1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org> 5 * Copyright (c) 1980, 1986, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)if.c 8.5 (Berkeley) 1/9/95 33 * $FreeBSD$ 34 */ 35 36 #include "opt_bpf.h" 37 #include "opt_inet6.h" 38 #include "opt_inet.h" 39 #include "opt_ddb.h" 40 41 #include <sys/param.h> 42 #include <sys/capsicum.h> 43 #include <sys/conf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/malloc.h> 46 #include <sys/domainset.h> 47 #include <sys/sbuf.h> 48 #include <sys/bus.h> 49 #include <sys/epoch.h> 50 #include <sys/mbuf.h> 51 #include <sys/systm.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/protosw.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/refcount.h> 60 #include <sys/module.h> 61 #include <sys/nv.h> 62 #include <sys/rwlock.h> 63 #include <sys/sockio.h> 64 #include <sys/syslog.h> 65 #include <sys/sysctl.h> 66 #include <sys/sysent.h> 67 #include <sys/taskqueue.h> 68 #include <sys/domain.h> 69 #include <sys/jail.h> 70 #include <sys/priv.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <machine/stdarg.h> 77 #include <vm/uma.h> 78 79 #include <net/bpf.h> 80 #include <net/ethernet.h> 81 #include <net/if.h> 82 #include <net/if_arp.h> 83 #include <net/if_clone.h> 84 #include <net/if_dl.h> 85 #include <net/if_types.h> 86 #include <net/if_var.h> 87 #include <net/if_media.h> 88 #include <net/if_mib.h> 89 #include <net/if_vlan_var.h> 90 #include <net/radix.h> 91 #include <net/route.h> 92 #include <net/route/route_ctl.h> 93 #include <net/vnet.h> 94 95 #if defined(INET) || defined(INET6) 96 #include <net/ethernet.h> 97 #include <netinet/in.h> 98 #include <netinet/in_var.h> 99 #include <netinet/ip.h> 100 #include <netinet/ip_carp.h> 101 #ifdef INET 102 #include <net/debugnet.h> 103 #include <netinet/if_ether.h> 104 #endif /* INET */ 105 #ifdef INET6 106 #include <netinet6/in6_var.h> 107 #include <netinet6/in6_ifattach.h> 108 #endif /* INET6 */ 109 #endif /* INET || INET6 */ 110 111 #include <security/mac/mac_framework.h> 112 113 /* 114 * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name 115 * and ifr_ifru when it is used in SIOCGIFCONF. 116 */ 117 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) == 118 offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru"); 119 120 __read_mostly epoch_t net_epoch_preempt; 121 #ifdef COMPAT_FREEBSD32 122 #include <sys/mount.h> 123 #include <compat/freebsd32/freebsd32.h> 124 125 struct ifreq_buffer32 { 126 uint32_t length; /* (size_t) */ 127 uint32_t buffer; /* (void *) */ 128 }; 129 130 /* 131 * Interface request structure used for socket 132 * ioctl's. All interface ioctl's must have parameter 133 * definitions which begin with ifr_name. The 134 * remainder may be interface specific. 135 */ 136 struct ifreq32 { 137 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ 138 union { 139 struct sockaddr ifru_addr; 140 struct sockaddr ifru_dstaddr; 141 struct sockaddr ifru_broadaddr; 142 struct ifreq_buffer32 ifru_buffer; 143 short ifru_flags[2]; 144 short ifru_index; 145 int ifru_jid; 146 int ifru_metric; 147 int ifru_mtu; 148 int ifru_phys; 149 int ifru_media; 150 uint32_t ifru_data; 151 int ifru_cap[2]; 152 u_int ifru_fib; 153 u_char ifru_vlan_pcp; 154 } ifr_ifru; 155 }; 156 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32)); 157 CTASSERT(__offsetof(struct ifreq, ifr_ifru) == 158 __offsetof(struct ifreq32, ifr_ifru)); 159 160 struct ifconf32 { 161 int32_t ifc_len; 162 union { 163 uint32_t ifcu_buf; 164 uint32_t ifcu_req; 165 } ifc_ifcu; 166 }; 167 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 168 169 struct ifdrv32 { 170 char ifd_name[IFNAMSIZ]; 171 uint32_t ifd_cmd; 172 uint32_t ifd_len; 173 uint32_t ifd_data; 174 }; 175 #define SIOCSDRVSPEC32 _IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32) 176 #define SIOCGDRVSPEC32 _IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32) 177 178 struct ifgroupreq32 { 179 char ifgr_name[IFNAMSIZ]; 180 u_int ifgr_len; 181 union { 182 char ifgru_group[IFNAMSIZ]; 183 uint32_t ifgru_groups; 184 } ifgr_ifgru; 185 }; 186 #define SIOCAIFGROUP32 _IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32) 187 #define SIOCGIFGROUP32 _IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32) 188 #define SIOCDIFGROUP32 _IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32) 189 #define SIOCGIFGMEMB32 _IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32) 190 191 struct ifmediareq32 { 192 char ifm_name[IFNAMSIZ]; 193 int ifm_current; 194 int ifm_mask; 195 int ifm_status; 196 int ifm_active; 197 int ifm_count; 198 uint32_t ifm_ulist; /* (int *) */ 199 }; 200 #define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32) 201 #define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32) 202 #endif /* COMPAT_FREEBSD32 */ 203 204 union ifreq_union { 205 struct ifreq ifr; 206 #ifdef COMPAT_FREEBSD32 207 struct ifreq32 ifr32; 208 #endif 209 }; 210 211 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 212 "Link layers"); 213 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 214 "Generic link-management"); 215 216 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 217 &ifqmaxlen, 0, "max send queue size"); 218 219 /* Log link state change events */ 220 static int log_link_state_change = 1; 221 222 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 223 &log_link_state_change, 0, 224 "log interface link state change events"); 225 226 /* Log promiscuous mode change events */ 227 static int log_promisc_mode_change = 1; 228 229 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN, 230 &log_promisc_mode_change, 1, 231 "log promiscuous mode change events"); 232 233 /* Interface description */ 234 static unsigned int ifdescr_maxlen = 1024; 235 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 236 &ifdescr_maxlen, 0, 237 "administrative maximum length for interface description"); 238 239 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 240 241 /* global sx for non-critical path ifdescr */ 242 static struct sx ifdescr_sx; 243 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 244 245 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 246 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 247 /* These are external hooks for CARP. */ 248 void (*carp_linkstate_p)(struct ifnet *ifp); 249 void (*carp_demote_adj_p)(int, char *); 250 int (*carp_master_p)(struct ifaddr *); 251 #if defined(INET) || defined(INET6) 252 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 253 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 254 const struct sockaddr *sa); 255 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 256 int (*carp_attach_p)(struct ifaddr *, int); 257 void (*carp_detach_p)(struct ifaddr *, bool); 258 #endif 259 #ifdef INET 260 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 261 #endif 262 #ifdef INET6 263 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 264 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 265 const struct in6_addr *taddr); 266 #endif 267 268 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 269 270 /* 271 * XXX: Style; these should be sorted alphabetically, and unprototyped 272 * static functions should be prototyped. Currently they are sorted by 273 * declaration order. 274 */ 275 static void if_attachdomain(void *); 276 static void if_attachdomain1(struct ifnet *); 277 static int ifconf(u_long, caddr_t); 278 static void if_input_default(struct ifnet *, struct mbuf *); 279 static int if_requestencap_default(struct ifnet *, struct if_encap_req *); 280 static void if_route(struct ifnet *, int flag, int fam); 281 static int if_setflag(struct ifnet *, int, int, int *, int); 282 static int if_transmit(struct ifnet *ifp, struct mbuf *m); 283 static void if_unroute(struct ifnet *, int flag, int fam); 284 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 285 static void do_link_state_change(void *, int); 286 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 287 static int if_getgroupmembers(struct ifgroupreq *); 288 static void if_delgroups(struct ifnet *); 289 static void if_attach_internal(struct ifnet *, bool); 290 static int if_detach_internal(struct ifnet *, bool); 291 static void if_siocaddmulti(void *, int); 292 static void if_link_ifnet(struct ifnet *); 293 static bool if_unlink_ifnet(struct ifnet *, bool); 294 #ifdef VIMAGE 295 static int if_vmove(struct ifnet *, struct vnet *); 296 #endif 297 298 #ifdef INET6 299 /* 300 * XXX: declare here to avoid to include many inet6 related files.. 301 * should be more generalized? 302 */ 303 extern void nd6_setmtu(struct ifnet *); 304 #endif 305 306 /* ipsec helper hooks */ 307 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); 308 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); 309 310 int ifqmaxlen = IFQ_MAXLEN; 311 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 312 VNET_DEFINE(struct ifgrouphead, ifg_head); 313 314 /* Table of ifnet by index. */ 315 static int if_index; 316 static int if_indexlim = 8; 317 static struct ifindex_entry { 318 struct ifnet *ife_ifnet; 319 uint16_t ife_gencnt; 320 } *ifindex_table; 321 322 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system, 323 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 324 "Variables global to all interfaces"); 325 static int 326 sysctl_ifcount(SYSCTL_HANDLER_ARGS) 327 { 328 int rv = 0; 329 330 IFNET_RLOCK(); 331 for (int i = 1; i <= if_index; i++) 332 if (ifindex_table[i].ife_ifnet != NULL && 333 ifindex_table[i].ife_ifnet->if_vnet == curvnet) 334 rv = i; 335 IFNET_RUNLOCK(); 336 337 return (sysctl_handle_int(oidp, &rv, 0, req)); 338 } 339 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount, 340 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I", 341 "Maximum known interface index"); 342 343 /* 344 * The global network interface list (V_ifnet) and related state (such as 345 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock. 346 * This may be acquired to stabilise the list, or we may rely on NET_EPOCH. 347 */ 348 struct sx ifnet_sxlock; 349 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 350 351 struct sx ifnet_detach_sxlock; 352 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx", 353 SX_RECURSE); 354 355 #ifdef VIMAGE 356 #define VNET_IS_SHUTTING_DOWN(_vnet) \ 357 ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE) 358 #endif 359 360 static if_com_alloc_t *if_com_alloc[256]; 361 static if_com_free_t *if_com_free[256]; 362 363 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 364 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 365 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 366 367 struct ifnet * 368 ifnet_byindex(u_int idx) 369 { 370 struct ifnet *ifp; 371 372 NET_EPOCH_ASSERT(); 373 374 if (__predict_false(idx > if_index)) 375 return (NULL); 376 377 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 378 379 if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet) 380 ifp = NULL; 381 382 return (ifp); 383 } 384 385 struct ifnet * 386 ifnet_byindex_ref(u_int idx) 387 { 388 struct ifnet *ifp; 389 390 ifp = ifnet_byindex(idx); 391 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) 392 return (NULL); 393 if (!if_try_ref(ifp)) 394 return (NULL); 395 return (ifp); 396 } 397 398 struct ifnet * 399 ifnet_byindexgen(uint16_t idx, uint16_t gen) 400 { 401 struct ifnet *ifp; 402 403 NET_EPOCH_ASSERT(); 404 405 if (__predict_false(idx > if_index)) 406 return (NULL); 407 408 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 409 410 if (ifindex_table[idx].ife_gencnt == gen) 411 return (ifp); 412 else 413 return (NULL); 414 } 415 416 /* 417 * Network interface utility routines. 418 * 419 * Routines with ifa_ifwith* names take sockaddr *'s as 420 * parameters. 421 */ 422 423 static void 424 if_init(void *arg __unused) 425 { 426 427 ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table), 428 M_IFNET, M_WAITOK | M_ZERO); 429 } 430 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init, NULL); 431 432 static void 433 vnet_if_init(const void *unused __unused) 434 { 435 436 CK_STAILQ_INIT(&V_ifnet); 437 CK_STAILQ_INIT(&V_ifg_head); 438 vnet_if_clone_init(); 439 } 440 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 441 NULL); 442 443 static void 444 if_link_ifnet(struct ifnet *ifp) 445 { 446 447 IFNET_WLOCK(); 448 CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 449 #ifdef VIMAGE 450 curvnet->vnet_ifcnt++; 451 #endif 452 IFNET_WUNLOCK(); 453 } 454 455 static bool 456 if_unlink_ifnet(struct ifnet *ifp, bool vmove) 457 { 458 struct ifnet *iter; 459 int found = 0; 460 461 IFNET_WLOCK(); 462 CK_STAILQ_FOREACH(iter, &V_ifnet, if_link) 463 if (iter == ifp) { 464 CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link); 465 if (!vmove) 466 ifp->if_flags |= IFF_DYING; 467 found = 1; 468 break; 469 } 470 #ifdef VIMAGE 471 curvnet->vnet_ifcnt--; 472 #endif 473 IFNET_WUNLOCK(); 474 475 return (found); 476 } 477 478 #ifdef VIMAGE 479 static void 480 vnet_if_return(const void *unused __unused) 481 { 482 struct ifnet *ifp, *nifp; 483 struct ifnet **pending; 484 int found __diagused; 485 int i; 486 487 i = 0; 488 489 /* 490 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd 491 * enter NET_EPOCH, but that's not possible, because if_vmove() calls 492 * if_detach_internal(), which waits for NET_EPOCH callbacks to 493 * complete. We can't do that from within NET_EPOCH. 494 * 495 * However, we can also use the IFNET_xLOCK, which is the V_ifnet 496 * read/write lock. We cannot hold the lock as we call if_vmove() 497 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib 498 * ctx lock. 499 */ 500 IFNET_WLOCK(); 501 502 pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt, 503 M_IFNET, M_WAITOK | M_ZERO); 504 505 /* Return all inherited interfaces to their parent vnets. */ 506 CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 507 if (ifp->if_home_vnet != ifp->if_vnet) { 508 found = if_unlink_ifnet(ifp, true); 509 MPASS(found); 510 511 pending[i++] = ifp; 512 } 513 } 514 IFNET_WUNLOCK(); 515 516 for (int j = 0; j < i; j++) { 517 sx_xlock(&ifnet_detach_sxlock); 518 if_vmove(pending[j], pending[j]->if_home_vnet); 519 sx_xunlock(&ifnet_detach_sxlock); 520 } 521 522 free(pending, M_IFNET); 523 } 524 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, 525 vnet_if_return, NULL); 526 #endif 527 528 /* 529 * Allocate a struct ifnet and an index for an interface. A layer 2 530 * common structure will also be allocated if an allocation routine is 531 * registered for the passed type. 532 */ 533 static struct ifnet * 534 if_alloc_domain(u_char type, int numa_domain) 535 { 536 struct ifnet *ifp; 537 u_short idx; 538 539 KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large")); 540 if (numa_domain == IF_NODOM) 541 ifp = malloc(sizeof(struct ifnet), M_IFNET, 542 M_WAITOK | M_ZERO); 543 else 544 ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET, 545 DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO); 546 ifp->if_type = type; 547 ifp->if_alloctype = type; 548 ifp->if_numa_domain = numa_domain; 549 #ifdef VIMAGE 550 ifp->if_vnet = curvnet; 551 #endif 552 if (if_com_alloc[type] != NULL) { 553 ifp->if_l2com = if_com_alloc[type](type, ifp); 554 KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__, 555 type)); 556 } 557 558 IF_ADDR_LOCK_INIT(ifp); 559 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 560 TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp); 561 ifp->if_afdata_initialized = 0; 562 IF_AFDATA_LOCK_INIT(ifp); 563 CK_STAILQ_INIT(&ifp->if_addrhead); 564 CK_STAILQ_INIT(&ifp->if_multiaddrs); 565 CK_STAILQ_INIT(&ifp->if_groups); 566 #ifdef MAC 567 mac_ifnet_init(ifp); 568 #endif 569 ifq_init(&ifp->if_snd, ifp); 570 571 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 572 for (int i = 0; i < IFCOUNTERS; i++) 573 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 574 ifp->if_get_counter = if_get_counter_default; 575 ifp->if_pcp = IFNET_PCP_NONE; 576 577 /* Allocate an ifindex array entry. */ 578 IFNET_WLOCK(); 579 /* 580 * Try to find an empty slot below if_index. If we fail, take the 581 * next slot. 582 */ 583 for (idx = 1; idx <= if_index; idx++) { 584 if (ifindex_table[idx].ife_ifnet == NULL) 585 break; 586 } 587 588 /* Catch if_index overflow. */ 589 if (idx >= if_indexlim) { 590 struct ifindex_entry *new, *old; 591 int newlim; 592 593 newlim = if_indexlim * 2; 594 new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO); 595 memcpy(new, ifindex_table, if_indexlim * sizeof(*new)); 596 old = ifindex_table; 597 ck_pr_store_ptr(&ifindex_table, new); 598 if_indexlim = newlim; 599 epoch_wait_preempt(net_epoch_preempt); 600 free(old, M_IFNET); 601 } 602 if (idx > if_index) 603 if_index = idx; 604 605 ifp->if_index = idx; 606 ifp->if_idxgen = ifindex_table[idx].ife_gencnt; 607 ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp); 608 IFNET_WUNLOCK(); 609 610 return (ifp); 611 } 612 613 struct ifnet * 614 if_alloc_dev(u_char type, device_t dev) 615 { 616 int numa_domain; 617 618 if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0) 619 return (if_alloc_domain(type, IF_NODOM)); 620 return (if_alloc_domain(type, numa_domain)); 621 } 622 623 struct ifnet * 624 if_alloc(u_char type) 625 { 626 627 return (if_alloc_domain(type, IF_NODOM)); 628 } 629 /* 630 * Do the actual work of freeing a struct ifnet, and layer 2 common 631 * structure. This call is made when the network epoch guarantees 632 * us that nobody holds a pointer to the interface. 