1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org> 5 * Copyright (c) 1980, 1986, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)if.c 8.5 (Berkeley) 1/9/95 33 * $FreeBSD$ 34 */ 35 36 #include "opt_bpf.h" 37 #include "opt_inet6.h" 38 #include "opt_inet.h" 39 #include "opt_ddb.h" 40 41 #include <sys/param.h> 42 #include <sys/capsicum.h> 43 #include <sys/conf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/malloc.h> 46 #include <sys/domainset.h> 47 #include <sys/sbuf.h> 48 #include <sys/bus.h> 49 #include <sys/epoch.h> 50 #include <sys/mbuf.h> 51 #include <sys/systm.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/protosw.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/refcount.h> 60 #include <sys/module.h> 61 #include <sys/rwlock.h> 62 #include <sys/sockio.h> 63 #include <sys/syslog.h> 64 #include <sys/sysctl.h> 65 #include <sys/sysent.h> 66 #include <sys/taskqueue.h> 67 #include <sys/domain.h> 68 #include <sys/jail.h> 69 #include <sys/priv.h> 70 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #endif 74 75 #include <machine/stdarg.h> 76 #include <vm/uma.h> 77 78 #include <net/bpf.h> 79 #include <net/ethernet.h> 80 #include <net/if.h> 81 #include <net/if_arp.h> 82 #include <net/if_clone.h> 83 #include <net/if_dl.h> 84 #include <net/if_types.h> 85 #include <net/if_var.h> 86 #include <net/if_media.h> 87 #include <net/if_vlan_var.h> 88 #include <net/radix.h> 89 #include <net/route.h> 90 #include <net/route/route_ctl.h> 91 #include <net/vnet.h> 92 93 #if defined(INET) || defined(INET6) 94 #include <net/ethernet.h> 95 #include <netinet/in.h> 96 #include <netinet/in_var.h> 97 #include <netinet/ip.h> 98 #include <netinet/ip_carp.h> 99 #ifdef INET 100 #include <net/debugnet.h> 101 #include <netinet/if_ether.h> 102 #endif /* INET */ 103 #ifdef INET6 104 #include <netinet6/in6_var.h> 105 #include <netinet6/in6_ifattach.h> 106 #endif /* INET6 */ 107 #endif /* INET || INET6 */ 108 109 #include <security/mac/mac_framework.h> 110 111 /* 112 * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name 113 * and ifr_ifru when it is used in SIOCGIFCONF. 114 */ 115 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) == 116 offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru"); 117 118 __read_mostly epoch_t net_epoch_preempt; 119 #ifdef COMPAT_FREEBSD32 120 #include <sys/mount.h> 121 #include <compat/freebsd32/freebsd32.h> 122 123 struct ifreq_buffer32 { 124 uint32_t length; /* (size_t) */ 125 uint32_t buffer; /* (void *) */ 126 }; 127 128 /* 129 * Interface request structure used for socket 130 * ioctl's. All interface ioctl's must have parameter 131 * definitions which begin with ifr_name. The 132 * remainder may be interface specific. 133 */ 134 struct ifreq32 { 135 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ 136 union { 137 struct sockaddr ifru_addr; 138 struct sockaddr ifru_dstaddr; 139 struct sockaddr ifru_broadaddr; 140 struct ifreq_buffer32 ifru_buffer; 141 short ifru_flags[2]; 142 short ifru_index; 143 int ifru_jid; 144 int ifru_metric; 145 int ifru_mtu; 146 int ifru_phys; 147 int ifru_media; 148 uint32_t ifru_data; 149 int ifru_cap[2]; 150 u_int ifru_fib; 151 u_char ifru_vlan_pcp; 152 } ifr_ifru; 153 }; 154 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32)); 155 CTASSERT(__offsetof(struct ifreq, ifr_ifru) == 156 __offsetof(struct ifreq32, ifr_ifru)); 157 158 struct ifconf32 { 159 int32_t ifc_len; 160 union { 161 uint32_t ifcu_buf; 162 uint32_t ifcu_req; 163 } ifc_ifcu; 164 }; 165 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 166 167 struct ifdrv32 { 168 char ifd_name[IFNAMSIZ]; 169 uint32_t ifd_cmd; 170 uint32_t ifd_len; 171 uint32_t ifd_data; 172 }; 173 #define SIOCSDRVSPEC32 _IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32) 174 #define SIOCGDRVSPEC32 _IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32) 175 176 struct ifgroupreq32 { 177 char ifgr_name[IFNAMSIZ]; 178 u_int ifgr_len; 179 union { 180 char ifgru_group[IFNAMSIZ]; 181 uint32_t ifgru_groups; 182 } ifgr_ifgru; 183 }; 184 #define SIOCAIFGROUP32 _IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32) 185 #define SIOCGIFGROUP32 _IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32) 186 #define SIOCDIFGROUP32 _IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32) 187 #define SIOCGIFGMEMB32 _IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32) 188 189 struct ifmediareq32 { 190 char ifm_name[IFNAMSIZ]; 191 int ifm_current; 192 int ifm_mask; 193 int ifm_status; 194 int ifm_active; 195 int ifm_count; 196 uint32_t ifm_ulist; /* (int *) */ 197 }; 198 #define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32) 199 #define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32) 200 #endif /* COMPAT_FREEBSD32 */ 201 202 union ifreq_union { 203 struct ifreq ifr; 204 #ifdef COMPAT_FREEBSD32 205 struct ifreq32 ifr32; 206 #endif 207 }; 208 209 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 210 "Link layers"); 211 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 212 "Generic link-management"); 213 214 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 215 &ifqmaxlen, 0, "max send queue size"); 216 217 /* Log link state change events */ 218 static int log_link_state_change = 1; 219 220 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 221 &log_link_state_change, 0, 222 "log interface link state change events"); 223 224 /* Log promiscuous mode change events */ 225 static int log_promisc_mode_change = 1; 226 227 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN, 228 &log_promisc_mode_change, 1, 229 "log