1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org> 5 * Copyright (c) 1980, 1986, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include "opt_bpf.h" 34 #include "opt_inet6.h" 35 #include "opt_inet.h" 36 #include "opt_ddb.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/conf.h> 41 #include <sys/eventhandler.h> 42 #include <sys/malloc.h> 43 #include <sys/domainset.h> 44 #include <sys/sbuf.h> 45 #include <sys/bus.h> 46 #include <sys/epoch.h> 47 #include <sys/mbuf.h> 48 #include <sys/systm.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/protosw.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/refcount.h> 57 #include <sys/module.h> 58 #include <sys/nv.h> 59 #include <sys/rwlock.h> 60 #include <sys/sockio.h> 61 #include <sys/stdarg.h> 62 #include <sys/syslog.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysent.h> 65 #include <sys/taskqueue.h> 66 #include <sys/domain.h> 67 #include <sys/jail.h> 68 #include <sys/priv.h> 69 70 #ifdef DDB 71 #include <ddb/ddb.h> 72 #endif 73 74 #include <vm/uma.h> 75 76 #include <net/bpf.h> 77 #include <net/ethernet.h> 78 #include <net/if.h> 79 #include <net/if_arp.h> 80 #include <net/if_clone.h> 81 #include <net/if_dl.h> 82 #include <net/if_strings.h> 83 #include <net/if_types.h> 84 #include <net/if_var.h> 85 #include <net/if_media.h> 86 #include <net/if_mib.h> 87 #include <net/if_private.h> 88 #include <net/if_vlan_var.h> 89 #include <net/radix.h> 90 #include <net/route.h> 91 #include <net/route/route_ctl.h> 92 #include <net/vnet.h> 93 94 #if defined(INET) || defined(INET6) 95 #include <net/ethernet.h> 96 #include <netinet/in.h> 97 #include <netinet/in_var.h> 98 #include <netinet/ip.h> 99 #include <netinet/ip_carp.h> 100 #ifdef INET 101 #include <net/debugnet.h> 102 #include <netinet/if_ether.h> 103 #endif /* INET */ 104 #ifdef INET6 105 #include <netinet6/in6_var.h> 106 #include <netinet6/in6_ifattach.h> 107 #endif /* INET6 */ 108 #endif /* INET || INET6 */ 109 110 #include <security/mac/mac_framework.h> 111 112 /* 113 * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name 114 * and ifr_ifru when it is used in SIOCGIFCONF. 115 */ 116 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) == 117 offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru"); 118 119 __read_mostly epoch_t net_epoch_preempt; 120 #ifdef COMPAT_FREEBSD32 121 #include <sys/mount.h> 122 #include <compat/freebsd32/freebsd32.h> 123 124 struct ifreq_buffer32 { 125 uint32_t length; /* (size_t) */ 126 uint32_t buffer; /* (void *) */ 127 }; 128 129 /* 130 * Interface request structure used for socket 131 * ioctl's. All interface ioctl's must have parameter 132 * definitions which begin with ifr_name. The 133 * remainder may be interface specific. 134 */ 135 struct ifreq32 { 136 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ 137 union { 138 struct sockaddr ifru_addr; 139 struct sockaddr ifru_dstaddr; 140 struct sockaddr ifru_broadaddr; 141 struct ifreq_buffer32 ifru_buffer; 142 short ifru_flags[2]; 143 short ifru_index; 144 int ifru_jid; 145 int ifru_metric; 146 int ifru_mtu; 147 int ifru_phys; 148 int ifru_media; 149 uint32_t ifru_data; 150 int ifru_cap[2]; 151 u_int ifru_fib; 152 u_char ifru_vlan_pcp; 153 } ifr_ifru; 154 }; 155 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32)); 156 CTASSERT(__offsetof(struct ifreq, ifr_ifru) == 157 __offsetof(struct ifreq32, ifr_ifru)); 158 159 struct ifconf32 { 160 int32_t ifc_len; 161 union { 162 uint32_t ifcu_buf; 163 uint32_t ifcu_req; 164 } ifc_ifcu; 165 }; 166 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 167 168 struct ifdrv32 { 169 char ifd_name[IFNAMSIZ]; 170 uint32_t ifd_cmd; 171 uint32_t ifd_len; 172 uint32_t ifd_data; 173 }; 174 #define SIOCSDRVSPEC32 _IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32) 175 #define SIOCGDRVSPEC32 _IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32) 176 177 struct ifgroupreq32 { 178 char ifgr_name[IFNAMSIZ]; 179 u_int ifgr_len; 180 union { 181 char ifgru_group[IFNAMSIZ]; 182 uint32_t ifgru_groups; 183 } ifgr_ifgru; 184 }; 185 #define SIOCAIFGROUP32 _IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32) 186 #define SIOCGIFGROUP32 _IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32) 187 #define SIOCDIFGROUP32 _IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32) 188 #define SIOCGIFGMEMB32 _IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32) 189 190 struct ifmediareq32 { 191 char ifm_name[IFNAMSIZ]; 192 int ifm_current; 193 int ifm_mask; 194 int ifm_status; 195 int ifm_active; 196 int ifm_count; 197 uint32_t ifm_ulist; /* (int *) */ 198 }; 199 #define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32) 200 #define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32) 201 #endif /* COMPAT_FREEBSD32 */ 202 203 union ifreq_union { 204 struct ifreq ifr; 205 #ifdef COMPAT_FREEBSD32 206 struct ifreq32 ifr32; 207 #endif 208 }; 209 210 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 211 "Link layers"); 212 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 213 "Generic link-management"); 214 215 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 216 &ifqmaxlen, 0, "max send queue size"); 217 218 /* Log link state change events */ 219 static int log_link_state_change = 1; 220 221 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 222 &log_link_state_change, 0, 223 "log interface link state change events"); 224 225 /* Log promiscuous mode change events */ 226 static int log_promisc_mode_change = 1; 227 228 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN, 229 &log_promisc_mode_change, 1, 230 "log promiscuous mode change events"); 231 232 /* Interface description */ 233 static unsigned int ifdescr_maxlen = 1024; 234 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 235 &ifdescr_maxlen, 0, 236 "administrative maximum length for interface description"); 237 238 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 239 240 /* global sx for non-critical path ifdescr */ 241 static struct sx ifdescr_sx; 242 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 243 244 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 245 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 246 /* These are external hooks for CARP. */ 247 void (*carp_linkstate_p)(struct ifnet *ifp); 248 void (*carp_demote_adj_p)(int, char *); 249 int (*carp_master_p)(struct ifaddr *); 250 #if defined(INET) || defined(INET6) 251 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 252 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 253 const struct sockaddr *sa); 254 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 255 int (*carp_attach_p)(struct ifaddr *, int); 256 void (*carp_detach_p)(struct ifaddr *, bool); 257 #endif 258 #ifdef INET 259 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 260 #endif 261 #ifdef INET6 262 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 263 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 264 const struct in6_addr *taddr); 265 #endif 266 267 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 268 269 /* 270 * XXX: Style; these should be sorted alphabetically, and unprototyped 271 * static functions should be prototyped. Currently they are sorted by 272 * declaration order. 273 */ 274 static void if_attachdomain(void *); 275 static void if_attachdomain1(struct ifnet *); 276 static int ifconf(u_long, caddr_t); 277 static void if_input_default(struct ifnet *, struct mbuf *); 278 static int if_requestencap_default(struct ifnet *, struct if_encap_req *); 279 static int if_setflag(struct ifnet *, int, int, int *, int); 280 static int if_transmit_default(struct ifnet *ifp, struct mbuf *m); 281 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 282 static void do_link_state_change(void *, int); 283 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 284 static int if_getgroupmembers(struct ifgroupreq *); 285 static void if_delgroups(struct ifnet *); 286 static void if_attach_internal(struct ifnet *, bool); 287 static void if_detach_internal(struct ifnet *, bool); 288 static void if_siocaddmulti(void *, int); 289 static void if_link_ifnet(struct ifnet *); 290 static bool if_unlink_ifnet(struct ifnet *, bool); 291 #ifdef VIMAGE 292 static void if_vmove(struct ifnet *, struct vnet *); 293 #endif 294 295 #ifdef INET6 296 /* 297 * XXX: declare here to avoid to include many inet6 related files.. 298 * should be more generalized? 299 */ 300 extern void nd6_setmtu(struct ifnet *); 301 #endif 302 303 /* ipsec helper hooks */ 304 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); 305 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); 306 307 int ifqmaxlen = IFQ_MAXLEN; 308 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 309 VNET_DEFINE(struct ifgrouphead, ifg_head); 310 311 /* Table of ifnet by index. */ 312 static int if_index; 313 static int if_indexlim = 8; 314 static struct ifindex_entry { 315 struct ifnet *ife_ifnet; 316 uint16_t ife_gencnt; 317 } *ifindex_table; 318 319 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system, 320 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 321 "Variables global to all interfaces"); 322 static int 323 sysctl_ifcount(SYSCTL_HANDLER_ARGS) 324 { 325 int rv = 0; 326 327 IFNET_RLOCK(); 328 for (int i = 1; i <= if_index; i++) 329 if (ifindex_table[i].ife_ifnet != NULL && 330 ifindex_table[i].ife_ifnet->if_vnet == curvnet) 331 rv = i; 332 IFNET_RUNLOCK(); 333 334 return (sysctl_handle_int(oidp, &rv, 0, req)); 335 } 336 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount, 337 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I", 338 "Maximum known interface index"); 339 340 /* 341 * The global network interface list (V_ifnet) and related state (such as 342 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock. 343 * This may be acquired to stabilise the list, or we may rely on NET_EPOCH. 344 */ 345 struct sx ifnet_sxlock; 346 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 347 348 struct sx ifnet_detach_sxlock; 349 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx", 350 SX_RECURSE); 351 352 #ifdef VIMAGE 353 #define VNET_IS_SHUTTING_DOWN(_vnet) \ 354 ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE) 355 #endif 356 357 static if_com_alloc_t *if_com_alloc[256]; 358 static if_com_free_t *if_com_free[256]; 359 360 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 361 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 362 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 363 364 struct ifnet * 365 ifnet_byindex(u_int idx) 366 { 367 struct ifnet *ifp; 368 369 NET_EPOCH_ASSERT(); 370 371 if (__predict_false(idx > if_index)) 372 return (NULL); 373 374 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 375 376 if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet) 377 ifp = NULL; 378 379 return (ifp); 380 } 381 382 struct ifnet * 383 ifnet_byindex_ref(u_int idx) 384 { 385 struct ifnet *ifp; 386 387 ifp = ifnet_byindex(idx); 388 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) 389 return (NULL); 390 if (!if_try_ref(ifp)) 391 return (NULL); 392 return (ifp); 393 } 394 395 struct ifnet * 396 ifnet_byindexgen(uint16_t idx, uint16_t gen) 397 { 398 struct ifnet *ifp; 399 400 NET_EPOCH_ASSERT(); 401 402 if (__predict_false(idx > if_index)) 403 return (NULL); 404 405 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 406 407 if (ifindex_table[idx].ife_gencnt == gen) 408 return (ifp); 409 else 410 return (NULL); 411 } 412 413 /* 414 * Network interface utility routines. 415 * 416 * Routines with ifa_ifwith* names take sockaddr *'s as 417 * parameters. 418 */ 419 420 static void 421 if_init_idxtable(void *arg __unused) 422 { 423 424 ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table), 425 M_IFNET, M_WAITOK | M_ZERO); 426 } 427 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init_idxtable, NULL); 428 429 static void 430 vnet_if_init(const void *unused __unused) 431 { 432 433 CK_STAILQ_INIT(&V_ifnet); 434 CK_STAILQ_INIT(&V_ifg_head); 435 } 436 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 437 NULL); 438 439 static void 440 if_link_ifnet(struct ifnet *ifp) 441 { 442 443 IFNET_WLOCK(); 444 CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 445 #ifdef VIMAGE 446 curvnet->vnet_ifcnt++; 447 #endif 448 IFNET_WUNLOCK(); 449 } 450 451 static bool 452 if_unlink_ifnet(struct ifnet *ifp, bool vmove) 453 { 454 struct ifnet *iter; 455 int found = 0; 456 457 IFNET_WLOCK(); 458 CK_STAILQ_FOREACH(iter, &V_ifnet, if_link) 459 if (iter == ifp) { 460 CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link); 461 if (!vmove) 462 ifp->if_flags |= IFF_DYING; 463 found = 1; 464 break; 465 } 466 #ifdef VIMAGE 467 curvnet->vnet_ifcnt--; 468 #endif 469 IFNET_WUNLOCK(); 470 471 return (found); 472 } 473 474 #ifdef VIMAGE 475 static void 476 vnet_if_return(const void *unused __unused) 477 { 478 struct ifnet *ifp, *nifp; 479 struct ifnet **pending; 480 int found __diagused; 481 int i; 482 483 i = 0; 484 485 /* 486 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd 487 * enter NET_EPOCH, but that's not possible, because if_vmove() calls 488 * if_detach_internal(), which waits for NET_EPOCH callbacks to 489 * complete. We can't do that from within NET_EPOCH. 490 * 491 * However, we can also use the IFNET_xLOCK, which is the V_ifnet 492 * read/write lock. We cannot hold the lock as we call if_vmove() 493 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib 494 * ctx lock. 495 */ 496 IFNET_WLOCK(); 497 498 pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt, 499 M_IFNET, M_WAITOK | M_ZERO); 500 501 /* Return all inherited interfaces to their parent vnets. */ 502 CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 503 if (ifp->if_home_vnet != ifp->if_vnet) { 504 found = if_unlink_ifnet(ifp, true); 505 MPASS(found); 506 507 pending[i++] = ifp; 508 } 509 } 510 IFNET_WUNLOCK(); 511 512 for (int j = 0; j < i; j++) { 513 sx_xlock(&ifnet_detach_sxlock); 514 if_vmove(pending[j], pending[j]->if_home_vnet); 515 sx_xunlock(&ifnet_detach_sxlock); 516 } 517 518 free(pending, M_IFNET); 519 } 520 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, 521 vnet_if_return, NULL); 522 #endif 523 524 /* 525 * Allocate a struct ifnet and an index for an interface. A layer 2 526 * common structure will also be allocated if an allocation routine is 527 * registered for the passed type. 528 */ 529 static struct ifnet * 530 if_alloc_domain(u_char type, int numa_domain) 531 { 532 struct ifnet *ifp; 533 u_short idx; 534 535 KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large")); 536 if (numa_domain == IF_NODOM) 537 ifp = malloc(sizeof(struct ifnet), M_IFNET, 538 M_WAITOK | M_ZERO); 539 else 540 ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET, 541 DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO); 542 ifp->if_type = type; 543 ifp->if_alloctype = type; 544 ifp->if_numa_domain = numa_domain; 545 #ifdef VIMAGE 546 ifp->if_vnet = curvnet; 547 #endif 548 if (if_com_alloc[type] != NULL) { 549 ifp->if_l2com = if_com_alloc[type](type, ifp); 550 KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__, 551 type)); 552 } 553 554 IF_ADDR_LOCK_INIT(ifp); 555 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 556 TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp); 557 ifp->if_afdata_initialized = 0; 558 IF_AFDATA_LOCK_INIT(ifp); 559 CK_STAILQ_INIT(&ifp->if_addrhead); 560 CK_STAILQ_INIT(&ifp->if_multiaddrs); 561 CK_STAILQ_INIT(&ifp->if_groups); 562 #ifdef MAC 563 mac_ifnet_init(ifp); 564 #endif 565 ifq_init(&ifp->if_snd, ifp); 566 567 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 568 for (int i = 0; i < IFCOUNTERS; i++) 569 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 570 ifp->if_get_counter = if_get_counter_default; 571 ifp->if_pcp = IFNET_PCP_NONE; 572 573 /* Allocate an ifindex array entry. */ 574 IFNET_WLOCK(); 575 /* 576 * Try to find an empty slot below if_index. If we fail, take the 577 * next slot. 578 */ 579 for (idx = 1; idx <= if_index; idx++) { 580 if (ifindex_table[idx].ife_ifnet == NULL) 581 break; 582 } 583 584 /* Catch if_index overflow. */ 585 if (idx >= if_indexlim) { 586 struct ifindex_entry *new, *old; 587 int newlim; 588 589 newlim = if_indexlim * 2; 590 new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO); 591 memcpy(new, ifindex_table, if_indexlim * sizeof(*new)); 592 old = ifindex_table; 593 ck_pr_store_ptr(&ifindex_table, new); 594 if_indexlim = newlim; 595 NET_EPOCH_WAIT(); 596 free(old, M_IFNET); 597 } 598 if (idx > if_index) 599 if_index = idx; 600 601 ifp->if_index = idx; 602 ifp->if_idxgen = ifindex_table[idx].ife_gencnt; 603 ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp); 604 IFNET_WUNLOCK(); 605 606 return (ifp); 607 } 608 609 struct ifnet * 610 if_alloc_dev(u_char type, device_t dev) 611 { 612 int numa_domain; 613 614 if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0) 615 return (if_alloc_domain(type, IF_NODOM)); 616 return (if_alloc_domain(type, numa_domain)); 617 } 618 619 struct ifnet * 620 if_alloc(u_char type) 621 { 622 623 return (if_alloc_domain(type, IF_NODOM)); 624 } 625 /* 626 * Do the actual work of freeing a struct ifnet, and layer 2 common 627 * structure. This call is made when the network epoch guarantees 628 * us that nobody holds a pointer to the interface. 