633 */ 634 static void 635 if_free_deferred(epoch_context_t ctx) 636 { 637 struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx); 638 639 KASSERT((ifp->if_flags & IFF_DYING), 640 ("%s: interface not dying", __func__)); 641 642 if (if_com_free[ifp->if_alloctype] != NULL) 643 if_com_free[ifp->if_alloctype](ifp->if_l2com, 644 ifp->if_alloctype); 645 646 #ifdef MAC 647 mac_ifnet_destroy(ifp); 648 #endif /* MAC */ 649 IF_AFDATA_DESTROY(ifp); 650 IF_ADDR_LOCK_DESTROY(ifp); 651 ifq_delete(&ifp->if_snd); 652 653 for (int i = 0; i < IFCOUNTERS; i++) 654 counter_u64_free(ifp->if_counters[i]); 655 656 free(ifp->if_description, M_IFDESCR); 657 free(ifp->if_hw_addr, M_IFADDR); 658 free(ifp, M_IFNET); 659 } 660 661 /* 662 * Deregister an interface and free the associated storage. 663 */ 664 void 665 if_free(struct ifnet *ifp) 666 { 667 668 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 669 670 /* 671 * XXXGL: An interface index is really an alias to ifp pointer. 672 * Why would we clear the alias now, and not in the deferred 673 * context? Indeed there is nothing wrong with some network 674 * thread obtaining ifp via ifnet_byindex() inside the network 675 * epoch and then dereferencing ifp while we perform if_free(), 676 * and after if_free() finished, too. 677 * 678 * This early index freeing was important back when ifindex was 679 * virtualized and interface would outlive the vnet. 680 */ 681 IFNET_WLOCK(); 682 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 683 ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL); 684 ifindex_table[ifp->if_index].ife_gencnt++; 685 while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL) 686 if_index--; 687 IFNET_WUNLOCK(); 688 689 if (refcount_release(&ifp->if_refcount)) 690 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 691 } 692 693 /* 694 * Interfaces to keep an ifnet type-stable despite the possibility of the 695 * driver calling if_free(). If there are additional references, we defer 696 * freeing the underlying data structure. 697 */ 698 void 699 if_ref(struct ifnet *ifp) 700 { 701 u_int old __diagused; 702 703 /* We don't assert the ifnet list lock here, but arguably should. */ 704 old = refcount_acquire(&ifp->if_refcount); 705 KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp)); 706 } 707 708 bool 709 if_try_ref(struct ifnet *ifp) 710 { 711 NET_EPOCH_ASSERT(); 712 return (refcount_acquire_if_not_zero(&ifp->if_refcount)); 713 } 714 715 void 716 if_rele(struct ifnet *ifp) 717 { 718 719 if (!refcount_release(&ifp->if_refcount)) 720 return; 721 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 722 } 723 724 void 725 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 726 { 727 728 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 729 730 if (ifq->ifq_maxlen == 0) 731 ifq->ifq_maxlen = ifqmaxlen; 732 733 ifq->altq_type = 0; 734 ifq->altq_disc = NULL; 735 ifq->altq_flags &= ALTQF_CANTCHANGE; 736 ifq->altq_tbr = NULL; 737 ifq->altq_ifp = ifp; 738 } 739 740 void 741 ifq_delete(struct ifaltq *ifq) 742 { 743 mtx_destroy(&ifq->ifq_mtx); 744 } 745 746 /* 747 * Perform generic interface initialization tasks and attach the interface 748 * to the list of "active" interfaces. If vmove flag is set on entry 749 * to if_attach_internal(), perform only a limited subset of initialization 750 * tasks, given that we are moving from one vnet to another an ifnet which 751 * has already been fully initialized. 752 * 753 * Note that if_detach_internal() removes group membership unconditionally 754 * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. 755 * Thus, when if_vmove() is applied to a cloned interface, group membership 756 * is lost while a cloned one always joins a group whose name is 757 * ifc->ifc_name. To recover this after if_detach_internal() and 758 * if_attach_internal(), the cloner should be specified to 759 * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() 760 * attempts to join a group whose name is ifc->ifc_name. 761 * 762 * XXX: 763 * - The decision to return void and thus require this function to 764 * succeed is questionable. 765 * - We should probably do more sanity checking. For instance we don't 766 * do anything to insure if_xname is unique or non-empty. 767 */ 768 void 769 if_attach(struct ifnet *ifp) 770 { 771 772 if_attach_internal(ifp, false); 773 } 774 775 /* 776 * Compute the least common TSO limit. 777 */ 778 void 779 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 780 { 781 /* 782 * 1) If there is no limit currently, take the limit from 783 * the network adapter. 784 * 785 * 2) If the network adapter has a limit below the current 786 * limit, apply it. 787 */ 788 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 789 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 790 pmax->tsomaxbytes = ifp->if_hw_tsomax; 791 } 792 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 793 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 794 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 795 } 796 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 797 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 798 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 799 } 800 } 801 802 /* 803 * Update TSO limit of a network adapter. 804 * 805 * Returns zero if no change. Else non-zero. 806 */ 807 int 808 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 809 { 810 int retval = 0; 811 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 812 ifp->if_hw_tsomax = pmax->tsomaxbytes; 813 retval++; 814 } 815 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 816 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 817 retval++; 818 } 819 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 820 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 821 retval++; 822 } 823 return (retval); 824 } 825 826 static void 827 if_attach_internal(struct ifnet *ifp, bool vmove) 828 { 829 unsigned socksize, ifasize; 830 int namelen, masklen; 831 struct sockaddr_dl *sdl; 832 struct ifaddr *ifa; 833 834 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 835 836 #ifdef VIMAGE 837 ifp->if_vnet = curvnet; 838 if (ifp->if_home_vnet == NULL) 839 ifp->if_home_vnet = curvnet; 840 #endif 841 842 if_addgroup(ifp, IFG_ALL); 843 844 #ifdef VIMAGE 845 /* Restore group membership for cloned interface. */ 846 if (vmove) 847 if_clone_restoregroup(ifp); 848 #endif 849 850 getmicrotime(&ifp->if_lastchange); 851 ifp->if_epoch = time_uptime; 852 853 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 854 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 855 ("transmit and qflush must both either be set or both be NULL")); 856 if (ifp->if_transmit == NULL) { 857 ifp->if_transmit = if_transmit; 858 ifp->if_qflush = if_qflush; 859 } 860 if (ifp->if_input == NULL) 861 ifp->if_input = if_input_default; 862 863 if (ifp->if_requestencap == NULL) 864 ifp->if_requestencap = if_requestencap_default; 865 866 if (!vmove) { 867 #ifdef MAC 868 mac_ifnet_create(ifp); 869 #endif 870 871 /* 872 * Create a Link Level name for this device. 873 */ 874 namelen = strlen(ifp->if_xname); 875 /* 876 * Always save enough space for any possiable name so we 877 * can do a rename in place later. 878 */ 879 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 880 socksize = masklen + ifp->if_addrlen; 881 if (socksize < sizeof(*sdl)) 882 socksize = sizeof(*sdl); 883 socksize = roundup2(socksize, sizeof(long)); 884 ifasize = sizeof(*ifa) + 2 * socksize; 885 ifa = ifa_alloc(ifasize, M_WAITOK); 886 sdl = (struct sockaddr_dl *)(ifa + 1); 887 sdl->sdl_len = socksize; 888 sdl->sdl_family = AF_LINK; 889 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 890 sdl->sdl_nlen = namelen; 891 sdl->sdl_index = ifp->if_index; 892 sdl->sdl_type = ifp->if_type; 893 ifp->if_addr = ifa; 894 ifa->ifa_ifp = ifp; 895 ifa->ifa_addr = (struct sockaddr *)sdl; 896 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 897 ifa->ifa_netmask = (struct sockaddr *)sdl; 898 sdl->sdl_len = masklen; 899 while (namelen != 0) 900 sdl->sdl_data[--namelen] = 0xff; 901 CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 902 /* Reliably crash if used uninitialized. */ 903 ifp->if_broadcastaddr = NULL; 904 905 if (ifp->if_type == IFT_ETHER) { 906 ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR, 907 M_WAITOK | M_ZERO); 908 } 909 910 #if defined(INET) || defined(INET6) 911 /* Use defaults for TSO, if nothing is set */ 912 if (ifp->if_hw_tsomax == 0 && 913 ifp->if_hw_tsomaxsegcount == 0 && 914 ifp->if_hw_tsomaxsegsize == 0) { 915 /* 916 * The TSO defaults needs to be such that an 917 * NFS mbuf list of 35 mbufs totalling just 918 * below 64K works and that a chain of mbufs 919 * can be defragged into at most 32 segments: 920 */ 921 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 922 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 923 ifp->if_hw_tsomaxsegcount = 35; 924 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 925 926 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 927 if (ifp->if_capabilities & IFCAP_TSO) { 928 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 929 ifp->if_hw_tsomax, 930 ifp->if_hw_tsomaxsegcount, 931 ifp->if_hw_tsomaxsegsize); 932 } 933 } 934 #endif 935 } 936 #ifdef VIMAGE 937 else { 938 /* 939 * Update the interface index in the link layer address 940 * of the interface. 941 */ 942 for (ifa = ifp->if_addr; ifa != NULL; 943 ifa = CK_STAILQ_NEXT(ifa, ifa_link)) { 944 if (ifa->ifa_addr->sa_family == AF_LINK) { 945 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 946 sdl->sdl_index = ifp->if_index; 947 } 948 } 949 } 950 #endif 951 952 if_link_ifnet(ifp); 953 954 if (domain_init_status >= 2) 955 if_attachdomain1(ifp); 956 957 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 958 if (IS_DEFAULT_VNET(curvnet)) 959 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 960 } 961 962 static void 963 if_epochalloc(void *dummy __unused) 964 { 965 966 net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT); 967 } 968 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL); 969 970 static void 971 if_attachdomain(void *dummy) 972 { 973 struct ifnet *ifp; 974 975 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 976 if_attachdomain1(ifp); 977 } 978 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 979 if_attachdomain, NULL); 980 981 static void 982 if_attachdomain1(struct ifnet *ifp) 983 { 984 struct domain *dp; 985 986 /* 987 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 988 * cannot lock ifp->if_afdata initialization, entirely. 989 */ 990 IF_AFDATA_LOCK(ifp); 991 if (ifp->if_afdata_initialized >= domain_init_status) { 992 IF_AFDATA_UNLOCK(ifp); 993 log(LOG_WARNING, "%s called more than once on %s\n", 994 __func__, ifp->if_xname); 995 return; 996 } 997 ifp->if_afdata_initialized = domain_init_status; 998 IF_AFDATA_UNLOCK(ifp); 999 1000 /* address family dependent data region */ 1001 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 1002 SLIST_FOREACH(dp, &domains, dom_next) { 1003 if (dp->dom_ifattach) 1004 ifp->if_afdata[dp->dom_family] = 1005 (*dp->dom_ifattach)(ifp); 1006 } 1007 } 1008 1009 /* 1010 * Remove any unicast or broadcast network addresses from an interface. 1011 */ 1012 void 1013 if_purgeaddrs(struct ifnet *ifp) 1014 { 1015 struct ifaddr *ifa; 1016 1017 #ifdef INET6 1018 /* 1019 * Need to leave multicast addresses of proxy NDP llentries 1020 * before in6_purgeifaddr() because the llentries are keys 1021 * for in6_multi objects of proxy NDP entries. 1022 * in6_purgeifaddr()s clean up llentries including proxy NDPs 1023 * then we would lose the keys if they are called earlier. 1024 */ 1025 in6_purge_proxy_ndp(ifp); 1026 #endif 1027 while (1) { 1028 struct epoch_tracker et; 1029 1030 NET_EPOCH_ENTER(et); 1031 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1032 if (ifa->ifa_addr->sa_family != AF_LINK) 1033 break; 1034 } 1035 NET_EPOCH_EXIT(et); 1036 1037 if (ifa == NULL) 1038 break; 1039 #ifdef INET 1040 /* XXX: Ugly!! ad hoc just for INET */ 1041 if (ifa->ifa_addr->sa_family == AF_INET) { 1042 struct ifaliasreq ifr; 1043 1044 bzero(&ifr, sizeof(ifr)); 1045 ifr.ifra_addr = *ifa->ifa_addr; 1046 if (ifa->ifa_dstaddr) 1047 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 1048 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 1049 NULL) == 0) 1050 continue; 1051 } 1052 #endif /* INET */ 1053 #ifdef INET6 1054 if (ifa->ifa_addr->sa_family == AF_INET6) { 1055 in6_purgeifaddr((struct in6_ifaddr *)ifa); 1056 /* ifp_addrhead is already updated */ 1057 continue; 1058 } 1059 #endif /* INET6 */ 1060 IF_ADDR_WLOCK(ifp); 1061 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1062 IF_ADDR_WUNLOCK(ifp); 1063 ifa_free(ifa); 1064 } 1065 } 1066 1067 /* 1068 * Remove any multicast network addresses from an interface when an ifnet 1069 * is going away. 1070 */ 1071 static void 1072 if_purgemaddrs(struct ifnet *ifp) 1073 { 1074 struct ifmultiaddr *ifma; 1075 1076 IF_ADDR_WLOCK(ifp); 1077 while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) { 1078 ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs); 1079 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 1080 if_delmulti_locked(ifp, ifma, 1); 1081 } 1082 IF_ADDR_WUNLOCK(ifp); 1083 } 1084 1085 /* 1086 * Detach an interface, removing it from the list of "active" interfaces. 1087 * If vmove flag is set on entry to if_detach_internal(), perform only a 1088 * limited subset of cleanup tasks, given that we are moving an ifnet from 1089 * one vnet to another, where it must be fully operational. 1090 * 1091 * XXXRW: There are some significant questions about event ordering, and 1092 * how to prevent things from starting to use the interface during detach. 1093 */ 1094 void 1095 if_detach(struct ifnet *ifp) 1096 { 1097 bool found; 1098 1099 CURVNET_SET_QUIET(ifp->if_vnet); 1100 found = if_unlink_ifnet(ifp, false); 1101 if (found) { 1102 sx_xlock(&ifnet_detach_sxlock); 1103 if_detach_internal(ifp, false); 1104 sx_xunlock(&ifnet_detach_sxlock); 1105 } 1106 CURVNET_RESTORE(); 1107 } 1108 1109 /* 1110 * The vmove flag, if set, indicates that we are called from a callpath 1111 * that is moving an interface to a different vnet instance. 1112 * 1113 * The shutdown flag, if set, indicates that we are called in the 1114 * process of shutting down a vnet instance. Currently only the 1115 * vnet_if_return SYSUNINIT function sets it. Note: we can be called 1116 * on a vnet instance shutdown without this flag being set, e.g., when 1117 * the cloned interfaces are destoyed as first thing of teardown. 1118 */ 1119 static int 1120 if_detach_internal(struct ifnet *ifp, bool vmove) 1121 { 1122 struct ifaddr *ifa; 1123 int i; 1124 struct domain *dp; 1125 #ifdef VIMAGE 1126 bool shutdown; 1127 1128 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1129 #endif 1130 1131 /* 1132 * At this point we know the interface still was on the ifnet list 1133 * and we removed it so we are in a stable state. 