promiscuous mode change events"); 230 231 /* Interface description */ 232 static unsigned int ifdescr_maxlen = 1024; 233 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 234 &ifdescr_maxlen, 0, 235 "administrative maximum length for interface description"); 236 237 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 238 239 /* global sx for non-critical path ifdescr */ 240 static struct sx ifdescr_sx; 241 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 242 243 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 244 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 245 /* These are external hooks for CARP. */ 246 void (*carp_linkstate_p)(struct ifnet *ifp); 247 void (*carp_demote_adj_p)(int, char *); 248 int (*carp_master_p)(struct ifaddr *); 249 #if defined(INET) || defined(INET6) 250 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 251 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 252 const struct sockaddr *sa); 253 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 254 int (*carp_attach_p)(struct ifaddr *, int); 255 void (*carp_detach_p)(struct ifaddr *, bool); 256 #endif 257 #ifdef INET 258 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 259 #endif 260 #ifdef INET6 261 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 262 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 263 const struct in6_addr *taddr); 264 #endif 265 266 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 267 268 /* 269 * XXX: Style; these should be sorted alphabetically, and unprototyped 270 * static functions should be prototyped. Currently they are sorted by 271 * declaration order. 272 */ 273 static void if_attachdomain(void *); 274 static void if_attachdomain1(struct ifnet *); 275 static int ifconf(u_long, caddr_t); 276 static void *if_grow(void); 277 static void if_input_default(struct ifnet *, struct mbuf *); 278 static int if_requestencap_default(struct ifnet *, struct if_encap_req *); 279 static void if_route(struct ifnet *, int flag, int fam); 280 static int if_setflag(struct ifnet *, int, int, int *, int); 281 static int if_transmit(struct ifnet *ifp, struct mbuf *m); 282 static void if_unroute(struct ifnet *, int flag, int fam); 283 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 284 static void do_link_state_change(void *, int); 285 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 286 static int if_getgroupmembers(struct ifgroupreq *); 287 static void if_delgroups(struct ifnet *); 288 static void if_attach_internal(struct ifnet *, int, struct if_clone *); 289 static int if_detach_internal(struct ifnet *, int, struct if_clone **); 290 static void if_siocaddmulti(void *, int); 291 static void if_link_ifnet(struct ifnet *); 292 static bool if_unlink_ifnet(struct ifnet *, bool); 293 #ifdef VIMAGE 294 static int if_vmove(struct ifnet *, struct vnet *); 295 #endif 296 297 #ifdef INET6 298 /* 299 * XXX: declare here to avoid to include many inet6 related files.. 300 * should be more generalized? 301 */ 302 extern void nd6_setmtu(struct ifnet *); 303 #endif 304 305 /* ipsec helper hooks */ 306 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); 307 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); 308 309 VNET_DEFINE(int, if_index); 310 int ifqmaxlen = IFQ_MAXLEN; 311 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 312 VNET_DEFINE(struct ifgrouphead, ifg_head); 313 314 VNET_DEFINE_STATIC(int, if_indexlim) = 8; 315 316 /* Table of ifnet by index. */ 317 VNET_DEFINE_STATIC(struct ifnet **, ifindex_table); 318 319 #define V_if_indexlim VNET(if_indexlim) 320 #define V_ifindex_table VNET(ifindex_table) 321 322 /* 323 * The global network interface list (V_ifnet) and related state (such as 324 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock. 325 * This may be acquired to stabilise the list, or we may rely on NET_EPOCH. 326 */ 327 struct sx ifnet_sxlock; 328 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 329 330 struct sx ifnet_detach_sxlock; 331 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx", 332 SX_RECURSE); 333 334 /* 335 * The allocation of network interfaces is a rather non-atomic affair; we 336 * need to select an index before we are ready to expose the interface for 337 * use, so will use this pointer value to indicate reservation. 338 */ 339 #define IFNET_HOLD (void *)(uintptr_t)(-1) 340 341 #ifdef VIMAGE 342 #define VNET_IS_SHUTTING_DOWN(_vnet) \ 343 ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE) 344 #endif 345 346 static if_com_alloc_t *if_com_alloc[256]; 347 static if_com_free_t *if_com_free[256]; 348 349 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 350 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 351 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 352 353 struct ifnet * 354 ifnet_byindex(u_short idx) 355 { 356 struct ifnet *ifp; 357 358 if (__predict_false(idx > V_if_index)) 359 return (NULL); 360 361 ifp = *(struct ifnet * const volatile *)(V_ifindex_table + idx); 362 return (__predict_false(ifp == IFNET_HOLD) ? NULL : ifp); 363 } 364 365 struct ifnet * 366 ifnet_byindex_ref(u_short idx) 367 { 368 struct ifnet *ifp; 369 370 NET_EPOCH_ASSERT(); 371 372 ifp = ifnet_byindex(idx); 373 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) 374 return (NULL); 375 if (!if_try_ref(ifp)) 376 return (NULL); 377 return (ifp); 378 } 379 380 /* 381 * Allocate an ifindex array entry; return 0 on success or an error on 382 * failure. 