145 4146 int 4147 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 4148 { 4149 int active = 0; 4150 4151 IF_LOCK(ifq); 4152 if (_IF_QFULL(ifq)) { 4153 IF_UNLOCK(ifq); 4154 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 4155 m_freem(m); 4156 return (0); 4157 } 4158 if (ifp != NULL) { 4159 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 4160 if (m->m_flags & (M_BCAST|M_MCAST)) 4161 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4162 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 4163 } 4164 _IF_ENQUEUE(ifq, m); 4165 IF_UNLOCK(ifq); 4166 if (ifp != NULL && !active) 4167 (*(ifp)->if_start)(ifp); 4168 return (1); 4169 } 4170 4171 void 4172 if_register_com_alloc(u_char type, 4173 if_com_alloc_t *a, if_com_free_t *f) 4174 { 4175 4176 KASSERT(if_com_alloc[type] == NULL, 4177 ("if_register_com_alloc: %d already registered", type)); 4178 KASSERT(if_com_free[type] == NULL, 4179 ("if_register_com_alloc: %d free already registered", type)); 4180 4181 if_com_alloc[type] = a; 4182 if_com_free[type] = f; 4183 } 4184 4185 void 4186 if_deregister_com_alloc(u_char type) 4187 { 4188 4189 KASSERT(if_com_alloc[type] != NULL, 4190 ("if_deregister_com_alloc: %d not registered", type)); 4191 KASSERT(if_com_free[type] != NULL, 4192 ("if_deregister_com_alloc: %d free not registered", type)); 4193 4194 /* 4195 * Ensure all pending EPOCH(9) callbacks have been executed. This 4196 * fixes issues about late invocation of if_destroy(), which leads 4197 * to memory leak from if_com_alloc[type] allocated if_l2com. 4198 */ 4199 epoch_drain_callbacks(net_epoch_preempt); 4200 4201 if_com_alloc[type] = NULL; 4202 if_com_free[type] = NULL; 4203 } 4204 4205 /* API for driver access to network stack owned ifnet.*/ 4206 uint64_t 4207 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 4208 { 4209 uint64_t oldbrate; 4210 4211 oldbrate = ifp->if_baudrate; 4212 ifp->if_baudrate = baudrate; 4213 return (oldbrate); 4214 } 4215 4216 uint64_t 4217 if_getbaudrate(if_t ifp) 4218 { 4219 4220 return (((struct ifnet *)ifp)->if_baudrate); 4221 } 4222 4223 int 4224 if_setcapabilities(if_t ifp, int capabilities) 4225 { 4226 ((struct ifnet *)ifp)->if_capabilities = capabilities; 4227 return (0); 4228 } 4229 4230 int 4231 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 4232 { 4233 ((struct ifnet *)ifp)->if_capabilities |= setbit; 4234 ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; 4235 4236 return (0); 4237 } 4238 4239 int 4240 if_getcapabilities(if_t ifp) 4241 { 4242 return ((struct ifnet *)ifp)->if_capabilities; 4243 } 4244 4245 int 4246 if_setcapenable(if_t ifp, int capabilities) 4247 { 4248 ((struct ifnet *)ifp)->if_capenable = capabilities; 4249 return (0); 4250 } 4251 4252 int 4253 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 4254 { 4255 if(setcap) 4256 ((struct ifnet *)ifp)->if_capenable |= setcap; 4257 if(clearcap) 4258 ((struct ifnet *)ifp)->if_capenable &= ~clearcap; 4259 4260 return (0); 4261 } 4262 4263 const char * 4264 if_getdname(if_t ifp) 4265 { 4266 return ((struct ifnet *)ifp)->if_dname; 4267 } 4268 4269 int 4270 if_togglecapenable(if_t ifp, int togglecap) 4271 { 4272 ((struct ifnet *)ifp)->if_capenable ^= togglecap; 4273 return (0); 4274 } 4275 4276 int 4277 if_getcapenable(if_t ifp) 4278 { 4279 return ((struct ifnet *)ifp)->if_capenable; 4280 } 4281 4282 /* 4283 * This is largely undesirable because it ties ifnet to a device, but does 4284 * provide flexiblity for an embedded product vendor. Should be used with 4285 * the understanding that it violates the interface boundaries, and should be 4286 * a last resort only. 4287 */ 4288 int 