1134 */ 1135 epoch_wait_preempt(net_epoch_preempt); 1136 1137 /* 1138 * Ensure all pending EPOCH(9) callbacks have been executed. This 1139 * fixes issues about late destruction of multicast options 1140 * which lead to leave group calls, which in turn access the 1141 * belonging ifnet structure: 1142 */ 1143 NET_EPOCH_DRAIN_CALLBACKS(); 1144 1145 /* 1146 * In any case (destroy or vmove) detach us from the groups 1147 * and remove/wait for pending events on the taskq. 1148 * XXX-BZ in theory an interface could still enqueue a taskq change? 1149 */ 1150 if_delgroups(ifp); 1151 1152 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 1153 taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask); 1154 1155 if_down(ifp); 1156 1157 #ifdef VIMAGE 1158 /* 1159 * On VNET shutdown abort here as the stack teardown will do all 1160 * the work top-down for us. 1161 */ 1162 if (shutdown) { 1163 /* Give interface users the chance to clean up. */ 1164 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1165 1166 /* 1167 * In case of a vmove we are done here without error. 1168 * If we would signal an error it would lead to the same 1169 * abort as if we did not find the ifnet anymore. 1170 * if_detach() calls us in void context and does not care 1171 * about an early abort notification, so life is splendid :) 1172 */ 1173 goto finish_vnet_shutdown; 1174 } 1175 #endif 1176 1177 /* 1178 * At this point we are not tearing down a VNET and are either 1179 * going to destroy or vmove the interface and have to cleanup 1180 * accordingly. 1181 */ 1182 1183 /* 1184 * Remove routes and flush queues. 1185 */ 1186 #ifdef ALTQ 1187 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1188 altq_disable(&ifp->if_snd); 1189 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1190 altq_detach(&ifp->if_snd); 1191 #endif 1192 1193 if_purgeaddrs(ifp); 1194 1195 #ifdef INET 1196 in_ifdetach(ifp); 1197 #endif 1198 1199 #ifdef INET6 1200 /* 1201 * Remove all IPv6 kernel structs related to ifp. This should be done 1202 * before removing routing entries below, since IPv6 interface direct 1203 * routes are expected to be removed by the IPv6-specific kernel API. 1204 * Otherwise, the kernel will detect some inconsistency and bark it. 1205 */ 1206 in6_ifdetach(ifp); 1207 #endif 1208 if_purgemaddrs(ifp); 1209 1210 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1211 if (IS_DEFAULT_VNET(curvnet)) 1212 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 1213 1214 if (!vmove) { 1215 /* 1216 * Prevent further calls into the device driver via ifnet. 1217 */ 1218 if_dead(ifp); 1219 1220 /* 1221 * Clean up all addresses. 1222 */ 1223 IF_ADDR_WLOCK(ifp); 1224 if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) { 1225 ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); 1226 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1227 IF_ADDR_WUNLOCK(ifp); 1228 ifa_free(ifa); 1229 } else 1230 IF_ADDR_WUNLOCK(ifp); 1231 } 1232 1233 rt_flushifroutes(ifp); 1234 1235 #ifdef VIMAGE 1236 finish_vnet_shutdown: 1237 #endif 1238 /* 1239 * We cannot hold the lock over dom_ifdetach calls as they might 1240 * sleep, for example trying to drain a callout, thus open up the 1241 * theoretical race with re-attaching. 1242 */ 1243 IF_AFDATA_LOCK(ifp); 1244 i = ifp->if_afdata_initialized; 1245 ifp->if_afdata_initialized = 0; 1246 IF_AFDATA_UNLOCK(ifp); 1247 if (i == 0) 1248 return (0); 1249 SLIST_FOREACH(dp, &domains, dom_next) { 1250 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) { 1251 (*dp->dom_ifdetach)(ifp, 1252 ifp->if_afdata[dp->dom_family]); 1253 ifp->if_afdata[dp->dom_family] = NULL; 1254 } 1255 } 1256 1257 return (0); 1258 } 1259 1260 #ifdef VIMAGE 1261 /* 1262 * if_vmove() performs a limited version of if_detach() in current 1263 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1264 */ 1265 static int 1266 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1267 { 1268 #ifdef DEV_BPF 1269 u_int bif_dlt, bif_hdrlen; 1270 #endif 1271 int rc; 1272 1273 #ifdef DEV_BPF 1274 /* 1275 * if_detach_internal() will call the eventhandler to notify 1276 * interface departure. That will detach if_bpf. We need to 1277 * safe the dlt and hdrlen so we can re-attach it later. 1278 */ 1279 bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen); 1280 #endif 1281 1282 /* 1283 * Detach from current vnet, but preserve LLADDR info, do not 1284 * mark as dead etc. so that the ifnet can be reattached later. 1285 * If we cannot find it, we lost the race to someone else. 1286 */ 1287 rc = if_detach_internal(ifp, true); 1288 if (rc != 0) 1289 return (rc); 1290 1291 /* 1292 * Perform interface-specific reassignment tasks, if provided by 1293 * the driver. 1294 */ 1295 if (ifp->if_reassign != NULL) 1296 ifp->if_reassign(ifp, new_vnet, NULL); 1297 1298 /* 1299 * Switch to the context of the target vnet. 1300 */ 1301 CURVNET_SET_QUIET(new_vnet); 1302 if_attach_internal(ifp, true); 1303 1304 #ifdef DEV_BPF 1305 if (ifp->if_bpf == NULL) 1306 bpfattach(ifp, bif_dlt, bif_hdrlen); 1307 #endif 1308 1309 CURVNET_RESTORE(); 1310 return (0); 1311 } 1312 1313 /* 1314 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1315 */ 1316 static int 1317 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1318 { 1319 struct prison *pr; 1320 struct ifnet *difp; 1321 int error; 1322 bool found __diagused; 1323 bool shutdown; 1324 1325 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 1326 1327 /* Try to find the prison within our visibility. */ 1328 sx_slock(&allprison_lock); 1329 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1330 sx_sunlock(&allprison_lock); 1331 if (pr == NULL) 1332 return (ENXIO); 1333 prison_hold_locked(pr); 1334 mtx_unlock(&pr->pr_mtx); 1335 1336 /* Do not try to move the iface from and to the same prison. */ 1337 if (pr->pr_vnet == ifp->if_vnet) { 1338 prison_free(pr); 1339 return (EEXIST); 1340 } 1341 1342 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1343 /* XXX Lock interfaces to avoid races. */ 1344 CURVNET_SET_QUIET(pr->pr_vnet); 1345 difp = ifunit(ifname); 1346 if (difp != NULL) { 1347 CURVNET_RESTORE(); 1348 prison_free(pr); 1349 return (EEXIST); 1350 } 1351 sx_xlock(&ifnet_detach_sxlock); 1352 1353 /* Make sure the VNET is stable. */ 1354 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1355 if (shutdown) { 1356 sx_xunlock(&ifnet_detach_sxlock); 1357 CURVNET_RESTORE(); 1358 prison_free(pr); 1359 return (EBUSY); 1360 } 1361 CURVNET_RESTORE(); 1362 1363 found = if_unlink_ifnet(ifp, true); 1364 if (! found) { 1365 sx_xunlock(&ifnet_detach_sxlock); 1366 CURVNET_RESTORE(); 1367 prison_free(pr); 1368 return (ENODEV); 1369 } 1370 1371 /* Move the interface into the child jail/vnet. */ 1372 error = if_vmove(ifp, pr->pr_vnet); 1373 1374 /* Report the new if_xname back to the userland on success. */ 1375 if (error == 0) 1376 sprintf(ifname, "%s", ifp->if_xname); 1377 1378 sx_xunlock(&ifnet_detach_sxlock); 1379 1380 prison_free(pr); 1381 return (error); 1382 } 1383 1384 static int 1385 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1386 { 1387 struct prison *pr; 1388 struct vnet *vnet_dst; 1389 struct ifnet *ifp; 1390 int error, found __diagused; 1391 bool shutdown; 1392 1393 /* Try to find the prison within our visibility. */ 1394 sx_slock(&allprison_lock); 1395 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1396 sx_sunlock(&allprison_lock); 1397 if (pr == NULL) 1398 return (ENXIO); 1399 prison_hold_locked(pr); 1400 mtx_unlock(&pr->pr_mtx); 1401 1402 /* Make sure the named iface exists in the source prison/vnet. */ 1403 CURVNET_SET(pr->pr_vnet); 1404 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1405 if (ifp == NULL) { 1406 CURVNET_RESTORE(); 1407 prison_free(pr); 1408 return (ENXIO); 1409 } 1410 1411 /* Do not try to move the iface from and to the same prison. */ 1412 vnet_dst = TD_TO_VNET(td); 1413 if (vnet_dst == ifp->if_vnet) { 1414 CURVNET_RESTORE(); 1415 prison_free(pr); 1416 return (EEXIST); 1417 } 1418 1419 /* Make sure the VNET is stable. */ 1420 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1421 if (shutdown) { 1422 CURVNET_RESTORE(); 1423 prison_free(pr); 1424 return (EBUSY); 1425 } 1426 1427 /* Get interface back from child jail/vnet. */ 1428 found = if_unlink_ifnet(ifp, true); 1429 MPASS(found); 1430 sx_xlock(&ifnet_detach_sxlock); 1431 error = if_vmove(ifp, vnet_dst); 1432 sx_xunlock(&ifnet_detach_sxlock); 1433 CURVNET_RESTORE(); 1434 1435 /* Report the new if_xname back to the userland on success. */ 1436 if (error == 0) 1437 sprintf(ifname, "%s", ifp->if_xname); 1438 1439 prison_free(pr); 1440 return (error); 1441 } 1442 #endif /* VIMAGE */ 1443 1444 /* 1445 * Add a group to an interface 1446 */ 1447 int 1448 if_addgroup(struct ifnet *ifp, const char *groupname) 1449 { 1450 struct ifg_list *ifgl; 1451 struct ifg_group *ifg = NULL; 1452 struct ifg_member *ifgm; 1453 int new = 0; 1454 1455 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1456 groupname[strlen(groupname) - 1] <= '9') 1457 return (EINVAL); 1458 1459 IFNET_WLOCK(); 1460 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1461 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1462 IFNET_WUNLOCK(); 1463 return (EEXIST); 1464 } 1465 1466 if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) { 1467 IFNET_WUNLOCK(); 1468 return (ENOMEM); 1469 } 1470 1471 if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 1472 free(ifgl, M_TEMP); 1473 IFNET_WUNLOCK(); 1474 return (ENOMEM); 1475 } 1476 1477 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1478 if (!strcmp(ifg->ifg_group, groupname)) 1479 break; 1480 1481 if (ifg == NULL) { 1482 if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) { 1483 free(ifgl, M_TEMP); 1484 free(ifgm, M_TEMP); 1485 IFNET_WUNLOCK(); 1486 return (ENOMEM); 1487 } 1488 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1489 ifg->ifg_refcnt = 0; 1490 CK_STAILQ_INIT(&ifg->ifg_members); 1491 CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1492 new = 1; 1493 } 1494 1495 ifg->ifg_refcnt++; 1496 ifgl->ifgl_group = ifg; 1497 ifgm->ifgm_ifp = ifp; 1498 1499 IF_ADDR_WLOCK(ifp); 1500 CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1501 CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1502 IF_ADDR_WUNLOCK(ifp); 1503 1504 IFNET_WUNLOCK(); 1505 1506 if (new) 1507 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1508 EVENTHANDLER_INVOKE(group_change_event, groupname); 1509 1510 return (0); 1511 } 1512 1513 /* 1514 * Helper function to remove a group out of an interface. Expects the global 1515 * ifnet lock to be write-locked, and drops it before returning. 1516 */ 1517 static void 1518 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl, 1519 const char *groupname) 1520 { 1521 struct ifg_member *ifgm; 1522 bool freeifgl; 1523 1524 IFNET_WLOCK_ASSERT(); 1525 1526 IF_ADDR_WLOCK(ifp); 1527 CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next); 1528 IF_ADDR_WUNLOCK(ifp); 1529 1530 CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { 1531 if (ifgm->ifgm_ifp == ifp) { 1532 CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1533 ifg_member, ifgm_next); 1534 break; 1535 } 1536 } 1537 1538 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1539 CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, 1540 ifg_next); 1541 freeifgl = true; 1542 } else { 1543 freeifgl = false; 1544 } 1545 IFNET_WUNLOCK(); 1546 1547 epoch_wait_preempt(net_epoch_preempt); 1548 if (freeifgl) { 1549 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1550 free(ifgl->ifgl_group, M_TEMP); 1551 } 1552 free(ifgm, M_TEMP); 1553 free(ifgl, M_TEMP); 1554 1555 EVENTHANDLER_INVOKE(group_change_event, groupname); 1556 } 1557 1558 /* 1559 * Remove a group from an interface 1560 */ 1561 int 1562 if_delgroup(struct ifnet *ifp, const char *groupname) 1563 { 1564 struct ifg_list *ifgl; 1565 1566 IFNET_WLOCK(); 1567 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1568 if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) 1569 break; 1570 if (ifgl == NULL) { 1571 IFNET_WUNLOCK(); 1572 return (ENOENT); 1573 } 1574 1575 _if_delgroup_locked(ifp, ifgl, groupname); 1576 1577 return (0); 1578 } 1579 1580 /* 1581 * Remove an interface from all groups 1582 */ 1583 static void 1584 if_delgroups(struct ifnet *ifp) 1585 { 1586 struct ifg_list *ifgl; 1587 char groupname[IFNAMSIZ]; 1588 1589 IFNET_WLOCK(); 1590 while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) { 1591 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1592 _if_delgroup_locked(ifp, ifgl, groupname); 1593 IFNET_WLOCK(); 1594 } 1595 IFNET_WUNLOCK(); 1596 } 1597 1598 /* 1599 * Stores all groups from an interface in memory pointed to by ifgr. 1600 */ 1601 static int 1602 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp) 1603 { 1604 int len, error; 1605 struct ifg_list *ifgl; 1606 struct ifg_req ifgrq, *ifgp; 1607 1608 NET_EPOCH_ASSERT(); 1609 1610 if (ifgr->ifgr_len == 0) { 1611 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1612 ifgr->ifgr_len += sizeof(struct ifg_req); 1613 return (0); 1614 } 1615 1616 len = ifgr->ifgr_len; 1617 ifgp = ifgr->ifgr_groups; 1618 /* XXX: wire */ 1619 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1620 if (len < sizeof(ifgrq)) 1621 return (EINVAL); 1622 bzero(&ifgrq, sizeof ifgrq); 1623 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1624 sizeof(ifgrq.ifgrq_group)); 1625 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) 1626 return (error); 1627 len -= sizeof(ifgrq); 1628 ifgp++; 1629 } 1630 1631 return (0); 1632 } 1633 1634 /* 1635 * Stores all members of a group in memory pointed to by igfr 1636 */ 1637 static int 1638 if_getgroupmembers(struct ifgroupreq *ifgr) 1639 { 1640 struct ifg_group *ifg; 1641 struct ifg_member *ifgm; 1642 struct ifg_req ifgrq, *ifgp; 1643 int len, error; 1644 1645 IFNET_RLOCK(); 1646 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1647 if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) 1648 break; 1649 if (ifg == NULL) { 1650 IFNET_RUNLOCK(); 1651 return (ENOENT); 1652 } 1653 1654 if (ifgr->ifgr_len == 0) { 1655 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1656 ifgr->ifgr_len += sizeof(ifgrq); 1657 IFNET_RUNLOCK(); 1658 return (0); 1659 } 1660 1661 len = ifgr->ifgr_len; 1662 ifgp = ifgr->ifgr_groups; 1663 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1664 if (len < sizeof(ifgrq)) { 1665 IFNET_RUNLOCK(); 1666 return (EINVAL); 1667 } 1668 bzero(&ifgrq, sizeof ifgrq); 1669 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1670 sizeof(ifgrq.ifgrq_member)); 1671 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1672 IFNET_RUNLOCK(); 1673 return (error); 1674 } 1675 len -= sizeof(ifgrq); 1676 ifgp++; 1677 } 1678 IFNET_RUNLOCK(); 1679 1680 return (0); 1681 } 1682 1683 /* 1684 * Return counter values from counter(9)s stored in ifnet. 1685 */ 1686 uint64_t 1687 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1688 { 1689 1690 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1691 1692 return (counter_u64_fetch(ifp->if_counters[cnt])); 1693 } 1694 1695 /* 1696 * Increase an ifnet counter. Usually used for counters shared 1697 * between the stack and a driver, but function supports them all. 1698 */ 1699 void 1700 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1701 { 1702 1703 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1704 1705 counter_u64_add(ifp->if_counters[cnt], inc); 1706 } 1707 1708 /* 1709 * Copy data from ifnet to userland API structure if_data. 1710 */ 1711 void 1712 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1713 { 1714 1715 ifd->ifi_type = ifp->if_type; 1716 ifd->ifi_physical = 0; 1717 ifd->ifi_addrlen = ifp->if_addrlen; 1718 ifd->ifi_hdrlen = ifp->if_hdrlen; 1719 ifd->ifi_link_state = ifp->if_link_state; 1720 ifd->ifi_vhid = 0; 1721 ifd->ifi_datalen = sizeof(struct if_data); 1722 ifd->ifi_mtu = ifp->if_mtu; 1723 ifd->ifi_metric = ifp->if_metric; 1724 ifd->ifi_baudrate = ifp->if_baudrate; 1725 ifd->ifi_hwassist = ifp->if_hwassist; 1726 ifd->ifi_epoch = ifp->if_epoch; 1727 ifd->ifi_lastchange = ifp->if_lastchange; 1728 1729 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1730 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1731 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1732 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1733 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1734 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1735 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1736 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1737 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1738 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1739 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1740 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1741 } 1742 1743 /* 1744 * Initialization, destruction and refcounting functions for ifaddrs. 