383 */ 384 static u_short 385 ifindex_alloc(void **old) 386 { 387 u_short idx; 388 389 IFNET_WLOCK_ASSERT(); 390 /* 391 * Try to find an empty slot below V_if_index. If we fail, take the 392 * next slot. 393 */ 394 for (idx = 1; idx <= V_if_index; idx++) { 395 if (V_ifindex_table[idx] == NULL) 396 break; 397 } 398 399 /* Catch if_index overflow. */ 400 if (idx >= V_if_indexlim) { 401 *old = if_grow(); 402 return (USHRT_MAX); 403 } 404 if (idx > V_if_index) 405 V_if_index = idx; 406 return (idx); 407 } 408 409 static void 410 ifindex_free(u_short idx) 411 { 412 413 IFNET_WLOCK_ASSERT(); 414 415 V_ifindex_table[idx] = NULL; 416 while (V_if_index > 0 && 417 V_ifindex_table[V_if_index] == NULL) 418 V_if_index--; 419 } 420 421 static void 422 ifnet_setbyindex(u_short idx, struct ifnet *ifp) 423 { 424 425 V_ifindex_table[idx] = ifp; 426 } 427 428 struct ifaddr * 429 ifaddr_byindex(u_short idx) 430 { 431 struct ifnet *ifp; 432 struct ifaddr *ifa = NULL; 433 434 NET_EPOCH_ASSERT(); 435 436 ifp = ifnet_byindex(idx); 437 if (ifp != NULL && (ifa = ifp->if_addr) != NULL) 438 ifa_ref(ifa); 439 return (ifa); 440 } 441 442 /* 443 * Network interface utility routines. 444 * 445 * Routines with ifa_ifwith* names take sockaddr *'s as 446 * parameters. 447 */ 448 449 static void 450 vnet_if_init(const void *unused __unused) 451 { 452 void *old; 453 454 CK_STAILQ_INIT(&V_ifnet); 455 CK_STAILQ_INIT(&V_ifg_head); 456 IFNET_WLOCK(); 457 old = if_grow(); /* create initial table */ 458 IFNET_WUNLOCK(); 459 epoch_wait_preempt(net_epoch_preempt); 460 free(old, M_IFNET); 461 vnet_if_clone_init(); 462 } 463 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 464 NULL); 465 466 #ifdef VIMAGE 467 static void 468 vnet_if_uninit(const void *unused __unused) 469 { 470 471 VNET_ASSERT(CK_STAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " 472 "not empty", __func__, __LINE__, &V_ifnet)); 473 VNET_ASSERT(CK_STAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " 474 "not empty", __func__, __LINE__, &V_ifg_head)); 475 476 free((caddr_t)V_ifindex_table, M_IFNET); 477 } 478 VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, 479 vnet_if_uninit, NULL); 480 #endif 481 482 static void 483 if_link_ifnet(struct ifnet *ifp) 484 { 485 486 IFNET_WLOCK(); 487 CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 488 #ifdef VIMAGE 489 curvnet->vnet_ifcnt++; 490 #endif 491 IFNET_WUNLOCK(); 492 } 493 494 static bool 495 if_unlink_ifnet(struct ifnet *ifp, bool vmove) 496 { 497 struct ifnet *iter; 498 int found = 0; 499 500 IFNET_WLOCK(); 501 CK_STAILQ_FOREACH(iter, &V_ifnet, if_link) 502 if (iter == ifp) { 503 CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link); 504 if (!vmove) 505 ifp->if_flags |= IFF_DYING; 506 found = 1; 507 break; 508 } 509 #ifdef VIMAGE 510 curvnet->vnet_ifcnt--; 511 #endif 512 IFNET_WUNLOCK(); 513 514 return (found); 515 } 516 517 #ifdef VIMAGE 518 static void 519 vnet_if_return(const void *unused __unused) 520 { 521 struct ifnet *ifp, *nifp; 522 struct ifnet **pending; 523 int found, i; 524 525 i = 0; 526 527 /* 528 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd 529 * enter NET_EPOCH, but that's not possible, because if_vmove() calls 530 * if_detach_internal(), which waits for NET_EPOCH callbacks to 531 * complete. We can't do that from within NET_EPOCH. 532 * 533 * However, we can also use the IFNET_xLOCK, which is the V_ifnet 534 * read/write lock. We cannot hold the lock as we call if_vmove() 535 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib 536 * ctx lock. 537 */ 538 IFNET_WLOCK(); 539 540 pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt, 541 M_IFNET, M_WAITOK | M_ZERO); 542 543 /* Return all inherited interfaces to their parent vnets. */ 544 CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 545 if (ifp->if_home_vnet != ifp->if_vnet) { 546 found = if_unlink_ifnet(ifp, true); 547 MPASS(found); 548 549 pending[i++] = ifp; 550 } 551 } 552 IFNET_WUNLOCK(); 553 554 for (int j = 0; j < i; j++) { 555 if_vmove(pending[j], pending[j]->if_home_vnet); 556 } 557 558 free(pending, M_IFNET); 559 } 560 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, 561 vnet_if_return, NULL); 562 #endif 563 564 static void * 565 if_grow(void) 566 { 567 int oldlim; 568 u_int n; 569 struct ifnet **e; 570 void *old; 571 572 old = NULL; 573 IFNET_WLOCK_ASSERT(); 574 oldlim = V_if_indexlim; 575 IFNET_WUNLOCK(); 576 n = (oldlim << 1) * sizeof(*e); 577 e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); 578 IFNET_WLOCK(); 579 if (V_if_indexlim != oldlim) { 580 free(e, M_IFNET); 581 return (NULL); 582 } 583 if (V_ifindex_table != NULL) { 584 memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); 585 old = V_ifindex_table; 586 } 587 V_if_indexlim <<= 1; 588 V_ifindex_table = e; 589 return (old); 590 } 591 592 /* 593 * Allocate a struct ifnet and an index for an interface. A layer 2 594 * common structure will also be allocated if an allocation routine is 595 * registered for the passed type. 596 */ 597 static struct ifnet * 598 if_alloc_domain(u_char type, int numa_domain) 599 { 600 struct ifnet *ifp; 601 u_short idx; 602 void *old; 603 604 KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large")); 605 if (numa_domain == IF_NODOM) 606 ifp = malloc(sizeof(struct ifnet), M_IFNET, 607 M_WAITOK | M_ZERO); 608 else 609 ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET, 610 DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO); 611 restart: 612 IFNET_WLOCK(); 613 idx = ifindex_alloc(&old); 614 if (__predict_false(idx == USHRT_MAX)) { 615 IFNET_WUNLOCK(); 616 epoch_wait_preempt(net_epoch_preempt); 617 free(old, M_IFNET); 618 goto restart; 619 } 620 ifnet_setbyindex(idx, IFNET_HOLD); 