629 */ 630 static void 631 if_free_deferred(epoch_context_t ctx) 632 { 633 struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx); 634 635 KASSERT((ifp->if_flags & IFF_DYING), 636 ("%s: interface not dying", __func__)); 637 638 if (if_com_free[ifp->if_alloctype] != NULL) 639 if_com_free[ifp->if_alloctype](ifp->if_l2com, 640 ifp->if_alloctype); 641 642 #ifdef MAC 643 mac_ifnet_destroy(ifp); 644 #endif /* MAC */ 645 IF_AFDATA_DESTROY(ifp); 646 IF_ADDR_LOCK_DESTROY(ifp); 647 ifq_delete(&ifp->if_snd); 648 649 for (int i = 0; i < IFCOUNTERS; i++) 650 counter_u64_free(ifp->if_counters[i]); 651 652 if_freedescr(ifp->if_description); 653 free(ifp->if_hw_addr, M_IFADDR); 654 free(ifp, M_IFNET); 655 } 656 657 /* 658 * Deregister an interface and free the associated storage. 659 */ 660 void 661 if_free(struct ifnet *ifp) 662 { 663 664 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 665 666 /* 667 * XXXGL: An interface index is really an alias to ifp pointer. 668 * Why would we clear the alias now, and not in the deferred 669 * context? Indeed there is nothing wrong with some network 670 * thread obtaining ifp via ifnet_byindex() inside the network 671 * epoch and then dereferencing ifp while we perform if_free(), 672 * and after if_free() finished, too. 673 * 674 * This early index freeing was important back when ifindex was 675 * virtualized and interface would outlive the vnet. 676 */ 677 IFNET_WLOCK(); 678 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 679 ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL); 680 ifindex_table[ifp->if_index].ife_gencnt++; 681 while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL) 682 if_index--; 683 IFNET_WUNLOCK(); 684 685 if (refcount_release(&ifp->if_refcount)) 686 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 687 } 688 689 /* 690 * Interfaces to keep an ifnet type-stable despite the possibility of the 691 * driver calling if_free(). If there are additional references, we defer 692 * freeing the underlying data structure. 693 */ 694 void 695 if_ref(struct ifnet *ifp) 696 { 697 u_int old __diagused; 698 699 /* We don't assert the ifnet list lock here, but arguably should. */ 700 old = refcount_acquire(&ifp->if_refcount); 701 KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp)); 702 } 703 704 bool 705 if_try_ref(struct ifnet *ifp) 706 { 707 NET_EPOCH_ASSERT(); 708 return (refcount_acquire_if_not_zero(&ifp->if_refcount)); 709 } 710 711 void 712 if_rele(struct ifnet *ifp) 713 { 714 715 if (!refcount_release(&ifp->if_refcount)) 716 return; 717 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 718 } 719 720 void 721 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 722 { 723 724 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 725 726 if (ifq->ifq_maxlen == 0) 727 ifq->ifq_maxlen = ifqmaxlen; 728 729 ifq->altq_type = 0; 730 ifq->altq_disc = NULL; 731 ifq->altq_flags &= ALTQF_CANTCHANGE; 732 ifq->altq_tbr = NULL; 733 ifq->altq_ifp = ifp; 734 } 735 736 void 737 ifq_delete(struct ifaltq *ifq) 738 { 739 mtx_destroy(&ifq->ifq_mtx); 740 } 741 742 /* 743 * Perform generic interface initialization tasks and attach the interface 744 * to the list of "active" interfaces. If vmove flag is set on entry 745 * to if_attach_internal(), perform only a limited subset of initialization 746 * tasks, given that we are moving from one vnet to another an ifnet which 747 * has already been fully initialized. 748 * 749 * Note that if_detach_internal() removes group membership unconditionally 750 * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. 751 * Thus, when if_vmove() is applied to a cloned interface, group membership 752 * is lost while a cloned one always joins a group whose name is 753 * ifc->ifc_name. To recover this after if_detach_internal() and 754 * if_attach_internal(), the cloner should be specified to 755 * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() 756 * attempts to join a group whose name is ifc->ifc_name. 757 * 758 * XXX: 759 * - The decision to return void and thus require this function to 760 * succeed is questionable. 761 * - We should probably do more sanity checking. For instance we don't 762 * do anything to insure if_xname is unique or non-empty. 763 */ 764 void 765 if_attach(struct ifnet *ifp) 766 { 767 768 if_attach_internal(ifp, false); 769 } 770 771 /* 772 * Compute the least common TSO limit. 773 */ 774 void 775 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 776 { 777 /* 778 * 1) If there is no limit currently, take the limit from 779 * the network adapter. 780 * 781 * 2) If the network adapter has a limit below the current 782 * limit, apply it. 783 */ 784 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 785 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 786 pmax->tsomaxbytes = ifp->if_hw_tsomax; 787 } 788 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 789 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 790 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 791 } 792 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 793 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 794 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 795 } 796 } 797 798 /* 799 * Update TSO limit of a network adapter. 800 * 801 * Returns zero if no change. Else non-zero. 802 */ 803 int 804 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 805 { 806 int retval = 0; 807 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 808 ifp->if_hw_tsomax = pmax->tsomaxbytes; 809 retval++; 810 } 811 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 812 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 813 retval++; 814 } 815 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 816 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 817 retval++; 818 } 819 return (retval); 820 } 821 822 static void 823 if_attach_internal(struct ifnet *ifp, bool vmove) 824 { 825 unsigned socksize, ifasize; 826 int namelen, masklen; 827 struct sockaddr_dl *sdl; 828 struct ifaddr *ifa; 829 830 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 831 832 #ifdef VIMAGE 833 CURVNET_ASSERT_SET(); 834 ifp->if_vnet = curvnet; 835 if (ifp->if_home_vnet == NULL) 836 ifp->if_home_vnet = curvnet; 837 #endif 838 839 if_addgroup(ifp, IFG_ALL); 840 841 #ifdef VIMAGE 842 /* Restore group membership for cloned interface. */ 843 if (vmove) 844 if_clone_restoregroup(ifp); 845 #endif 846 847 getmicrotime(&ifp->if_lastchange); 848 ifp->if_epoch = time_uptime; 849 850 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 851 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 852 ("transmit and qflush must both either be set or both be NULL")); 853 if (ifp->if_transmit == NULL) { 854 ifp->if_transmit = if_transmit_default; 855 ifp->if_qflush = if_qflush; 856 } 857 if (ifp->if_input == NULL) 858 ifp->if_input = if_input_default; 859 860 if (ifp->if_requestencap == NULL) 861 ifp->if_requestencap = if_requestencap_default; 862 863 if (!vmove) { 864 #ifdef MAC 865 mac_ifnet_create(ifp); 866 #endif 867 868 /* 869 * Create a Link Level name for this device. 870 */ 871 namelen = strlen(ifp->if_xname); 872 /* 873 * Always save enough space for any possible name so we 874 * can do a rename in place later. 875 */ 876 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 877 socksize = masklen + ifp->if_addrlen; 878 if (socksize < sizeof(*sdl)) 879 socksize = sizeof(*sdl); 880 socksize = roundup2(socksize, sizeof(long)); 881 ifasize = sizeof(*ifa) + 2 * socksize; 882 ifa = ifa_alloc(ifasize, M_WAITOK); 883 sdl = (struct sockaddr_dl *)(ifa + 1); 884 sdl->sdl_len = socksize; 885 sdl->sdl_family = AF_LINK; 886 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 887 sdl->sdl_nlen = namelen; 888 sdl->sdl_index = ifp->if_index; 889 sdl->sdl_type = ifp->if_type; 890 ifp->if_addr = ifa; 891 ifa->ifa_ifp = ifp; 892 ifa->ifa_addr = (struct sockaddr *)sdl; 893 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 894 ifa->ifa_netmask = (struct sockaddr *)sdl; 895 sdl->sdl_len = masklen; 896 while (namelen != 0) 897 sdl->sdl_data[--namelen] = 0xff; 898 CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 899 /* Reliably crash if used uninitialized. */ 900 ifp->if_broadcastaddr = NULL; 901 902 if (ifp->if_type == IFT_ETHER) { 903 ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR, 904 M_WAITOK | M_ZERO); 905 } 906 907 #if defined(INET) || defined(INET6) 908 /* Use defaults for TSO, if nothing is set */ 909 if (ifp->if_hw_tsomax == 0 && 910 ifp->if_hw_tsomaxsegcount == 0 && 911 ifp->if_hw_tsomaxsegsize == 0) { 912 /* 913 * The TSO defaults needs to be such that an 914 * NFS mbuf list of 35 mbufs totalling just 915 * below 64K works and that a chain of mbufs 916 * can be defragged into at most 32 segments: 917 */ 918 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 919 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 920 ifp->if_hw_tsomaxsegcount = 35; 921 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 922 923 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 924 if (ifp->if_capabilities & IFCAP_TSO) { 925 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 926 ifp->if_hw_tsomax, 927 ifp->if_hw_tsomaxsegcount, 928 ifp->if_hw_tsomaxsegsize); 929 } 930 } 931 #endif 932 } 933 #ifdef VIMAGE 934 else { 935 /* 936 * Update the interface index in the link layer address 937 * of the interface. 938 */ 939 for (ifa = ifp->if_addr; ifa != NULL; 940 ifa = CK_STAILQ_NEXT(ifa, ifa_link)) { 941 if (ifa->ifa_addr->sa_family == AF_LINK) { 942 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 943 sdl->sdl_index = ifp->if_index; 944 } 945 } 946 } 947 #endif 948 949 if (domain_init_status >= 2) 950 if_attachdomain1(ifp); 951 952 if_link_ifnet(ifp); 953 954 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 955 if (IS_DEFAULT_VNET(curvnet)) 956 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 957 } 958 959 static void 960 if_epochalloc(void *dummy __unused) 961 { 962 963 net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT); 964 } 965 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL); 966 967 static void 968 if_attachdomain(void *dummy) 969 { 970 struct ifnet *ifp; 971 972 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 973 if_attachdomain1(ifp); 974 } 975 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 976 if_attachdomain, NULL); 977 978 static void 979 if_attachdomain1(struct ifnet *ifp) 980 { 981 struct domain *dp; 982 983 /* 984 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 985 * cannot lock ifp->if_afdata initialization, entirely. 986 */ 987 IF_AFDATA_LOCK(ifp); 988 if (ifp->if_afdata_initialized >= domain_init_status) { 989 IF_AFDATA_UNLOCK(ifp); 990 log(LOG_WARNING, "%s called more than once on %s\n", 991 __func__, ifp->if_xname); 992 return; 993 } 994 ifp->if_afdata_initialized = domain_init_status; 995 IF_AFDATA_UNLOCK(ifp); 996 997 /* address family dependent data region */ 998 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 999 SLIST_FOREACH(dp, &domains, dom_next) { 1000 if (dp->dom_ifattach) 1001 ifp->if_afdata[dp->dom_family] = 1002 (*dp->dom_ifattach)(ifp); 1003 } 1004 } 1005 1006 /* 1007 * Remove any unicast or broadcast network addresses from an interface. 1008 */ 1009 void 1010 if_purgeaddrs(struct ifnet *ifp) 1011 { 1012 struct ifaddr *ifa; 1013 1014 #ifdef INET6 1015 /* 1016 * Need to leave multicast addresses of proxy NDP llentries 1017 * before in6_purgeifaddr() because the llentries are keys 1018 * for in6_multi objects of proxy NDP entries. 1019 * in6_purgeifaddr()s clean up llentries including proxy NDPs 1020 * then we would lose the keys if they are called earlier. 1021 */ 1022 in6_purge_proxy_ndp(ifp); 1023 #endif 1024 while (1) { 1025 struct epoch_tracker et; 1026 1027 NET_EPOCH_ENTER(et); 1028 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1029 if (ifa->ifa_addr->sa_family != AF_LINK) 1030 break; 1031 } 1032 NET_EPOCH_EXIT(et); 1033 1034 if (ifa == NULL) 1035 break; 1036 #ifdef INET 1037 /* XXX: Ugly!! ad hoc just for INET */ 1038 if (ifa->ifa_addr->sa_family == AF_INET) { 1039 struct ifreq ifr; 1040 1041 bzero(&ifr, sizeof(ifr)); 1042 ifr.ifr_addr = *ifa->ifa_addr; 1043 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 1044 NULL) == 0) 1045 continue; 1046 } 1047 #endif /* INET */ 1048 #ifdef INET6 1049 if (ifa->ifa_addr->sa_family == AF_INET6) { 1050 in6_purgeifaddr((struct in6_ifaddr *)ifa); 1051 /* ifp_addrhead is already updated */ 1052 continue; 1053 } 1054 #endif /* INET6 */ 1055 IF_ADDR_WLOCK(ifp); 1056 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1057 IF_ADDR_WUNLOCK(ifp); 1058 ifa_free(ifa); 1059 } 1060 } 1061 1062 /* 1063 * Remove any multicast network addresses from an interface when an ifnet 1064 * is going away. 1065 */ 1066 static void 1067 if_purgemaddrs(struct ifnet *ifp) 1068 { 1069 struct ifmultiaddr *ifma; 1070 1071 IF_ADDR_WLOCK(ifp); 1072 while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) { 1073 ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs); 1074 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 1075 if_delmulti_locked(ifp, ifma, 1); 1076 } 1077 IF_ADDR_WUNLOCK(ifp); 1078 } 1079 1080 /* 1081 * Detach an interface, removing it from the list of "active" interfaces. 1082 * If vmove flag is set on entry to if_detach_internal(), perform only a 1083 * limited subset of cleanup tasks, given that we are moving an ifnet from 1084 * one vnet to another, where it must be fully operational. 1085 * 1086 * XXXRW: There are some significant questions about event ordering, and 1087 * how to prevent things from starting to use the interface during detach. 1088 */ 1089 void 1090 if_detach(struct ifnet *ifp) 1091 { 1092 bool found; 1093 1094 CURVNET_SET_QUIET(ifp->if_vnet); 1095 found = if_unlink_ifnet(ifp, false); 1096 if (found) { 1097 sx_xlock(&ifnet_detach_sxlock); 1098 if_detach_internal(ifp, false); 1099 sx_xunlock(&ifnet_detach_sxlock); 1100 } 1101 CURVNET_RESTORE(); 1102 } 1103 1104 /* 1105 * The vmove flag, if set, indicates that we are called from a callpath 1106 * that is moving an interface to a different vnet instance. 1107 * 1108 * The shutdown flag, if set, indicates that we are called in the 1109 * process of shutting down a vnet instance. Currently only the 1110 * vnet_if_return SYSUNINIT function sets it. Note: we can be called 1111 * on a vnet instance shutdown without this flag being set, e.g., when 1112 * the cloned interfaces are destoyed as first thing of teardown. 1113 */ 1114 static void 1115 if_detach_internal(struct ifnet *ifp, bool vmove) 1116 { 1117 struct ifaddr *ifa; 1118 int i; 1119 struct domain *dp; 1120 #ifdef VIMAGE 1121 bool shutdown; 1122 1123 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1124 #endif 1125 1126 sx_assert(&ifnet_detach_sxlock, SX_XLOCKED); 1127 1128 /* 1129 * At this point we know the interface still was on the ifnet list 1130 * and we removed it so we are in a stable state. 1131 */ 1132 NET_EPOCH_WAIT(); 1133 1134 /* 1135 * Ensure all pending EPOCH(9) callbacks have been executed. This 1136 * fixes issues about late destruction of multicast options 1137 * which lead to leave group calls, which in turn access the 1138 * belonging ifnet structure: 1139 */ 1140 NET_EPOCH_DRAIN_CALLBACKS(); 1141 1142 /* 1143 * In any case (destroy or vmove) detach us from the groups 1144 * and remove/wait for pending events on the taskq. 1145 * XXX-BZ in theory an interface could still enqueue a taskq change? 1146 */ 1147 if_delgroups(ifp); 1148 1149 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 1150 taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask); 1151 1152 if_down(ifp); 1153 1154 #ifdef VIMAGE 1155 /* 1156 * On VNET shutdown abort here as the stack teardown will do all 1157 * the work top-down for us. 1158 */ 1159 if (shutdown) { 1160 /* Give interface users the chance to clean up. */ 1161 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1162 1163 /* 1164 * In case of a vmove we are done here without error. 1165 * If we would signal an error it would lead to the same 1166 * abort as if we did not find the ifnet anymore. 1167 * if_detach() calls us in void context and does not care 1168 * about an early abort notification, so life is splendid :) 1169 */ 1170 goto finish_vnet_shutdown; 1171 } 1172 #endif 1173 1174 /* 1175 * At this point we are not tearing down a VNET and are either 1176 * going to destroy or vmove the interface and have to cleanup 1177 * accordingly. 1178 */ 1179 1180 /* 1181 * Remove routes and flush queues. 1182 */ 1183 #ifdef ALTQ 1184 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1185 altq_disable(&ifp->if_snd); 1186 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1187 altq_detach(&ifp->if_snd); 1188 #endif 1189 1190 if_purgeaddrs(ifp); 1191 1192 #ifdef INET 1193 in_ifdetach(ifp); 1194 #endif 1195 1196 #ifdef INET6 1197 /* 1198 * Remove all IPv6 kernel structs related to ifp. This should be done 1199 * before removing routing entries below, since IPv6 interface direct 1200 * routes are expected to be removed by the IPv6-specific kernel API. 1201 * Otherwise, the kernel will detect some inconsistency and bark it. 1202 */ 1203 in6_ifdetach(ifp); 1204 #endif 1205 if_purgemaddrs(ifp); 1206 1207 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1208 if (IS_DEFAULT_VNET(curvnet)) 1209 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 1210 1211 if (!vmove) { 1212 /* 1213 * Prevent further calls into the device driver via ifnet. 