1745 */ 1746 struct ifaddr * 1747 ifa_alloc(size_t size, int flags) 1748 { 1749 struct ifaddr *ifa; 1750 1751 KASSERT(size >= sizeof(struct ifaddr), 1752 ("%s: invalid size %zu", __func__, size)); 1753 1754 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1755 if (ifa == NULL) 1756 return (NULL); 1757 1758 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1759 goto fail; 1760 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1761 goto fail; 1762 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1763 goto fail; 1764 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1765 goto fail; 1766 1767 refcount_init(&ifa->ifa_refcnt, 1); 1768 1769 return (ifa); 1770 1771 fail: 1772 /* free(NULL) is okay */ 1773 counter_u64_free(ifa->ifa_opackets); 1774 counter_u64_free(ifa->ifa_ipackets); 1775 counter_u64_free(ifa->ifa_obytes); 1776 counter_u64_free(ifa->ifa_ibytes); 1777 free(ifa, M_IFADDR); 1778 1779 return (NULL); 1780 } 1781 1782 void 1783 ifa_ref(struct ifaddr *ifa) 1784 { 1785 u_int old __diagused; 1786 1787 old = refcount_acquire(&ifa->ifa_refcnt); 1788 KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa)); 1789 } 1790 1791 int 1792 ifa_try_ref(struct ifaddr *ifa) 1793 { 1794 1795 NET_EPOCH_ASSERT(); 1796 return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt)); 1797 } 1798 1799 static void 1800 ifa_destroy(epoch_context_t ctx) 1801 { 1802 struct ifaddr *ifa; 1803 1804 ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx); 1805 counter_u64_free(ifa->ifa_opackets); 1806 counter_u64_free(ifa->ifa_ipackets); 1807 counter_u64_free(ifa->ifa_obytes); 1808 counter_u64_free(ifa->ifa_ibytes); 1809 free(ifa, M_IFADDR); 1810 } 1811 1812 void 1813 ifa_free(struct ifaddr *ifa) 1814 { 1815 1816 if (refcount_release(&ifa->ifa_refcnt)) 1817 NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx); 1818 } 1819 1820 /* 1821 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1822 * structs used to represent other address families, it is necessary 1823 * to perform a different comparison. 1824 */ 1825 1826 #define sa_dl_equal(a1, a2) \ 1827 ((((const struct sockaddr_dl *)(a1))->sdl_len == \ 1828 ((const struct sockaddr_dl *)(a2))->sdl_len) && \ 1829 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \ 1830 CLLADDR((const struct sockaddr_dl *)(a2)), \ 1831 ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1832 1833 /* 1834 * Locate an interface based on a complete address. 1835 */ 1836 /*ARGSUSED*/ 1837 struct ifaddr * 1838 ifa_ifwithaddr(const struct sockaddr *addr) 1839 { 1840 struct ifnet *ifp; 1841 struct ifaddr *ifa; 1842 1843 NET_EPOCH_ASSERT(); 1844 1845 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1846 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1847 if (ifa->ifa_addr->sa_family != addr->sa_family) 1848 continue; 1849 if (sa_equal(addr, ifa->ifa_addr)) { 1850 goto done; 1851 } 1852 /* IP6 doesn't have broadcast */ 1853 if ((ifp->if_flags & IFF_BROADCAST) && 1854 ifa->ifa_broadaddr && 1855 ifa->ifa_broadaddr->sa_len != 0 && 1856 sa_equal(ifa->ifa_broadaddr, addr)) { 1857 goto done; 1858 } 1859 } 1860 } 1861 ifa = NULL; 1862 done: 1863 return (ifa); 1864 } 1865 1866 int 1867 ifa_ifwithaddr_check(const struct sockaddr *addr) 1868 { 1869 struct epoch_tracker et; 1870 int rc; 1871 1872 NET_EPOCH_ENTER(et); 1873 rc = (ifa_ifwithaddr(addr) != NULL); 1874 NET_EPOCH_EXIT(et); 1875 return (rc); 1876 } 1877 1878 /* 1879 * Locate an interface based on the broadcast address. 1880 */ 1881 /* ARGSUSED */ 1882 struct ifaddr * 1883 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) 1884 { 1885 struct ifnet *ifp; 1886 struct ifaddr *ifa; 1887 1888 NET_EPOCH_ASSERT(); 1889 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1890 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1891 continue; 1892 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1893 if (ifa->ifa_addr->sa_family != addr->sa_family) 1894 continue; 1895 if ((ifp->if_flags & IFF_BROADCAST) && 1896 ifa->ifa_broadaddr && 1897 ifa->ifa_broadaddr->sa_len != 0 && 1898 sa_equal(ifa->ifa_broadaddr, addr)) { 1899 goto done; 1900 } 1901 } 1902 } 1903 ifa = NULL; 1904 done: 1905 return (ifa); 1906 } 1907 1908 /* 1909 * Locate the point to point interface with a given destination address. 1910 */ 1911 /*ARGSUSED*/ 1912 struct ifaddr * 1913 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) 1914 { 1915 struct ifnet *ifp; 1916 struct ifaddr *ifa; 1917 1918 NET_EPOCH_ASSERT(); 1919 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1920 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1921 continue; 1922 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1923 continue; 1924 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1925 if (ifa->ifa_addr->sa_family != addr->sa_family) 1926 continue; 1927 if (ifa->ifa_dstaddr != NULL && 1928 sa_equal(addr, ifa->ifa_dstaddr)) { 1929 goto done; 1930 } 1931 } 1932 } 1933 ifa = NULL; 1934 done: 1935 return (ifa); 1936 } 1937 1938 /* 1939 * Find an interface on a specific network. If many, choice 1940 * is most specific found. 1941 */ 1942 struct ifaddr * 1943 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) 1944 { 1945 struct ifnet *ifp; 1946 struct ifaddr *ifa; 1947 struct ifaddr *ifa_maybe = NULL; 1948 u_int af = addr->sa_family; 1949 const char *addr_data = addr->sa_data, *cplim; 1950 1951 NET_EPOCH_ASSERT(); 1952 /* 1953 * AF_LINK addresses can be looked up directly by their index number, 1954 * so do that if we can. 1955 */ 1956 if (af == AF_LINK) { 1957 ifp = ifnet_byindex( 1958 ((const struct sockaddr_dl *)addr)->sdl_index); 1959 return (ifp ? ifp->if_addr : NULL); 1960 } 1961 1962 /* 1963 * Scan though each interface, looking for ones that have addresses 1964 * in this address family and the requested fib. 1965 */ 1966 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1967 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1968 continue; 1969 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1970 const char *cp, *cp2, *cp3; 1971 1972 if (ifa->ifa_addr->sa_family != af) 1973 next: continue; 1974 if (af == AF_INET && 1975 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1976 /* 1977 * This is a bit broken as it doesn't 1978 * take into account that the remote end may 1979 * be a single node in the network we are 1980 * looking for. 1981 * The trouble is that we don't know the 1982 * netmask for the remote end. 1983 */ 1984 if (ifa->ifa_dstaddr != NULL && 1985 sa_equal(addr, ifa->ifa_dstaddr)) { 1986 goto done; 1987 } 1988 } else { 1989 /* 1990 * Scan all the bits in the ifa's address. 1991 * If a bit dissagrees with what we are 1992 * looking for, mask it with the netmask 1993 * to see if it really matters. 1994 * (A byte at a time) 1995 */ 1996 if (ifa->ifa_netmask == 0) 1997 continue; 1998 cp = addr_data; 1999 cp2 = ifa->ifa_addr->sa_data; 2000 cp3 = ifa->ifa_netmask->sa_data; 2001 cplim = ifa->ifa_netmask->sa_len 2002 + (char *)ifa->ifa_netmask; 2003 while (cp3 < cplim) 2004 if ((*cp++ ^ *cp2++) & *cp3++) 2005 goto next; /* next address! */ 2006 /* 2007 * If the netmask of what we just found 2008 * is more specific than what we had before 2009 * (if we had one), or if the virtual status 2010 * of new prefix is better than of the old one, 2011 * then remember the new one before continuing 2012 * to search for an even better one. 2013 */ 2014 if (ifa_maybe == NULL || 2015 ifa_preferred(ifa_maybe, ifa) || 2016 rn_refines((caddr_t)ifa->ifa_netmask, 2017 (caddr_t)ifa_maybe->ifa_netmask)) { 2018 ifa_maybe = ifa; 2019 } 2020 } 2021 } 2022 } 2023 ifa = ifa_maybe; 2024 ifa_maybe = NULL; 2025 done: 2026 return (ifa); 2027 } 2028 2029 /* 2030 * Find an interface address specific to an interface best matching 2031 * a given address. 2032 */ 2033 struct ifaddr * 2034 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2035 { 2036 struct ifaddr *ifa; 2037 const char *cp, *cp2, *cp3; 2038 char *cplim; 2039 struct ifaddr *ifa_maybe = NULL; 2040 u_int af = addr->sa_family; 2041 2042 if (af >= AF_MAX) 2043 return (NULL); 2044 2045 NET_EPOCH_ASSERT(); 2046 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2047 if (ifa->ifa_addr->sa_family != af) 2048 continue; 2049 if (ifa_maybe == NULL) 2050 ifa_maybe = ifa; 2051 if (ifa->ifa_netmask == 0) { 2052 if (sa_equal(addr, ifa->ifa_addr) || 2053 (ifa->ifa_dstaddr && 2054 sa_equal(addr, ifa->ifa_dstaddr))) 2055 goto done; 2056 continue; 2057 } 2058 if (ifp->if_flags & IFF_POINTOPOINT) { 2059 if (sa_equal(addr, ifa->ifa_dstaddr)) 2060 goto done; 2061 } else { 2062 cp = addr->sa_data; 2063 cp2 = ifa->ifa_addr->sa_data; 2064 cp3 = ifa->ifa_netmask->sa_data; 2065 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2066 for (; cp3 < cplim; cp3++) 2067 if ((*cp++ ^ *cp2++) & *cp3) 2068 break; 2069 if (cp3 == cplim) 2070 goto done; 2071 } 2072 } 2073 ifa = ifa_maybe; 2074 done: 2075 return (ifa); 2076 } 2077 2078 /* 2079 * See whether new ifa is better than current one: 2080 * 1) A non-virtual one is preferred over virtual. 2081 * 2) A virtual in master state preferred over any other state. 2082 * 2083 * Used in several address selecting functions. 2084 */ 2085 int 2086 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 2087 { 2088 2089 return (cur->ifa_carp && (!next->ifa_carp || 2090 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 2091 } 2092 2093 struct sockaddr_dl * 2094 link_alloc_sdl(size_t size, int flags) 2095 { 2096 2097 return (malloc(size, M_TEMP, flags)); 2098 } 2099 2100 void 2101 link_free_sdl(struct sockaddr *sa) 2102 { 2103 free(sa, M_TEMP); 2104 } 2105 2106 /* 2107 * Fills in given sdl with interface basic info. 2108 * Returns pointer to filled sdl. 2109 */ 2110 struct sockaddr_dl * 2111 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2112 { 2113 struct sockaddr_dl *sdl; 2114 2115 sdl = (struct sockaddr_dl *)paddr; 2116 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2117 sdl->sdl_len = sizeof(struct sockaddr_dl); 2118 sdl->sdl_family = AF_LINK; 2119 sdl->sdl_index = ifp->if_index; 2120 sdl->sdl_type = iftype; 2121 2122 return (sdl); 2123 } 2124 2125 /* 2126 * Mark an interface down and notify protocols of 2127 * the transition. 2128 */ 2129 static void 2130 if_unroute(struct ifnet *ifp, int flag, int fam) 2131 { 2132 2133 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 2134 2135 ifp->if_flags &= ~flag; 2136 getmicrotime(&ifp->if_lastchange); 2137 ifp->if_qflush(ifp); 2138 2139 if (ifp->if_carp) 2140 (*carp_linkstate_p)(ifp); 2141 rt_ifmsg(ifp); 2142 } 2143 2144 /* 2145 * Mark an interface up and notify protocols of 2146 * the transition. 2147 */ 2148 static void 2149 if_route(struct ifnet *ifp, int flag, int fam) 2150 { 2151 2152 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 2153 2154 ifp->if_flags |= flag; 2155 getmicrotime(&ifp->if_lastchange); 2156 if (ifp->if_carp) 2157 (*carp_linkstate_p)(ifp); 2158 rt_ifmsg(ifp); 2159 #ifdef INET6 2160 in6_if_up(ifp); 2161 #endif 2162 } 2163 2164 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2165 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2166 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2167 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2168 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2169 int (*vlan_pcp_p)(struct ifnet *, uint16_t *); 2170 int (*vlan_setcookie_p)(struct ifnet *, void *); 2171 void *(*vlan_cookie_p)(struct ifnet *); 2172 2173 /* 2174 * Handle a change in the interface link state. To avoid LORs 2175 * between driver lock and upper layer locks, as well as possible 2176 * recursions, we post event to taskqueue, and all job 2177 * is done in static do_link_state_change(). 2178 */ 2179 void 2180 if_link_state_change(struct ifnet *ifp, int link_state) 2181 { 2182 /* Return if state hasn't changed. */ 2183 if (ifp->if_link_state == link_state) 2184 return; 2185 2186 ifp->if_link_state = link_state; 2187 2188 /* XXXGL: reference ifp? */ 2189 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2190 } 2191 2192 static void 2193 do_link_state_change(void *arg, int pending) 2194 { 2195 struct ifnet *ifp; 2196 int link_state; 2197 2198 ifp = arg; 2199 link_state = ifp->if_link_state; 2200 2201 CURVNET_SET(ifp->if_vnet); 2202 rt_ifmsg(ifp); 2203 if (ifp->if_vlantrunk != NULL) 2204 (*vlan_link_state_p)(ifp); 2205 2206 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2207 ifp->if_l2com != NULL) 2208 (*ng_ether_link_state_p)(ifp, link_state); 2209 if (ifp->if_carp) 2210 (*carp_linkstate_p)(ifp); 2211 if (ifp->if_bridge) 2212 ifp->if_bridge_linkstate(ifp); 2213 if (ifp->if_lagg) 2214 (*lagg_linkstate_p)(ifp, link_state); 2215 2216 if (IS_DEFAULT_VNET(curvnet)) 2217 devctl_notify("IFNET", ifp->if_xname, 2218 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2219 NULL); 2220 if (pending > 1) 2221 if_printf(ifp, "%d link states coalesced\n", pending); 2222 if (log_link_state_change) 2223 if_printf(ifp, "link state changed to %s\n", 2224 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2225 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); 2226 CURVNET_RESTORE(); 2227 } 2228 2229 /* 2230 * Mark an interface down and notify protocols of 2231 * the transition. 2232 */ 2233 void 2234 if_down(struct ifnet *ifp) 2235 { 2236 2237 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); 2238 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2239 } 2240 2241 /* 2242 * Mark an interface up and notify protocols of 2243 * the transition. 2244 */ 2245 void 2246 if_up(struct ifnet *ifp) 2247 { 2248 2249 if_route(ifp, IFF_UP, AF_UNSPEC); 2250 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); 2251 } 2252 2253 /* 2254 * Flush an interface queue. 2255 */ 2256 void 2257 if_qflush(struct ifnet *ifp) 2258 { 2259 struct mbuf *m, *n; 2260 struct ifaltq *ifq; 2261 2262 ifq = &ifp->if_snd; 2263 IFQ_LOCK(ifq); 2264 #ifdef ALTQ 2265 if (ALTQ_IS_ENABLED(ifq)) 2266 ALTQ_PURGE(ifq); 2267 #endif 2268 n = ifq->ifq_head; 2269 while ((m = n) != NULL) { 2270 n = m->m_nextpkt; 2271 m_freem(m); 2272 } 2273 ifq->ifq_head = 0; 2274 ifq->ifq_tail = 0; 2275 ifq->ifq_len = 0; 2276 IFQ_UNLOCK(ifq); 2277 } 2278 2279 /* 2280 * Map interface name to interface structure pointer, with or without 2281 * returning a reference. 2282 */ 2283 struct ifnet * 2284 ifunit_ref(const char *name) 2285 { 2286 struct epoch_tracker et; 2287 struct ifnet *ifp; 2288 2289 NET_EPOCH_ENTER(et); 2290 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2291 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2292 !