621 IFNET_WUNLOCK(); 622 ifp->if_index = idx; 623 ifp->if_type = type; 624 ifp->if_alloctype = type; 625 ifp->if_numa_domain = numa_domain; 626 #ifdef VIMAGE 627 ifp->if_vnet = curvnet; 628 #endif 629 if (if_com_alloc[type] != NULL) { 630 ifp->if_l2com = if_com_alloc[type](type, ifp); 631 KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__, 632 type)); 633 } 634 635 IF_ADDR_LOCK_INIT(ifp); 636 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 637 TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp); 638 ifp->if_afdata_initialized = 0; 639 IF_AFDATA_LOCK_INIT(ifp); 640 CK_STAILQ_INIT(&ifp->if_addrhead); 641 CK_STAILQ_INIT(&ifp->if_multiaddrs); 642 CK_STAILQ_INIT(&ifp->if_groups); 643 #ifdef MAC 644 mac_ifnet_init(ifp); 645 #endif 646 ifq_init(&ifp->if_snd, ifp); 647 648 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 649 for (int i = 0; i < IFCOUNTERS; i++) 650 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 651 ifp->if_get_counter = if_get_counter_default; 652 ifp->if_pcp = IFNET_PCP_NONE; 653 ifnet_setbyindex(ifp->if_index, ifp); 654 return (ifp); 655 } 656 657 struct ifnet * 658 if_alloc_dev(u_char type, device_t dev) 659 { 660 int numa_domain; 661 662 if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0) 663 return (if_alloc_domain(type, IF_NODOM)); 664 return (if_alloc_domain(type, numa_domain)); 665 } 666 667 struct ifnet * 668 if_alloc(u_char type) 669 { 670 671 return (if_alloc_domain(type, IF_NODOM)); 672 } 673 /* 674 * Do the actual work of freeing a struct ifnet, and layer 2 common 675 * structure. This call is made when the network epoch guarantees 676 * us that nobody holds a pointer to the interface. 677 */ 678 static void 679 if_free_deferred(epoch_context_t ctx) 680 { 681 struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx); 682 683 KASSERT((ifp->if_flags & IFF_DYING), 684 ("%s: interface not dying", __func__)); 685 686 if (if_com_free[ifp->if_alloctype] != NULL) 687 if_com_free[ifp->if_alloctype](ifp->if_l2com, 688 ifp->if_alloctype); 689 690 #ifdef MAC 691 mac_ifnet_destroy(ifp); 692 #endif /* MAC */ 693 IF_AFDATA_DESTROY(ifp); 694 IF_ADDR_LOCK_DESTROY(ifp); 695 ifq_delete(&ifp->if_snd); 696 697 for (int i = 0; i < IFCOUNTERS; i++) 698 counter_u64_free(ifp->if_counters[i]); 699 700 free(ifp->if_description, M_IFDESCR); 701 free(ifp->if_hw_addr, M_IFADDR); 702 free(ifp, M_IFNET); 703 } 704 705 /* 706 * Deregister an interface and free the associated storage. 707 */ 708 void 709 if_free(struct ifnet *ifp) 710 { 711 712 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 713 714 /* 715 * XXXGL: An interface index is really an alias to ifp pointer. 716 * Why would we clear the alias now, and not in the deferred 717 * context? Indeed there is nothing wrong with some network 718 * thread obtaining ifp via ifnet_byindex() inside the network 719 * epoch and then dereferencing ifp while we peform if_free(), 720 * and after if_free() finished, too. 721 * 722 * The reason is the VIMAGE. For some reason it was designed 723 * to require all sockets drained before destroying, but not all 724 * ifnets. A vnet destruction calls if_vmove() on ifnet, which 725 * causes ID change. But ID change and a possible misidentification 726 * of an ifnet later is a lesser problem, as it doesn't crash kernel. 727 * A worse problem is that removed interface may outlive the vnet it 728 * belongs too! The if_free_deferred() would see ifp->if_vnet freed. 729 */ 730 CURVNET_SET_QUIET(ifp->if_vnet); 731 IFNET_WLOCK(); 732 KASSERT(ifp == ifnet_byindex(ifp->if_index), 733 ("%s: freeing unallocated ifnet", ifp->if_xname)); 734 735 ifindex_free(ifp->if_index); 736 IFNET_WUNLOCK(); 737 738 if (refcount_release(&ifp->if_refcount)) 739 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 740 CURVNET_RESTORE(); 741 } 742 743 /* 744 * Interfaces to keep an ifnet type-stable despite the possibility of the 745 * driver calling if_free(). If there are additional references, we defer 746 * freeing the underlying data structure. 747 */ 748 void 749 if_ref(struct ifnet *ifp) 750 { 751 u_int old __diagused; 752 753 /* We don't assert the ifnet list lock here, but arguably should. */ 754 old = refcount_acquire(&ifp->if_refcount); 755 KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp)); 756 } 757 758 bool 759 if_try_ref(struct ifnet *ifp) 760 { 761 NET_EPOCH_ASSERT(); 762 return (refcount_acquire_if_not_zero(&ifp->if_refcount)); 763 } 764 765 void 766 if_rele(struct ifnet *ifp) 767 { 768 769 if (!refcount_release(&ifp->if_refcount)) 770 return; 771 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 772 } 773 774 void 775 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 776 { 777 778 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 779 780 if (ifq->ifq_maxlen == 0) 781 ifq->ifq_maxlen = ifqmaxlen; 782 783 ifq->altq_type = 0; 784 ifq->altq_disc = NULL; 785 ifq->altq_flags &= ALTQF_CANTCHANGE; 786 ifq->altq_tbr = NULL; 787 ifq->altq_ifp = ifp; 788 } 789 790 void 791 ifq_delete(struct ifaltq *ifq) 792 { 793 mtx_destroy(&ifq->ifq_mtx); 794 } 795 796 /* 797 * Perform generic interface initialization tasks and attach the interface 798 * to the list of "active" interfaces. If vmove flag is set on entry 799 * to if_attach_internal(), perform only a limited subset of initialization 800 * tasks, given that we are moving from one vnet to another an ifnet which 801 * has already been fully initialized. 802 * 803 * Note that if_detach_internal() removes group membership unconditionally 804 * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. 