1214 */ 1215 if_dead(ifp); 1216 1217 /* 1218 * Clean up all addresses. 1219 */ 1220 IF_ADDR_WLOCK(ifp); 1221 if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) { 1222 ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); 1223 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1224 IF_ADDR_WUNLOCK(ifp); 1225 ifa_free(ifa); 1226 } else 1227 IF_ADDR_WUNLOCK(ifp); 1228 } 1229 1230 rt_flushifroutes(ifp); 1231 1232 #ifdef VIMAGE 1233 finish_vnet_shutdown: 1234 #endif 1235 /* 1236 * We cannot hold the lock over dom_ifdetach calls as they might 1237 * sleep, for example trying to drain a callout, thus open up the 1238 * theoretical race with re-attaching. 1239 */ 1240 IF_AFDATA_LOCK(ifp); 1241 i = ifp->if_afdata_initialized; 1242 ifp->if_afdata_initialized = 0; 1243 IF_AFDATA_UNLOCK(ifp); 1244 if (i == 0) 1245 return; 1246 SLIST_FOREACH(dp, &domains, dom_next) { 1247 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) { 1248 (*dp->dom_ifdetach)(ifp, 1249 ifp->if_afdata[dp->dom_family]); 1250 ifp->if_afdata[dp->dom_family] = NULL; 1251 } 1252 } 1253 } 1254 1255 #ifdef VIMAGE 1256 /* 1257 * if_vmove() performs a limited version of if_detach() in current 1258 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1259 */ 1260 static void 1261 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1262 { 1263 #ifdef DEV_BPF 1264 /* 1265 * Detach BPF file descriptors from its interface. 1266 */ 1267 bpf_ifdetach(ifp); 1268 #endif 1269 1270 /* 1271 * Detach from current vnet, but preserve LLADDR info, do not 1272 * mark as dead etc. so that the ifnet can be reattached later. 1273 */ 1274 if_detach_internal(ifp, true); 1275 1276 /* 1277 * Perform interface-specific reassignment tasks, if provided by 1278 * the driver. 1279 */ 1280 if (ifp->if_reassign != NULL) 1281 ifp->if_reassign(ifp, new_vnet, NULL); 1282 1283 /* 1284 * Switch to the context of the target vnet. 1285 */ 1286 CURVNET_SET_QUIET(new_vnet); 1287 if_attach_internal(ifp, true); 1288 CURVNET_RESTORE(); 1289 } 1290 1291 /* 1292 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1293 */ 1294 static int 1295 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1296 { 1297 struct prison *pr; 1298 struct ifnet *difp; 1299 bool found; 1300 bool shutdown; 1301 1302 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 1303 1304 /* Try to find the prison within our visibility. */ 1305 sx_slock(&allprison_lock); 1306 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1307 sx_sunlock(&allprison_lock); 1308 if (pr == NULL) 1309 return (ENXIO); 1310 prison_hold_locked(pr); 1311 mtx_unlock(&pr->pr_mtx); 1312 1313 /* Do not try to move the iface from and to the same prison. */ 1314 if (pr->pr_vnet == ifp->if_vnet) { 1315 prison_free(pr); 1316 return (EEXIST); 1317 } 1318 1319 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1320 /* XXX Lock interfaces to avoid races. */ 1321 CURVNET_SET_QUIET(pr->pr_vnet); 1322 difp = ifunit(ifname); 1323 CURVNET_RESTORE(); 1324 if (difp != NULL) { 1325 prison_free(pr); 1326 return (EEXIST); 1327 } 1328 sx_xlock(&ifnet_detach_sxlock); 1329 1330 /* Make sure the VNET is stable. */ 1331 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1332 if (shutdown) { 1333 sx_xunlock(&ifnet_detach_sxlock); 1334 prison_free(pr); 1335 return (EBUSY); 1336 } 1337 1338 found = if_unlink_ifnet(ifp, true); 1339 if (! found) { 1340 sx_xunlock(&ifnet_detach_sxlock); 1341 prison_free(pr); 1342 return (ENODEV); 1343 } 1344 1345 /* Move the interface into the child jail/vnet. */ 1346 if_vmove(ifp, pr->pr_vnet); 1347 1348 /* Report the new if_xname back to the userland. */ 1349 sprintf(ifname, "%s", ifp->if_xname); 1350 1351 sx_xunlock(&ifnet_detach_sxlock); 1352 1353 prison_free(pr); 1354 return (0); 1355 } 1356 1357 static int 1358 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1359 { 1360 struct prison *pr; 1361 struct vnet *vnet_dst; 1362 struct ifnet *ifp; 1363 int found __diagused; 1364 bool shutdown; 1365 1366 /* Try to find the prison within our visibility. */ 1367 sx_slock(&allprison_lock); 1368 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1369 sx_sunlock(&allprison_lock); 1370 if (pr == NULL) 1371 return (ENXIO); 1372 prison_hold_locked(pr); 1373 mtx_unlock(&pr->pr_mtx); 1374 1375 /* Make sure the named iface exists in the source prison/vnet. */ 1376 CURVNET_SET(pr->pr_vnet); 1377 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1378 if (ifp == NULL) { 1379 CURVNET_RESTORE(); 1380 prison_free(pr); 1381 return (ENXIO); 1382 } 1383 1384 /* Do not try to move the iface from and to the same prison. */ 1385 vnet_dst = TD_TO_VNET(td); 1386 if (vnet_dst == ifp->if_vnet) { 1387 CURVNET_RESTORE(); 1388 prison_free(pr); 1389 return (EEXIST); 1390 } 1391 1392 /* Make sure the VNET is stable. */ 1393 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1394 if (shutdown) { 1395 CURVNET_RESTORE(); 1396 prison_free(pr); 1397 return (EBUSY); 1398 } 1399 1400 /* Get interface back from child jail/vnet. */ 1401 found = if_unlink_ifnet(ifp, true); 1402 MPASS(found); 1403 sx_xlock(&ifnet_detach_sxlock); 1404 if_vmove(ifp, vnet_dst); 1405 sx_xunlock(&ifnet_detach_sxlock); 1406 CURVNET_RESTORE(); 1407 1408 /* Report the new if_xname back to the userland. */ 1409 sprintf(ifname, "%s", ifp->if_xname); 1410 1411 prison_free(pr); 1412 return (0); 1413 } 1414 #endif /* VIMAGE */ 1415 1416 /* 1417 * Add a group to an interface 1418 */ 1419 int 1420 if_addgroup(struct ifnet *ifp, const char *groupname) 1421 { 1422 struct ifg_list *ifgl; 1423 struct ifg_group *ifg = NULL; 1424 struct ifg_member *ifgm; 1425 int new = 0; 1426 1427 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1428 groupname[strlen(groupname) - 1] <= '9') 1429 return (EINVAL); 1430 1431 IFNET_WLOCK(); 1432 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1433 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1434 IFNET_WUNLOCK(); 1435 return (EEXIST); 1436 } 1437 1438 if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) { 1439 IFNET_WUNLOCK(); 1440 return (ENOMEM); 1441 } 1442 1443 if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 1444 free(ifgl, M_TEMP); 1445 IFNET_WUNLOCK(); 1446 return (ENOMEM); 1447 } 1448 1449 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1450 if (!strcmp(ifg->ifg_group, groupname)) 1451 break; 1452 1453 if (ifg == NULL) { 1454 if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) { 1455 free(ifgl, M_TEMP); 1456 free(ifgm, M_TEMP); 1457 IFNET_WUNLOCK(); 1458 return (ENOMEM); 1459 } 1460 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1461 ifg->ifg_refcnt = 0; 1462 CK_STAILQ_INIT(&ifg->ifg_members); 1463 CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1464 new = 1; 1465 } 1466 1467 ifg->ifg_refcnt++; 1468 ifgl->ifgl_group = ifg; 1469 ifgm->ifgm_ifp = ifp; 1470 1471 IF_ADDR_WLOCK(ifp); 1472 CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1473 CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1474 IF_ADDR_WUNLOCK(ifp); 1475 1476 IFNET_WUNLOCK(); 1477 1478 if (new) 1479 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1480 EVENTHANDLER_INVOKE(group_change_event, groupname); 1481 1482 return (0); 1483 } 1484 1485 /* 1486 * Helper function to remove a group out of an interface. Expects the global 1487 * ifnet lock to be write-locked, and drops it before returning. 1488 */ 1489 static void 1490 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl, 1491 const char *groupname) 1492 { 1493 struct ifg_member *ifgm; 1494 bool freeifgl; 1495 1496 IFNET_WLOCK_ASSERT(); 1497 1498 IF_ADDR_WLOCK(ifp); 1499 CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next); 1500 IF_ADDR_WUNLOCK(ifp); 1501 1502 CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { 1503 if (ifgm->ifgm_ifp == ifp) { 1504 CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1505 ifg_member, ifgm_next); 1506 break; 1507 } 1508 } 1509 1510 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1511 CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, 1512 ifg_next); 1513 freeifgl = true; 1514 } else { 1515 freeifgl = false; 1516 } 1517 IFNET_WUNLOCK(); 1518 1519 NET_EPOCH_WAIT(); 1520 EVENTHANDLER_INVOKE(group_change_event, groupname); 1521 if (freeifgl) { 1522 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1523 free(ifgl->ifgl_group, M_TEMP); 1524 } 1525 free(ifgm, M_TEMP); 1526 free(ifgl, M_TEMP); 1527 } 1528 1529 /* 1530 * Remove a group from an interface 1531 */ 1532 int 1533 if_delgroup(struct ifnet *ifp, const char *groupname) 1534 { 1535 struct ifg_list *ifgl; 1536 1537 IFNET_WLOCK(); 1538 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1539 if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) 1540 break; 1541 if (ifgl == NULL) { 1542 IFNET_WUNLOCK(); 1543 return (ENOENT); 1544 } 1545 1546 _if_delgroup_locked(ifp, ifgl, groupname); 1547 1548 return (0); 1549 } 1550 1551 /* 1552 * Remove an interface from all groups 1553 */ 1554 static void 1555 if_delgroups(struct ifnet *ifp) 1556 { 1557 struct ifg_list *ifgl; 1558 char groupname[IFNAMSIZ]; 1559 1560 IFNET_WLOCK(); 1561 while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) { 1562 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1563 _if_delgroup_locked(ifp, ifgl, groupname); 1564 IFNET_WLOCK(); 1565 } 1566 IFNET_WUNLOCK(); 1567 } 1568 1569 /* 1570 * Stores all groups from an interface in memory pointed to by ifgr. 1571 */ 1572 static int 1573 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp) 1574 { 1575 int len, error; 1576 struct ifg_list *ifgl; 1577 struct ifg_req ifgrq, *ifgp; 1578 1579 NET_EPOCH_ASSERT(); 1580 1581 if (ifgr->ifgr_len == 0) { 1582 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1583 ifgr->ifgr_len += sizeof(struct ifg_req); 1584 return (0); 1585 } 1586 1587 len = ifgr->ifgr_len; 1588 ifgp = ifgr->ifgr_groups; 1589 /* XXX: wire */ 1590 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1591 if (len < sizeof(ifgrq)) 1592 return (EINVAL); 1593 bzero(&ifgrq, sizeof ifgrq); 1594 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1595 sizeof(ifgrq.ifgrq_group)); 1596 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) 1597 return (error); 1598 len -= sizeof(ifgrq); 1599 ifgp++; 1600 } 1601 1602 return (0); 1603 } 1604 1605 /* 1606 * Stores all members of a group in memory pointed to by igfr 1607 */ 1608 static int 1609 if_getgroupmembers(struct ifgroupreq *ifgr) 1610 { 1611 struct ifg_group *ifg; 1612 struct ifg_member *ifgm; 1613 struct ifg_req ifgrq, *ifgp; 1614 int len, error; 1615 1616 IFNET_RLOCK(); 1617 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1618 if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) 1619 break; 1620 if (ifg == NULL) { 1621 IFNET_RUNLOCK(); 1622 return (ENOENT); 1623 } 1624 1625 if (ifgr->ifgr_len == 0) { 1626 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1627 ifgr->ifgr_len += sizeof(ifgrq); 1628 IFNET_RUNLOCK(); 1629 return (0); 1630 } 1631 1632 len = ifgr->ifgr_len; 1633 ifgp = ifgr->ifgr_groups; 1634 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1635 if (len < sizeof(ifgrq)) { 1636 IFNET_RUNLOCK(); 1637 return (EINVAL); 1638 } 1639 bzero(&ifgrq, sizeof ifgrq); 1640 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1641 sizeof(ifgrq.ifgrq_member)); 1642 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1643 IFNET_RUNLOCK(); 1644 return (error); 1645 } 1646 len -= sizeof(ifgrq); 1647 ifgp++; 1648 } 1649 IFNET_RUNLOCK(); 1650 1651 return (0); 1652 } 1653 1654 /* 1655 * Return counter values from counter(9)s stored in ifnet. 1656 */ 1657 uint64_t 1658 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1659 { 1660 1661 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1662 1663 return (counter_u64_fetch(ifp->if_counters[cnt])); 1664 } 1665 1666 /* 1667 * Increase an ifnet counter. Usually used for counters shared 1668 * between the stack and a driver, but function supports them all. 1669 */ 1670 void 1671 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1672 { 1673 1674 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1675 1676 counter_u64_add(ifp->if_counters[cnt], inc); 1677 } 1678 1679 /* 1680 * Copy data from ifnet to userland API structure if_data. 1681 */ 1682 void 1683 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1684 { 1685 1686 ifd->ifi_type = ifp->if_type; 1687 ifd->ifi_physical = 0; 1688 ifd->ifi_addrlen = ifp->if_addrlen; 1689 ifd->ifi_hdrlen = ifp->if_hdrlen; 1690 ifd->ifi_link_state = ifp->if_link_state; 1691 ifd->ifi_vhid = 0; 1692 ifd->ifi_datalen = sizeof(struct if_data); 1693 ifd->ifi_mtu = ifp->if_mtu; 1694 ifd->ifi_metric = ifp->if_metric; 1695 ifd->ifi_baudrate = ifp->if_baudrate; 1696 ifd->ifi_hwassist = ifp->if_hwassist; 1697 ifd->ifi_epoch = ifp->if_epoch; 1698 ifd->ifi_lastchange = ifp->if_lastchange; 1699 1700 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1701 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1702 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1703 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1704 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1705 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1706 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1707 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1708 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1709 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1710 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1711 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1712 } 1713 1714 /* 1715 * Initialization, destruction and refcounting functions for ifaddrs. 1716 */ 1717 struct ifaddr * 1718 ifa_alloc(size_t size, int flags) 1719 { 1720 struct ifaddr *ifa; 1721 1722 KASSERT(size >= sizeof(struct ifaddr), 1723 ("%s: invalid size %zu", __func__, size)); 1724 1725 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1726 if (ifa == NULL) 1727 return (NULL); 1728 1729 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1730 goto fail; 1731 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1732 goto fail; 1733 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1734 goto fail; 1735 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1736 goto fail; 1737 1738 refcount_init(&ifa->ifa_refcnt, 1); 1739 1740 return (ifa); 1741 1742 fail: 1743 /* free(NULL) is okay */ 1744 counter_u64_free(ifa->ifa_opackets); 1745 counter_u64_free(ifa->ifa_ipackets); 1746 counter_u64_free(ifa->ifa_obytes); 1747 counter_u64_free(ifa->ifa_ibytes); 1748 free(ifa, M_IFADDR); 1749 1750 return (NULL); 1751 } 1752 1753 void 1754 ifa_ref(struct ifaddr *ifa) 1755 { 1756 u_int old __diagused; 1757 1758 old = refcount_acquire(&ifa->ifa_refcnt); 1759 KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa)); 1760 } 1761 1762 int 1763 ifa_try_ref(struct ifaddr *ifa) 1764 { 1765 1766 NET_EPOCH_ASSERT(); 1767 return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt)); 1768 } 1769 1770 static void 1771 ifa_destroy(epoch_context_t ctx) 1772 { 1773 struct ifaddr *ifa; 1774 1775 ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx); 1776 counter_u64_free(ifa->ifa_opackets); 1777 counter_u64_free(ifa->ifa_ipackets); 1778 counter_u64_free(ifa->ifa_obytes); 1779 counter_u64_free(ifa->ifa_ibytes); 1780 free(ifa, M_IFADDR); 1781 } 1782 1783 void 1784 ifa_free(struct ifaddr *ifa) 1785 { 1786 1787 if (refcount_release(&ifa->ifa_refcnt)) 1788 NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx); 1789 } 1790 1791 /* 1792 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1793 * structs used to represent other address families, it is necessary 1794 * to perform a different comparison. 1795 */ 1796 static bool 1797 sa_dl_equal(const struct sockaddr *a, const struct sockaddr *b) 1798 { 1799 const struct sockaddr_dl *sdl1 = (const struct sockaddr_dl *)a; 1800 const struct sockaddr_dl *sdl2 = (const struct sockaddr_dl *)b; 1801 1802 return (sdl1->sdl_len == sdl2->sdl_len && 1803 bcmp(sdl1->sdl_data + sdl1->sdl_nlen, 1804 sdl2->sdl_data + sdl2->sdl_nlen, sdl1->sdl_alen) == 0); 1805 } 1806 1807 /* 1808 * Locate an interface based on a complete address. 1809 */ 1810 /*ARGSUSED*/ 1811 struct ifaddr * 1812 ifa_ifwithaddr(const struct sockaddr *addr) 1813 { 1814 struct ifnet *ifp; 1815 struct ifaddr *ifa; 1816 1817 NET_EPOCH_ASSERT(); 1818 1819 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1820 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1821 if (ifa->ifa_addr->sa_family != addr->sa_family) 1822 continue; 1823 if (sa_equal(addr, ifa->ifa_addr)) { 1824 goto done; 1825 } 1826 /* IP6 doesn't have broadcast */ 1827 if ((ifp->if_flags & IFF_BROADCAST) && 1828 ifa->ifa_broadaddr && 1829 ifa->ifa_broadaddr->sa_len != 0 && 1830 sa_equal(ifa->ifa_broadaddr, addr)) { 1831 goto done; 1832 } 1833 } 1834 } 1835 ifa = NULL; 1836 done: 1837 return (ifa); 1838 } 1839 1840 int 1841 ifa_ifwithaddr_check(const struct sockaddr *addr) 1842 { 1843 struct epoch_tracker et; 1844 int rc; 1845 1846 NET_EPOCH_ENTER(et); 1847 rc = (ifa_ifwithaddr(addr) != NULL); 1848 NET_EPOCH_EXIT(et); 1849 return (rc); 1850 } 1851 1852 /* 1853 * Locate an interface based on the broadcast address. 