(ifp->if_flags & IFF_DYING)) 2293 break; 2294 } 2295 if (ifp != NULL) { 2296 if_ref(ifp); 2297 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 2298 } 2299 2300 NET_EPOCH_EXIT(et); 2301 return (ifp); 2302 } 2303 2304 struct ifnet * 2305 ifunit(const char *name) 2306 { 2307 struct epoch_tracker et; 2308 struct ifnet *ifp; 2309 2310 NET_EPOCH_ENTER(et); 2311 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2312 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2313 break; 2314 } 2315 NET_EPOCH_EXIT(et); 2316 return (ifp); 2317 } 2318 2319 void * 2320 ifr_buffer_get_buffer(void *data) 2321 { 2322 union ifreq_union *ifrup; 2323 2324 ifrup = data; 2325 #ifdef COMPAT_FREEBSD32 2326 if (SV_CURPROC_FLAG(SV_ILP32)) 2327 return ((void *)(uintptr_t) 2328 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer); 2329 #endif 2330 return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer); 2331 } 2332 2333 static void 2334 ifr_buffer_set_buffer_null(void *data) 2335 { 2336 union ifreq_union *ifrup; 2337 2338 ifrup = data; 2339 #ifdef COMPAT_FREEBSD32 2340 if (SV_CURPROC_FLAG(SV_ILP32)) 2341 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0; 2342 else 2343 #endif 2344 ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL; 2345 } 2346 2347 size_t 2348 ifr_buffer_get_length(void *data) 2349 { 2350 union ifreq_union *ifrup; 2351 2352 ifrup = data; 2353 #ifdef COMPAT_FREEBSD32 2354 if (SV_CURPROC_FLAG(SV_ILP32)) 2355 return (ifrup->ifr32.ifr_ifru.ifru_buffer.length); 2356 #endif 2357 return (ifrup->ifr.ifr_ifru.ifru_buffer.length); 2358 } 2359 2360 static void 2361 ifr_buffer_set_length(void *data, size_t len) 2362 { 2363 union ifreq_union *ifrup; 2364 2365 ifrup = data; 2366 #ifdef COMPAT_FREEBSD32 2367 if (SV_CURPROC_FLAG(SV_ILP32)) 2368 ifrup->ifr32.ifr_ifru.ifru_buffer.length = len; 2369 else 2370 #endif 2371 ifrup->ifr.ifr_ifru.ifru_buffer.length = len; 2372 } 2373 2374 void * 2375 ifr_data_get_ptr(void *ifrp) 2376 { 2377 union ifreq_union *ifrup; 2378 2379 ifrup = ifrp; 2380 #ifdef COMPAT_FREEBSD32 2381 if (SV_CURPROC_FLAG(SV_ILP32)) 2382 return ((void *)(uintptr_t) 2383 ifrup->ifr32.ifr_ifru.ifru_data); 2384 #endif 2385 return (ifrup->ifr.ifr_ifru.ifru_data); 2386 } 2387 2388 struct ifcap_nv_bit_name { 2389 int cap_bit; 2390 const char *cap_name; 2391 }; 2392 #define CAPNV(x) {.cap_bit = IFCAP_##x, \ 2393 .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) } 2394 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = { 2395 CAPNV(RXCSUM), 2396 CAPNV(TXCSUM), 2397 CAPNV(NETCONS), 2398 CAPNV(VLAN_MTU), 2399 CAPNV(VLAN_HWTAGGING), 2400 CAPNV(JUMBO_MTU), 2401 CAPNV(POLLING), 2402 CAPNV(VLAN_HWCSUM), 2403 CAPNV(TSO4), 2404 CAPNV(TSO6), 2405 CAPNV(LRO), 2406 CAPNV(WOL_UCAST), 2407 CAPNV(WOL_MCAST), 2408 CAPNV(WOL_MAGIC), 2409 CAPNV(TOE4), 2410 CAPNV(TOE6), 2411 CAPNV(VLAN_HWFILTER), 2412 CAPNV(VLAN_HWTSO), 2413 CAPNV(LINKSTATE), 2414 CAPNV(NETMAP), 2415 CAPNV(RXCSUM_IPV6), 2416 CAPNV(TXCSUM_IPV6), 2417 CAPNV(HWSTATS), 2418 CAPNV(TXRTLMT), 2419 CAPNV(HWRXTSTMP), 2420 CAPNV(MEXTPG), 2421 CAPNV(TXTLS4), 2422 CAPNV(TXTLS6), 2423 CAPNV(VXLAN_HWCSUM), 2424 CAPNV(VXLAN_HWTSO), 2425 CAPNV(TXTLS_RTLMT), 2426 {0, NULL} 2427 }; 2428 #define CAP2NV(x) {.cap_bit = IFCAP2_##x, \ 2429 .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) } 2430 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = { 2431 CAP2NV(RXTLS4), 2432 CAP2NV(RXTLS6), 2433 {0, NULL} 2434 }; 2435 #undef CAPNV 2436 #undef CAP2NV 2437 2438 int 2439 if_capnv_to_capint(const nvlist_t *nv, int *old_cap, 2440 const struct ifcap_nv_bit_name *nn, bool all) 2441 { 2442 int i, res; 2443 2444 res = 0; 2445 for (i = 0; nn[i].cap_name != NULL; i++) { 2446 if (nvlist_exists_bool(nv, nn[i].cap_name)) { 2447 if (all || nvlist_get_bool(nv, nn[i].cap_name)) 2448 res |= nn[i].cap_bit; 2449 } else { 2450 res |= *old_cap & nn[i].cap_bit; 2451 } 2452 } 2453 return (res); 2454 } 2455 2456 void 2457 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn, 2458 int ifr_cap, int ifr_req) 2459 { 2460 int i; 2461 2462 for (i = 0; nn[i].cap_name != NULL; i++) { 2463 if ((nn[i].cap_bit & ifr_cap) != 0) { 2464 nvlist_add_bool(nv, nn[i].cap_name, 2465 (nn[i].cap_bit & ifr_req) != 0); 2466 } 2467 } 2468 } 2469 2470 /* 2471 * Hardware specific interface ioctls. 2472 */ 2473 int 2474 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2475 { 2476 struct ifreq *ifr; 2477 int error = 0, do_ifup = 0; 2478 int new_flags, temp_flags; 2479 size_t namelen, onamelen; 2480 size_t descrlen, nvbuflen; 2481 char *descrbuf, *odescrbuf; 2482 char new_name[IFNAMSIZ]; 2483 char old_name[IFNAMSIZ], strbuf[IFNAMSIZ + 8]; 2484 struct ifaddr *ifa; 2485 struct sockaddr_dl *sdl; 2486 void *buf; 2487 nvlist_t *nvcap; 2488 struct siocsifcapnv_driver_data drv_ioctl_data; 2489 2490 ifr = (struct ifreq *)data; 2491 switch (cmd) { 2492 case SIOCGIFINDEX: 2493 ifr->ifr_index = ifp->if_index; 2494 break; 2495 2496 case SIOCGIFFLAGS: 2497 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2498 ifr->ifr_flags = temp_flags & 0xffff; 2499 ifr->ifr_flagshigh = temp_flags >> 16; 2500 break; 2501 2502 case SIOCGIFCAP: 2503 ifr->ifr_reqcap = ifp->if_capabilities; 2504 ifr->ifr_curcap = ifp->if_capenable; 2505 break; 2506 2507 case SIOCGIFCAPNV: 2508 if ((ifp->if_capabilities & IFCAP_NV) == 0) { 2509 error = EINVAL; 2510 break; 2511 } 2512 buf = NULL; 2513 nvcap = nvlist_create(0); 2514 for (;;) { 2515 if_capint_to_capnv(nvcap, ifcap_nv_bit_names, 2516 ifp->if_capabilities, ifp->if_capenable); 2517 if_capint_to_capnv(nvcap, ifcap2_nv_bit_names, 2518 ifp->if_capabilities2, ifp->if_capenable2); 2519 error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV, 2520 __DECONST(caddr_t, nvcap)); 2521 if (error != 0) { 2522 if_printf(ifp, 2523 "SIOCGIFCAPNV driver mistake: nvlist error %d\n", 2524 error); 2525 break; 2526 } 2527 buf = nvlist_pack(nvcap, &nvbuflen); 2528 if (buf == NULL) { 2529 error = nvlist_error(nvcap); 2530 if (error == 0) 2531 error = EDOOFUS; 2532 break; 2533 } 2534 if (nvbuflen > ifr->ifr_cap_nv.buf_length) { 2535 ifr->ifr_cap_nv.length = nvbuflen; 2536 ifr->ifr_cap_nv.buffer = NULL; 2537 error = EFBIG; 2538 break; 2539 } 2540 ifr->ifr_cap_nv.length = nvbuflen; 2541 error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen); 2542 break; 2543 } 2544 free(buf, M_NVLIST); 2545 nvlist_destroy(nvcap); 2546 break; 2547 2548 case SIOCGIFDATA: 2549 { 2550 struct if_data ifd; 2551 2552 /* Ensure uninitialised padding is not leaked. */ 2553 memset(&ifd, 0, sizeof(ifd)); 2554 2555 if_data_copy(ifp, &ifd); 2556 error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd)); 2557 break; 2558 } 2559 2560 #ifdef MAC 2561 case SIOCGIFMAC: 2562 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2563 break; 2564 #endif 2565 2566 case SIOCGIFMETRIC: 2567 ifr->ifr_metric = ifp->if_metric; 2568 break; 2569 2570 case SIOCGIFMTU: 2571 ifr->ifr_mtu = ifp->if_mtu; 2572 break; 2573 2574 case SIOCGIFPHYS: 2575 /* XXXGL: did this ever worked? */ 2576 ifr->ifr_phys = 0; 2577 break; 2578 2579 case SIOCGIFDESCR: 2580 error = 0; 2581 sx_slock(&ifdescr_sx); 2582 if (ifp->if_description == NULL) 2583 error = ENOMSG; 2584 else { 2585 /* space for terminating nul */ 2586 descrlen = strlen(ifp->if_description) + 1; 2587 if (ifr_buffer_get_length(ifr) < descrlen) 2588 ifr_buffer_set_buffer_null(ifr); 2589 else 2590 error = copyout(ifp->if_description, 2591 ifr_buffer_get_buffer(ifr), descrlen); 2592 ifr_buffer_set_length(ifr, descrlen); 2593 } 2594 sx_sunlock(&ifdescr_sx); 2595 break; 2596 2597 case SIOCSIFDESCR: 2598 error = priv_check(td, PRIV_NET_SETIFDESCR); 2599 if (error) 2600 return (error); 2601 2602 /* 2603 * Copy only (length-1) bytes to make sure that 2604 * if_description is always nul terminated. The 2605 * length parameter is supposed to count the 2606 * terminating nul in. 2607 */ 2608 if (ifr_buffer_get_length(ifr) > ifdescr_maxlen) 2609 return (ENAMETOOLONG); 2610 else if (ifr_buffer_get_length(ifr) == 0) 2611 descrbuf = NULL; 2612 else { 2613 descrbuf = malloc(ifr_buffer_get_length(ifr), 2614 M_IFDESCR, M_WAITOK | M_ZERO); 2615 error = copyin(ifr_buffer_get_buffer(ifr), descrbuf, 2616 ifr_buffer_get_length(ifr) - 1); 2617 if (error) { 2618 free(descrbuf, M_IFDESCR); 2619 break; 2620 } 2621 } 2622 2623 sx_xlock(&ifdescr_sx); 2624 odescrbuf = ifp->if_description; 2625 ifp->if_description = descrbuf; 2626 sx_xunlock(&ifdescr_sx); 2627 2628 getmicrotime(&ifp->if_lastchange); 2629 free(odescrbuf, M_IFDESCR); 2630 break; 2631 2632 case SIOCGIFFIB: 2633 ifr->ifr_fib = ifp->if_fib; 2634 break; 2635 2636 case SIOCSIFFIB: 2637 error = priv_check(td, PRIV_NET_SETIFFIB); 2638 if (error) 2639 return (error); 2640 if (ifr->ifr_fib >= rt_numfibs) 2641 return (EINVAL); 2642 2643 ifp->if_fib = ifr->ifr_fib; 2644 break; 2645 2646 case SIOCSIFFLAGS: 2647 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2648 if (error) 2649 return (error); 2650 /* 2651 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2652 * check, so we don't need special handling here yet. 2653 */ 2654 new_flags = (ifr->ifr_flags & 0xffff) | 2655 (ifr->ifr_flagshigh << 16); 2656 if (ifp->if_flags & IFF_UP && 2657 (new_flags & IFF_UP) == 0) { 2658 if_down(ifp); 2659 } else if (new_flags & IFF_UP && 2660 (ifp->if_flags & IFF_UP) == 0) { 2661 do_ifup = 1; 2662 } 2663 /* See if permanently promiscuous mode bit is about to flip */ 2664 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2665 if (new_flags & IFF_PPROMISC) 2666 ifp->if_flags |= IFF_PROMISC; 2667 else if (ifp->if_pcount == 0) 2668 ifp->if_flags &= ~IFF_PROMISC; 2669 if (log_promisc_mode_change) 2670 if_printf(ifp, "permanently promiscuous mode %s\n", 2671 ((new_flags & IFF_PPROMISC) ? 2672 "enabled" : "disabled")); 2673 } 2674 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2675 (new_flags &~ IFF_CANTCHANGE); 2676 if (ifp->if_ioctl) { 2677 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2678 } 2679 if (do_ifup) 2680 if_up(ifp); 2681 getmicrotime(&ifp->if_lastchange); 2682 break; 2683 2684 case SIOCSIFCAP: 2685 error = priv_check(td, PRIV_NET_SETIFCAP); 2686 if (error != 0) 2687 return (error); 2688 if (ifp->if_ioctl == NULL) 2689 return (EOPNOTSUPP); 2690 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2691 return (EINVAL); 2692 error = (*ifp->if_ioctl)(ifp, cmd, data); 2693 if (error == 0) 2694 getmicrotime(&ifp->if_lastchange); 2695 break; 2696 2697 case SIOCSIFCAPNV: 2698 error = priv_check(td, PRIV_NET_SETIFCAP); 2699 if (error != 0) 2700 return (error); 2701 if (ifp->if_ioctl == NULL) 2702 return (EOPNOTSUPP); 2703 if ((ifp->if_capabilities & IFCAP_NV) == 0) 2704 return (EINVAL); 2705 if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE) 2706 return (EINVAL); 2707 nvcap = NULL; 2708 buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK); 2709 for (;;) { 2710 error = copyin(ifr->ifr_cap_nv.buffer, buf, 2711 ifr->ifr_cap_nv.length); 2712 if (error != 0) 2713 break; 2714 nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0); 2715 if (nvcap == NULL) { 2716 error = EINVAL; 2717 break; 2718 } 2719 drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap, 2720 &ifp->if_capenable, ifcap_nv_bit_names, false); 2721 if ((drv_ioctl_data.reqcap & 2722 ~ifp->if_capabilities) != 0) { 2723 error = EINVAL; 2724 break; 2725 } 2726 drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap, 2727 &ifp->if_capenable2, ifcap2_nv_bit_names, false); 2728 if ((drv_ioctl_data.reqcap2 & 2729 ~ifp->if_capabilities2) != 0) { 2730 error = EINVAL; 2731 break; 2732 } 2733 drv_ioctl_data.nvcap = nvcap; 2734 error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV, 2735 (caddr_t)&drv_ioctl_data); 2736 break; 2737 } 2738 nvlist_destroy(nvcap); 2739 free(buf, M_TEMP); 2740 if (error == 0) 2741 getmicrotime(&ifp->if_lastchange); 2742 break; 2743 2744 #ifdef MAC 2745 case SIOCSIFMAC: 2746 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2747 break; 2748 #endif 2749 2750 case SIOCSIFNAME: 2751 error = priv_check(td, PRIV_NET_SETIFNAME); 2752 if (error) 2753 return (error); 2754 error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ, 2755 NULL); 2756 if (error != 0) 2757 return (error); 2758 if (new_name[0] == '\0') 2759 return (EINVAL); 2760 if (strcmp(new_name, ifp->if_xname) == 0) 2761 break; 2762 if (ifunit(new_name) != NULL) 2763 return (EEXIST); 2764 2765 /* 2766 * XXX: Locking. Nothing else seems to lock if_flags, 2767 * and there are numerous other races with the 2768 * ifunit() checks not being atomic with namespace 2769 * changes (renames, vmoves, if_attach, etc). 2770 */ 2771 ifp->if_flags |= IFF_RENAMING; 2772 2773 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 2774 2775 if_printf(ifp, "changing name to '%s'\n", new_name); 2776 2777 IF_ADDR_WLOCK(ifp); 2778 strlcpy(old_name, ifp->if_xname, sizeof(old_name)); 2779 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 2780 ifa = ifp->if_addr; 2781 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 2782 namelen = strlen(new_name); 2783 onamelen = sdl->sdl_nlen; 2784 /* 2785 * Move the address if needed. This is safe because we 2786 * allocate space for a name of length IFNAMSIZ when we 2787 * create this in if_attach(). 2788 */ 2789 if (namelen != onamelen) { 2790 bcopy(sdl->sdl_data + onamelen, 2791 sdl->sdl_data + namelen, sdl->sdl_alen); 2792 } 2793 bcopy(new_name, sdl->sdl_data, namelen); 2794 sdl->sdl_nlen = namelen; 2795 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 2796 bzero(sdl->sdl_data, onamelen); 2797 while (namelen != 0) 2798 sdl->sdl_data[--namelen] = 0xff; 2799 IF_ADDR_WUNLOCK(ifp); 2800 2801 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 2802 2803 ifp->if_flags &= ~IFF_RENAMING; 2804 2805 snprintf(strbuf, sizeof(strbuf), "name=%s", new_name); 2806 devctl_notify("IFNET", old_name, "RENAME", strbuf); 2807 break; 2808 2809 #ifdef VIMAGE 2810 case SIOCSIFVNET: 2811 error = priv_check(td, PRIV_NET_SETIFVNET); 2812 if (error) 2813 return (error); 2814 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2815 break; 2816 #endif 2817 2818 case SIOCSIFMETRIC: 2819 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2820 if (error) 2821 return (error); 2822 ifp->if_metric = ifr->ifr_metric; 2823 getmicrotime(&ifp->if_lastchange); 2824 break; 2825 2826 case SIOCSIFPHYS: 2827 error = priv_check(td, PRIV_NET_SETIFPHYS); 2828 if (error) 2829 return (error); 2830 if (ifp->if_ioctl == NULL) 2831 return (EOPNOTSUPP); 2832 error = (*ifp->if_ioctl)(ifp, cmd, data); 2833 if (error == 0) 2834 getmicrotime(&ifp->if_lastchange); 2835 break; 2836 2837 case SIOCSIFMTU: 2838 { 2839 u_long oldmtu = ifp->if_mtu; 2840 2841 error = priv_check(td, PRIV_NET_SETIFMTU); 2842 if (error) 2843 return (error); 2844 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2845 return (EINVAL); 2846 if (ifp->if_ioctl == NULL) 2847 return (EOPNOTSUPP); 2848 /* Disallow MTU changes on bridge member interfaces. */ 2849 if (ifp->if_bridge) 2850 return (EOPNOTSUPP); 2851 error = (*ifp->if_ioctl)(ifp, cmd, data); 2852 if (error == 0) { 2853 getmicrotime(&ifp->if_lastchange); 2854 rt_ifmsg(ifp); 2855 #ifdef INET 2856 DEBUGNET_NOTIFY_MTU(ifp); 2857 #endif 2858 } 2859 /* 2860 * If the link MTU changed, do network layer specific procedure. 2861 */ 2862 if (ifp->if_mtu != oldmtu) { 2863 #ifdef INET6 2864 nd6_setmtu(ifp); 2865 #endif 2866 rt_updatemtu(ifp); 2867 } 2868 break; 2869 } 2870 2871 case SIOCADDMULTI: 2872 case SIOCDELMULTI: 2873 if (cmd == SIOCADDMULTI) 2874 error = priv_check(td, PRIV_NET_ADDMULTI); 2875 else 2876 error = priv_check(td, PRIV_NET_DELMULTI); 2877 if (error) 2878 return (error); 2879 2880 /* Don't allow group membership on non-multicast interfaces. */ 2881 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2882 return (EOPNOTSUPP); 2883 2884 /* Don't let users screw up protocols' entries. */ 2885 if (ifr->ifr_addr.sa_family != AF_LINK) 2886 return (EINVAL); 2887 2888 if (cmd == SIOCADDMULTI) { 2889 struct epoch_tracker et; 2890 struct ifmultiaddr *ifma; 2891 2892 /* 2893 * Userland is only permitted to join groups once 2894 * via the if_addmulti() KPI, because it cannot hold 2895 * struct ifmultiaddr * between calls. It may also 2896 * lose a race while we check if the membership 2897 * already exists. 