4289 if_setdev(if_t ifp, void *dev) 4290 { 4291 return (0); 4292 } 4293 4294 int 4295 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 4296 { 4297 ((struct ifnet *)ifp)->if_drv_flags |= set_flags; 4298 ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; 4299 4300 return (0); 4301 } 4302 4303 int 4304 if_getdrvflags(if_t ifp) 4305 { 4306 return ((struct ifnet *)ifp)->if_drv_flags; 4307 } 4308 4309 int 4310 if_setdrvflags(if_t ifp, int flags) 4311 { 4312 ((struct ifnet *)ifp)->if_drv_flags = flags; 4313 return (0); 4314 } 4315 4316 int 4317 if_setflags(if_t ifp, int flags) 4318 { 4319 4320 ifp->if_flags = flags; 4321 return (0); 4322 } 4323 4324 int 4325 if_setflagbits(if_t ifp, int set, int clear) 4326 { 4327 ((struct ifnet *)ifp)->if_flags |= set; 4328 ((struct ifnet *)ifp)->if_flags &= ~clear; 4329 4330 return (0); 4331 } 4332 4333 int 4334 if_getflags(if_t ifp) 4335 { 4336 return ((struct ifnet *)ifp)->if_flags; 4337 } 4338 4339 int 4340 if_clearhwassist(if_t ifp) 4341 { 4342 ((struct ifnet *)ifp)->if_hwassist = 0; 4343 return (0); 4344 } 4345 4346 int 4347 if_sethwassistbits(if_t ifp, int toset, int toclear) 4348 { 4349 ((struct ifnet *)ifp)->if_hwassist |= toset; 4350 ((struct ifnet *)ifp)->if_hwassist &= ~toclear; 4351 4352 return (0); 4353 } 4354 4355 int 4356 if_sethwassist(if_t ifp, int hwassist_bit) 4357 { 4358 ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; 4359 return (0); 4360 } 4361 4362 int 4363 if_gethwassist(if_t ifp) 4364 { 4365 return ((struct ifnet *)ifp)->if_hwassist; 4366 } 4367 4368 int 4369 if_setmtu(if_t ifp, int mtu) 4370 { 4371 ((struct ifnet *)ifp)->if_mtu = mtu; 4372 return (0); 4373 } 4374 4375 int 4376 if_getmtu(if_t ifp) 4377 { 4378 return ((struct ifnet *)ifp)->if_mtu; 4379 } 4380 4381 int 4382 if_getmtu_family(if_t ifp, int family) 4383 { 4384 struct domain *dp; 4385 4386 for (dp = domains; dp; dp = dp->dom_next) { 4387 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 4388 return (dp->dom_ifmtu((struct ifnet *)ifp)); 4389 } 4390 4391 return (((struct ifnet *)ifp)->if_mtu); 4392 } 4393 4394 /* 4395 * Methods for drivers to access interface unicast and multicast 4396 * link level addresses. Driver shall not know 'struct ifaddr' neither 4397 * 'struct ifmultiaddr'. 4398 */ 4399 u_int 4400 if_lladdr_count(if_t ifp) 4401 { 4402 struct epoch_tracker et; 4403 struct ifaddr *ifa; 4404 u_int count; 4405 4406 count = 0; 4407 NET_EPOCH_ENTER(et); 4408 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 4409 if (ifa->ifa_addr->sa_family == AF_LINK) 4410 count++; 4411 NET_EPOCH_EXIT(et); 4412 4413 return (count); 4414 } 4415 4416 u_int 4417 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4418 { 4419 struct epoch_tracker et; 4420 struct ifaddr *ifa; 4421 u_int count; 4422 4423 MPASS(cb); 4424 4425 count = 0; 4426 NET_EPOCH_ENTER(et); 4427 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4428 if (ifa->ifa_addr->sa_family != AF_LINK) 4429 continue; 4430 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr, 4431 count); 4432 } 4433 NET_EPOCH_EXIT(et); 4434 4435 return (count); 4436 } 4437 4438 u_int 4439 if_llmaddr_count(if_t ifp) 4440 { 4441 struct epoch_tracker et; 4442 struct ifmultiaddr *ifma; 4443 int count; 4444 4445 count = 0; 4446 NET_EPOCH_ENTER(et); 4447 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 4448 if (ifma->ifma_addr->sa_family == AF_LINK) 4449 count++; 4450 NET_EPOCH_EXIT(et); 4451 4452 return (count); 4453 } 4454 4455 u_int 4456 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4457 { 4458 struct epoch_tracker et; 4459 struct ifmultiaddr *ifma; 4460 u_int count; 4461 4462 MPASS(cb); 