1854 */ 1855 /* ARGSUSED */ 1856 struct ifaddr * 1857 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) 1858 { 1859 struct ifnet *ifp; 1860 struct ifaddr *ifa; 1861 1862 NET_EPOCH_ASSERT(); 1863 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1864 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1865 continue; 1866 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1867 if (ifa->ifa_addr->sa_family != addr->sa_family) 1868 continue; 1869 if ((ifp->if_flags & IFF_BROADCAST) && 1870 ifa->ifa_broadaddr && 1871 ifa->ifa_broadaddr->sa_len != 0 && 1872 sa_equal(ifa->ifa_broadaddr, addr)) { 1873 goto done; 1874 } 1875 } 1876 } 1877 ifa = NULL; 1878 done: 1879 return (ifa); 1880 } 1881 1882 /* 1883 * Locate the point to point interface with a given destination address. 1884 */ 1885 /*ARGSUSED*/ 1886 struct ifaddr * 1887 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) 1888 { 1889 struct ifnet *ifp; 1890 struct ifaddr *ifa; 1891 1892 NET_EPOCH_ASSERT(); 1893 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1894 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1895 continue; 1896 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1897 continue; 1898 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1899 if (ifa->ifa_addr->sa_family != addr->sa_family) 1900 continue; 1901 if (ifa->ifa_dstaddr != NULL && 1902 sa_equal(addr, ifa->ifa_dstaddr)) { 1903 goto done; 1904 } 1905 } 1906 } 1907 ifa = NULL; 1908 done: 1909 return (ifa); 1910 } 1911 1912 /* 1913 * Find an interface on a specific network. If many, choice 1914 * is most specific found. 1915 */ 1916 struct ifaddr * 1917 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) 1918 { 1919 struct ifnet *ifp; 1920 struct ifaddr *ifa; 1921 struct ifaddr *ifa_maybe = NULL; 1922 u_int af = addr->sa_family; 1923 const char *addr_data = addr->sa_data, *cplim; 1924 1925 NET_EPOCH_ASSERT(); 1926 /* 1927 * AF_LINK addresses can be looked up directly by their index number, 1928 * so do that if we can. 1929 */ 1930 if (af == AF_LINK) { 1931 ifp = ifnet_byindex( 1932 ((const struct sockaddr_dl *)addr)->sdl_index); 1933 return (ifp ? ifp->if_addr : NULL); 1934 } 1935 1936 /* 1937 * Scan though each interface, looking for ones that have addresses 1938 * in this address family and the requested fib. 1939 */ 1940 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1941 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1942 continue; 1943 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1944 const char *cp, *cp2, *cp3; 1945 1946 if (ifa->ifa_addr->sa_family != af) 1947 next: continue; 1948 if (af == AF_INET && 1949 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1950 /* 1951 * This is a bit broken as it doesn't 1952 * take into account that the remote end may 1953 * be a single node in the network we are 1954 * looking for. 1955 * The trouble is that we don't know the 1956 * netmask for the remote end. 1957 */ 1958 if (ifa->ifa_dstaddr != NULL && 1959 sa_equal(addr, ifa->ifa_dstaddr)) { 1960 goto done; 1961 } 1962 } else { 1963 /* 1964 * Scan all the bits in the ifa's address. 1965 * If a bit dissagrees with what we are 1966 * looking for, mask it with the netmask 1967 * to see if it really matters. 1968 * (A byte at a time) 1969 */ 1970 if (ifa->ifa_netmask == 0) 1971 continue; 1972 cp = addr_data; 1973 cp2 = ifa->ifa_addr->sa_data; 1974 cp3 = ifa->ifa_netmask->sa_data; 1975 cplim = ifa->ifa_netmask->sa_len 1976 + (char *)ifa->ifa_netmask; 1977 while (cp3 < cplim) 1978 if ((*cp++ ^ *cp2++) & *cp3++) 1979 goto next; /* next address! */ 1980 /* 1981 * If the netmask of what we just found 1982 * is more specific than what we had before 1983 * (if we had one), or if the virtual status 1984 * of new prefix is better than of the old one, 1985 * then remember the new one before continuing 1986 * to search for an even better one. 1987 */ 1988 if (ifa_maybe == NULL || 1989 ifa_preferred(ifa_maybe, ifa) || 1990 rn_refines((caddr_t)ifa->ifa_netmask, 1991 (caddr_t)ifa_maybe->ifa_netmask)) { 1992 ifa_maybe = ifa; 1993 } 1994 } 1995 } 1996 } 1997 ifa = ifa_maybe; 1998 ifa_maybe = NULL; 1999 done: 2000 return (ifa); 2001 } 2002 2003 /* 2004 * Find an interface address specific to an interface best matching 2005 * a given address. 2006 */ 2007 struct ifaddr * 2008 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2009 { 2010 struct ifaddr *ifa; 2011 const char *cp, *cp2, *cp3; 2012 char *cplim; 2013 struct ifaddr *ifa_maybe = NULL; 2014 u_int af = addr->sa_family; 2015 2016 if (af >= AF_MAX) 2017 return (NULL); 2018 2019 NET_EPOCH_ASSERT(); 2020 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2021 if (ifa->ifa_addr->sa_family != af) 2022 continue; 2023 if (ifa_maybe == NULL) 2024 ifa_maybe = ifa; 2025 if (ifa->ifa_netmask == 0) { 2026 if (sa_equal(addr, ifa->ifa_addr) || 2027 (ifa->ifa_dstaddr && 2028 sa_equal(addr, ifa->ifa_dstaddr))) 2029 goto done; 2030 continue; 2031 } 2032 if (ifp->if_flags & IFF_POINTOPOINT) { 2033 if (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr)) 2034 goto done; 2035 } else { 2036 cp = addr->sa_data; 2037 cp2 = ifa->ifa_addr->sa_data; 2038 cp3 = ifa->ifa_netmask->sa_data; 2039 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2040 for (; cp3 < cplim; cp3++) 2041 if ((*cp++ ^ *cp2++) & *cp3) 2042 break; 2043 if (cp3 == cplim) 2044 goto done; 2045 } 2046 } 2047 ifa = ifa_maybe; 2048 done: 2049 return (ifa); 2050 } 2051 2052 /* 2053 * See whether new ifa is better than current one: 2054 * 1) A non-virtual one is preferred over virtual. 2055 * 2) A virtual in master state preferred over any other state. 2056 * 2057 * Used in several address selecting functions. 2058 */ 2059 int 2060 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 2061 { 2062 2063 return (cur->ifa_carp && (!next->ifa_carp || 2064 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 2065 } 2066 2067 struct sockaddr_dl * 2068 link_alloc_sdl(size_t size, int flags) 2069 { 2070 2071 return (malloc(size, M_TEMP, flags)); 2072 } 2073 2074 void 2075 link_free_sdl(struct sockaddr *sa) 2076 { 2077 free(sa, M_TEMP); 2078 } 2079 2080 /* 2081 * Fills in given sdl with interface basic info. 2082 * Returns pointer to filled sdl. 2083 */ 2084 struct sockaddr_dl * 2085 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2086 { 2087 struct sockaddr_dl *sdl; 2088 2089 sdl = (struct sockaddr_dl *)paddr; 2090 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2091 sdl->sdl_len = sizeof(struct sockaddr_dl); 2092 sdl->sdl_family = AF_LINK; 2093 sdl->sdl_index = ifp->if_index; 2094 sdl->sdl_type = iftype; 2095 2096 return (sdl); 2097 } 2098 2099 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2100 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2101 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2102 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2103 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2104 int (*vlan_pcp_p)(struct ifnet *, uint16_t *); 2105 int (*vlan_setcookie_p)(struct ifnet *, void *); 2106 void *(*vlan_cookie_p)(struct ifnet *); 2107 2108 /* 2109 * Handle a change in the interface link state. To avoid LORs 2110 * between driver lock and upper layer locks, as well as possible 2111 * recursions, we post event to taskqueue, and all job 2112 * is done in static do_link_state_change(). 2113 */ 2114 void 2115 if_link_state_change(struct ifnet *ifp, int link_state) 2116 { 2117 /* Return if state hasn't changed. */ 2118 if (ifp->if_link_state == link_state) 2119 return; 2120 2121 ifp->if_link_state = link_state; 2122 2123 /* XXXGL: reference ifp? */ 2124 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2125 } 2126 2127 static void 2128 do_link_state_change(void *arg, int pending) 2129 { 2130 struct ifnet *ifp; 2131 int link_state; 2132 2133 ifp = arg; 2134 link_state = ifp->if_link_state; 2135 2136 CURVNET_SET(ifp->if_vnet); 2137 rt_ifmsg(ifp, 0); 2138 if (ifp->if_vlantrunk != NULL) 2139 (*vlan_link_state_p)(ifp); 2140 2141 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2142 ifp->if_l2com != NULL) 2143 (*ng_ether_link_state_p)(ifp, link_state); 2144 if (ifp->if_carp) 2145 (*carp_linkstate_p)(ifp); 2146 if (ifp->if_bridge) 2147 ifp->if_bridge_linkstate(ifp); 2148 if (ifp->if_lagg) 2149 (*lagg_linkstate_p)(ifp, link_state); 2150 2151 if (IS_DEFAULT_VNET(curvnet)) 2152 devctl_notify("IFNET", ifp->if_xname, 2153 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2154 NULL); 2155 if (pending > 1) 2156 if_printf(ifp, "%d link states coalesced\n", pending); 2157 if (log_link_state_change) 2158 if_printf(ifp, "link state changed to %s\n", 2159 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2160 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); 2161 CURVNET_RESTORE(); 2162 } 2163 2164 /* 2165 * Mark an interface down and notify protocols of 2166 * the transition. 2167 */ 2168 void 2169 if_down(struct ifnet *ifp) 2170 { 2171 2172 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); 2173 2174 ifp->if_flags &= ~IFF_UP; 2175 getmicrotime(&ifp->if_lastchange); 2176 ifp->if_qflush(ifp); 2177 2178 if (ifp->if_carp) 2179 (*carp_linkstate_p)(ifp); 2180 rt_ifmsg(ifp, IFF_UP); 2181 } 2182 2183 /* 2184 * Mark an interface up and notify protocols of 2185 * the transition. 2186 */ 2187 void 2188 if_up(struct ifnet *ifp) 2189 { 2190 2191 ifp->if_flags |= IFF_UP; 2192 getmicrotime(&ifp->if_lastchange); 2193 if (ifp->if_carp) 2194 (*carp_linkstate_p)(ifp); 2195 rt_ifmsg(ifp, IFF_UP); 2196 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); 2197 } 2198 2199 /* 2200 * Flush an interface queue. 2201 */ 2202 void 2203 if_qflush(struct ifnet *ifp) 2204 { 2205 struct mbuf *m, *n; 2206 struct ifaltq *ifq; 2207 2208 ifq = &ifp->if_snd; 2209 IFQ_LOCK(ifq); 2210 #ifdef ALTQ 2211 if (ALTQ_IS_ENABLED(ifq)) 2212 ALTQ_PURGE(ifq); 2213 #endif 2214 n = ifq->ifq_head; 2215 while ((m = n) != NULL) { 2216 n = m->m_nextpkt; 2217 m_freem(m); 2218 } 2219 ifq->ifq_head = 0; 2220 ifq->ifq_tail = 0; 2221 ifq->ifq_len = 0; 2222 IFQ_UNLOCK(ifq); 2223 } 2224 2225 /* 2226 * Map interface name to interface structure pointer, with or without 2227 * returning a reference. 2228 */ 2229 struct ifnet * 2230 ifunit_ref(const char *name) 2231 { 2232 struct epoch_tracker et; 2233 struct ifnet *ifp; 2234 2235 NET_EPOCH_ENTER(et); 2236 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2237 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2238 !(ifp->if_flags & IFF_DYING)) 2239 break; 2240 } 2241 if (ifp != NULL) { 2242 if_ref(ifp); 2243 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 2244 } 2245 2246 NET_EPOCH_EXIT(et); 2247 return (ifp); 2248 } 2249 2250 struct ifnet * 2251 ifunit(const char *name) 2252 { 2253 struct epoch_tracker et; 2254 struct ifnet *ifp; 2255 2256 NET_EPOCH_ENTER(et); 2257 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2258 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2259 break; 2260 } 2261 NET_EPOCH_EXIT(et); 2262 return (ifp); 2263 } 2264 2265 void * 2266 ifr_buffer_get_buffer(void *data) 2267 { 2268 union ifreq_union *ifrup; 2269 2270 ifrup = data; 2271 #ifdef COMPAT_FREEBSD32 2272 if (SV_CURPROC_FLAG(SV_ILP32)) 2273 return ((void *)(uintptr_t) 2274 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer); 2275 #endif 2276 return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer); 2277 } 2278 2279 static void 2280 ifr_buffer_set_buffer_null(void *data) 2281 { 2282 union ifreq_union *ifrup; 2283 2284 ifrup = data; 2285 #ifdef COMPAT_FREEBSD32 2286 if (SV_CURPROC_FLAG(SV_ILP32)) 2287 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0; 2288 else 2289 #endif 2290 ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL; 2291 } 2292 2293 size_t 2294 ifr_buffer_get_length(void *data) 2295 { 2296 union ifreq_union *ifrup; 2297 2298 ifrup = data; 2299 #ifdef COMPAT_FREEBSD32 2300 if (SV_CURPROC_FLAG(SV_ILP32)) 2301 return (ifrup->ifr32.ifr_ifru.ifru_buffer.length); 2302 #endif 2303 return (ifrup->ifr.ifr_ifru.ifru_buffer.length); 2304 } 2305 2306 static void 2307 ifr_buffer_set_length(void *data, size_t len) 2308 { 2309 union ifreq_union *ifrup; 2310 2311 ifrup = data; 2312 #ifdef COMPAT_FREEBSD32 2313 if (SV_CURPROC_FLAG(SV_ILP32)) 2314 ifrup->ifr32.ifr_ifru.ifru_buffer.length = len; 2315 else 2316 #endif 2317 ifrup->ifr.ifr_ifru.ifru_buffer.length = len; 2318 } 2319 2320 void * 2321 ifr_data_get_ptr(void *ifrp) 2322 { 2323 union ifreq_union *ifrup; 2324 2325 ifrup = ifrp; 2326 #ifdef COMPAT_FREEBSD32 2327 if (SV_CURPROC_FLAG(SV_ILP32)) 2328 return ((void *)(uintptr_t) 2329 ifrup->ifr32.ifr_ifru.ifru_data); 2330 #endif 2331 return (ifrup->ifr.ifr_ifru.ifru_data); 2332 } 2333 2334 struct ifcap_nv_bit_name { 2335 uint64_t cap_bit; 2336 const char *cap_name; 2337 }; 2338 #define CAPNV(x) {.cap_bit = IFCAP_##x, \ 2339 .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) } 2340 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = { 2341 CAPNV(RXCSUM), 2342 CAPNV(TXCSUM), 2343 CAPNV(NETCONS), 2344 CAPNV(VLAN_MTU), 2345 CAPNV(VLAN_HWTAGGING), 2346 CAPNV(JUMBO_MTU), 2347 CAPNV(POLLING), 2348 CAPNV(VLAN_HWCSUM), 2349 CAPNV(TSO4), 2350 CAPNV(TSO6), 2351 CAPNV(LRO), 2352 CAPNV(WOL_UCAST), 2353 CAPNV(WOL_MCAST), 2354 CAPNV(WOL_MAGIC), 2355 CAPNV(TOE4), 2356 CAPNV(TOE6), 2357 CAPNV(VLAN_HWFILTER), 2358 CAPNV(VLAN_HWTSO), 2359 CAPNV(LINKSTATE), 2360 CAPNV(NETMAP), 2361 CAPNV(RXCSUM_IPV6), 2362 CAPNV(TXCSUM_IPV6), 2363 CAPNV(HWSTATS), 2364 CAPNV(TXRTLMT), 2365 CAPNV(HWRXTSTMP), 2366 CAPNV(MEXTPG), 2367 CAPNV(TXTLS4), 2368 CAPNV(TXTLS6), 2369 CAPNV(VXLAN_HWCSUM), 2370 CAPNV(VXLAN_HWTSO), 2371 CAPNV(TXTLS_RTLMT), 2372 {0, NULL} 2373 }; 2374 #define CAP2NV(x) {.cap_bit = IFCAP2_BIT(IFCAP2_##x), \ 2375 .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) } 2376 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = { 2377 CAP2NV(RXTLS4), 2378 CAP2NV(RXTLS6), 2379 CAP2NV(IPSEC_OFFLOAD), 2380 {0, NULL} 2381 }; 2382 #undef CAPNV 2383 #undef CAP2NV 2384 2385 int 2386 if_capnv_to_capint(const nvlist_t *nv, int *old_cap, 2387 const struct ifcap_nv_bit_name *nn, bool all) 2388 { 2389 int i, res; 2390 2391 res = 0; 2392 for (i = 0; nn[i].cap_name != NULL; i++) { 2393 if (nvlist_exists_bool(nv, nn[i].cap_name)) { 2394 if (all || nvlist_get_bool(nv, nn[i].cap_name)) 2395 res |= nn[i].cap_bit; 2396 } else { 2397 res |= *old_cap & nn[i].cap_bit; 2398 } 2399 } 2400 return (res); 2401 } 2402 2403 void 2404 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn, 2405 int ifr_cap, int ifr_req) 2406 { 2407 int i; 2408 2409 for (i = 0; nn[i].cap_name != NULL; i++) { 2410 if ((nn[i].cap_bit & ifr_cap) != 0) { 2411 nvlist_add_bool(nv, nn[i].cap_name, 2412 (nn[i].cap_bit & ifr_req) != 0); 2413 } 2414 } 2415 } 2416 2417 /* 2418 * Hardware specific interface ioctls. 