2898 */ 2899 NET_EPOCH_ENTER(et); 2900 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2901 NET_EPOCH_EXIT(et); 2902 if (ifma != NULL) 2903 error = EADDRINUSE; 2904 else 2905 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2906 } else { 2907 error = if_delmulti(ifp, &ifr->ifr_addr); 2908 } 2909 if (error == 0) 2910 getmicrotime(&ifp->if_lastchange); 2911 break; 2912 2913 case SIOCSIFPHYADDR: 2914 case SIOCDIFPHYADDR: 2915 #ifdef INET6 2916 case SIOCSIFPHYADDR_IN6: 2917 #endif 2918 case SIOCSIFMEDIA: 2919 case SIOCSIFGENERIC: 2920 error = priv_check(td, PRIV_NET_HWIOCTL); 2921 if (error) 2922 return (error); 2923 if (ifp->if_ioctl == NULL) 2924 return (EOPNOTSUPP); 2925 error = (*ifp->if_ioctl)(ifp, cmd, data); 2926 if (error == 0) 2927 getmicrotime(&ifp->if_lastchange); 2928 break; 2929 2930 case SIOCGIFSTATUS: 2931 case SIOCGIFPSRCADDR: 2932 case SIOCGIFPDSTADDR: 2933 case SIOCGIFMEDIA: 2934 case SIOCGIFXMEDIA: 2935 case SIOCGIFGENERIC: 2936 case SIOCGIFRSSKEY: 2937 case SIOCGIFRSSHASH: 2938 case SIOCGIFDOWNREASON: 2939 if (ifp->if_ioctl == NULL) 2940 return (EOPNOTSUPP); 2941 error = (*ifp->if_ioctl)(ifp, cmd, data); 2942 break; 2943 2944 case SIOCSIFLLADDR: 2945 error = priv_check(td, PRIV_NET_SETLLADDR); 2946 if (error) 2947 return (error); 2948 error = if_setlladdr(ifp, 2949 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2950 break; 2951 2952 case SIOCGHWADDR: 2953 error = if_gethwaddr(ifp, ifr); 2954 break; 2955 2956 case SIOCAIFGROUP: 2957 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2958 if (error) 2959 return (error); 2960 error = if_addgroup(ifp, 2961 ((struct ifgroupreq *)data)->ifgr_group); 2962 if (error != 0) 2963 return (error); 2964 break; 2965 2966 case SIOCGIFGROUP: 2967 { 2968 struct epoch_tracker et; 2969 2970 NET_EPOCH_ENTER(et); 2971 error = if_getgroup((struct ifgroupreq *)data, ifp); 2972 NET_EPOCH_EXIT(et); 2973 break; 2974 } 2975 2976 case SIOCDIFGROUP: 2977 error = priv_check(td, PRIV_NET_DELIFGROUP); 2978 if (error) 2979 return (error); 2980 error = if_delgroup(ifp, 2981 ((struct ifgroupreq *)data)->ifgr_group); 2982 if (error != 0) 2983 return (error); 2984 break; 2985 2986 default: 2987 error = ENOIOCTL; 2988 break; 2989 } 2990 return (error); 2991 } 2992 2993 /* 2994 * Interface ioctls. 2995 */ 2996 int 2997 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2998 { 2999 #ifdef COMPAT_FREEBSD32 3000 union { 3001 struct ifconf ifc; 3002 struct ifdrv ifd; 3003 struct ifgroupreq ifgr; 3004 struct ifmediareq ifmr; 3005 } thunk; 3006 u_long saved_cmd; 3007 struct ifconf32 *ifc32; 3008 struct ifdrv32 *ifd32; 3009 struct ifgroupreq32 *ifgr32; 3010 struct ifmediareq32 *ifmr32; 3011 #endif 3012 struct ifnet *ifp; 3013 struct ifreq *ifr; 3014 int error; 3015 int oif_flags; 3016 #ifdef VIMAGE 3017 bool shutdown; 3018 #endif 3019 3020 CURVNET_SET(so->so_vnet); 3021 #ifdef VIMAGE 3022 /* Make sure the VNET is stable. */ 3023 shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet); 3024 if (shutdown) { 3025 CURVNET_RESTORE(); 3026 return (EBUSY); 3027 } 3028 #endif 3029 3030 #ifdef COMPAT_FREEBSD32 3031 saved_cmd = cmd; 3032 switch (cmd) { 3033 case SIOCGIFCONF32: 3034 ifc32 = (struct ifconf32 *)data; 3035 thunk.ifc.ifc_len = ifc32->ifc_len; 3036 thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 3037 data = (caddr_t)&thunk.ifc; 3038 cmd = SIOCGIFCONF; 3039 break; 3040 case SIOCGDRVSPEC32: 3041 case SIOCSDRVSPEC32: 3042 ifd32 = (struct ifdrv32 *)data; 3043 memcpy(thunk.ifd.ifd_name, ifd32->ifd_name, 3044 sizeof(thunk.ifd.ifd_name)); 3045 thunk.ifd.ifd_cmd = ifd32->ifd_cmd; 3046 thunk.ifd.ifd_len = ifd32->ifd_len; 3047 thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data); 3048 data = (caddr_t)&thunk.ifd; 3049 cmd = _IOC_NEWTYPE(cmd, struct ifdrv); 3050 break; 3051 case SIOCAIFGROUP32: 3052 case SIOCGIFGROUP32: 3053 case SIOCDIFGROUP32: 3054 case SIOCGIFGMEMB32: 3055 ifgr32 = (struct ifgroupreq32 *)data; 3056 memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name, 3057 sizeof(thunk.ifgr.ifgr_name)); 3058 thunk.ifgr.ifgr_len = ifgr32->ifgr_len; 3059 switch (cmd) { 3060 case SIOCAIFGROUP32: 3061 case SIOCDIFGROUP32: 3062 memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group, 3063 sizeof(thunk.ifgr.ifgr_group)); 3064 break; 3065 case SIOCGIFGROUP32: 3066 case SIOCGIFGMEMB32: 3067 thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups); 3068 break; 3069 } 3070 data = (caddr_t)&thunk.ifgr; 3071 cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq); 3072 break; 3073 case SIOCGIFMEDIA32: 3074 case SIOCGIFXMEDIA32: 3075 ifmr32 = (struct ifmediareq32 *)data; 3076 memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name, 3077 sizeof(thunk.ifmr.ifm_name)); 3078 thunk.ifmr.ifm_current = ifmr32->ifm_current; 3079 thunk.ifmr.ifm_mask = ifmr32->ifm_mask; 3080 thunk.ifmr.ifm_status = ifmr32->ifm_status; 3081 thunk.ifmr.ifm_active = ifmr32->ifm_active; 3082 thunk.ifmr.ifm_count = ifmr32->ifm_count; 3083 thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist); 3084 data = (caddr_t)&thunk.ifmr; 3085 cmd = _IOC_NEWTYPE(cmd, struct ifmediareq); 3086 break; 3087 } 3088 #endif 3089 3090 switch (cmd) { 3091 case SIOCGIFCONF: 3092 error = ifconf(cmd, data); 3093 goto out_noref; 3094 } 3095 3096 ifr = (struct ifreq *)data; 3097 switch (cmd) { 3098 #ifdef VIMAGE 3099 case SIOCSIFRVNET: 3100 error = priv_check(td, PRIV_NET_SETIFVNET); 3101 if (error == 0) 3102 error = if_vmove_reclaim(td, ifr->ifr_name, 3103 ifr->ifr_jid); 3104 goto out_noref; 3105 #endif 3106 case SIOCIFCREATE: 3107 case SIOCIFCREATE2: 3108 error = priv_check(td, PRIV_NET_IFCREATE); 3109 if (error == 0) 3110 error = if_clone_create(ifr->ifr_name, 3111 sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? 3112 ifr_data_get_ptr(ifr) : NULL); 3113 goto out_noref; 3114 case SIOCIFDESTROY: 3115 error = priv_check(td, PRIV_NET_IFDESTROY); 3116 3117 if (error == 0) { 3118 sx_xlock(&ifnet_detach_sxlock); 3119 error = if_clone_destroy(ifr->ifr_name); 3120 sx_xunlock(&ifnet_detach_sxlock); 3121 } 3122 goto out_noref; 3123 3124 case SIOCIFGCLONERS: 3125 error = if_clone_list((struct if_clonereq *)data); 3126 goto out_noref; 3127 3128 case SIOCGIFGMEMB: 3129 error = if_getgroupmembers((struct ifgroupreq *)data); 3130 goto out_noref; 3131 3132 #if defined(INET) || defined(INET6) 3133 case SIOCSVH: 3134 case SIOCGVH: 3135 if (carp_ioctl_p == NULL) 3136 error = EPROTONOSUPPORT; 3137 else 3138 error = (*carp_ioctl_p)(ifr, cmd, td); 3139 goto out_noref; 3140 #endif 3141 } 3142 3143 ifp = ifunit_ref(ifr->ifr_name); 3144 if (ifp == NULL) { 3145 error = ENXIO; 3146 goto out_noref; 3147 } 3148 3149 error = ifhwioctl(cmd, ifp, data, td); 3150 if (error != ENOIOCTL) 3151 goto out_ref; 3152 3153 oif_flags = ifp->if_flags; 3154 if (so->so_proto == NULL) { 3155 error = EOPNOTSUPP; 3156 goto out_ref; 3157 } 3158 3159 /* 3160 * Pass the request on to the socket control method, and if the 3161 * latter returns EOPNOTSUPP, directly to the interface. 3162 * 3163 * Make an exception for the legacy SIOCSIF* requests. Drivers 3164 * trust SIOCSIFADDR et al to come from an already privileged 3165 * layer, and do not perform any credentials checks or input 3166 * validation. 3167 */ 3168 error = so->so_proto->pr_control(so, cmd, data, ifp, td); 3169 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 3170 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 3171 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 3172 error = (*ifp->if_ioctl)(ifp, cmd, data); 3173 3174 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 3175 #ifdef INET6 3176 if (ifp->if_flags & IFF_UP) 3177 in6_if_up(ifp); 3178 #endif 3179 } 3180 3181 out_ref: 3182 if_rele(ifp); 3183 out_noref: 3184 CURVNET_RESTORE(); 3185 #ifdef COMPAT_FREEBSD32 3186 if (error != 0) 3187 return (error); 3188 switch (saved_cmd) { 3189 case SIOCGIFCONF32: 3190 ifc32->ifc_len = thunk.ifc.ifc_len; 3191 break; 3192 case SIOCGDRVSPEC32: 3193 /* 3194 * SIOCGDRVSPEC is IOWR, but nothing actually touches 3195 * the struct so just assert that ifd_len (the only 3196 * field it might make sense to update) hasn't 3197 * changed. 3198 */ 3199 KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len, 3200 ("ifd_len was updated %u -> %zu", ifd32->ifd_len, 3201 thunk.ifd.ifd_len)); 3202 break; 3203 case SIOCGIFGROUP32: 3204 case SIOCGIFGMEMB32: 3205 ifgr32->ifgr_len = thunk.ifgr.ifgr_len; 3206 break; 3207 case SIOCGIFMEDIA32: 3208 case SIOCGIFXMEDIA32: 3209 ifmr32->ifm_current = thunk.ifmr.ifm_current; 3210 ifmr32->ifm_mask = thunk.ifmr.ifm_mask; 3211 ifmr32->ifm_status = thunk.ifmr.ifm_status; 3212 ifmr32->ifm_active = thunk.ifmr.ifm_active; 3213 ifmr32->ifm_count = thunk.ifmr.ifm_count; 3214 break; 3215 } 3216 #endif 3217 return (error); 3218 } 3219 3220 /* 3221 * The code common to handling reference counted flags, 3222 * e.g., in ifpromisc() and if_allmulti(). 3223 * The "pflag" argument can specify a permanent mode flag to check, 3224 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 3225 * 3226 * Only to be used on stack-owned flags, not driver-owned flags. 3227 */ 3228 static int 3229 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 3230 { 3231 struct ifreq ifr; 3232 int error; 3233 int oldflags, oldcount; 3234 3235 /* Sanity checks to catch programming errors */ 3236 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 3237 ("%s: setting driver-owned flag %d", __func__, flag)); 3238 3239 if (onswitch) 3240 KASSERT(*refcount >= 0, 3241 ("%s: increment negative refcount %d for flag %d", 3242 __func__, *refcount, flag)); 3243 else 3244 KASSERT(*refcount > 0, 3245 ("%s: decrement non-positive refcount %d for flag %d", 3246 __func__, *refcount, flag)); 3247 3248 /* In case this mode is permanent, just touch refcount */ 3249 if (ifp->if_flags & pflag) { 3250 *refcount += onswitch ? 1 : -1; 3251 return (0); 3252 } 3253 3254 /* Save ifnet parameters for if_ioctl() may fail */ 3255 oldcount = *refcount; 3256 oldflags = ifp->if_flags; 3257 3258 /* 3259 * See if we aren't the only and touching refcount is enough. 3260 * Actually toggle interface flag if we are the first or last. 3261 */ 3262 if (onswitch) { 3263 if ((*refcount)++) 3264 return (0); 3265 ifp->if_flags |= flag; 3266 } else { 3267 if (--(*refcount)) 3268 return (0); 3269 ifp->if_flags &= ~flag; 3270 } 3271 3272 /* Call down the driver since we've changed interface flags */ 3273 if (ifp->if_ioctl == NULL) { 3274 error = EOPNOTSUPP; 3275 goto recover; 3276 } 3277 ifr.ifr_flags = ifp->if_flags & 0xffff; 3278 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3279 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3280 if (error) 3281 goto recover; 3282 /* Notify userland that interface flags have changed */ 3283 rt_ifmsg(ifp); 3284 return (0); 3285 3286 recover: 3287 /* Recover after driver error */ 3288 *refcount = oldcount; 3289 ifp->if_flags = oldflags; 3290 return (error); 3291 } 3292 3293 /* 3294 * Set/clear promiscuous mode on interface ifp based on the truth value 3295 * of pswitch. The calls are reference counted so that only the first 3296 * "on" request actually has an effect, as does the final "off" request. 3297 * Results are undefined if the "off" and "on" requests are not matched. 3298 */ 3299 int 3300 ifpromisc(struct ifnet *ifp, int pswitch) 3301 { 3302 int error; 3303 int oldflags = ifp->if_flags; 3304 3305 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 3306 &ifp->if_pcount, pswitch); 3307 /* If promiscuous mode status has changed, log a message */ 3308 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) && 3309 log_promisc_mode_change) 3310 if_printf(ifp, "promiscuous mode %s\n", 3311 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 3312 return (error); 3313 } 3314 3315 /* 3316 * Return interface configuration 3317 * of system. List may be used 3318 * in later ioctl's (above) to get 3319 * other information. 3320 */ 3321 /*ARGSUSED*/ 3322 static int 3323 ifconf(u_long cmd, caddr_t data) 3324 { 3325 struct ifconf *ifc = (struct ifconf *)data; 3326 struct ifnet *ifp; 3327 struct ifaddr *ifa; 3328 struct ifreq ifr; 3329 struct sbuf *sb; 3330 int error, full = 0, valid_len, max_len; 3331 3332 /* Limit initial buffer size to maxphys to avoid DoS from userspace. */ 3333 max_len = maxphys - 1; 3334 3335 /* Prevent hostile input from being able to crash the system */ 3336 if (ifc->ifc_len <= 0) 3337 return (EINVAL); 3338 3339 again: 3340 if (ifc->ifc_len <= max_len) { 3341 max_len = ifc->ifc_len; 3342 full = 1; 3343 } 3344 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 3345 max_len = 0; 3346 valid_len = 0; 3347 3348 IFNET_RLOCK(); 3349 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 3350 struct epoch_tracker et; 3351 int addrs; 3352 3353 /* 3354 * Zero the ifr to make sure we don't disclose the contents 3355 * of the stack. 3356 */ 3357 memset(&ifr, 0, sizeof(ifr)); 3358 3359 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 3360 >= sizeof(ifr.ifr_name)) { 3361 sbuf_delete(sb); 3362 IFNET_RUNLOCK(); 3363 return (ENAMETOOLONG); 3364 } 3365 3366 addrs = 0; 3367 NET_EPOCH_ENTER(et); 3368 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3369 struct sockaddr *sa = ifa->ifa_addr; 3370 3371 if (prison_if(curthread->td_ucred, sa) != 0) 3372 continue; 3373 addrs++; 3374 if (sa->sa_len <= sizeof(*sa)) { 3375 if (sa->sa_len < sizeof(*sa)) { 3376 memset(&ifr.ifr_ifru.ifru_addr, 0, 3377 sizeof(ifr.ifr_ifru.ifru_addr)); 3378 memcpy(&ifr.ifr_ifru.ifru_addr, sa, 3379 sa->sa_len); 3380 } else 3381 ifr.ifr_ifru.ifru_addr = *sa; 3382 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3383 max_len += sizeof(ifr); 3384 } else { 3385 sbuf_bcat(sb, &ifr, 3386 offsetof(struct ifreq, ifr_addr)); 3387 max_len += offsetof(struct ifreq, ifr_addr); 3388 sbuf_bcat(sb, sa, sa->sa_len); 3389 max_len += sa->sa_len; 3390 } 3391 3392 if (sbuf_error(sb) == 0) 3393 valid_len = sbuf_len(sb); 3394 } 3395 NET_EPOCH_EXIT(et); 3396 if (addrs == 0) { 3397 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3398 max_len += sizeof(ifr); 3399 3400 if (sbuf_error(sb) == 0) 3401 valid_len = sbuf_len(sb); 3402 } 3403 } 3404 IFNET_RUNLOCK(); 3405 3406 /* 3407 * If we didn't allocate enough space (uncommon), try again. If 3408 * we have already allocated as much space as we are allowed, 3409 * return what we've got. 3410 */ 3411 if (valid_len != max_len && !full) { 3412 sbuf_delete(sb); 3413 goto again; 3414 } 3415 3416 ifc->ifc_len = valid_len; 3417 sbuf_finish(sb); 3418 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 3419 sbuf_delete(sb); 3420 return (error); 3421 } 3422 3423 /* 3424 * Just like ifpromisc(), but for all-multicast-reception mode. 3425 */ 3426 int 3427 if_allmulti(struct ifnet *ifp, int onswitch) 3428 { 3429 3430 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 3431 } 3432 3433 struct ifmultiaddr * 3434 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) 3435 { 3436 struct ifmultiaddr *ifma; 3437 3438 IF_ADDR_LOCK_ASSERT(ifp); 3439 3440 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3441 if (sa->sa_family == AF_LINK) { 3442 if (sa_dl_equal(ifma->ifma_addr, sa)) 3443 break; 3444 } else { 3445 if (sa_equal(ifma->ifma_addr, sa)) 3446 break; 3447 } 3448 } 3449 3450 return ifma; 3451 } 3452 3453 /* 3454 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 3455 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 3456 * the ifnet multicast address list here, so the caller must do that and 3457 * other setup work (such as notifying the device driver). The reference 3458 * count is initialized to 1. 3459 */ 3460 static struct ifmultiaddr * 3461 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 3462 int mflags) 3463 { 3464 struct ifmultiaddr *ifma; 3465 struct sockaddr *dupsa; 3466 3467 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3468 M_ZERO); 3469 if (ifma == NULL) 3470 return (NULL); 3471 3472 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3473 if (dupsa == NULL) { 3474 free(ifma, M_IFMADDR); 3475 return (NULL); 3476 } 3477 bcopy(sa, dupsa, sa->sa_len); 3478 ifma->ifma_addr = dupsa; 3479 3480 ifma->ifma_ifp = ifp; 3481 ifma->ifma_refcount = 1; 3482 ifma->ifma_protospec = NULL; 3483 3484 if (llsa == NULL) { 3485 ifma->ifma_lladdr = NULL; 3486 return (ifma); 3487 } 3488 3489 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3490 if (dupsa == NULL) { 3491 free(ifma->ifma_addr, M_IFMADDR); 3492 free(ifma, M_IFMADDR); 3493 return (NULL); 3494 } 3495 bcopy(llsa, dupsa, llsa->sa_len); 3496 ifma->ifma_lladdr = dupsa; 3497 3498 return (ifma); 3499 } 3500 3501 /* 3502 * if_freemulti: free ifmultiaddr structure and possibly attached related 3503 * addresses. The caller is responsible for implementing reference 3504 * counting, notifying the driver, handling routing messages, and releasing 3505 * any dependent link layer state. 