4463 4464 count = 0; 4465 NET_EPOCH_ENTER(et); 4466 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 4467 if (ifma->ifma_addr->sa_family != AF_LINK) 4468 continue; 4469 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr, 4470 count); 4471 } 4472 NET_EPOCH_EXIT(et); 4473 4474 return (count); 4475 } 4476 4477 int 4478 if_setsoftc(if_t ifp, void *softc) 4479 { 4480 ((struct ifnet *)ifp)->if_softc = softc; 4481 return (0); 4482 } 4483 4484 void * 4485 if_getsoftc(if_t ifp) 4486 { 4487 return ((struct ifnet *)ifp)->if_softc; 4488 } 4489 4490 void 4491 if_setrcvif(struct mbuf *m, if_t ifp) 4492 { 4493 4494 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 4495 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 4496 } 4497 4498 void 4499 if_setvtag(struct mbuf *m, uint16_t tag) 4500 { 4501 m->m_pkthdr.ether_vtag = tag; 4502 } 4503 4504 uint16_t 4505 if_getvtag(struct mbuf *m) 4506 { 4507 4508 return (m->m_pkthdr.ether_vtag); 4509 } 4510 4511 int 4512 if_sendq_empty(if_t ifp) 4513 { 4514 return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); 4515 } 4516 4517 struct ifaddr * 4518 if_getifaddr(if_t ifp) 4519 { 4520 return ((struct ifnet *)ifp)->if_addr; 4521 } 4522 4523 int 4524 if_getamcount(if_t ifp) 4525 { 4526 return ((struct ifnet *)ifp)->if_amcount; 4527 } 4528 4529 int 4530 if_setsendqready(if_t ifp) 4531 { 4532 IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); 4533 return (0); 4534 } 4535 4536 int 4537 if_setsendqlen(if_t ifp, int tx_desc_count) 4538 { 4539 IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); 4540 ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; 4541 4542 return (0); 4543 } 4544 4545 int 4546 if_vlantrunkinuse(if_t ifp) 4547 { 4548 return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; 4549 } 4550 4551 int 4552 if_input(if_t ifp, struct mbuf* sendmp) 4553 { 4554 (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); 4555 return (0); 4556 4557 } 4558 4559 struct mbuf * 4560 if_dequeue(if_t ifp) 4561 { 4562 struct mbuf *m; 4563 IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); 4564 4565 return (m); 4566 } 4567 4568 int 4569 if_sendq_prepend(if_t ifp, struct mbuf *m) 4570 { 4571 IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); 4572 return (0); 4573 } 4574 4575 int 4576 if_setifheaderlen(if_t ifp, int len) 4577 { 4578 ((struct ifnet *)ifp)->if_hdrlen = len; 4579 return (0); 4580 } 4581 4582 caddr_t 4583 if_getlladdr(if_t ifp) 4584 { 4585 return (IF_LLADDR((struct ifnet *)ifp)); 4586 } 4587 4588 void * 4589 if_gethandle(u_char type) 4590 { 4591 return (if_alloc(type)); 4592 } 4593 4594 void 4595 if_bpfmtap(if_t ifh, struct mbuf *m) 4596 { 4597 struct ifnet *ifp = (struct ifnet *)ifh; 4598 4599 BPF_MTAP(ifp, m); 4600 } 4601 4602 void 4603 if_etherbpfmtap(if_t ifh, struct mbuf *m) 4604 { 4605 struct ifnet *ifp = (struct ifnet *)ifh; 4606 4607 ETHER_BPF_MTAP(ifp, m); 4608 } 4609 4610 void 4611 if_vlancap(if_t ifh) 4612 { 4613 struct ifnet *ifp = (struct ifnet *)ifh; 4614 VLAN_CAPABILITIES(ifp); 4615 } 4616 4617 int 4618 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax) 4619 { 4620 4621 ((struct ifnet *)ifp)->if_hw_tsomax = if_hw_tsomax; 4622 return (0); 4623 } 4624 4625 int 4626 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount) 4627 { 4628 4629 ((struct ifnet *)ifp)->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount; 4630 return (0); 4631 } 4632 4633 int 4634 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize) 4635 { 4636 4637 ((struct ifnet *)ifp)->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize; 4638 return (0); 4639 } 4640 4641 u_int 4642 