2419 */ 2420 int 2421 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2422 { 2423 struct ifreq *ifr; 2424 int error = 0, do_ifup = 0; 2425 int new_flags, temp_flags; 2426 size_t descrlen, nvbuflen; 2427 char *descrbuf; 2428 char new_name[IFNAMSIZ]; 2429 void *buf; 2430 nvlist_t *nvcap; 2431 struct siocsifcapnv_driver_data drv_ioctl_data; 2432 2433 ifr = (struct ifreq *)data; 2434 switch (cmd) { 2435 case SIOCGIFINDEX: 2436 ifr->ifr_index = ifp->if_index; 2437 break; 2438 2439 case SIOCGIFFLAGS: 2440 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2441 ifr->ifr_flags = temp_flags & 0xffff; 2442 ifr->ifr_flagshigh = temp_flags >> 16; 2443 break; 2444 2445 case SIOCGIFCAP: 2446 ifr->ifr_reqcap = ifp->if_capabilities; 2447 ifr->ifr_curcap = ifp->if_capenable; 2448 break; 2449 2450 case SIOCGIFCAPNV: 2451 if ((ifp->if_capabilities & IFCAP_NV) == 0) { 2452 error = EINVAL; 2453 break; 2454 } 2455 buf = NULL; 2456 nvcap = nvlist_create(0); 2457 for (;;) { 2458 if_capint_to_capnv(nvcap, ifcap_nv_bit_names, 2459 ifp->if_capabilities, ifp->if_capenable); 2460 if_capint_to_capnv(nvcap, ifcap2_nv_bit_names, 2461 ifp->if_capabilities2, ifp->if_capenable2); 2462 error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV, 2463 __DECONST(caddr_t, nvcap)); 2464 if (error != 0) { 2465 if_printf(ifp, 2466 "SIOCGIFCAPNV driver mistake: nvlist error %d\n", 2467 error); 2468 break; 2469 } 2470 buf = nvlist_pack(nvcap, &nvbuflen); 2471 if (buf == NULL) { 2472 error = nvlist_error(nvcap); 2473 if (error == 0) 2474 error = EDOOFUS; 2475 break; 2476 } 2477 if (nvbuflen > ifr->ifr_cap_nv.buf_length) { 2478 ifr->ifr_cap_nv.length = nvbuflen; 2479 ifr->ifr_cap_nv.buffer = NULL; 2480 error = EFBIG; 2481 break; 2482 } 2483 ifr->ifr_cap_nv.length = nvbuflen; 2484 error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen); 2485 break; 2486 } 2487 free(buf, M_NVLIST); 2488 nvlist_destroy(nvcap); 2489 break; 2490 2491 case SIOCGIFDATA: 2492 { 2493 struct if_data ifd; 2494 2495 /* Ensure uninitialised padding is not leaked. */ 2496 memset(&ifd, 0, sizeof(ifd)); 2497 2498 if_data_copy(ifp, &ifd); 2499 error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd)); 2500 break; 2501 } 2502 2503 #ifdef MAC 2504 case SIOCGIFMAC: 2505 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2506 break; 2507 #endif 2508 2509 case SIOCGIFMETRIC: 2510 ifr->ifr_metric = ifp->if_metric; 2511 break; 2512 2513 case SIOCGIFMTU: 2514 ifr->ifr_mtu = ifp->if_mtu; 2515 break; 2516 2517 case SIOCGIFPHYS: 2518 /* XXXGL: did this ever worked? */ 2519 ifr->ifr_phys = 0; 2520 break; 2521 2522 case SIOCGIFDESCR: 2523 error = 0; 2524 sx_slock(&ifdescr_sx); 2525 if (ifp->if_description == NULL) 2526 error = ENOMSG; 2527 else { 2528 /* space for terminating nul */ 2529 descrlen = strlen(ifp->if_description) + 1; 2530 if (ifr_buffer_get_length(ifr) < descrlen) 2531 ifr_buffer_set_buffer_null(ifr); 2532 else 2533 error = copyout(ifp->if_description, 2534 ifr_buffer_get_buffer(ifr), descrlen); 2535 ifr_buffer_set_length(ifr, descrlen); 2536 } 2537 sx_sunlock(&ifdescr_sx); 2538 break; 2539 2540 case SIOCSIFDESCR: 2541 error = priv_check(td, PRIV_NET_SETIFDESCR); 2542 if (error) 2543 return (error); 2544 2545 /* 2546 * Copy only (length-1) bytes to make sure that 2547 * if_description is always nul terminated. The 2548 * length parameter is supposed to count the 2549 * terminating nul in. 2550 */ 2551 if (ifr_buffer_get_length(ifr) > ifdescr_maxlen) 2552 return (ENAMETOOLONG); 2553 else if (ifr_buffer_get_length(ifr) == 0) 2554 descrbuf = NULL; 2555 else { 2556 descrbuf = if_allocdescr(ifr_buffer_get_length(ifr), M_WAITOK); 2557 error = copyin(ifr_buffer_get_buffer(ifr), descrbuf, 2558 ifr_buffer_get_length(ifr) - 1); 2559 if (error) { 2560 if_freedescr(descrbuf); 2561 break; 2562 } 2563 } 2564 2565 if_setdescr(ifp, descrbuf); 2566 getmicrotime(&ifp->if_lastchange); 2567 break; 2568 2569 case SIOCGIFFIB: 2570 ifr->ifr_fib = ifp->if_fib; 2571 break; 2572 2573 case SIOCSIFFIB: 2574 error = priv_check(td, PRIV_NET_SETIFFIB); 2575 if (error) 2576 return (error); 2577 if (ifr->ifr_fib >= rt_numfibs) 2578 return (EINVAL); 2579 2580 ifp->if_fib = ifr->ifr_fib; 2581 break; 2582 2583 case SIOCSIFFLAGS: 2584 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2585 if (error) 2586 return (error); 2587 /* 2588 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2589 * check, so we don't need special handling here yet. 2590 */ 2591 new_flags = (ifr->ifr_flags & 0xffff) | 2592 (ifr->ifr_flagshigh << 16); 2593 if (ifp->if_flags & IFF_UP && 2594 (new_flags & IFF_UP) == 0) { 2595 if_down(ifp); 2596 } else if (new_flags & IFF_UP && 2597 (ifp->if_flags & IFF_UP) == 0) { 2598 do_ifup = 1; 2599 } 2600 2601 /* 2602 * See if the promiscuous mode or allmulti bits are about to 2603 * flip. They require special handling because in-kernel 2604 * consumers may indepdently toggle them. 2605 */ 2606 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2607 if (new_flags & IFF_PPROMISC) 2608 ifp->if_flags |= IFF_PROMISC; 2609 else if (ifp->if_pcount == 0) 2610 ifp->if_flags &= ~IFF_PROMISC; 2611 if (log_promisc_mode_change) 2612 if_printf(ifp, "permanently promiscuous mode %s\n", 2613 ((new_flags & IFF_PPROMISC) ? 2614 "enabled" : "disabled")); 2615 } 2616 if ((ifp->if_flags ^ new_flags) & IFF_PALLMULTI) { 2617 if (new_flags & IFF_PALLMULTI) 2618 ifp->if_flags |= IFF_ALLMULTI; 2619 else if (ifp->if_amcount == 0) 2620 ifp->if_flags &= ~IFF_ALLMULTI; 2621 } 2622 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2623 (new_flags &~ IFF_CANTCHANGE); 2624 if (ifp->if_ioctl) { 2625 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2626 } 2627 if (do_ifup) 2628 if_up(ifp); 2629 getmicrotime(&ifp->if_lastchange); 2630 break; 2631 2632 case SIOCSIFCAP: 2633 error = priv_check(td, PRIV_NET_SETIFCAP); 2634 if (error != 0) 2635 return (error); 2636 if (ifp->if_ioctl == NULL) 2637 return (EOPNOTSUPP); 2638 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2639 return (EINVAL); 2640 error = (*ifp->if_ioctl)(ifp, cmd, data); 2641 if (error == 0) 2642 getmicrotime(&ifp->if_lastchange); 2643 break; 2644 2645 case SIOCSIFCAPNV: 2646 error = priv_check(td, PRIV_NET_SETIFCAP); 2647 if (error != 0) 2648 return (error); 2649 if (ifp->if_ioctl == NULL) 2650 return (EOPNOTSUPP); 2651 if ((ifp->if_capabilities & IFCAP_NV) == 0) 2652 return (EINVAL); 2653 if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE) 2654 return (EINVAL); 2655 nvcap = NULL; 2656 buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK); 2657 for (;;) { 2658 error = copyin(ifr->ifr_cap_nv.buffer, buf, 2659 ifr->ifr_cap_nv.length); 2660 if (error != 0) 2661 break; 2662 nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0); 2663 if (nvcap == NULL) { 2664 error = EINVAL; 2665 break; 2666 } 2667 drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap, 2668 &ifp->if_capenable, ifcap_nv_bit_names, false); 2669 if ((drv_ioctl_data.reqcap & 2670 ~ifp->if_capabilities) != 0) { 2671 error = EINVAL; 2672 break; 2673 } 2674 drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap, 2675 &ifp->if_capenable2, ifcap2_nv_bit_names, false); 2676 if ((drv_ioctl_data.reqcap2 & 2677 ~ifp->if_capabilities2) != 0) { 2678 error = EINVAL; 2679 break; 2680 } 2681 drv_ioctl_data.nvcap = nvcap; 2682 error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV, 2683 (caddr_t)&drv_ioctl_data); 2684 break; 2685 } 2686 nvlist_destroy(nvcap); 2687 free(buf, M_TEMP); 2688 if (error == 0) 2689 getmicrotime(&ifp->if_lastchange); 2690 break; 2691 2692 #ifdef MAC 2693 case SIOCSIFMAC: 2694 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2695 break; 2696 #endif 2697 2698 case SIOCSIFNAME: 2699 error = priv_check(td, PRIV_NET_SETIFNAME); 2700 if (error) 2701 return (error); 2702 error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ, 2703 NULL); 2704 if (error != 0) 2705 return (error); 2706 error = if_rename(ifp, new_name); 2707 break; 2708 2709 #ifdef VIMAGE 2710 case SIOCSIFVNET: 2711 error = priv_check(td, PRIV_NET_SETIFVNET); 2712 if (error) 2713 return (error); 2714 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2715 break; 2716 #endif 2717 2718 case SIOCSIFMETRIC: 2719 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2720 if (error) 2721 return (error); 2722 ifp->if_metric = ifr->ifr_metric; 2723 getmicrotime(&ifp->if_lastchange); 2724 break; 2725 2726 case SIOCSIFPHYS: 2727 error = priv_check(td, PRIV_NET_SETIFPHYS); 2728 if (error) 2729 return (error); 2730 if (ifp->if_ioctl == NULL) 2731 return (EOPNOTSUPP); 2732 error = (*ifp->if_ioctl)(ifp, cmd, data); 2733 if (error == 0) 2734 getmicrotime(&ifp->if_lastchange); 2735 break; 2736 2737 case SIOCSIFMTU: 2738 { 2739 u_long oldmtu = ifp->if_mtu; 2740 2741 error = priv_check(td, PRIV_NET_SETIFMTU); 2742 if (error) 2743 return (error); 2744 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2745 return (EINVAL); 2746 if (ifp->if_ioctl == NULL) 2747 return (EOPNOTSUPP); 2748 /* Disallow MTU changes on bridge member interfaces. */ 2749 if (ifp->if_bridge) 2750 return (EOPNOTSUPP); 2751 error = (*ifp->if_ioctl)(ifp, cmd, data); 2752 if (error == 0) { 2753 getmicrotime(&ifp->if_lastchange); 2754 rt_ifmsg(ifp, 0); 2755 #ifdef INET 2756 DEBUGNET_NOTIFY_MTU(ifp); 2757 #endif 2758 } 2759 /* 2760 * If the link MTU changed, do network layer specific procedure. 2761 */ 2762 if (ifp->if_mtu != oldmtu) 2763 if_notifymtu(ifp); 2764 break; 2765 } 2766 2767 case SIOCADDMULTI: 2768 case SIOCDELMULTI: 2769 if (cmd == SIOCADDMULTI) 2770 error = priv_check(td, PRIV_NET_ADDMULTI); 2771 else 2772 error = priv_check(td, PRIV_NET_DELMULTI); 2773 if (error) 2774 return (error); 2775 2776 /* Don't allow group membership on non-multicast interfaces. */ 2777 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2778 return (EOPNOTSUPP); 2779 2780 /* Don't let users screw up protocols' entries. */ 2781 if (ifr->ifr_addr.sa_family != AF_LINK) 2782 return (EINVAL); 2783 2784 if (cmd == SIOCADDMULTI) { 2785 struct epoch_tracker et; 2786 struct ifmultiaddr *ifma; 2787 2788 /* 2789 * Userland is only permitted to join groups once 2790 * via the if_addmulti() KPI, because it cannot hold 2791 * struct ifmultiaddr * between calls. It may also 2792 * lose a race while we check if the membership 2793 * already exists. 2794 */ 2795 NET_EPOCH_ENTER(et); 2796 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2797 NET_EPOCH_EXIT(et); 2798 if (ifma != NULL) 2799 error = EADDRINUSE; 2800 else 2801 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2802 } else { 2803 error = if_delmulti(ifp, &ifr->ifr_addr); 2804 } 2805 if (error == 0) 2806 getmicrotime(&ifp->if_lastchange); 2807 break; 2808 2809 case SIOCSIFPHYADDR: 2810 case SIOCDIFPHYADDR: 2811 #ifdef INET6 2812 case SIOCSIFPHYADDR_IN6: 2813 #endif 2814 case SIOCSIFMEDIA: 2815 case SIOCSIFGENERIC: 2816 error = priv_check(td, PRIV_NET_HWIOCTL); 2817 if (error) 2818 return (error); 2819 if (ifp->if_ioctl == NULL) 2820 return (EOPNOTSUPP); 2821 error = (*ifp->if_ioctl)(ifp, cmd, data); 2822 if (error == 0) 2823 getmicrotime(&ifp->if_lastchange); 2824 break; 2825 2826 case SIOCGIFSTATUS: 2827 case SIOCGIFPSRCADDR: 2828 case SIOCGIFPDSTADDR: 2829 case SIOCGIFMEDIA: 2830 case SIOCGIFXMEDIA: 2831 case SIOCGIFGENERIC: 2832 case SIOCGIFRSSKEY: 2833 case SIOCGIFRSSHASH: 2834 case SIOCGIFDOWNREASON: 2835 if (ifp->if_ioctl == NULL) 2836 return (EOPNOTSUPP); 2837 error = (*ifp->if_ioctl)(ifp, cmd, data); 2838 break; 2839 2840 case SIOCSIFLLADDR: 2841 error = priv_check(td, PRIV_NET_SETLLADDR); 2842 if (error) 2843 return (error); 2844 error = if_setlladdr(ifp, 2845 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2846 break; 2847 2848 case SIOCGHWADDR: 2849 error = if_gethwaddr(ifp, ifr); 2850 break; 2851 2852 case SIOCAIFGROUP: 2853 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2854 if (error) 2855 return (error); 2856 error = if_addgroup(ifp, 2857 ((struct ifgroupreq *)data)->ifgr_group); 2858 if (error != 0) 2859 return (error); 2860 break; 2861 2862 case SIOCGIFGROUP: 2863 { 2864 struct epoch_tracker et; 2865 2866 NET_EPOCH_ENTER(et); 2867 error = if_getgroup((struct ifgroupreq *)data, ifp); 2868 NET_EPOCH_EXIT(et); 2869 break; 2870 } 2871 2872 case SIOCDIFGROUP: 2873 error = priv_check(td, PRIV_NET_DELIFGROUP); 2874 if (error) 2875 return (error); 2876 error = if_delgroup(ifp, 2877 ((struct ifgroupreq *)data)->ifgr_group); 2878 if (error != 0) 2879 return (error); 2880 break; 2881 2882 default: 2883 error = ENOIOCTL; 2884 break; 2885 } 2886 return (error); 2887 } 2888 2889 /* 2890 * Interface ioctls. 2891 */ 2892 int 2893 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2894 { 2895 #ifdef COMPAT_FREEBSD32 2896 union { 2897 struct ifconf ifc; 2898 struct ifdrv ifd; 2899 struct ifgroupreq ifgr; 2900 struct ifmediareq ifmr; 2901 } thunk; 2902 u_long saved_cmd; 2903 struct ifconf32 *ifc32; 2904 struct ifdrv32 *ifd32; 2905 struct ifgroupreq32 *ifgr32; 2906 struct ifmediareq32 *ifmr32; 2907 #endif 2908 struct ifnet *ifp; 2909 struct ifreq *ifr; 2910 int error; 2911 int oif_flags; 2912 #ifdef VIMAGE 2913 bool shutdown; 2914 #endif 2915 2916 CURVNET_SET(so->so_vnet); 2917 #ifdef VIMAGE 2918 /* Make sure the VNET is stable. */ 2919 shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet); 2920 if (shutdown) { 2921 CURVNET_RESTORE(); 2922 return (EBUSY); 2923 } 2924 #endif 2925 2926 #ifdef COMPAT_FREEBSD32 2927 saved_cmd = cmd; 2928 switch (cmd) { 2929 case SIOCGIFCONF32: 2930 ifc32 = (struct ifconf32 *)data; 2931 thunk.ifc.ifc_len = ifc32->ifc_len; 2932 thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2933 data = (caddr_t)&thunk.ifc; 2934 cmd = SIOCGIFCONF; 2935 break; 2936 case SIOCGDRVSPEC32: 2937 case SIOCSDRVSPEC32: 2938 ifd32 = (struct ifdrv32 *)data; 2939 memcpy(thunk.ifd.ifd_name, ifd32->ifd_name, 2940 sizeof(thunk.ifd.ifd_name)); 2941 thunk.ifd.ifd_cmd = ifd32->ifd_cmd; 2942 thunk.ifd.ifd_len = ifd32->ifd_len; 2943 thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data); 2944 data = (caddr_t)&thunk.ifd; 2945 cmd = _IOC_NEWTYPE(cmd, struct ifdrv); 2946 break; 2947 case SIOCAIFGROUP32: 2948 case SIOCGIFGROUP32: 2949 case SIOCDIFGROUP32: 2950 case SIOCGIFGMEMB32: 2951 ifgr32 = (struct ifgroupreq32 *)data; 2952 memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name, 2953 sizeof(thunk.ifgr.ifgr_name)); 2954 thunk.ifgr.ifgr_len = ifgr32->ifgr_len; 2955 switch (cmd) { 2956 case SIOCAIFGROUP32: 2957 case SIOCDIFGROUP32: 2958 memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group, 2959 sizeof(thunk.ifgr.ifgr_group)); 2960 break; 2961 case SIOCGIFGROUP32: 2962 case SIOCGIFGMEMB32: 2963 thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups); 2964 break; 2965 } 2966 data = (caddr_t)&thunk.ifgr; 2967 cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq); 2968 break; 2969 case SIOCGIFMEDIA32: 2970 case SIOCGIFXMEDIA32: 2971 ifmr32 = (struct ifmediareq32 *)data; 2972 memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name, 2973 sizeof(thunk.ifmr.ifm_name)); 2974 thunk.ifmr.ifm_current = ifmr32->ifm_current; 2975 thunk.ifmr.ifm_mask = ifmr32->ifm_mask; 2976 thunk.ifmr.ifm_status = ifmr32->ifm_status; 2977 thunk.ifmr.ifm_active = ifmr32->ifm_active; 2978 thunk.ifmr.ifm_count = ifmr32->ifm_count; 2979 thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist); 2980 data = (caddr_t)&thunk.ifmr; 2981 cmd = _IOC_NEWTYPE(cmd, struct ifmediareq); 2982 break; 2983 } 2984 #endif 2985 2986 switch (cmd) { 2987 case SIOCGIFCONF: 2988 error = ifconf(cmd, data); 2989 goto out_noref; 2990 } 2991 2992 ifr = (struct ifreq *)data; 2993 switch (cmd) { 2994 #ifdef VIMAGE 2995 case SIOCSIFRVNET: 2996 error = priv_check(td, PRIV_NET_SETIFVNET); 2997 if (error == 0) 2998 error = if_vmove_reclaim(td, ifr->ifr_name, 2999 ifr->ifr_jid); 3000 goto out_noref; 3001 #endif 3002 case SIOCIFCREATE: 3003 case SIOCIFCREATE2: 3004 error = priv_check(td, PRIV_NET_IFCREATE); 3005 if (error == 0) 3006 error = if_clone_create(ifr->ifr_name, 3007 sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? 3008 ifr_data_get_ptr(ifr) : NULL); 3009 goto out_noref; 3010 case SIOCIFDESTROY: 3011 error = priv_check(td, PRIV_NET_IFDESTROY); 3012 3013 if (error == 0) { 3014 sx_xlock(&ifnet_detach_sxlock); 3015 error = if_clone_destroy(ifr->ifr_name); 3016 sx_xunlock(&ifnet_detach_sxlock); 3017 } 3018 goto out_noref; 3019 3020 case SIOCIFGCLONERS: 3021 error = if_clone_list((struct if_clonereq *)data); 3022 goto out_noref; 3023 3024 case SIOCGIFGMEMB: 3025 error = if_getgroupmembers((struct ifgroupreq *)data); 3026 goto out_noref; 3027 3028 #if defined(INET) || defined(INET6) 3029 case SIOCSVH: 3030 case SIOCGVH: 3031 if (carp_ioctl_p == NULL) 3032 error = EPROTONOSUPPORT; 3033 else 3034 error = (*carp_ioctl_p)(ifr, cmd, td); 3035 goto out_noref; 3036 #endif 3037 } 3038 3039 ifp = ifunit_ref(ifr->ifr_name); 3040 if (ifp == NULL) { 3041 error = ENXIO; 3042 goto out_noref; 3043 } 3044 3045 error = ifhwioctl(cmd, ifp, data, td); 3046 if (error != ENOIOCTL) 3047 goto out_ref; 3048 3049 oif_flags = ifp->if_flags; 3050 if (so->so_proto == NULL) { 3051 error = EOPNOTSUPP; 3052 goto out_ref; 3053 } 3054 3055 /* 3056 * Pass the request on to the socket control method, and if the 3057 * latter returns EOPNOTSUPP, directly to the interface. 3058 * 3059 * Make an exception for the legacy SIOCSIF* requests. Drivers 3060 * trust SIOCSIFADDR et al to come from an already privileged 3061 * layer, and do not perform any credentials checks or input 3062 * validation. 3063 */ 3064 error = so->so_proto->pr_control(so, cmd, data, ifp, td); 3065 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 3066 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 3067 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 3068 error = (*ifp->if_ioctl)(ifp, cmd, data); 3069 3070 if (!(oif_flags & IFF_UP) && (ifp->if_flags & IFF_UP)) 3071 if_up(ifp); 3072 out_ref: 3073 if_rele(ifp); 3074 out_noref: 3075 CURVNET_RESTORE(); 3076 #ifdef COMPAT_FREEBSD32 3077 if (error != 0) 3078 return (error); 3079 switch (saved_cmd) { 3080 case SIOCGIFCONF32: 3081 ifc32->ifc_len = thunk.ifc.ifc_len; 3082 break; 3083 case SIOCGDRVSPEC32: 3084 /* 3085 * SIOCGDRVSPEC is IOWR, but nothing actually touches 3086 * the struct so just assert that ifd_len (the only 3087 * field it might make sense to update) hasn't 3088 * changed. 3089 */ 3090 KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len, 3091 ("ifd_len was updated %u -> %zu", ifd32->ifd_len, 3092 thunk.ifd.ifd_len)); 3093 break; 3094 case SIOCGIFGROUP32: 3095 case SIOCGIFGMEMB32: 3096 ifgr32->ifgr_len = thunk.ifgr.ifgr_len; 3097 break; 3098 case SIOCGIFMEDIA32: 3099 case SIOCGIFXMEDIA32: 3100 ifmr32->ifm_current = thunk.ifmr.ifm_current; 3101 ifmr32->ifm_mask = thunk.ifmr.ifm_mask; 3102 ifmr32->ifm_status = thunk.ifmr.ifm_status; 3103 ifmr32->ifm_active = thunk.ifmr.ifm_active; 3104 ifmr32->ifm_count = thunk.ifmr.ifm_count; 3105 break; 3106 } 3107 #endif 3108 return (error); 3109 } 3110 3111 int 3112 if_rename(struct ifnet *ifp, char *new_name) 3113 { 3114 struct ifaddr *ifa; 3115 struct sockaddr_dl *sdl; 3116 size_t namelen, onamelen; 3117 char old_name[IFNAMSIZ]; 3118 char strbuf[IFNAMSIZ + 8]; 3119 3120 if (new_name[0] == '\0') 3121 return (EINVAL); 3122 if (strcmp(new_name, ifp->if_xname) == 0) 3123 return (0); 3124 if (ifunit(new_name) != NULL) 3125 return (EEXIST); 3126 3127 /* 3128 * XXX: Locking. Nothing else seems to lock if_flags, 3129 * and there are numerous other races with the 3130 * ifunit() checks not being atomic with namespace 3131 * changes (renames, vmoves, if_attach, etc). 