805 * Thus, when if_vmove() is applied to a cloned interface, group membership 806 * is lost while a cloned one always joins a group whose name is 807 * ifc->ifc_name. To recover this after if_detach_internal() and 808 * if_attach_internal(), the cloner should be specified to 809 * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() 810 * attempts to join a group whose name is ifc->ifc_name. 811 * 812 * XXX: 813 * - The decision to return void and thus require this function to 814 * succeed is questionable. 815 * - We should probably do more sanity checking. For instance we don't 816 * do anything to insure if_xname is unique or non-empty. 817 */ 818 void 819 if_attach(struct ifnet *ifp) 820 { 821 822 if_attach_internal(ifp, 0, NULL); 823 } 824 825 /* 826 * Compute the least common TSO limit. 827 */ 828 void 829 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 830 { 831 /* 832 * 1) If there is no limit currently, take the limit from 833 * the network adapter. 834 * 835 * 2) If the network adapter has a limit below the current 836 * limit, apply it. 837 */ 838 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 839 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 840 pmax->tsomaxbytes = ifp->if_hw_tsomax; 841 } 842 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 843 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 844 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 845 } 846 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 847 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 848 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 849 } 850 } 851 852 /* 853 * Update TSO limit of a network adapter. 854 * 855 * Returns zero if no change. Else non-zero. 856 */ 857 int 858 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 859 { 860 int retval = 0; 861 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 862 ifp->if_hw_tsomax = pmax->tsomaxbytes; 863 retval++; 864 } 865 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 866 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 867 retval++; 868 } 869 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 870 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 871 retval++; 872 } 873 return (retval); 874 } 875 876 static void 877 if_attach_internal(struct ifnet *ifp, int vmove, struct if_clone *ifc) 878 { 879 unsigned socksize, ifasize; 880 int namelen, masklen; 881 struct sockaddr_dl *sdl; 882 struct ifaddr *ifa; 883 884 if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) 885 panic ("%s: BUG: if_attach called without if_alloc'd input()\n", 886 ifp->if_xname); 887 888 #ifdef VIMAGE 889 ifp->if_vnet = curvnet; 890 if (ifp->if_home_vnet == NULL) 891 ifp->if_home_vnet = curvnet; 892 #endif 893 894 if_addgroup(ifp, IFG_ALL); 895 896 /* Restore group membership for cloned interfaces. */ 897 if (vmove && ifc != NULL) 898 if_clone_addgroup(ifp, ifc); 899 900 getmicrotime(&ifp->if_lastchange); 901 ifp->if_epoch = time_uptime; 902 903 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 904 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 905 ("transmit and qflush must both either be set or both be NULL")); 906 if (ifp->if_transmit == NULL) { 907 ifp->if_transmit = if_transmit; 908 ifp->if_qflush = if_qflush; 909 } 910 if (ifp->if_input == NULL) 911 ifp->if_input = if_input_default; 912 913 if (ifp->if_requestencap == NULL) 914 ifp->if_requestencap = if_requestencap_default; 915 916 if (!vmove) { 917 #ifdef MAC 918 mac_ifnet_create(ifp); 919 #endif 920 921 /* 922 * Create a Link Level name for this device. 923 */ 924 namelen = strlen(ifp->if_xname); 925 /* 926 * Always save enough space for any possiable name so we 927 * can do a rename in place later. 928 */ 929 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 930 socksize = masklen + ifp->if_addrlen; 931 if (socksize < sizeof(*sdl)) 932 socksize = sizeof(*sdl); 933 socksize = roundup2(socksize, sizeof(long)); 934 ifasize = sizeof(*ifa) + 2 * socksize; 935 ifa = ifa_alloc(ifasize, M_WAITOK); 936 sdl = (struct sockaddr_dl *)(ifa + 1); 937 sdl->sdl_len = socksize; 938 sdl->sdl_family = AF_LINK; 939 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 940 sdl->sdl_nlen = namelen; 941 sdl->sdl_index = ifp->if_index; 942 sdl->sdl_type = ifp->if_type; 943 ifp->if_addr = ifa; 944 ifa->ifa_ifp = ifp; 945 ifa->ifa_addr = (struct sockaddr *)sdl; 946 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 947 ifa->ifa_netmask = (struct sockaddr *)sdl; 948 sdl->sdl_len = masklen; 949 while (namelen != 0) 950 sdl->sdl_data[--namelen] = 0xff; 951 CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 952 /* Reliably crash if used uninitialized. */ 953 ifp->if_broadcastaddr = NULL; 954 955 if (ifp->if_type == IFT_ETHER) { 956 ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR, 957 M_WAITOK | M_ZERO); 958 } 959 960 #if defined(INET) || defined(INET6) 961 /* Use defaults for TSO, if nothing is set */ 962 if (ifp->if_hw_tsomax == 0 && 963 ifp->if_hw_tsomaxsegcount == 0 && 964 ifp->if_hw_tsomaxsegsize == 0) { 965 /* 966 * The TSO defaults needs to be such that an 967 * NFS mbuf list of 35 mbufs totalling just 968 * below 64K works and that a chain of mbufs 969 * can be defragged into at most 32 segments: 970 */ 971 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 972 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 973 ifp->if_hw_tsomaxsegcount = 35; 974 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 975 976 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 977 if (ifp->if_capabilities & IFCAP_TSO) { 978 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 979 ifp->if_hw_tsomax, 980 ifp->if_hw_tsomaxsegcount, 981 ifp->if_hw_tsomaxsegsize); 982 } 983 } 984 #endif 985 } 986 #ifdef VIMAGE 987 else { 988 /* 989 * Update the interface index in the link layer address 990 * of the interface. 