if_gethwtsomax(if_t ifp) 4643 { 4644 4645 return (((struct ifnet *)ifp)->if_hw_tsomax); 4646 } 4647 4648 u_int 4649 if_gethwtsomaxsegcount(if_t ifp) 4650 { 4651 4652 return (((struct ifnet *)ifp)->if_hw_tsomaxsegcount); 4653 } 4654 4655 u_int 4656 if_gethwtsomaxsegsize(if_t ifp) 4657 { 4658 4659 return (((struct ifnet *)ifp)->if_hw_tsomaxsegsize); 4660 } 4661 4662 void 4663 if_setinitfn(if_t ifp, void (*init_fn)(void *)) 4664 { 4665 ((struct ifnet *)ifp)->if_init = init_fn; 4666 } 4667 4668 void 4669 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) 4670 { 4671 ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; 4672 } 4673 4674 void 4675 if_setstartfn(if_t ifp, void (*start_fn)(if_t)) 4676 { 4677 ((struct ifnet *)ifp)->if_start = (void *)start_fn; 4678 } 4679 4680 void 4681 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 4682 { 4683 ((struct ifnet *)ifp)->if_transmit = start_fn; 4684 } 4685 4686 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 4687 { 4688 ((struct ifnet *)ifp)->if_qflush = flush_fn; 4689 4690 } 4691 4692 void 4693 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 4694 { 4695 4696 ifp->if_get_counter = fn; 4697 } 4698 4699 #ifdef DDB 4700 static void 4701 if_show_ifnet(struct ifnet *ifp) 4702 { 4703 4704 if (ifp == NULL) 4705 return; 4706 db_printf("%s:\n", ifp->if_xname); 4707 #define IF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, ifp->e); 4708 IF_DB_PRINTF("%s", if_dname); 4709 IF_DB_PRINTF("%d", if_dunit); 4710 IF_DB_PRINTF("%s", if_description); 4711 IF_DB_PRINTF("%u", if_index); 4712 IF_DB_PRINTF("%d", if_idxgen); 4713 IF_DB_PRINTF("%u", if_refcount); 4714 IF_DB_PRINTF("%p", if_softc); 4715 IF_DB_PRINTF("%p", if_l2com); 4716 IF_DB_PRINTF("%p", if_llsoftc); 4717 IF_DB_PRINTF("%d", if_amcount); 4718 IF_DB_PRINTF("%p", if_addr); 4719 IF_DB_PRINTF("%p", if_broadcastaddr); 4720 IF_DB_PRINTF("%p", if_afdata); 4721 IF_DB_PRINTF("%d", if_afdata_initialized); 4722 IF_DB_PRINTF("%u", if_fib); 4723 IF_DB_PRINTF("%p", if_vnet); 4724 IF_DB_PRINTF("%p", if_home_vnet); 4725 IF_DB_PRINTF("%p", if_vlantrunk); 4726 IF_DB_PRINTF("%p", if_bpf); 4727 IF_DB_PRINTF("%u", if_pcount); 4728 IF_DB_PRINTF("%p", if_bridge); 4729 IF_DB_PRINTF("%p", if_lagg); 4730 IF_DB_PRINTF("%p", if_pf_kif); 4731 IF_DB_PRINTF("%p", if_carp); 4732 IF_DB_PRINTF("%p", if_label); 4733 IF_DB_PRINTF("%p", if_netmap); 4734 IF_DB_PRINTF("0x%08x", if_flags); 4735 IF_DB_PRINTF("0x%08x", if_drv_flags); 4736 IF_DB_PRINTF("0x%08x", if_capabilities); 4737 IF_DB_PRINTF("0x%08x", if_capenable); 4738 IF_DB_PRINTF("%p", if_snd.ifq_head); 4739 IF_DB_PRINTF("%p", if_snd.ifq_tail); 4740 IF_DB_PRINTF("%d", if_snd.ifq_len); 4741 IF_DB_PRINTF("%d", if_snd.ifq_maxlen); 4742 IF_DB_PRINTF("%p", if_snd.ifq_drv_head); 4743 IF_DB_PRINTF("%p", if_snd.ifq_drv_tail); 4744 IF_DB_PRINTF("%d", if_snd.ifq_drv_len); 4745 IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen); 4746 IF_DB_PRINTF("%d", if_snd.altq_type); 4747 IF_DB_PRINTF("%x", if_snd.altq_flags); 4748 #undef IF_DB_PRINTF 4749 } 4750 4751 DB_SHOW_COMMAND(ifnet, db_show_ifnet) 4752 { 4753 4754 if (!have_addr) { 4755 db_printf("usage: show ifnet <struct ifnet *>\n"); 4756 return; 4757 } 4758 4759 if_show_ifnet((struct ifnet *)addr); 4760 } 4761 4762 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets) 4763 { 4764 struct ifnet *ifp; 4765 u_short idx; 4766 4767 for (idx = 1; idx <= if_index; idx++) { 4768 ifp = ifindex_table[idx].ife_ifnet; 4769 if (ifp == NULL) 4770 continue; 4771 db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp); 4772 if (db_pager_quit) 4773 break; 4774 } 4775 } 4776 #endif /* DDB */ 4777