3506 */ 3507 #ifdef MCAST_VERBOSE 3508 extern void kdb_backtrace(void); 3509 #endif 3510 static void 3511 if_freemulti_internal(struct ifmultiaddr *ifma) 3512 { 3513 3514 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3515 ifma->ifma_refcount)); 3516 3517 if (ifma->ifma_lladdr != NULL) 3518 free(ifma->ifma_lladdr, M_IFMADDR); 3519 #ifdef MCAST_VERBOSE 3520 kdb_backtrace(); 3521 printf("%s freeing ifma: %p\n", __func__, ifma); 3522 #endif 3523 free(ifma->ifma_addr, M_IFMADDR); 3524 free(ifma, M_IFMADDR); 3525 } 3526 3527 static void 3528 if_destroymulti(epoch_context_t ctx) 3529 { 3530 struct ifmultiaddr *ifma; 3531 3532 ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx); 3533 if_freemulti_internal(ifma); 3534 } 3535 3536 void 3537 if_freemulti(struct ifmultiaddr *ifma) 3538 { 3539 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d", 3540 ifma->ifma_refcount)); 3541 3542 NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx); 3543 } 3544 3545 /* 3546 * Register an additional multicast address with a network interface. 3547 * 3548 * - If the address is already present, bump the reference count on the 3549 * address and return. 3550 * - If the address is not link-layer, look up a link layer address. 3551 * - Allocate address structures for one or both addresses, and attach to the 3552 * multicast address list on the interface. If automatically adding a link 3553 * layer address, the protocol address will own a reference to the link 3554 * layer address, to be freed when it is freed. 3555 * - Notify the network device driver of an addition to the multicast address 3556 * list. 3557 * 3558 * 'sa' points to caller-owned memory with the desired multicast address. 3559 * 3560 * 'retifma' will be used to return a pointer to the resulting multicast 3561 * address reference, if desired. 3562 */ 3563 int 3564 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3565 struct ifmultiaddr **retifma) 3566 { 3567 struct ifmultiaddr *ifma, *ll_ifma; 3568 struct sockaddr *llsa; 3569 struct sockaddr_dl sdl; 3570 int error; 3571 3572 #ifdef INET 3573 IN_MULTI_LIST_UNLOCK_ASSERT(); 3574 #endif 3575 #ifdef INET6 3576 IN6_MULTI_LIST_UNLOCK_ASSERT(); 3577 #endif 3578 /* 3579 * If the address is already present, return a new reference to it; 3580 * otherwise, allocate storage and set up a new address. 3581 */ 3582 IF_ADDR_WLOCK(ifp); 3583 ifma = if_findmulti(ifp, sa); 3584 if (ifma != NULL) { 3585 ifma->ifma_refcount++; 3586 if (retifma != NULL) 3587 *retifma = ifma; 3588 IF_ADDR_WUNLOCK(ifp); 3589 return (0); 3590 } 3591 3592 /* 3593 * The address isn't already present; resolve the protocol address 3594 * into a link layer address, and then look that up, bump its 3595 * refcount or allocate an ifma for that also. 3596 * Most link layer resolving functions returns address data which 3597 * fits inside default sockaddr_dl structure. However callback 3598 * can allocate another sockaddr structure, in that case we need to 3599 * free it later. 3600 */ 3601 llsa = NULL; 3602 ll_ifma = NULL; 3603 if (ifp->if_resolvemulti != NULL) { 3604 /* Provide called function with buffer size information */ 3605 sdl.sdl_len = sizeof(sdl); 3606 llsa = (struct sockaddr *)&sdl; 3607 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3608 if (error) 3609 goto unlock_out; 3610 } 3611 3612 /* 3613 * Allocate the new address. Don't hook it up yet, as we may also 3614 * need to allocate a link layer multicast address. 3615 */ 3616 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3617 if (ifma == NULL) { 3618 error = ENOMEM; 3619 goto free_llsa_out; 3620 } 3621 3622 /* 3623 * If a link layer address is found, we'll need to see if it's 3624 * already present in the address list, or allocate is as well. 3625 * When this block finishes, the link layer address will be on the 3626 * list. 3627 */ 3628 if (llsa != NULL) { 3629 ll_ifma = if_findmulti(ifp, llsa); 3630 if (ll_ifma == NULL) { 3631 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3632 if (ll_ifma == NULL) { 3633 --ifma->ifma_refcount; 3634 if_freemulti(ifma); 3635 error = ENOMEM; 3636 goto free_llsa_out; 3637 } 3638 ll_ifma->ifma_flags |= IFMA_F_ENQUEUED; 3639 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3640 ifma_link); 3641 } else 3642 ll_ifma->ifma_refcount++; 3643 ifma->ifma_llifma = ll_ifma; 3644 } 3645 3646 /* 3647 * We now have a new multicast address, ifma, and possibly a new or 3648 * referenced link layer address. Add the primary address to the 3649 * ifnet address list. 3650 */ 3651 ifma->ifma_flags |= IFMA_F_ENQUEUED; 3652 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3653 3654 if (retifma != NULL) 3655 *retifma = ifma; 3656 3657 /* 3658 * Must generate the message while holding the lock so that 'ifma' 3659 * pointer is still valid. 3660 */ 3661 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3662 IF_ADDR_WUNLOCK(ifp); 3663 3664 /* 3665 * We are certain we have added something, so call down to the 3666 * interface to let them know about it. 3667 */ 3668 if (ifp->if_ioctl != NULL) { 3669 if (THREAD_CAN_SLEEP()) 3670 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3671 else 3672 taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask); 3673 } 3674 3675 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3676 link_free_sdl(llsa); 3677 3678 return (0); 3679 3680 free_llsa_out: 3681 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3682 link_free_sdl(llsa); 3683 3684 unlock_out: 3685 IF_ADDR_WUNLOCK(ifp); 3686 return (error); 3687 } 3688 3689 static void 3690 if_siocaddmulti(void *arg, int pending) 3691 { 3692 struct ifnet *ifp; 3693 3694 ifp = arg; 3695 #ifdef DIAGNOSTIC 3696 if (pending > 1) 3697 if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending); 3698 #endif 3699 CURVNET_SET(ifp->if_vnet); 3700 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3701 CURVNET_RESTORE(); 3702 } 3703 3704 /* 3705 * Delete a multicast group membership by network-layer group address. 3706 * 3707 * Returns ENOENT if the entry could not be found. If ifp no longer 3708 * exists, results are undefined. This entry point should only be used 3709 * from subsystems which do appropriate locking to hold ifp for the 3710 * duration of the call. 3711 * Network-layer protocol domains must use if_delmulti_ifma(). 3712 */ 3713 int 3714 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3715 { 3716 struct ifmultiaddr *ifma; 3717 int lastref; 3718 3719 KASSERT(ifp, ("%s: NULL ifp", __func__)); 3720 3721 IF_ADDR_WLOCK(ifp); 3722 lastref = 0; 3723 ifma = if_findmulti(ifp, sa); 3724 if (ifma != NULL) 3725 lastref = if_delmulti_locked(ifp, ifma, 0); 3726 IF_ADDR_WUNLOCK(ifp); 3727 3728 if (ifma == NULL) 3729 return (ENOENT); 3730 3731 if (lastref && ifp->if_ioctl != NULL) { 3732 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3733 } 3734 3735 return (0); 3736 } 3737 3738 /* 3739 * Delete all multicast group membership for an interface. 3740 * Should be used to quickly flush all multicast filters. 3741 */ 3742 void 3743 if_delallmulti(struct ifnet *ifp) 3744 { 3745 struct ifmultiaddr *ifma; 3746 struct ifmultiaddr *next; 3747 3748 IF_ADDR_WLOCK(ifp); 3749 CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3750 if_delmulti_locked(ifp, ifma, 0); 3751 IF_ADDR_WUNLOCK(ifp); 3752 } 3753 3754 void 3755 if_delmulti_ifma(struct ifmultiaddr *ifma) 3756 { 3757 if_delmulti_ifma_flags(ifma, 0); 3758 } 3759 3760 /* 3761 * Delete a multicast group membership by group membership pointer. 3762 * Network-layer protocol domains must use this routine. 3763 * 3764 * It is safe to call this routine if the ifp disappeared. 3765 */ 3766 void 3767 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags) 3768 { 3769 struct ifnet *ifp; 3770 int lastref; 3771 MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma); 3772 #ifdef INET 3773 IN_MULTI_LIST_UNLOCK_ASSERT(); 3774 #endif 3775 ifp = ifma->ifma_ifp; 3776 #ifdef DIAGNOSTIC 3777 if (ifp == NULL) { 3778 printf("%s: ifma_ifp seems to be detached\n", __func__); 3779 } else { 3780 struct epoch_tracker et; 3781 struct ifnet *oifp; 3782 3783 NET_EPOCH_ENTER(et); 3784 CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link) 3785 if (ifp == oifp) 3786 break; 3787 NET_EPOCH_EXIT(et); 3788 if (ifp != oifp) 3789 ifp = NULL; 3790 } 3791 #endif 3792 /* 3793 * If and only if the ifnet instance exists: Acquire the address lock. 3794 */ 3795 if (ifp != NULL) 3796 IF_ADDR_WLOCK(ifp); 3797 3798 lastref = if_delmulti_locked(ifp, ifma, flags); 3799 3800 if (ifp != NULL) { 3801 /* 3802 * If and only if the ifnet instance exists: 3803 * Release the address lock. 3804 * If the group was left: update the hardware hash filter. 3805 */ 3806 IF_ADDR_WUNLOCK(ifp); 3807 if (lastref && ifp->if_ioctl != NULL) { 3808 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3809 } 3810 } 3811 } 3812 3813 /* 3814 * Perform deletion of network-layer and/or link-layer multicast address. 3815 * 3816 * Return 0 if the reference count was decremented. 3817 * Return 1 if the final reference was released, indicating that the 3818 * hardware hash filter should be reprogrammed. 3819 */ 3820 static int 3821 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3822 { 3823 struct ifmultiaddr *ll_ifma; 3824 3825 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3826 KASSERT(ifma->ifma_ifp == ifp, 3827 ("%s: inconsistent ifp %p", __func__, ifp)); 3828 IF_ADDR_WLOCK_ASSERT(ifp); 3829 } 3830 3831 ifp = ifma->ifma_ifp; 3832 MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : ""); 3833 3834 /* 3835 * If the ifnet is detaching, null out references to ifnet, 3836 * so that upper protocol layers will notice, and not attempt 3837 * to obtain locks for an ifnet which no longer exists. The 3838 * routing socket announcement must happen before the ifnet 3839 * instance is detached from the system. 3840 */ 3841 if (detaching) { 3842 #ifdef DIAGNOSTIC 3843 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3844 #endif 3845 /* 3846 * ifp may already be nulled out if we are being reentered 3847 * to delete the ll_ifma. 3848 */ 3849 if (ifp != NULL) { 3850 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3851 ifma->ifma_ifp = NULL; 3852 } 3853 } 3854 3855 if (--ifma->ifma_refcount > 0) 3856 return 0; 3857 3858 if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) { 3859 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 3860 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3861 } 3862 /* 3863 * If this ifma is a network-layer ifma, a link-layer ifma may 3864 * have been associated with it. Release it first if so. 3865 */ 3866 ll_ifma = ifma->ifma_llifma; 3867 if (ll_ifma != NULL) { 3868 KASSERT(ifma->ifma_lladdr != NULL, 3869 ("%s: llifma w/o lladdr", __func__)); 3870 if (detaching) 3871 ll_ifma->ifma_ifp = NULL; /* XXX */ 3872 if (--ll_ifma->ifma_refcount == 0) { 3873 if (ifp != NULL) { 3874 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 3875 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, 3876 ifma_link); 3877 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3878 } 3879 } 3880 if_freemulti(ll_ifma); 3881 } 3882 } 3883 #ifdef INVARIANTS 3884 if (ifp) { 3885 struct ifmultiaddr *ifmatmp; 3886 3887 CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link) 3888 MPASS(ifma != ifmatmp); 3889 } 3890 #endif 3891 if_freemulti(ifma); 3892 /* 3893 * The last reference to this instance of struct ifmultiaddr 3894 * was released; the hardware should be notified of this change. 3895 */ 3896 return 1; 3897 } 3898 3899 /* 3900 * Set the link layer address on an interface. 3901 * 3902 * At this time we only support certain types of interfaces, 3903 * and we don't allow the length of the address to change. 3904 * 3905 * Set noinline to be dtrace-friendly 3906 */ 3907 __noinline int 3908 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3909 { 3910 struct sockaddr_dl *sdl; 3911 struct ifaddr *ifa; 3912 struct ifreq ifr; 3913 3914 ifa = ifp->if_addr; 3915 if (ifa == NULL) 3916 return (EINVAL); 3917 3918 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3919 if (sdl == NULL) 3920 return (EINVAL); 3921 3922 if (len != sdl->sdl_alen) /* don't allow length to change */ 3923 return (EINVAL); 3924 3925 switch (ifp->if_type) { 3926 case IFT_ETHER: 3927 case IFT_XETHER: 3928 case IFT_L2VLAN: 3929 case IFT_BRIDGE: 3930 case IFT_IEEE8023ADLAG: 3931 bcopy(lladdr, LLADDR(sdl), len); 3932 break; 3933 default: 3934 return (ENODEV); 3935 } 3936 3937 /* 3938 * If the interface is already up, we need 3939 * to re-init it in order to reprogram its 3940 * address filter. 3941 */ 3942 if ((ifp->if_flags & IFF_UP) != 0) { 3943 if (ifp->if_ioctl) { 3944 ifp->if_flags &= ~IFF_UP; 3945 ifr.ifr_flags = ifp->if_flags & 0xffff; 3946 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3947 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3948 ifp->if_flags |= IFF_UP; 3949 ifr.ifr_flags = ifp->if_flags & 0xffff; 3950 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3951 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3952 } 3953 } 3954 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 3955 3956 return (0); 3957 } 3958 3959 /* 3960 * Compat function for handling basic encapsulation requests. 3961 * Not converted stacks (FDDI, IB, ..) supports traditional 3962 * output model: ARP (and other similar L2 protocols) are handled 3963 * inside output routine, arpresolve/nd6_resolve() returns MAC 3964 * address instead of full prepend. 3965 * 3966 * This function creates calculated header==MAC for IPv4/IPv6 and 3967 * returns EAFNOSUPPORT (which is then handled in ARP code) for other 3968 * address families. 3969 */ 3970 static int 3971 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) 3972 { 3973 3974 if (req->rtype != IFENCAP_LL) 3975 return (EOPNOTSUPP); 3976 3977 if (req->bufsize < req->lladdr_len) 3978 return (ENOMEM); 3979 3980 switch (req->family) { 3981 case AF_INET: 3982 case AF_INET6: 3983 break; 3984 default: 3985 return (EAFNOSUPPORT); 3986 } 3987 3988 /* Copy lladdr to storage as is */ 3989 memmove(req->buf, req->lladdr, req->lladdr_len); 3990 req->bufsize = req->lladdr_len; 3991 req->lladdr_off = 0; 3992 3993 return (0); 3994 } 3995 3996 /* 3997 * Tunnel interfaces can nest, also they may cause infinite recursion 3998 * calls when misconfigured. We'll prevent this by detecting loops. 3999 * High nesting level may cause stack exhaustion. We'll prevent this 4000 * by introducing upper limit. 4001 * 4002 * Return 0, if tunnel nesting count is equal or less than limit. 4003 */ 4004 int 4005 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie, 4006 int limit) 4007 { 4008 struct m_tag *mtag; 4009 int count; 4010 4011 count = 1; 4012 mtag = NULL; 4013 while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) { 4014 if (*(struct ifnet **)(mtag + 1) == ifp) { 4015 log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp)); 4016 return (EIO); 4017 } 4018 count++; 4019 } 4020 if (count > limit) { 4021 log(LOG_NOTICE, 4022 "%s: if_output recursively called too many times(%d)\n", 4023 if_name(ifp), count); 4024 return (EIO); 4025 } 4026 mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT); 4027 if (mtag == NULL) 4028 return (ENOMEM); 4029 *(struct ifnet **)(mtag + 1) = ifp; 4030 m_tag_prepend(m, mtag); 4031 return (0); 4032 } 4033 4034 /* 4035 * Get the link layer address that was read from the hardware at attach. 4036 * 4037 * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type 4038 * their component interfaces as IFT_IEEE8023ADLAG. 