991 */ 992 for (ifa = ifp->if_addr; ifa != NULL; 993 ifa = CK_STAILQ_NEXT(ifa, ifa_link)) { 994 if (ifa->ifa_addr->sa_family == AF_LINK) { 995 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 996 sdl->sdl_index = ifp->if_index; 997 } 998 } 999 } 1000 #endif 1001 1002 if_link_ifnet(ifp); 1003 1004 if (domain_init_status >= 2) 1005 if_attachdomain1(ifp); 1006 1007 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 1008 if (IS_DEFAULT_VNET(curvnet)) 1009 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 1010 1011 /* Announce the interface. */ 1012 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 1013 } 1014 1015 static void 1016 if_epochalloc(void *dummy __unused) 1017 { 1018 1019 net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT); 1020 } 1021 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL); 1022 1023 static void 1024 if_attachdomain(void *dummy) 1025 { 1026 struct ifnet *ifp; 1027 1028 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 1029 if_attachdomain1(ifp); 1030 } 1031 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 1032 if_attachdomain, NULL); 1033 1034 static void 1035 if_attachdomain1(struct ifnet *ifp) 1036 { 1037 struct domain *dp; 1038 1039 /* 1040 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 1041 * cannot lock ifp->if_afdata initialization, entirely. 1042 */ 1043 IF_AFDATA_LOCK(ifp); 1044 if (ifp->if_afdata_initialized >= domain_init_status) { 1045 IF_AFDATA_UNLOCK(ifp); 1046 log(LOG_WARNING, "%s called more than once on %s\n", 1047 __func__, ifp->if_xname); 1048 return; 1049 } 1050 ifp->if_afdata_initialized = domain_init_status; 1051 IF_AFDATA_UNLOCK(ifp); 1052 1053 /* address family dependent data region */ 1054 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 1055 for (dp = domains; dp; dp = dp->dom_next) { 1056 if (dp->dom_ifattach) 1057 ifp->if_afdata[dp->dom_family] = 1058 (*dp->dom_ifattach)(ifp); 1059 } 1060 } 1061 1062 /* 1063 * Remove any unicast or broadcast network addresses from an interface. 1064 */ 1065 void 1066 if_purgeaddrs(struct ifnet *ifp) 1067 { 1068 struct ifaddr *ifa; 1069 1070 while (1) { 1071 struct epoch_tracker et; 1072 1073 NET_EPOCH_ENTER(et); 1074 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1075 if (ifa->ifa_addr->sa_family != AF_LINK) 1076 break; 1077 } 1078 NET_EPOCH_EXIT(et); 1079 1080 if (ifa == NULL) 1081 break; 1082 #ifdef INET 1083 /* XXX: Ugly!! ad hoc just for INET */ 1084 if (ifa->ifa_addr->sa_family == AF_INET) { 1085 struct ifaliasreq ifr; 1086 1087 bzero(&ifr, sizeof(ifr)); 1088 ifr.ifra_addr = *ifa->ifa_addr; 1089 if (ifa->ifa_dstaddr) 1090 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 1091 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 1092 NULL) == 0) 1093 continue; 1094 } 1095 #endif /* INET */ 1096 #ifdef INET6 1097 if (ifa->ifa_addr->sa_family == AF_INET6) { 1098 in6_purgeifaddr((struct in6_ifaddr *)ifa); 1099 /* ifp_addrhead is already updated */ 1100 continue; 1101 } 1102 #endif /* INET6 */ 1103 IF_ADDR_WLOCK(ifp); 1104 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1105 IF_ADDR_WUNLOCK(ifp); 1106 ifa_free(ifa); 1107 } 1108 } 1109 1110 /* 1111 * Remove any multicast network addresses from an interface when an ifnet 1112 * is going away. 1113 */ 1114 static void 1115 if_purgemaddrs(struct ifnet *ifp) 1116 { 1117 struct ifmultiaddr *ifma; 1118 1119 IF_ADDR_WLOCK(ifp); 1120 while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) { 1121 ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs); 1122 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 1123 if_delmulti_locked(ifp, ifma, 1); 1124 } 1125 IF_ADDR_WUNLOCK(ifp); 1126 } 1127 1128 /* 1129 * Detach an interface, removing it from the list of "active" interfaces. 1130 * If vmove flag is set on entry to if_detach_internal(), perform only a 1131 * limited subset of cleanup tasks, given that we are moving an ifnet from 1132 * one vnet to another, where it must be fully operational. 1133 * 1134 * XXXRW: There are some significant questions about event ordering, and 1135 * how to prevent things from starting to use the interface during detach. 1136 */ 1137 void 1138 if_detach(struct ifnet *ifp) 1139 { 1140 bool found; 1141 1142 CURVNET_SET_QUIET(ifp->if_vnet); 1143 found = if_unlink_ifnet(ifp, false); 1144 if (found) { 1145 sx_xlock(&ifnet_detach_sxlock); 1146 if_detach_internal(ifp, 0, NULL); 1147 sx_xunlock(&ifnet_detach_sxlock); 1148 } 1149 CURVNET_RESTORE(); 1150 } 1151 1152 /* 1153 * The vmove flag, if set, indicates that we are called from a callpath 1154 * that is moving an interface to a different vnet instance. 1155 * 1156 * The shutdown flag, if set, indicates that we are called in the 1157 * process of shutting down a vnet instance. Currently only the 1158 * vnet_if_return SYSUNINIT function sets it. Note: we can be called 1159 * on a vnet instance shutdown without this flag being set, e.g., when 1160 * the cloned interfaces are destoyed as first thing of teardown. 1161 */ 1162 static int 1163 if_detach_internal(struct ifnet *ifp, int vmove, struct if_clone **ifcp) 1164 { 1165 struct ifaddr *ifa; 1166 int i; 1167 struct domain *dp; 1168 #ifdef VIMAGE 1169 bool shutdown; 1170 1171 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1172 #endif 1173 1174 /* 1175 * At this point we know the interface still was on the ifnet list 1176 * and we removed it so we are in a stable state. 