3132 */ 3133 ifp->if_flags |= IFF_RENAMING; 3134 3135 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 3136 3137 if_printf(ifp, "changing name to '%s'\n", new_name); 3138 3139 IF_ADDR_WLOCK(ifp); 3140 strlcpy(old_name, ifp->if_xname, sizeof(old_name)); 3141 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 3142 ifa = ifp->if_addr; 3143 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3144 namelen = strlen(new_name); 3145 onamelen = sdl->sdl_nlen; 3146 /* 3147 * Move the address if needed. This is safe because we 3148 * allocate space for a name of length IFNAMSIZ when we 3149 * create this in if_attach(). 3150 */ 3151 if (namelen != onamelen) { 3152 bcopy(sdl->sdl_data + onamelen, 3153 sdl->sdl_data + namelen, sdl->sdl_alen); 3154 } 3155 bcopy(new_name, sdl->sdl_data, namelen); 3156 sdl->sdl_nlen = namelen; 3157 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 3158 bzero(sdl->sdl_data, onamelen); 3159 while (namelen != 0) 3160 sdl->sdl_data[--namelen] = 0xff; 3161 IF_ADDR_WUNLOCK(ifp); 3162 3163 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 3164 3165 ifp->if_flags &= ~IFF_RENAMING; 3166 3167 snprintf(strbuf, sizeof(strbuf), "name=%s", new_name); 3168 devctl_notify("IFNET", old_name, "RENAME", strbuf); 3169 3170 return (0); 3171 } 3172 3173 /* 3174 * The code common to handling reference counted flags, 3175 * e.g., in ifpromisc() and if_allmulti(). 3176 * The "pflag" argument can specify a permanent mode flag to check, 3177 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 3178 * 3179 * Only to be used on stack-owned flags, not driver-owned flags. 3180 */ 3181 static int 3182 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 3183 { 3184 struct ifreq ifr; 3185 int error; 3186 int oldflags, oldcount; 3187 3188 /* Sanity checks to catch programming errors */ 3189 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 3190 ("%s: setting driver-owned flag %d", __func__, flag)); 3191 3192 if (onswitch) 3193 KASSERT(*refcount >= 0, 3194 ("%s: increment negative refcount %d for flag %d", 3195 __func__, *refcount, flag)); 3196 else 3197 KASSERT(*refcount > 0, 3198 ("%s: decrement non-positive refcount %d for flag %d", 3199 __func__, *refcount, flag)); 3200 3201 /* In case this mode is permanent, just touch refcount */ 3202 if (ifp->if_flags & pflag) { 3203 *refcount += onswitch ? 1 : -1; 3204 return (0); 3205 } 3206 3207 /* Save ifnet parameters for if_ioctl() may fail */ 3208 oldcount = *refcount; 3209 oldflags = ifp->if_flags; 3210 3211 /* 3212 * See if we aren't the only and touching refcount is enough. 3213 * Actually toggle interface flag if we are the first or last. 3214 */ 3215 if (onswitch) { 3216 if ((*refcount)++) 3217 return (0); 3218 ifp->if_flags |= flag; 3219 } else { 3220 if (--(*refcount)) 3221 return (0); 3222 ifp->if_flags &= ~flag; 3223 } 3224 3225 /* Call down the driver since we've changed interface flags */ 3226 if (ifp->if_ioctl == NULL) { 3227 error = EOPNOTSUPP; 3228 goto recover; 3229 } 3230 ifr.ifr_flags = ifp->if_flags & 0xffff; 3231 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3232 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3233 if (error) 3234 goto recover; 3235 /* Notify userland that interface flags have changed */ 3236 rt_ifmsg(ifp, flag); 3237 return (0); 3238 3239 recover: 3240 /* Recover after driver error */ 3241 *refcount = oldcount; 3242 ifp->if_flags = oldflags; 3243 return (error); 3244 } 3245 3246 /* 3247 * Set/clear promiscuous mode on interface ifp based on the truth value 3248 * of pswitch. The calls are reference counted so that only the first 3249 * "on" request actually has an effect, as does the final "off" request. 3250 * Results are undefined if the "off" and "on" requests are not matched. 3251 */ 3252 int 3253 ifpromisc(struct ifnet *ifp, int pswitch) 3254 { 3255 int error; 3256 int oldflags = ifp->if_flags; 3257 3258 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 3259 &ifp->if_pcount, pswitch); 3260 /* If promiscuous mode status has changed, log a message */ 3261 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) && 3262 log_promisc_mode_change) 3263 if_printf(ifp, "promiscuous mode %s\n", 3264 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 3265 return (error); 3266 } 3267 3268 /* 3269 * Return interface configuration 3270 * of system. List may be used 3271 * in later ioctl's (above) to get 3272 * other information. 3273 */ 3274 /*ARGSUSED*/ 3275 static int 3276 ifconf(u_long cmd, caddr_t data) 3277 { 3278 struct ifconf *ifc = (struct ifconf *)data; 3279 struct ifnet *ifp; 3280 struct ifaddr *ifa; 3281 struct ifreq ifr; 3282 struct sbuf *sb; 3283 int error, full = 0, valid_len, max_len; 3284 3285 /* Limit initial buffer size to maxphys to avoid DoS from userspace. */ 3286 max_len = maxphys - 1; 3287 3288 /* Prevent hostile input from being able to crash the system */ 3289 if (ifc->ifc_len <= 0) 3290 return (EINVAL); 3291 3292 again: 3293 if (ifc->ifc_len <= max_len) { 3294 max_len = ifc->ifc_len; 3295 full = 1; 3296 } 3297 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 3298 max_len = 0; 3299 valid_len = 0; 3300 3301 IFNET_RLOCK(); 3302 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 3303 struct epoch_tracker et; 3304 int addrs; 3305 3306 /* 3307 * Zero the ifr to make sure we don't disclose the contents 3308 * of the stack. 3309 */ 3310 memset(&ifr, 0, sizeof(ifr)); 3311 3312 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 3313 >= sizeof(ifr.ifr_name)) { 3314 sbuf_delete(sb); 3315 IFNET_RUNLOCK(); 3316 return (ENAMETOOLONG); 3317 } 3318 3319 addrs = 0; 3320 NET_EPOCH_ENTER(et); 3321 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3322 struct sockaddr *sa = ifa->ifa_addr; 3323 3324 if (prison_if(curthread->td_ucred, sa) != 0) 3325 continue; 3326 addrs++; 3327 if (sa->sa_len <= sizeof(*sa)) { 3328 if (sa->sa_len < sizeof(*sa)) { 3329 memset(&ifr.ifr_ifru.ifru_addr, 0, 3330 sizeof(ifr.ifr_ifru.ifru_addr)); 3331 memcpy(&ifr.ifr_ifru.ifru_addr, sa, 3332 sa->sa_len); 3333 } else 3334 ifr.ifr_ifru.ifru_addr = *sa; 3335 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3336 max_len += sizeof(ifr); 3337 } else { 3338 sbuf_bcat(sb, &ifr, 3339 offsetof(struct ifreq, ifr_addr)); 3340 max_len += offsetof(struct ifreq, ifr_addr); 3341 sbuf_bcat(sb, sa, sa->sa_len); 3342 max_len += sa->sa_len; 3343 } 3344 3345 if (sbuf_error(sb) == 0) 3346 valid_len = sbuf_len(sb); 3347 } 3348 NET_EPOCH_EXIT(et); 3349 if (addrs == 0) { 3350 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3351 max_len += sizeof(ifr); 3352 3353 if (sbuf_error(sb) == 0) 3354 valid_len = sbuf_len(sb); 3355 } 3356 } 3357 IFNET_RUNLOCK(); 3358 3359 /* 3360 * If we didn't allocate enough space (uncommon), try again. If 3361 * we have already allocated as much space as we are allowed, 3362 * return what we've got. 3363 */ 3364 if (valid_len != max_len && !full) { 3365 sbuf_delete(sb); 3366 goto again; 3367 } 3368 3369 ifc->ifc_len = valid_len; 3370 sbuf_finish(sb); 3371 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 3372 sbuf_delete(sb); 3373 return (error); 3374 } 3375 3376 /* 3377 * Just like ifpromisc(), but for all-multicast-reception mode. 3378 */ 3379 int 3380 if_allmulti(struct ifnet *ifp, int onswitch) 3381 { 3382 3383 return (if_setflag(ifp, IFF_ALLMULTI, IFF_PALLMULTI, &ifp->if_amcount, 3384 onswitch)); 3385 } 3386 3387 struct ifmultiaddr * 3388 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) 3389 { 3390 struct ifmultiaddr *ifma; 3391 3392 IF_ADDR_LOCK_ASSERT(ifp); 3393 3394 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3395 if (sa->sa_family == AF_LINK) { 3396 if (sa_dl_equal(ifma->ifma_addr, sa)) 3397 break; 3398 } else { 3399 if (sa_equal(ifma->ifma_addr, sa)) 3400 break; 3401 } 3402 } 3403 3404 return ifma; 3405 } 3406 3407 /* 3408 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 3409 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 3410 * the ifnet multicast address list here, so the caller must do that and 3411 * other setup work (such as notifying the device driver). The reference 3412 * count is initialized to 1. 3413 */ 3414 static struct ifmultiaddr * 3415 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 3416 int mflags) 3417 { 3418 struct ifmultiaddr *ifma; 3419 struct sockaddr *dupsa; 3420 3421 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3422 M_ZERO); 3423 if (ifma == NULL) 3424 return (NULL); 3425 3426 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3427 if (dupsa == NULL) { 3428 free(ifma, M_IFMADDR); 3429 return (NULL); 3430 } 3431 bcopy(sa, dupsa, sa->sa_len); 3432 ifma->ifma_addr = dupsa; 3433 3434 ifma->ifma_ifp = ifp; 3435 ifma->ifma_refcount = 1; 3436 ifma->ifma_protospec = NULL; 3437 3438 if (llsa == NULL) { 3439 ifma->ifma_lladdr = NULL; 3440 return (ifma); 3441 } 3442 3443 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3444 if (dupsa == NULL) { 3445 free(ifma->ifma_addr, M_IFMADDR); 3446 free(ifma, M_IFMADDR); 3447 return (NULL); 3448 } 3449 bcopy(llsa, dupsa, llsa->sa_len); 3450 ifma->ifma_lladdr = dupsa; 3451 3452 return (ifma); 3453 } 3454 3455 /* 3456 * if_freemulti: free ifmultiaddr structure and possibly attached related 3457 * addresses. The caller is responsible for implementing reference 3458 * counting, notifying the driver, handling routing messages, and releasing 3459 * any dependent link layer state. 3460 */ 3461 #ifdef MCAST_VERBOSE 3462 extern void kdb_backtrace(void); 3463 #endif 3464 static void 3465 if_freemulti_internal(struct ifmultiaddr *ifma) 3466 { 3467 3468 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3469 ifma->ifma_refcount)); 3470 3471 if (ifma->ifma_lladdr != NULL) 3472 free(ifma->ifma_lladdr, M_IFMADDR); 3473 #ifdef MCAST_VERBOSE 3474 kdb_backtrace(); 3475 printf("%s freeing ifma: %p\n", __func__, ifma); 3476 #endif 3477 free(ifma->ifma_addr, M_IFMADDR); 3478 free(ifma, M_IFMADDR); 3479 } 3480 3481 static void 3482 if_destroymulti(epoch_context_t ctx) 3483 { 3484 struct ifmultiaddr *ifma; 3485 3486 ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx); 3487 if_freemulti_internal(ifma); 3488 } 3489 3490 void 3491 if_freemulti(struct ifmultiaddr *ifma) 3492 { 3493 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d", 3494 ifma->ifma_refcount)); 3495 3496 NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx); 3497 } 3498 3499 /* 3500 * Register an additional multicast address with a network interface. 3501 * 3502 * - If the address is already present, bump the reference count on the 3503 * address and return. 3504 * - If the address is not link-layer, look up a link layer address. 3505 * - Allocate address structures for one or both addresses, and attach to the 3506 * multicast address list on the interface. If automatically adding a link 3507 * layer address, the protocol address will own a reference to the link 3508 * layer address, to be freed when it is freed. 3509 * - Notify the network device driver of an addition to the multicast address 3510 * list. 3511 * 3512 * 'sa' points to caller-owned memory with the desired multicast address. 3513 * 3514 * 'retifma' will be used to return a pointer to the resulting multicast 3515 * address reference, if desired. 3516 */ 3517 int 3518 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3519 struct ifmultiaddr **retifma) 3520 { 3521 struct ifmultiaddr *ifma, *ll_ifma; 3522 struct sockaddr *llsa; 3523 struct sockaddr_dl sdl; 3524 int error; 3525 3526 #ifdef INET 3527 IN_MULTI_LIST_UNLOCK_ASSERT(); 3528 #endif 3529 #ifdef INET6 3530 IN6_MULTI_LIST_UNLOCK_ASSERT(); 3531 #endif 3532 /* 3533 * If the address is already present, return a new reference to it; 3534 * otherwise, allocate storage and set up a new address. 3535 */ 3536 IF_ADDR_WLOCK(ifp); 3537 ifma = if_findmulti(ifp, sa); 3538 if (ifma != NULL) { 3539 ifma->ifma_refcount++; 3540 if (retifma != NULL) 3541 *retifma = ifma; 3542 IF_ADDR_WUNLOCK(ifp); 3543 return (0); 3544 } 3545 3546 /* 3547 * The address isn't already present; resolve the protocol address 3548 * into a link layer address, and then look that up, bump its 3549 * refcount or allocate an ifma for that also. 3550 * Most link layer resolving functions returns address data which 3551 * fits inside default sockaddr_dl structure. However callback 3552 * can allocate another sockaddr structure, in that case we need to 3553 * free it later. 3554 */ 3555 llsa = NULL; 3556 ll_ifma = NULL; 3557 if (ifp->if_resolvemulti != NULL) { 3558 /* Provide called function with buffer size information */ 3559 sdl.sdl_len = sizeof(sdl); 3560 llsa = (struct sockaddr *)&sdl; 3561 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3562 if (error) 3563 goto unlock_out; 3564 } 3565 3566 /* 3567 * Allocate the new address. Don't hook it up yet, as we may also 3568 * need to allocate a link layer multicast address. 3569 */ 3570 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3571 if (ifma == NULL) { 3572 error = ENOMEM; 3573 goto free_llsa_out; 3574 } 3575 3576 /* 3577 * If a link layer address is found, we'll need to see if it's 3578 * already present in the address list, or allocate is as well. 3579 * When this block finishes, the link layer address will be on the 3580 * list. 3581 */ 3582 if (llsa != NULL) { 3583 ll_ifma = if_findmulti(ifp, llsa); 3584 if (ll_ifma == NULL) { 3585 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3586 if (ll_ifma == NULL) { 3587 --ifma->ifma_refcount; 3588 if_freemulti(ifma); 3589 error = ENOMEM; 3590 goto free_llsa_out; 3591 } 3592 ll_ifma->ifma_flags |= IFMA_F_ENQUEUED; 3593 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3594 ifma_link); 3595 } else 3596 ll_ifma->ifma_refcount++; 3597 ifma->ifma_llifma = ll_ifma; 3598 } 3599 3600 /* 3601 * We now have a new multicast address, ifma, and possibly a new or 3602 * referenced link layer address. Add the primary address to the 3603 * ifnet address list. 3604 */ 3605 ifma->ifma_flags |= IFMA_F_ENQUEUED; 3606 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3607 3608 if (retifma != NULL) 3609 *retifma = ifma; 3610 3611 /* 3612 * Must generate the message while holding the lock so that 'ifma' 3613 * pointer is still valid. 3614 */ 3615 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3616 IF_ADDR_WUNLOCK(ifp); 3617 3618 /* 3619 * We are certain we have added something, so call down to the 3620 * interface to let them know about it. 3621 */ 3622 if (ifp->if_ioctl != NULL) { 3623 if (THREAD_CAN_SLEEP()) 3624 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3625 else 3626 taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask); 3627 } 3628 3629 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3630 link_free_sdl(llsa); 3631 3632 return (0); 3633 3634 free_llsa_out: 3635 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3636 link_free_sdl(llsa); 3637 3638 unlock_out: 3639 IF_ADDR_WUNLOCK(ifp); 3640 return (error); 3641 } 3642 3643 static void 3644 if_siocaddmulti(void *arg, int pending) 3645 { 3646 struct ifnet *ifp; 3647 3648 ifp = arg; 3649 #ifdef DIAGNOSTIC 3650 if (pending > 1) 3651 if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending); 3652 #endif 3653 CURVNET_SET(ifp->if_vnet); 3654 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3655 CURVNET_RESTORE(); 3656 } 3657 3658 /* 3659 * Delete a multicast group membership by network-layer group address. 3660 * 3661 * Returns ENOENT if the entry could not be found. If ifp no longer 3662 * exists, results are undefined. This entry point should only be used 3663 * from subsystems which do appropriate locking to hold ifp for the 3664 * duration of the call. 3665 * Network-layer protocol domains must use if_delmulti_ifma(). 3666 */ 3667 int 3668 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3669 { 3670 struct ifmultiaddr *ifma; 3671 int lastref; 3672 3673 KASSERT(ifp, ("%s: NULL ifp", __func__)); 3674 3675 IF_ADDR_WLOCK(ifp); 3676 lastref = 0; 3677 ifma = if_findmulti(ifp, sa); 3678 if (ifma != NULL) 3679 lastref = if_delmulti_locked(ifp, ifma, 0); 3680 IF_ADDR_WUNLOCK(ifp); 3681 3682 if (ifma == NULL) 3683 return (ENOENT); 3684 3685 if (lastref && ifp->if_ioctl != NULL) { 3686 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3687 } 3688 3689 return (0); 3690 } 3691 3692 /* 3693 * Delete all multicast group membership for an interface. 3694 * Should be used to quickly flush all multicast filters. 3695 */ 3696 void 3697 if_delallmulti(struct ifnet *ifp) 3698 { 3699 struct ifmultiaddr *ifma; 3700 struct ifmultiaddr *next; 3701 3702 IF_ADDR_WLOCK(ifp); 3703 CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3704 if_delmulti_locked(ifp, ifma, 0); 3705 IF_ADDR_WUNLOCK(ifp); 3706 } 3707 3708 void 3709 if_delmulti_ifma(struct ifmultiaddr *ifma) 3710 { 3711 if_delmulti_ifma_flags(ifma, 0); 3712 } 3713 3714 /* 3715 * Delete a multicast group membership by group membership pointer. 