4039 */ 4040 int 4041 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr) 4042 { 4043 4044 if (ifp->if_hw_addr == NULL) 4045 return (ENODEV); 4046 4047 switch (ifp->if_type) { 4048 case IFT_ETHER: 4049 case IFT_IEEE8023ADLAG: 4050 bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen); 4051 return (0); 4052 default: 4053 return (ENODEV); 4054 } 4055 } 4056 4057 /* 4058 * The name argument must be a pointer to storage which will last as 4059 * long as the interface does. For physical devices, the result of 4060 * device_get_name(dev) is a good choice and for pseudo-devices a 4061 * static string works well. 4062 */ 4063 void 4064 if_initname(struct ifnet *ifp, const char *name, int unit) 4065 { 4066 ifp->if_dname = name; 4067 ifp->if_dunit = unit; 4068 if (unit != IF_DUNIT_NONE) 4069 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 4070 else 4071 strlcpy(ifp->if_xname, name, IFNAMSIZ); 4072 } 4073 4074 static int 4075 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap) 4076 { 4077 char if_fmt[256]; 4078 4079 snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt); 4080 vlog(pri, if_fmt, ap); 4081 return (0); 4082 } 4083 4084 4085 int 4086 if_printf(struct ifnet *ifp, const char *fmt, ...) 4087 { 4088 va_list ap; 4089 4090 va_start(ap, fmt); 4091 if_vlog(ifp, LOG_INFO, fmt, ap); 4092 va_end(ap); 4093 return (0); 4094 } 4095 4096 int 4097 if_log(struct ifnet *ifp, int pri, const char *fmt, ...) 4098 { 4099 va_list ap; 4100 4101 va_start(ap, fmt); 4102 if_vlog(ifp, pri, fmt, ap); 4103 va_end(ap); 4104 return (0); 4105 } 4106 4107 void 4108 if_start(struct ifnet *ifp) 4109 { 4110 4111 (*(ifp)->if_start)(ifp); 4112 } 4113 4114 /* 4115 * Backwards compatibility interface for drivers 4116 * that have not implemented it 4117 */ 4118 static int 4119 if_transmit(struct ifnet *ifp, struct mbuf *m) 4120 { 4121 int error; 4122 4123 IFQ_HANDOFF(ifp, m, error); 4124 return (error); 4125 } 4126 4127 static void 4128 if_input_default(struct ifnet *ifp __unused, struct mbuf *m) 4129 { 4130 4131 m_freem(m); 4132 } 4133 4134 int 4135 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 4136 { 4137 int active = 0; 4138 4139 IF_LOCK(ifq); 4140 if (_IF_QFULL(ifq)) { 4141 IF_UNLOCK(ifq); 4142 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 4143 m_freem(m); 4144 return (0); 4145 } 4146 if (ifp != NULL) { 4147 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 4148 if (m->m_flags & (M_BCAST|M_MCAST)) 4149 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4150 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 4151 } 4152 _IF_ENQUEUE(ifq, m); 4153 IF_UNLOCK(ifq); 4154 if (ifp != NULL && !active) 4155 (*(ifp)->if_start)(ifp); 4156 return (1); 4157 } 4158 4159 void 4160 if_register_com_alloc(u_char type, 4161 if_com_alloc_t *a, if_com_free_t *f) 4162 { 4163 4164 KASSERT(if_com_alloc[type] == NULL, 4165 ("if_register_com_alloc: %d already registered", type)); 4166 KASSERT(if_com_free[type] == NULL, 4167 ("if_register_com_alloc: %d free already registered", type)); 4168 4169 if_com_alloc[type] = a; 4170 if_com_free[type] = f; 4171 } 4172 4173 void 4174 if_deregister_com_alloc(u_char type) 4175 { 4176 4177 KASSERT(if_com_alloc[type] != NULL, 4178 ("if_deregister_com_alloc: %d not registered", type)); 4179 KASSERT(if_com_free[type] != NULL, 4180 ("if_deregister_com_alloc: %d free not registered", type)); 4181 4182 /* 4183 * Ensure all pending EPOCH(9) callbacks have been executed. This 4184 * fixes issues about late invocation of if_destroy(), which leads 4185 * to memory leak from if_com_alloc[type] allocated if_l2com. 4186 */ 4187 NET_EPOCH_DRAIN_CALLBACKS(); 4188 4189 if_com_alloc[type] = NULL; 4190 if_com_free[type] = NULL; 4191 } 4192 4193 /* API for driver access to network stack owned ifnet.*/ 4194 uint64_t 4195 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 4196 { 4197 uint64_t oldbrate; 4198 4199 oldbrate = ifp->if_baudrate; 4200 ifp->if_baudrate = baudrate; 4201 return (oldbrate); 4202 } 4203 4204 uint64_t 4205 if_getbaudrate(if_t ifp) 4206 { 4207 4208 return (((struct ifnet *)ifp)->if_baudrate); 4209 } 4210 4211 int 4212 if_setcapabilities(if_t ifp, int capabilities) 4213 { 4214 ((struct ifnet *)ifp)->if_capabilities = capabilities; 4215 return (0); 4216 } 4217 4218 int 4219 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 4220 { 4221 ((struct ifnet *)ifp)->if_capabilities |= setbit; 4222 ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; 4223 4224 return (0); 4225 } 4226 4227 int 4228 if_getcapabilities(if_t ifp) 4229 { 4230 return ((struct ifnet *)ifp)->if_capabilities; 4231 } 4232 4233 int 4234 if_setcapenable(if_t ifp, int capabilities) 4235 { 4236 ((struct ifnet *)ifp)->if_capenable = capabilities; 4237 return (0); 4238 } 4239 4240 int 4241 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 4242 { 4243 if(setcap) 4244 ((struct ifnet *)ifp)->if_capenable |= setcap; 4245 if(clearcap) 4246 ((struct ifnet *)ifp)->if_capenable &= ~clearcap; 4247 4248 return (0); 4249 } 4250 4251 const char * 4252 if_getdname(if_t ifp) 4253 { 4254 return ((struct ifnet *)ifp)->if_dname; 4255 } 4256 4257 int 4258 if_togglecapenable(if_t ifp, int togglecap) 4259 { 4260 ((struct ifnet *)ifp)->if_capenable ^= togglecap; 4261 return (0); 4262 } 4263 4264 int 4265 if_getcapenable(if_t ifp) 4266 { 4267 return ((struct ifnet *)ifp)->if_capenable; 4268 } 4269 4270 /* 4271 * This is largely undesirable because it ties ifnet to a device, but does 4272 * provide flexiblity for an embedded product vendor. Should be used with 4273 * the understanding that it violates the interface boundaries, and should be 4274 * a last resort only. 4275 */ 4276 int 4277 if_setdev(if_t ifp, void *dev) 4278 { 4279 return (0); 4280 } 4281 4282 int 4283 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 4284 { 4285 ((struct ifnet *)ifp)->if_drv_flags |= set_flags; 4286 ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; 4287 4288 return (0); 4289 } 4290 4291 int 4292 if_getdrvflags(if_t ifp) 4293 { 4294 return ((struct ifnet *)ifp)->if_drv_flags; 4295 } 4296 4297 int 4298 if_setdrvflags(if_t ifp, int flags) 4299 { 4300 ((struct ifnet *)ifp)->if_drv_flags = flags; 4301 return (0); 4302 } 4303 4304 int 4305 if_setflags(if_t ifp, int flags) 4306 { 4307 4308 ifp->if_flags = flags; 4309 return (0); 4310 } 4311 4312 int 4313 if_setflagbits(if_t ifp, int set, int clear) 4314 { 4315 ((struct ifnet *)ifp)->if_flags |= set; 4316 ((struct ifnet *)ifp)->if_flags &= ~clear; 4317 4318 return (0); 4319 } 4320 4321 int 4322 if_getflags(if_t ifp) 4323 { 4324 return ((struct ifnet *)ifp)->if_flags; 4325 } 4326 4327 int 4328 if_clearhwassist(if_t ifp) 4329 { 4330 ((struct ifnet *)ifp)->if_hwassist = 0; 4331 return (0); 4332 } 4333 4334 int 4335 if_sethwassistbits(if_t ifp, int toset, int toclear) 4336 { 4337 ((struct ifnet *)ifp)->if_hwassist |= toset; 4338 ((struct ifnet *)ifp)->if_hwassist &= ~toclear; 4339 4340 return (0); 4341 } 4342 4343 int 4344 if_sethwassist(if_t ifp, int hwassist_bit) 4345 { 4346 ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; 4347 return (0); 4348 } 4349 4350 int 4351 if_gethwassist(if_t ifp) 4352 { 4353 return ((struct ifnet *)ifp)->if_hwassist; 4354 } 4355 4356 int 4357 if_setmtu(if_t ifp, int mtu) 4358 { 4359 ((struct ifnet *)ifp)->if_mtu = mtu; 4360 return (0); 4361 } 4362 4363 int 4364 if_getmtu(if_t ifp) 4365 { 4366 return ((struct ifnet *)ifp)->if_mtu; 4367 } 4368 4369 int 4370 if_getmtu_family(if_t ifp, int family) 4371 { 4372 struct domain *dp; 4373 4374 SLIST_FOREACH(dp, &domains, dom_next) { 4375 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 4376 return (dp->dom_ifmtu((struct ifnet *)ifp)); 4377 } 4378 4379 return (((struct ifnet *)ifp)->if_mtu); 4380 } 4381 4382 /* 4383 * Methods for drivers to access interface unicast and multicast 4384 * link level addresses. Driver shall not know 'struct ifaddr' neither 4385 * 'struct ifmultiaddr'. 4386 */ 4387 u_int 4388 if_lladdr_count(if_t ifp) 4389 { 4390 struct epoch_tracker et; 4391 struct ifaddr *ifa; 4392 u_int count; 4393 4394 count = 0; 4395 NET_EPOCH_ENTER(et); 4396 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 4397 if (ifa->ifa_addr->sa_family == AF_LINK) 4398 count++; 4399 NET_EPOCH_EXIT(et); 4400 4401 return (count); 4402 } 4403 4404 u_int 4405 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4406 { 4407 struct epoch_tracker et; 4408 struct ifaddr *ifa; 4409 u_int count; 4410 4411 MPASS(cb); 4412 4413 count = 0; 4414 NET_EPOCH_ENTER(et); 4415 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4416 if (ifa->ifa_addr->sa_family != AF_LINK) 4417 continue; 4418 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr, 4419 count); 4420 } 4421 NET_EPOCH_EXIT(et); 4422 4423 return (count); 4424 } 4425 4426 u_int 4427 if_llmaddr_count(if_t ifp) 4428 { 4429 struct epoch_tracker et; 4430 struct ifmultiaddr *ifma; 4431 int count; 4432 4433 count = 0; 4434 NET_EPOCH_ENTER(et); 4435 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 4436 if (ifma->ifma_addr->sa_family == AF_LINK) 4437 count++; 4438 NET_EPOCH_EXIT(et); 4439 4440 return (count); 4441 } 4442 4443 u_int 4444 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4445 { 4446 struct epoch_tracker et; 4447 struct ifmultiaddr *ifma; 4448 u_int count; 4449 4450 MPASS(cb); 4451 4452 count = 0; 4453 NET_EPOCH_ENTER(et); 4454 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 4455 if (ifma->ifma_addr->sa_family != AF_LINK) 4456 continue; 4457 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr, 4458 count); 4459 } 4460 NET_EPOCH_EXIT(et); 4461 4462 return (count); 4463 } 4464 4465 int 4466 if_setsoftc(if_t ifp, void *softc) 4467 { 4468 ((struct ifnet *)ifp)->if_softc = softc; 4469 return (0); 4470 } 4471 4472 void * 4473 if_getsoftc(if_t ifp) 4474 { 4475 return ((struct ifnet *)ifp)->if_softc; 4476 } 4477 4478 void 4479 if_setrcvif(struct mbuf *m, if_t ifp) 4480 { 4481 4482 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 4483 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 4484 } 4485 4486 void 4487 if_setvtag(struct mbuf *m, uint16_t tag) 4488 { 4489 m->m_pkthdr.ether_vtag = tag; 4490 } 4491 4492 uint16_t 4493 if_getvtag(struct mbuf *m) 4494 { 4495 4496 return (m->m_pkthdr.ether_vtag); 4497 } 4498 4499 int 4500 if_sendq_empty(if_t ifp) 4501 { 4502 return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); 4503 } 4504 4505 struct ifaddr * 4506 if_getifaddr(if_t ifp) 4507 { 4508 return ((struct ifnet *)ifp)->if_addr; 4509 } 4510 4511 int 4512 if_getamcount(if_t ifp) 4513 { 4514 return ((struct ifnet *)ifp)->if_amcount; 4515 } 4516 4517 int 4518 if_setsendqready(if_t ifp) 4519 { 4520 IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); 4521 return (0); 4522 } 4523 4524 int 4525 if_setsendqlen(if_t ifp, int tx_desc_count) 4526 { 4527 IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); 4528 ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; 4529 4530 return (0); 4531 } 4532 4533 int 4534 if_vlantrunkinuse(if_t ifp) 4535 { 4536 return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; 4537 } 4538 4539 int 4540 if_input(if_t ifp, struct mbuf* sendmp) 4541 { 4542 (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); 4543 return (0); 4544 4545 } 4546 4547 struct mbuf * 4548 if_dequeue(if_t ifp) 4549 { 4550 struct mbuf *m; 4551 IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); 4552 4553 return (m); 4554 } 4555 4556 int 4557 if_sendq_prepend(if_t ifp, struct mbuf *m) 4558 { 4559 IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); 4560 return (0); 4561 } 4562 4563 int 4564 if_setifheaderlen(if_t ifp, int len) 4565 { 4566 ((struct ifnet *)ifp)->if_hdrlen = len; 4567 return (0); 4568 } 4569 4570 caddr_t 4571 if_getlladdr(if_t ifp) 4572 { 4573 return (IF_LLADDR((struct ifnet *)ifp)); 4574 } 4575 4576 void * 4577 if_gethandle(u_char type) 4578 { 4579 return (if_alloc(type)); 4580 } 4581 4582 void 4583 if_bpfmtap(if_t ifh, struct mbuf *m) 4584 { 4585 struct ifnet *ifp = (struct ifnet *)ifh; 4586 4587 BPF_MTAP(ifp, m); 4588 } 4589 4590 void 4591 if_etherbpfmtap(if_t ifh, struct mbuf *m) 4592 { 4593 struct ifnet *ifp = (struct ifnet *)ifh; 4594 4595 ETHER_BPF_MTAP(ifp, m); 4596 } 4597 4598 void 4599 if_vlancap(if_t ifh) 4600 { 4601 struct ifnet *ifp = (struct ifnet *)ifh; 4602 VLAN_CAPABILITIES(ifp); 4603 } 4604 4605 int 4606 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax) 4607 { 4608 4609 ((struct ifnet *)ifp)->if_hw_tsomax = if_hw_tsomax; 4610 return (0); 4611 } 4612 4613 int 4614 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount) 4615 { 4616 4617 ((struct ifnet *)ifp)->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount; 4618 return (0); 4619 } 4620 4621 int 4622 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize) 4623 { 4624 4625 ((struct ifnet *)ifp)->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize; 4626 return (0); 4627 } 4628 4629 u_int 4630 if_gethwtsomax(if_t ifp) 4631 { 4632 4633 return (((struct ifnet *)ifp)->if_hw_tsomax); 4634 } 4635 4636 u_int 4637 if_gethwtsomaxsegcount(if_t ifp) 4638 { 4639 4640 return (((struct ifnet *)ifp)->if_hw_tsomaxsegcount); 4641 } 4642 4643 u_int 4644 if_gethwtsomaxsegsize(if_t ifp) 4645 { 4646 4647 return (((struct ifnet *)ifp)->if_hw_tsomaxsegsize); 4648 } 4649 4650 void 4651 if_setinitfn(if_t ifp, void (*init_fn)(void *)) 4652 { 4653 ((struct ifnet *)ifp)->if_init = init_fn; 4654 } 4655 4656 void 4657 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) 4658 { 4659 ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; 4660 } 4661 4662 void 4663 if_setstartfn(if_t ifp, void (*start_fn)(if_t)) 4664 { 4665 ((struct ifnet *)ifp)->if_start = (void *)start_fn; 4666 } 4667 4668 void 4669 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 4670 { 4671 ((struct ifnet *)ifp)->if_transmit = start_fn; 4672 } 4673 4674 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 4675 { 4676 ((struct ifnet *)ifp)->if_qflush = flush_fn; 4677 4678 } 4679 4680 void 4681 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 4682 { 4683 4684 ifp->if_get_counter = fn; 4685 } 4686 4687 #ifdef DDB 4688 static void 4689 if_show_ifnet(struct ifnet *ifp) 4690 { 4691 4692 if (ifp == NULL) 4693 return; 4694 db_printf("%s:\n", ifp->if_xname); 4695 #define IF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, ifp->e); 4696 IF_DB_PRINTF("%s", if_dname); 4697 IF_DB_PRINTF("%d", if_dunit); 4698 IF_DB_PRINTF("%s", if_description); 4699 IF_DB_PRINTF("%u", if_index); 4700 IF_DB_PRINTF("%d", if_idxgen); 4701 IF_DB_PRINTF("%u", if_refcount); 4702 IF_DB_PRINTF("%p", if_softc); 4703 IF_DB_PRINTF("%p", if_l2com); 4704 IF_DB_PRINTF("%p", if_llsoftc); 4705 IF_DB_PRINTF("%d", if_amcount); 4706 IF_DB_PRINTF("%p", if_addr); 4707 IF_DB_PRINTF("%p", if_broadcastaddr); 4708 IF_DB_PRINTF("%p", if_afdata); 4709 IF_DB_PRINTF("%d", if_afdata_initialized); 4710 IF_DB_PRINTF("%u", if_fib); 4711 IF_DB_PRINTF("%p", if_vnet); 4712 IF_DB_PRINTF("%p", if_home_vnet); 4713 IF_DB_PRINTF("%p", if_vlantrunk); 4714 IF_DB_PRINTF("%p", if_bpf); 4715 IF_DB_PRINTF("%u", if_pcount); 4716 IF_DB_PRINTF("%p", if_bridge); 4717 IF_DB_PRINTF("%p", if_lagg); 4718 IF_DB_PRINTF("%p", if_pf_kif); 4719 IF_DB_PRINTF("%p", if_carp); 4720 IF_DB_PRINTF("%p", if_label); 4721 IF_DB_PRINTF("%p", if_netmap); 4722 IF_DB_PRINTF("0x%08x", if_flags); 4723 IF_DB_PRINTF("0x%08x", if_drv_flags); 4724 IF_DB_PRINTF("0x%08x", if_capabilities); 4725 IF_DB_PRINTF("0x%08x", if_capenable); 4726 IF_DB_PRINTF("%p", if_snd.ifq_head); 4727 IF_DB_PRINTF("%p", if_snd.ifq_tail); 4728 IF_DB_PRINTF("%d", if_snd.ifq_len); 4729 IF_DB_PRINTF("%d", if_snd.ifq_maxlen); 4730 IF_DB_PRINTF("%p", if_snd.ifq_drv_head); 4731 IF_DB_PRINTF("%p", if_snd.ifq_drv_tail); 4732 IF_DB_PRINTF("%d", if_snd.ifq_drv_len); 4733 IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen); 4734 IF_DB_PRINTF("%d", if_snd.altq_type); 4735 IF_DB_PRINTF("%x", if_snd.altq_flags); 4736 #undef IF_DB_PRINTF 4737 } 4738 4739 DB_SHOW_COMMAND(ifnet, db_show_ifnet) 4740 { 4741 4742 if (!have_addr) { 4743 db_printf("usage: show ifnet <struct ifnet *>\n"); 4744 return; 4745 } 4746 4747 if_show_ifnet((struct ifnet *)addr); 4748 } 4749 4750 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets) 4751 { 4752 struct ifnet *ifp; 4753 u_short idx; 4754 4755 for (idx = 1; idx <= if_index; idx++) { 4756 ifp = ifindex_table[idx].ife_ifnet; 4757 if (ifp == NULL) 4758 continue; 4759 db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp); 4760 if (db_pager_quit) 4761 break; 4762 } 4763 } 4764 #endif /* DDB */ 4765