1177 */ 1178 epoch_wait_preempt(net_epoch_preempt); 1179 1180 /* 1181 * Ensure all pending EPOCH(9) callbacks have been executed. This 1182 * fixes issues about late destruction of multicast options 1183 * which lead to leave group calls, which in turn access the 1184 * belonging ifnet structure: 1185 */ 1186 epoch_drain_callbacks(net_epoch_preempt); 1187 1188 /* 1189 * In any case (destroy or vmove) detach us from the groups 1190 * and remove/wait for pending events on the taskq. 1191 * XXX-BZ in theory an interface could still enqueue a taskq change? 1192 */ 1193 if_delgroups(ifp); 1194 1195 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 1196 taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask); 1197 1198 /* 1199 * Check if this is a cloned interface or not. Must do even if 1200 * shutting down as a if_vmove_reclaim() would move the ifp and 1201 * the if_clone_addgroup() will have a corrupted string overwise 1202 * from a gibberish pointer. 1203 */ 1204 if (vmove && ifcp != NULL) 1205 *ifcp = if_clone_findifc(ifp); 1206 1207 if_down(ifp); 1208 1209 #ifdef VIMAGE 1210 /* 1211 * On VNET shutdown abort here as the stack teardown will do all 1212 * the work top-down for us. 1213 */ 1214 if (shutdown) { 1215 /* Give interface users the chance to clean up. */ 1216 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1217 1218 /* 1219 * In case of a vmove we are done here without error. 1220 * If we would signal an error it would lead to the same 1221 * abort as if we did not find the ifnet anymore. 1222 * if_detach() calls us in void context and does not care 1223 * about an early abort notification, so life is splendid :) 1224 */ 1225 goto finish_vnet_shutdown; 1226 } 1227 #endif 1228 1229 /* 1230 * At this point we are not tearing down a VNET and are either 1231 * going to destroy or vmove the interface and have to cleanup 1232 * accordingly. 1233 */ 1234 1235 /* 1236 * Remove routes and flush queues. 1237 */ 1238 #ifdef ALTQ 1239 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1240 altq_disable(&ifp->if_snd); 1241 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1242 altq_detach(&ifp->if_snd); 1243 #endif 1244 1245 if_purgeaddrs(ifp); 1246 1247 #ifdef INET 1248 in_ifdetach(ifp); 1249 #endif 1250 1251 #ifdef INET6 1252 /* 1253 * Remove all IPv6 kernel structs related to ifp. This should be done 1254 * before removing routing entries below, since IPv6 interface direct 1255 * routes are expected to be removed by the IPv6-specific kernel API. 1256 * Otherwise, the kernel will detect some inconsistency and bark it. 1257 */ 1258 in6_ifdetach(ifp); 1259 #endif 1260 if_purgemaddrs(ifp); 1261 1262 /* Announce that the interface is gone. */ 1263 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1264 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1265 if (IS_DEFAULT_VNET(curvnet)) 1266 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 1267 1268 if (!vmove) { 1269 /* 1270 * Prevent further calls into the device driver via ifnet. 1271 */ 1272 if_dead(ifp); 1273 1274 /* 1275 * Clean up all addresses. 1276 */ 1277 IF_ADDR_WLOCK(ifp); 1278 if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) { 1279 ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); 1280 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1281 IF_ADDR_WUNLOCK(ifp); 1282 ifa_free(ifa); 1283 } else 1284 IF_ADDR_WUNLOCK(ifp); 1285 } 1286 1287 rt_flushifroutes(ifp); 1288 1289 #ifdef VIMAGE 1290 finish_vnet_shutdown: 1291 #endif 1292 /* 1293 * We cannot hold the lock over dom_ifdetach calls as they might 1294 * sleep, for example trying to drain a callout, thus open up the 1295 * theoretical race with re-attaching. 1296 */ 1297 IF_AFDATA_LOCK(ifp); 1298 i = ifp->if_afdata_initialized; 1299 ifp->if_afdata_initialized = 0; 1300 IF_AFDATA_UNLOCK(ifp); 1301 for (dp = domains; i > 0 && dp; dp = dp->dom_next) { 1302 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) { 1303 (*dp->dom_ifdetach)(ifp, 1304 ifp->if_afdata[dp->dom_family]); 1305 ifp->if_afdata[dp->dom_family] = NULL; 1306 } 1307 } 1308 1309 return (0); 1310 } 1311 1312 #ifdef VIMAGE 1313 /* 1314 * if_vmove() performs a limited version of if_detach() in current 1315 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1316 * An attempt is made to shrink if_index in current vnet, find an 1317 * unused if_index in target vnet and calls if_grow() if necessary, 1318 * and finally find an unused if_xname for the target vnet. 1319 */ 1320 static int 1321 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1322 { 1323 struct if_clone *ifc; 1324 #ifdef DEV_BPF 1325 u_int bif_dlt, bif_hdrlen; 1326 #endif 1327 void *old; 1328 int rc; 1329 1330 #ifdef DEV_BPF 1331 /* 1332 * if_detach_internal() will call the eventhandler to notify 1333 * interface departure. That will detach if_bpf. We need to 1334 * safe the dlt and hdrlen so we can re-attach it later. 1335 */ 1336 bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen); 1337 #endif 1338 1339 /* 1340 * Detach from current vnet, but preserve LLADDR info, do not 1341 * mark as dead etc. so that the ifnet can be reattached later. 1342 * If we cannot find it, we lost the race to someone else. 1343 */ 1344 rc = if_detach_internal(ifp, 1, &ifc); 1345 if (rc != 0) 1346 return (rc); 1347 1348 /* 1349 * Unlink the ifnet from ifindex_table[] in current vnet, and shrink 1350 * the if_index for that vnet if possible. 