3716 * Network-layer protocol domains must use this routine. 3717 * 3718 * It is safe to call this routine if the ifp disappeared. 3719 */ 3720 void 3721 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags) 3722 { 3723 struct ifnet *ifp; 3724 int lastref; 3725 MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma); 3726 #ifdef INET 3727 IN_MULTI_LIST_UNLOCK_ASSERT(); 3728 #endif 3729 ifp = ifma->ifma_ifp; 3730 #ifdef DIAGNOSTIC 3731 if (ifp == NULL) { 3732 printf("%s: ifma_ifp seems to be detached\n", __func__); 3733 } else { 3734 struct epoch_tracker et; 3735 struct ifnet *oifp; 3736 3737 NET_EPOCH_ENTER(et); 3738 CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link) 3739 if (ifp == oifp) 3740 break; 3741 NET_EPOCH_EXIT(et); 3742 if (ifp != oifp) 3743 ifp = NULL; 3744 } 3745 #endif 3746 /* 3747 * If and only if the ifnet instance exists: Acquire the address lock. 3748 */ 3749 if (ifp != NULL) 3750 IF_ADDR_WLOCK(ifp); 3751 3752 lastref = if_delmulti_locked(ifp, ifma, flags); 3753 3754 if (ifp != NULL) { 3755 /* 3756 * If and only if the ifnet instance exists: 3757 * Release the address lock. 3758 * If the group was left: update the hardware hash filter. 3759 */ 3760 IF_ADDR_WUNLOCK(ifp); 3761 if (lastref && ifp->if_ioctl != NULL) { 3762 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3763 } 3764 } 3765 } 3766 3767 /* 3768 * Perform deletion of network-layer and/or link-layer multicast address. 3769 * 3770 * Return 0 if the reference count was decremented. 3771 * Return 1 if the final reference was released, indicating that the 3772 * hardware hash filter should be reprogrammed. 3773 */ 3774 static int 3775 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3776 { 3777 struct ifmultiaddr *ll_ifma; 3778 3779 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3780 KASSERT(ifma->ifma_ifp == ifp, 3781 ("%s: inconsistent ifp %p", __func__, ifp)); 3782 IF_ADDR_WLOCK_ASSERT(ifp); 3783 } 3784 3785 ifp = ifma->ifma_ifp; 3786 MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : ""); 3787 3788 /* 3789 * If the ifnet is detaching, null out references to ifnet, 3790 * so that upper protocol layers will notice, and not attempt 3791 * to obtain locks for an ifnet which no longer exists. The 3792 * routing socket announcement must happen before the ifnet 3793 * instance is detached from the system. 3794 */ 3795 if (detaching) { 3796 #ifdef DIAGNOSTIC 3797 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3798 #endif 3799 /* 3800 * ifp may already be nulled out if we are being reentered 3801 * to delete the ll_ifma. 3802 */ 3803 if (ifp != NULL) { 3804 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3805 ifma->ifma_ifp = NULL; 3806 } 3807 } 3808 3809 if (--ifma->ifma_refcount > 0) 3810 return 0; 3811 3812 if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) { 3813 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 3814 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3815 } 3816 /* 3817 * If this ifma is a network-layer ifma, a link-layer ifma may 3818 * have been associated with it. Release it first if so. 3819 */ 3820 ll_ifma = ifma->ifma_llifma; 3821 if (ll_ifma != NULL) { 3822 KASSERT(ifma->ifma_lladdr != NULL, 3823 ("%s: llifma w/o lladdr", __func__)); 3824 if (detaching) 3825 ll_ifma->ifma_ifp = NULL; /* XXX */ 3826 if (--ll_ifma->ifma_refcount == 0) { 3827 if (ifp != NULL) { 3828 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 3829 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, 3830 ifma_link); 3831 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3832 } 3833 } 3834 if_freemulti(ll_ifma); 3835 } 3836 } 3837 #ifdef INVARIANTS 3838 if (ifp) { 3839 struct ifmultiaddr *ifmatmp; 3840 3841 CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link) 3842 MPASS(ifma != ifmatmp); 3843 } 3844 #endif 3845 if_freemulti(ifma); 3846 /* 3847 * The last reference to this instance of struct ifmultiaddr 3848 * was released; the hardware should be notified of this change. 3849 */ 3850 return 1; 3851 } 3852 3853 /* 3854 * Set the link layer address on an interface. 3855 * 3856 * At this time we only support certain types of interfaces, 3857 * and we don't allow the length of the address to change. 3858 * 3859 * Set noinline to be dtrace-friendly 3860 */ 3861 __noinline int 3862 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3863 { 3864 struct sockaddr_dl *sdl; 3865 struct ifaddr *ifa; 3866 struct ifreq ifr; 3867 3868 ifa = ifp->if_addr; 3869 if (ifa == NULL) 3870 return (EINVAL); 3871 3872 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3873 if (sdl == NULL) 3874 return (EINVAL); 3875 3876 if (len != sdl->sdl_alen) /* don't allow length to change */ 3877 return (EINVAL); 3878 3879 switch (ifp->if_type) { 3880 case IFT_ETHER: 3881 case IFT_XETHER: 3882 case IFT_L2VLAN: 3883 case IFT_BRIDGE: 3884 case IFT_IEEE8023ADLAG: 3885 bcopy(lladdr, LLADDR(sdl), len); 3886 break; 3887 default: 3888 return (ENODEV); 3889 } 3890 3891 /* 3892 * If the interface is already up, we need 3893 * to re-init it in order to reprogram its 3894 * address filter. 3895 */ 3896 if ((ifp->if_flags & IFF_UP) != 0) { 3897 if (ifp->if_ioctl) { 3898 ifp->if_flags &= ~IFF_UP; 3899 ifr.ifr_flags = ifp->if_flags & 0xffff; 3900 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3901 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3902 ifp->if_flags |= IFF_UP; 3903 ifr.ifr_flags = ifp->if_flags & 0xffff; 3904 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3905 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3906 } 3907 } 3908 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 3909 3910 return (0); 3911 } 3912 3913 /* 3914 * Compat function for handling basic encapsulation requests. 3915 * Not converted stacks (FDDI, IB, ..) supports traditional 3916 * output model: ARP (and other similar L2 protocols) are handled 3917 * inside output routine, arpresolve/nd6_resolve() returns MAC 3918 * address instead of full prepend. 3919 * 3920 * This function creates calculated header==MAC for IPv4/IPv6 and 3921 * returns EAFNOSUPPORT (which is then handled in ARP code) for other 3922 * address families. 3923 */ 3924 static int 3925 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) 3926 { 3927 if (req->rtype != IFENCAP_LL) 3928 return (EOPNOTSUPP); 3929 3930 if (req->bufsize < req->lladdr_len) 3931 return (ENOMEM); 3932 3933 switch (req->family) { 3934 case AF_INET: 3935 case AF_INET6: 3936 break; 3937 default: 3938 return (EAFNOSUPPORT); 3939 } 3940 3941 /* Copy lladdr to storage as is */ 3942 memmove(req->buf, req->lladdr, req->lladdr_len); 3943 req->bufsize = req->lladdr_len; 3944 req->lladdr_off = 0; 3945 3946 return (0); 3947 } 3948 3949 /* 3950 * Tunnel interfaces can nest, also they may cause infinite recursion 3951 * calls when misconfigured. We'll prevent this by detecting loops. 3952 * High nesting level may cause stack exhaustion. We'll prevent this 3953 * by introducing upper limit. 3954 * 3955 * Return 0, if tunnel nesting count is equal or less than limit. 3956 */ 3957 int 3958 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie, 3959 int limit) 3960 { 3961 struct m_tag *mtag; 3962 int count; 3963 3964 count = 1; 3965 mtag = NULL; 3966 while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) { 3967 if (*(struct ifnet **)(mtag + 1) == ifp) { 3968 log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp)); 3969 return (EIO); 3970 } 3971 count++; 3972 } 3973 if (count > limit) { 3974 log(LOG_NOTICE, 3975 "%s: if_output recursively called too many times(%d)\n", 3976 if_name(ifp), count); 3977 return (EIO); 3978 } 3979 mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT); 3980 if (mtag == NULL) 3981 return (ENOMEM); 3982 *(struct ifnet **)(mtag + 1) = ifp; 3983 m_tag_prepend(m, mtag); 3984 return (0); 3985 } 3986 3987 /* 3988 * Get the link layer address that was read from the hardware at attach. 3989 * 3990 * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type 3991 * their component interfaces as IFT_IEEE8023ADLAG. 3992 */ 3993 int 3994 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr) 3995 { 3996 if (ifp->if_hw_addr == NULL) 3997 return (ENODEV); 3998 3999 switch (ifp->if_type) { 4000 case IFT_ETHER: 4001 case IFT_IEEE8023ADLAG: 4002 bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen); 4003 return (0); 4004 default: 4005 return (ENODEV); 4006 } 4007 } 4008 4009 /* 4010 * The name argument must be a pointer to storage which will last as 4011 * long as the interface does. For physical devices, the result of 4012 * device_get_name(dev) is a good choice and for pseudo-devices a 4013 * static string works well. 4014 */ 4015 void 4016 if_initname(struct ifnet *ifp, const char *name, int unit) 4017 { 4018 ifp->if_dname = name; 4019 ifp->if_dunit = unit; 4020 if (unit != IF_DUNIT_NONE) 4021 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 4022 else 4023 strlcpy(ifp->if_xname, name, IFNAMSIZ); 4024 } 4025 4026 static int 4027 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap) 4028 { 4029 char if_fmt[256]; 4030 4031 snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt); 4032 vlog(pri, if_fmt, ap); 4033 return (0); 4034 } 4035 4036 4037 int 4038 if_printf(struct ifnet *ifp, const char *fmt, ...) 4039 { 4040 va_list ap; 4041 4042 va_start(ap, fmt); 4043 if_vlog(ifp, LOG_INFO, fmt, ap); 4044 va_end(ap); 4045 return (0); 4046 } 4047 4048 int 4049 if_log(struct ifnet *ifp, int pri, const char *fmt, ...) 4050 { 4051 va_list ap; 4052 4053 va_start(ap, fmt); 4054 if_vlog(ifp, pri, fmt, ap); 4055 va_end(ap); 4056 return (0); 4057 } 4058 4059 void 4060 if_start(struct ifnet *ifp) 4061 { 4062 4063 (*(ifp)->if_start)(ifp); 4064 } 4065 4066 /* 4067 * Backwards compatibility interface for drivers 4068 * that have not implemented it 4069 */ 4070 static int 4071 if_transmit_default(struct ifnet *ifp, struct mbuf *m) 4072 { 4073 int error; 4074 4075 IFQ_HANDOFF(ifp, m, error); 4076 return (error); 4077 } 4078 4079 static void 4080 if_input_default(struct ifnet *ifp __unused, struct mbuf *m) 4081 { 4082 m_freem(m); 4083 } 4084 4085 int 4086 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 4087 { 4088 int active = 0; 4089 4090 IF_LOCK(ifq); 4091 if (_IF_QFULL(ifq)) { 4092 IF_UNLOCK(ifq); 4093 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 4094 m_freem(m); 4095 return (0); 4096 } 4097 if (ifp != NULL) { 4098 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 4099 if (m->m_flags & (M_BCAST|M_MCAST)) 4100 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4101 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 4102 } 4103 _IF_ENQUEUE(ifq, m); 4104 IF_UNLOCK(ifq); 4105 if (ifp != NULL && !active) 4106 (*(ifp)->if_start)(ifp); 4107 return (1); 4108 } 4109 4110 void 4111 if_register_com_alloc(u_char type, 4112 if_com_alloc_t *a, if_com_free_t *f) 4113 { 4114 4115 KASSERT(if_com_alloc[type] == NULL, 4116 ("if_register_com_alloc: %d already registered", type)); 4117 KASSERT(if_com_free[type] == NULL, 4118 ("if_register_com_alloc: %d free already registered", type)); 4119 4120 if_com_alloc[type] = a; 4121 if_com_free[type] = f; 4122 } 4123 4124 void 4125 if_deregister_com_alloc(u_char type) 4126 { 4127 4128 KASSERT(if_com_alloc[type] != NULL, 4129 ("if_deregister_com_alloc: %d not registered", type)); 4130 KASSERT(if_com_free[type] != NULL, 4131 ("if_deregister_com_alloc: %d free not registered", type)); 4132 4133 /* 4134 * Ensure all pending EPOCH(9) callbacks have been executed. This 4135 * fixes issues about late invocation of if_destroy(), which leads 4136 * to memory leak from if_com_alloc[type] allocated if_l2com. 4137 */ 4138 NET_EPOCH_DRAIN_CALLBACKS(); 4139 4140 if_com_alloc[type] = NULL; 4141 if_com_free[type] = NULL; 4142 } 4143 4144 /* API for driver access to network stack owned ifnet.*/ 4145 uint64_t 4146 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 4147 { 4148 uint64_t oldbrate; 4149 4150 oldbrate = ifp->if_baudrate; 4151 ifp->if_baudrate = baudrate; 4152 return (oldbrate); 4153 } 4154 4155 uint64_t 4156 if_getbaudrate(const if_t ifp) 4157 { 4158 return (ifp->if_baudrate); 4159 } 4160 4161 int 4162 if_setcapabilities(if_t ifp, int capabilities) 4163 { 4164 ifp->if_capabilities = capabilities; 4165 return (0); 4166 } 4167 4168 int 4169 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 4170 { 4171 ifp->if_capabilities &= ~clearbit; 4172 ifp->if_capabilities |= setbit; 4173 return (0); 4174 } 4175 4176 int 4177 if_getcapabilities(const if_t ifp) 4178 { 4179 return (ifp->if_capabilities); 4180 } 4181 4182 int 4183 if_setcapenable(if_t ifp, int capabilities) 4184 { 4185 ifp->if_capenable = capabilities; 4186 return (0); 4187 } 4188 4189 int 4190 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 4191 { 4192 ifp->if_capenable &= ~clearcap; 4193 ifp->if_capenable |= setcap; 4194 return (0); 4195 } 4196 4197 int 4198 if_setcapabilities2(if_t ifp, int capabilities) 4199 { 4200 ifp->if_capabilities2 = capabilities; 4201 return (0); 4202 } 4203 4204 int 4205 if_setcapabilities2bit(if_t ifp, int setbit, int clearbit) 4206 { 4207 ifp->if_capabilities2 &= ~clearbit; 4208 ifp->if_capabilities2 |= setbit; 4209 return (0); 4210 } 4211 4212 int 4213 if_getcapabilities2(const if_t ifp) 4214 { 4215 return (ifp->if_capabilities2); 4216 } 4217 4218 int 4219 if_setcapenable2(if_t ifp, int capabilities2) 4220 { 4221 ifp->if_capenable2 = capabilities2; 4222 return (0); 4223 } 4224 4225 int 4226 if_setcapenable2bit(if_t ifp, int setcap, int clearcap) 4227 { 4228 ifp->if_capenable2 &= ~clearcap; 4229 ifp->if_capenable2 |= setcap; 4230 return (0); 4231 } 4232 4233 const char * 4234 if_getdname(const if_t ifp) 4235 { 4236 return (ifp->if_dname); 4237 } 4238 4239 void 4240 if_setdname(if_t ifp, const char *dname) 4241 { 4242 ifp->if_dname = dname; 4243 } 4244 4245 const char * 4246 if_name(if_t ifp) 4247 { 4248 return (ifp->if_xname); 4249 } 4250 4251 int 4252 if_setname(if_t ifp, const char *name) 4253 { 4254 if (strlen(name) > sizeof(ifp->if_xname) - 1) 4255 return (ENAMETOOLONG); 4256 strcpy(ifp->if_xname, name); 4257 4258 return (0); 4259 } 4260 4261 int 4262 if_togglecapenable(if_t ifp, int togglecap) 4263 { 4264 ifp->if_capenable ^= togglecap; 4265 return (0); 4266 } 4267 4268 int 4269 if_getcapenable(const if_t ifp) 4270 { 4271 return (ifp->if_capenable); 4272 } 4273 4274 int 4275 if_togglecapenable2(if_t ifp, int togglecap) 4276 { 4277 ifp->if_capenable2 ^= togglecap; 4278 return (0); 4279 } 4280 4281 int 4282 if_getcapenable2(const if_t ifp) 4283 { 4284 return (ifp->if_capenable2); 4285 } 4286 4287 int 4288 if_getdunit(const if_t ifp) 4289 { 4290 return (ifp->if_dunit); 4291 } 4292 4293 int 4294 if_getindex(const if_t ifp) 4295 { 4296 return (ifp->if_index); 4297 } 4298 4299 int 4300 if_getidxgen(const if_t ifp) 4301 { 4302 return (ifp->if_idxgen); 4303 } 4304 4305 const char * 4306 if_getdescr(if_t ifp) 4307 { 4308 return (ifp->if_description); 4309 } 4310 4311 void 4312 if_setdescr(if_t ifp, char *descrbuf) 4313 { 4314 sx_xlock(&ifdescr_sx); 4315 char *odescrbuf = ifp->if_description; 4316 ifp->if_description = descrbuf; 4317 sx_xunlock(&ifdescr_sx); 4318 4319 if_freedescr(odescrbuf); 4320 } 4321 4322 char * 4323 if_allocdescr(size_t sz, int malloc_flag) 4324 { 4325 malloc_flag &= (M_WAITOK | M_NOWAIT); 4326 return (malloc(sz, M_IFDESCR, M_ZERO | malloc_flag)); 4327 } 4328 4329 void 4330 if_freedescr(char *descrbuf) 4331 { 4332 free(descrbuf, M_IFDESCR); 4333 } 4334 4335 int 4336 if_getalloctype(const if_t ifp) 4337 { 4338 return (ifp->if_alloctype); 4339 } 4340 4341 void 4342 if_setlastchange(if_t ifp) 4343 { 4344 getmicrotime(&ifp->if_lastchange); 4345 } 4346 4347 /* 4348 * This is largely undesirable because it ties ifnet to a device, but does 4349 * provide flexiblity for an embedded product vendor. Should be used with 4350 * the understanding that it violates the interface boundaries, and should be 4351 * a last resort only. 4352 */ 4353 int 4354 if_setdev(if_t ifp, void *dev) 4355 { 4356 return (0); 4357 } 4358 4359 int 4360 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 4361 { 4362 ifp->if_drv_flags &= ~clear_flags; 4363 ifp->if_drv_flags |= set_flags; 4364 4365 return (0); 4366 } 4367 4368 int 4369 if_getdrvflags(const if_t ifp) 4370 { 4371 return (ifp->if_drv_flags); 4372 } 4373 4374 int 4375 if_setdrvflags(if_t ifp, int flags) 4376 { 4377 ifp->if_drv_flags = flags; 4378 return (0); 4379 } 4380 4381 int 4382 if_setflags(if_t ifp, int flags) 4383 { 4384 ifp->if_flags = flags; 4385 return (0); 4386 } 4387 4388 int 4389 if_setflagbits(if_t ifp, int set, int clear) 4390 { 4391 ifp->if_flags &= ~clear; 4392 ifp->if_flags |= set; 4393 return (0); 4394 } 4395 4396 int 4397 if_getflags(const if_t ifp) 4398 { 4399 return (ifp->if_flags); 4400 } 4401 4402 int 4403 if_clearhwassist(if_t ifp) 4404 { 4405 ifp->if_hwassist = 0; 4406 return (0); 4407 } 4408 4409 int 4410 if_sethwassistbits(if_t ifp, int toset, int toclear) 4411 { 4412 ifp->if_hwassist &= ~toclear; 4413 ifp->if_hwassist |= toset; 4414 4415 return (0); 4416 } 4417 4418 int 4419 if_sethwassist(if_t ifp, int hwassist_bit) 4420 { 4421 ifp->if_hwassist = hwassist_bit; 4422 return (0); 4423 } 4424 4425 int 4426 if_gethwassist(const if_t ifp) 4427 { 4428 return (ifp->if_hwassist); 4429 } 4430 4431 int 4432 if_togglehwassist(if_t ifp, int toggle_bits) 4433 { 4434 ifp->if_hwassist ^= toggle_bits; 4435 return (0); 4436 } 4437 4438 int 4439 if_setmtu(if_t ifp, int mtu) 4440 { 4441 ifp->if_mtu = mtu; 4442 return (0); 4443 } 4444 4445 void 4446 if_notifymtu(if_t ifp) 4447 { 4448 #ifdef INET6 4449 nd6_setmtu(ifp); 4450 #endif 4451 rt_updatemtu(ifp); 4452 } 4453 4454 int 4455 if_getmtu(const if_t ifp) 4456 { 4457 return (ifp->if_mtu); 4458 } 4459 4460 int 4461 if_getmtu_family(const if_t ifp, int family) 4462 { 4463 struct domain *dp; 4464 4465 SLIST_FOREACH(dp, &domains, dom_next) { 4466 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 4467 return (dp->dom_ifmtu(ifp)); 4468 } 4469 4470 return (ifp->if_mtu); 4471 } 4472 4473 /* 4474 * Methods for drivers to access interface unicast and multicast 4475 * link level addresses. Driver shall not know 'struct ifaddr' neither 4476 * 'struct ifmultiaddr'. 4477 */ 4478 u_int 4479 if_lladdr_count(if_t ifp) 4480 { 4481 struct epoch_tracker et; 4482 struct ifaddr *ifa; 4483 u_int count; 4484 4485 count = 0; 4486 NET_EPOCH_ENTER(et); 4487 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 4488 if (ifa->ifa_addr->sa_family == AF_LINK) 4489 count++; 4490 NET_EPOCH_EXIT(et); 4491 4492 return (count); 4493 } 4494 4495 int 4496 if_foreach(if_foreach_cb_t cb, void *cb_arg) 4497 { 4498 if_t ifp; 4499 int error; 4500 4501 NET_EPOCH_ASSERT(); 4502 MPASS(cb); 4503 4504 error = 0; 4505 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 4506 error = cb(ifp, cb_arg); 4507 if (error != 0) 4508 break; 4509 } 4510 4511 return (error); 4512 } 4513 4514 /* 4515 * Iterates over the list of interfaces, permitting callback function @cb to sleep. 4516 * Stops iteration if @cb returns non-zero error code. 4517 * Returns the last error code from @cb. 4518 * @match_cb: optional match callback limiting the iteration to only matched interfaces 4519 * @match_arg: argument to pass to @match_cb 4520 * @cb: iteration callback 4521 * @cb_arg: argument to pass to @cb 4522 */ 4523 int 4524 if_foreach_sleep(if_foreach_match_t match_cb, void *match_arg, if_foreach_cb_t cb, 4525 void *cb_arg) 4526 { 4527 int match_count = 0, array_size = 16; /* 128 bytes for malloc */ 4528 struct ifnet **match_array = NULL; 4529 int error = 0; 4530 4531 MPASS(cb); 4532 4533 while (true) { 4534 struct ifnet **new_array; 4535 int new_size = array_size; 4536 struct epoch_tracker et; 4537 struct ifnet *ifp; 4538 4539 while (new_size < match_count) 4540 new_size *= 2; 4541 new_array = malloc(new_size * sizeof(void *), M_TEMP, M_WAITOK); 4542 if (match_array != NULL) 4543 memcpy(new_array, match_array, array_size * sizeof(void *)); 4544 free(match_array, M_TEMP); 4545 match_array = new_array; 4546 array_size = new_size; 4547 4548 match_count = 0; 4549 NET_EPOCH_ENTER(et); 4550 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 4551 if (match_cb != NULL && !match_cb(ifp, match_arg)) 4552 continue; 4553 if (match_count < array_size) { 4554 if (if_try_ref(ifp)) 4555 match_array[match_count++] = ifp; 4556 } else 4557 match_count++; 4558 } 4559 NET_EPOCH_EXIT(et); 4560 4561 if (match_count > array_size) { 4562 for (int i = 0; i < array_size; i++) 4563 if_rele(match_array[i]); 4564 continue; 4565 } else { 4566 for (int i = 0; i < match_count; i++) { 4567 if (error == 0) 4568 error = cb(match_array[i], cb_arg); 4569 if_rele(match_array[i]); 4570 } 4571 free(match_array, M_TEMP); 4572 break; 4573 } 4574 } 4575 4576 return (error); 4577 } 4578 4579 4580 /* 4581 * Uses just 1 pointer of the 4 available in the public struct. 4582 */ 4583 if_t 4584 if_iter_start(struct if_iter *iter) 4585 { 4586 if_t ifp; 4587 4588 NET_EPOCH_ASSERT(); 4589 4590 bzero(iter, sizeof(*iter)); 4591 ifp = CK_STAILQ_FIRST(&V_ifnet); 4592 if (ifp != NULL) 4593 iter->context[0] = CK_STAILQ_NEXT(ifp, if_link); 4594 else 4595 iter->context[0] = NULL; 4596 return (ifp); 4597 } 4598 4599 if_t 4600 if_iter_next(struct if_iter *iter) 4601 { 4602 if_t cur_ifp = iter->context[0]; 4603 4604 if (cur_ifp != NULL) 4605 iter->context[0] = CK_STAILQ_NEXT(cur_ifp, if_link); 4606 return (cur_ifp); 4607 } 4608 4609 void 4610 if_iter_finish(struct if_iter *iter) 4611 { 4612 /* Nothing to do here for now. */ 4613 } 4614 4615 u_int 4616 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4617 { 4618 struct epoch_tracker et; 4619 struct ifaddr *ifa; 4620 u_int count; 4621 4622 MPASS(cb); 4623 4624 count = 0; 4625 NET_EPOCH_ENTER(et); 4626 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4627 if (ifa->ifa_addr->sa_family != AF_LINK) 4628 continue; 4629 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr, 4630 count); 4631 } 4632 NET_EPOCH_EXIT(et); 4633 4634 return (count); 4635 } 4636 4637 u_int 4638 if_llmaddr_count(if_t ifp) 4639 { 4640 struct epoch_tracker et; 4641 struct ifmultiaddr *ifma; 4642 int count; 4643 4644 count = 0; 4645 NET_EPOCH_ENTER(et); 4646 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 4647 if (ifma->ifma_addr->sa_family == AF_LINK) 4648 count++; 4649 NET_EPOCH_EXIT(et); 4650 4651 return (count); 4652 } 4653 4654 bool 4655 if_maddr_empty(if_t ifp) 4656 { 4657 4658 return (CK_STAILQ_EMPTY(&ifp->if_multiaddrs)); 4659 } 4660 4661 u_int 4662 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4663 { 4664 struct epoch_tracker et; 4665 struct ifmultiaddr *ifma; 4666 u_int count; 4667 4668 MPASS(cb); 4669 4670 count = 0; 4671 NET_EPOCH_ENTER(et); 4672 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 4673 if (ifma->ifma_addr->sa_family != AF_LINK) 4674 continue; 4675 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr, 4676 count); 4677 } 4678 NET_EPOCH_EXIT(et); 4679 4680 return (count); 4681 } 4682 4683 u_int 4684 if_foreach_addr_type(if_t ifp, int type, if_addr_cb_t cb, void *cb_arg) 4685 { 4686 struct epoch_tracker et; 4687 struct ifaddr *ifa; 4688 u_int count; 4689 4690 MPASS(cb); 4691 4692 count = 0; 4693 NET_EPOCH_ENTER(et); 4694 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4695 if (ifa->ifa_addr->sa_family != type) 4696 continue; 4697 count += (*cb)(cb_arg, ifa, count); 4698 } 4699 NET_EPOCH_EXIT(et); 4700 4701 return (count); 4702 } 4703 4704 struct ifaddr * 4705 ifa_iter_start(if_t ifp, struct ifa_iter *iter) 4706 { 4707 struct ifaddr *ifa; 4708 4709 NET_EPOCH_ASSERT(); 4710 4711 bzero(iter, sizeof(*iter)); 4712 ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); 4713 if (ifa != NULL) 4714 iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link); 4715 else 4716 iter->context[0] = NULL; 4717 return (ifa); 4718 } 4719 4720 struct ifaddr * 4721 ifa_iter_next(struct ifa_iter *iter) 4722 { 4723 struct ifaddr *ifa = iter->context[0]; 4724 4725 if (ifa != NULL) 4726 iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link); 4727 return (ifa); 4728 } 4729 4730 void 4731 ifa_iter_finish(struct ifa_iter *iter) 4732 { 4733 /* Nothing to do here for now. */ 4734 } 4735 4736 int 4737 if_setsoftc(if_t ifp, void *softc) 4738 { 4739 ifp->if_softc = softc; 4740 return (0); 4741 } 4742 4743 void * 4744 if_getsoftc(const if_t ifp) 4745 { 4746 return (ifp->if_softc); 4747 } 4748 4749 void 4750 if_setrcvif(struct mbuf *m, if_t ifp) 4751 { 4752 4753 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 4754 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 4755 } 4756 4757 void 4758 if_setvtag(struct mbuf *m, uint16_t tag) 4759 { 4760 m->m_pkthdr.ether_vtag = tag; 4761 } 4762 4763 uint16_t 4764 if_getvtag(struct mbuf *m) 4765 { 4766 return (m->m_pkthdr.ether_vtag); 4767 } 4768 4769 int 4770 if_sendq_empty(if_t ifp) 4771 { 4772 return (IFQ_DRV_IS_EMPTY(&ifp->if_snd)); 4773 } 4774 4775 struct ifaddr * 4776 if_getifaddr(const if_t ifp) 4777 { 4778 return (ifp->if_addr); 4779 } 4780 4781 int 4782 if_setsendqready(if_t ifp) 4783 { 4784 IFQ_SET_READY(&ifp->if_snd); 4785 return (0); 4786 } 4787 4788 int 4789 if_setsendqlen(if_t ifp, int tx_desc_count) 4790 { 4791 IFQ_SET_MAXLEN(&ifp->if_snd, tx_desc_count); 4792 ifp->if_snd.ifq_drv_maxlen = tx_desc_count; 4793 return (0); 4794 } 4795 4796 void 4797 if_setnetmapadapter(if_t ifp, struct netmap_adapter *na) 4798 { 4799 ifp->if_netmap = na; 4800 } 4801 4802 struct netmap_adapter * 4803 if_getnetmapadapter(if_t ifp) 4804 { 4805 return (ifp->if_netmap); 4806 } 4807 4808 int 4809 if_vlantrunkinuse(if_t ifp) 4810 { 4811 return (ifp->if_vlantrunk != NULL); 4812 } 4813 4814 void 4815 if_init(if_t ifp, void *ctx) 4816 { 4817 (*ifp->if_init)(ctx); 4818 } 4819 4820 void 4821 if_input(if_t ifp, struct mbuf* sendmp) 4822 { 4823 (*ifp->if_input)(ifp, sendmp); 4824 } 4825 4826 int 4827 if_transmit(if_t ifp, struct mbuf *m) 4828 { 4829 return ((*ifp->if_transmit)(ifp, m)); 4830 } 4831 4832 int 4833 if_resolvemulti(if_t ifp, struct sockaddr **srcs, struct sockaddr *dst) 4834 { 4835 if (ifp->if_resolvemulti == NULL) 4836 return (EOPNOTSUPP); 4837 4838 return (ifp->if_resolvemulti(ifp, srcs, dst)); 4839 } 4840 4841 int 4842 if_ioctl(if_t ifp, u_long cmd, void *data) 4843 { 4844 if (ifp->if_ioctl == NULL) 4845 return (EOPNOTSUPP); 4846 4847 return (ifp->if_ioctl(ifp, cmd, data)); 4848 } 4849 4850 struct mbuf * 4851 if_dequeue(if_t ifp) 4852 { 4853 struct mbuf *m; 4854 4855 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 4856 return (m); 4857 } 4858 4859 int 4860 if_sendq_prepend(if_t ifp, struct mbuf *m) 4861 { 4862 IFQ_DRV_PREPEND(&ifp->if_snd, m); 4863 return (0); 4864 } 4865 4866 int 4867 if_setifheaderlen(if_t ifp, int len) 4868 { 4869 ifp->if_hdrlen = len; 4870 return (0); 4871 } 4872 4873 char * 4874 if_getlladdr(const if_t ifp) 4875 { 4876 return (IF_LLADDR(ifp)); 4877 } 4878 4879 void * 4880 if_gethandle(u_char type) 4881 { 4882 return (if_alloc(type)); 4883 } 4884 4885 void 4886 if_vlancap(if_t ifp) 4887 { 4888 VLAN_CAPABILITIES(ifp); 4889 } 4890 4891 int 4892 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax) 4893 { 4894 ifp->if_hw_tsomax = if_hw_tsomax; 4895 return (0); 4896 } 4897 4898 int 4899 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount) 4900 { 4901 ifp->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount; 4902 return (0); 4903 } 4904 4905 int 4906 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize) 4907 { 4908 ifp->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize; 4909 return (0); 4910 } 4911 4912 u_int 4913 if_gethwtsomax(const if_t ifp) 4914 { 4915 return (ifp->if_hw_tsomax); 4916 } 4917 4918 u_int 4919 if_gethwtsomaxsegcount(const if_t ifp) 4920 { 4921 return (ifp->if_hw_tsomaxsegcount); 4922 } 4923 4924 u_int 4925 if_gethwtsomaxsegsize(const if_t ifp) 4926 { 4927 return (ifp->if_hw_tsomaxsegsize); 4928 } 4929 4930 void 4931 if_setinitfn(if_t ifp, if_init_fn_t init_fn) 4932 { 4933 ifp->if_init = init_fn; 4934 } 4935 4936 void 4937 if_setinputfn(if_t ifp, if_input_fn_t input_fn) 4938 { 4939 ifp->if_input = input_fn; 4940 } 4941 4942 if_input_fn_t 4943 if_getinputfn(if_t ifp) 4944 { 4945 return (ifp->if_input); 4946 } 4947 4948 void 4949 if_setioctlfn(if_t ifp, if_ioctl_fn_t ioctl_fn) 4950 { 4951 ifp->if_ioctl = ioctl_fn; 4952 } 4953 4954 void 4955 if_setoutputfn(if_t ifp, if_output_fn_t output_fn) 4956 { 4957 ifp->if_output = output_fn; 4958 } 4959 4960 void 4961 if_setstartfn(if_t ifp, if_start_fn_t start_fn) 4962 { 4963 ifp->if_start = start_fn; 4964 } 4965 4966 if_start_fn_t 4967 if_getstartfn(if_t ifp) 4968 { 4969 return (ifp->if_start); 4970 } 4971 4972 void 4973 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 4974 { 4975 ifp->if_transmit = start_fn; 4976 } 4977 4978 if_transmit_fn_t 4979 if_gettransmitfn(if_t ifp) 4980 { 4981 return (ifp->if_transmit); 4982 } 4983 4984 void 4985 if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 4986 { 4987 ifp->if_qflush = flush_fn; 4988 } 4989 4990 void 4991 if_setsndtagallocfn(if_t ifp, if_snd_tag_alloc_t alloc_fn) 4992 { 4993 ifp->if_snd_tag_alloc = alloc_fn; 4994 } 4995 4996 int 4997 if_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 4998 struct m_snd_tag **mstp) 4999 { 5000 if (ifp->if_snd_tag_alloc == NULL) 5001 return (EOPNOTSUPP); 5002 return (ifp->if_snd_tag_alloc(ifp, params, mstp)); 5003 } 5004 5005 void 5006 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 5007 { 5008 ifp->if_get_counter = fn; 5009 } 5010 5011 void 5012 if_setreassignfn(if_t ifp, if_reassign_fn_t fn) 5013 { 5014 ifp->if_reassign = fn; 5015 } 5016 5017 void 5018 if_setratelimitqueryfn(if_t ifp, if_ratelimit_query_t fn) 5019 { 5020 ifp->if_ratelimit_query = fn; 5021 } 5022 5023 void 5024 if_setdebugnet_methods(if_t ifp, struct debugnet_methods *m) 5025 { 5026 ifp->if_debugnet_methods = m; 5027 } 5028 5029 struct label * 5030 if_getmaclabel(if_t ifp) 5031 { 5032 return (ifp->if_label); 5033 } 5034 5035 void 5036 if_setmaclabel(if_t ifp, struct label *label) 5037 { 5038 ifp->if_label = label; 5039 } 5040 5041 int 5042 if_gettype(if_t ifp) 5043 { 5044 return (ifp->if_type); 5045 } 5046 5047 void * 5048 if_getllsoftc(if_t ifp) 5049 { 5050 return (ifp->if_llsoftc); 5051 } 5052 5053 void 5054 if_setllsoftc(if_t ifp, void *llsoftc) 5055 { 5056 ifp->if_llsoftc = llsoftc; 5057 }; 5058 5059 int 5060 if_getlinkstate(if_t ifp) 5061 { 5062 return (ifp->if_link_state); 5063 } 5064 5065 const uint8_t * 5066 if_getbroadcastaddr(if_t ifp) 5067 { 5068 return (ifp->if_broadcastaddr); 5069 } 5070 5071 void 5072 if_setbroadcastaddr(if_t ifp, const uint8_t *addr) 5073 { 5074 ifp->if_broadcastaddr = addr; 5075 } 5076 5077 int 5078 if_getnumadomain(if_t ifp) 5079 { 5080 return (ifp->if_numa_domain); 5081 } 5082 5083 uint64_t 5084 if_getcounter(if_t ifp, ift_counter counter) 5085 { 5086 return (ifp->if_get_counter(ifp, counter)); 5087 } 5088 5089 bool 5090 if_altq_is_enabled(if_t ifp) 5091 { 5092 return (ALTQ_IS_ENABLED(&ifp->if_snd)); 5093 } 5094 5095 struct vnet * 5096 if_getvnet(if_t ifp) 5097 { 5098 return (ifp->if_vnet); 5099 } 5100 5101 void * 5102 if_getafdata(if_t ifp, int af) 5103 { 5104 return (ifp->if_afdata[af]); 5105 } 5106 5107 u_int 5108 if_getfib(if_t ifp) 5109 { 5110 return (ifp->if_fib); 5111 } 5112 5113 uint8_t 5114 if_getaddrlen(if_t ifp) 5115 { 5116 return (ifp->if_addrlen); 5117 } 5118 5119 struct bpf_if * 5120 if_getbpf(if_t ifp) 5121 { 5122 return (ifp->if_bpf); 5123 } 5124 5125 struct ifvlantrunk * 5126 if_getvlantrunk(if_t ifp) 5127 { 5128 return (ifp->if_vlantrunk); 5129 } 5130 5131 uint8_t 5132 if_getpcp(if_t ifp) 5133 { 5134 return (ifp->if_pcp); 5135 } 5136 5137 void * 5138 if_getl2com(if_t ifp) 5139 { 5140 return (ifp->if_l2com); 5141 } 5142 5143 void 5144 if_setipsec_accel_methods(if_t ifp, const struct if_ipsec_accel_methods *m) 5145 { 5146 ifp->if_ipsec_accel_m = m; 5147 } 5148 5149 #ifdef DDB 5150 static void 5151 if_show_ifnet(struct ifnet *ifp) 5152 { 5153 if (ifp == NULL) 5154 return; 5155 db_printf("%s:\n", ifp->if_xname); 5156 #define IF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, ifp->e); 5157 IF_DB_PRINTF("%s", if_dname); 5158 IF_DB_PRINTF("%d", if_dunit); 5159 IF_DB_PRINTF("%s", if_description); 5160 IF_DB_PRINTF("%u", if_index); 5161 IF_DB_PRINTF("%d", if_idxgen); 5162 IF_DB_PRINTF("%u", if_refcount); 5163 IF_DB_PRINTF("%p", if_softc); 5164 IF_DB_PRINTF("%p", if_l2com); 5165 IF_DB_PRINTF("%p", if_llsoftc); 5166 IF_DB_PRINTF("%d", if_amcount); 5167 IF_DB_PRINTF("%p", if_addr); 5168 IF_DB_PRINTF("%p", if_broadcastaddr); 5169 IF_DB_PRINTF("%p", if_afdata); 5170 IF_DB_PRINTF("%d", if_afdata_initialized); 5171 IF_DB_PRINTF("%u", if_fib); 5172 IF_DB_PRINTF("%p", if_vnet); 5173 IF_DB_PRINTF("%p", if_home_vnet); 5174 IF_DB_PRINTF("%p", if_vlantrunk); 5175 IF_DB_PRINTF("%p", if_bpf); 5176 IF_DB_PRINTF("%u", if_pcount); 5177 IF_DB_PRINTF("%p", if_bridge); 5178 IF_DB_PRINTF("%p", if_lagg); 5179 IF_DB_PRINTF("%p", if_pf_kif); 5180 IF_DB_PRINTF("%p", if_carp); 5181 IF_DB_PRINTF("%p", if_label); 5182 IF_DB_PRINTF("%p", if_netmap); 5183 IF_DB_PRINTF("0x%08x", if_flags); 5184 IF_DB_PRINTF("0x%08x", if_drv_flags); 5185 IF_DB_PRINTF("0x%08x", if_capabilities); 5186 IF_DB_PRINTF("0x%08x", if_capenable); 5187 IF_DB_PRINTF("%p", if_snd.ifq_head); 5188 IF_DB_PRINTF("%p", if_snd.ifq_tail); 5189 IF_DB_PRINTF("%d", if_snd.ifq_len); 5190 IF_DB_PRINTF("%d", if_snd.ifq_maxlen); 5191 IF_DB_PRINTF("%p", if_snd.ifq_drv_head); 5192 IF_DB_PRINTF("%p", if_snd.ifq_drv_tail); 5193 IF_DB_PRINTF("%d", if_snd.ifq_drv_len); 5194 IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen); 5195 IF_DB_PRINTF("%d", if_snd.altq_type); 5196 IF_DB_PRINTF("%x", if_snd.altq_flags); 5197 #undef IF_DB_PRINTF 5198 } 5199 5200 DB_SHOW_COMMAND(ifnet, db_show_ifnet) 5201 { 5202 if (!have_addr) { 5203 db_printf("usage: show ifnet <struct ifnet *>\n"); 5204 return; 5205 } 5206 5207 if_show_ifnet((struct ifnet *)addr); 5208 } 5209 5210 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets) 5211 { 5212 struct ifnet *ifp; 5213 u_short idx; 5214 5215 for (idx = 1; idx <= if_index; idx++) { 5216 ifp = ifindex_table[idx].ife_ifnet; 5217 if (ifp == NULL) 5218 continue; 5219 db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp); 5220 if (db_pager_quit) 5221 break; 5222 } 5223 } 5224 #endif /* DDB */ 5225