1351 * 1352 * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, 1353 * or we'd lock on one vnet and unlock on another. 1354 */ 1355 IFNET_WLOCK(); 1356 ifindex_free(ifp->if_index); 1357 IFNET_WUNLOCK(); 1358 1359 /* 1360 * Perform interface-specific reassignment tasks, if provided by 1361 * the driver. 1362 */ 1363 if (ifp->if_reassign != NULL) 1364 ifp->if_reassign(ifp, new_vnet, NULL); 1365 1366 /* 1367 * Switch to the context of the target vnet. 1368 */ 1369 CURVNET_SET_QUIET(new_vnet); 1370 restart: 1371 IFNET_WLOCK(); 1372 ifp->if_index = ifindex_alloc(&old); 1373 if (__predict_false(ifp->if_index == USHRT_MAX)) { 1374 IFNET_WUNLOCK(); 1375 epoch_wait_preempt(net_epoch_preempt); 1376 free(old, M_IFNET); 1377 goto restart; 1378 } 1379 ifnet_setbyindex(ifp->if_index, ifp); 1380 IFNET_WUNLOCK(); 1381 1382 if_attach_internal(ifp, 1, ifc); 1383 1384 #ifdef DEV_BPF 1385 if (ifp->if_bpf == NULL) 1386 bpfattach(ifp, bif_dlt, bif_hdrlen); 1387 #endif 1388 1389 CURVNET_RESTORE(); 1390 return (0); 1391 } 1392 1393 /* 1394 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1395 */ 1396 static int 1397 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1398 { 1399 struct prison *pr; 1400 struct ifnet *difp; 1401 int error; 1402 bool found; 1403 bool shutdown; 1404 1405 /* Try to find the prison within our visibility. */ 1406 sx_slock(&allprison_lock); 1407 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1408 sx_sunlock(&allprison_lock); 1409 if (pr == NULL) 1410 return (ENXIO); 1411 prison_hold_locked(pr); 1412 mtx_unlock(&pr->pr_mtx); 1413 1414 /* Do not try to move the iface from and to the same prison. */ 1415 if (pr->pr_vnet == ifp->if_vnet) { 1416 prison_free(pr); 1417 return (EEXIST); 1418 } 1419 1420 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1421 /* XXX Lock interfaces to avoid races. */ 1422 CURVNET_SET_QUIET(pr->pr_vnet); 1423 difp = ifunit(ifname); 1424 if (difp != NULL) { 1425 CURVNET_RESTORE(); 1426 prison_free(pr); 1427 return (EEXIST); 1428 } 1429 1430 /* Make sure the VNET is stable. */ 1431 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1432 if (shutdown) { 1433 CURVNET_RESTORE(); 1434 prison_free(pr); 1435 return (EBUSY); 1436 } 1437 CURVNET_RESTORE(); 1438 1439 found = if_unlink_ifnet(ifp, true); 1440 MPASS(found); 1441 1442 /* Move the interface into the child jail/vnet. */ 1443 error = if_vmove(ifp, pr->pr_vnet); 1444 1445 /* Report the new if_xname back to the userland on success. */ 1446 if (error == 0) 1447 sprintf(ifname, "%s", ifp->if_xname); 1448 1449 prison_free(pr); 1450 return (error); 1451 } 1452 1453 static int 1454 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1455 { 1456 struct prison *pr; 1457 struct vnet *vnet_dst; 1458 struct ifnet *ifp; 1459 int error, found; 1460 bool shutdown; 1461 1462 /* Try to find the prison within our visibility. */ 1463 sx_slock(&allprison_lock); 1464 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1465 sx_sunlock(&allprison_lock); 1466 if (pr == NULL) 1467 return (ENXIO); 1468 prison_hold_locked(pr); 1469 mtx_unlock(&pr->pr_mtx); 1470 1471 /* Make sure the named iface exists in the source prison/vnet. */ 1472 CURVNET_SET(pr->pr_vnet); 1473 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1474 if (ifp == NULL) { 1475 CURVNET_RESTORE(); 1476 prison_free(pr); 1477 return (ENXIO); 1478 } 1479 1480 /* Do not try to move the iface from and to the same prison. */ 1481 vnet_dst = TD_TO_VNET(td); 1482 if (vnet_dst == ifp->if_vnet) { 1483 CURVNET_RESTORE(); 1484 prison_free(pr); 1485 return (EEXIST); 1486 } 1487 1488 /* Make sure the VNET is stable. */ 1489 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1490 if (shutdown) { 1491 CURVNET_RESTORE(); 1492 prison_free(pr); 1493 return (EBUSY); 1494 } 1495 1496 /* Get interface back from child jail/vnet. */ 1497 found = if_unlink_ifnet(ifp, true); 1498 MPASS(found); 1499 error = if_vmove(ifp, vnet_dst); 1500 CURVNET_RESTORE(); 1501 1502 /* Report the new if_xname back to the userland on success. */ 1503 if (error == 0) 1504 sprintf(ifname, "%s", ifp->if_xname); 1505 1506 prison_free(pr); 1507 return (error); 1508 } 1509 #endif /* VIMAGE */ 1510 1511 /* 1512 * Add a group to an interface 1513 */ 1514 int 1515 if_addgroup(struct ifnet *ifp, const char *groupname) 1516 { 1517 struct ifg_list *ifgl; 1518 struct ifg_group *ifg = NULL; 1519 struct ifg_member *ifgm; 1520 int new = 0; 1521 1522 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1523 groupname[strlen(groupname) - 1] <= '9') 1524 return (EINVAL); 1525 1526 IFNET_WLOCK(); 1527 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1528 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1529 IFNET_WUNLOCK(); 1530 return (EEXIST); 1531 } 1532 1533 if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) { 1534 IFNET_WUNLOCK(); 1535 return (ENOMEM); 1536 } 1537 1538 if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 1539 free(ifgl, M_TEMP); 1540 IFNET_WUNLOCK(); 1541 return (ENOMEM); 1542 } 1543 1544 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1545 if (!strcmp(ifg->ifg_group, groupname)) 1546 break; 1547 1548 if (ifg == NULL) { 1549 if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) { 1550 free(ifgl, M_TEMP); 1551 free(ifgm, M_TEMP); 1552 IFNET_WUNLOCK(); 1553 return (ENOMEM); 1554 } 1555 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1556 ifg->ifg_refcnt = 0; 1557 CK_STAILQ_INIT(&ifg->ifg_members); 1558 CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1559 new = 1; 1560 } 1561 1562 ifg->ifg_refcnt++; 1563 ifgl->ifgl_group = ifg; 1564 ifgm->ifgm_ifp = ifp; 1565 1566 IF_ADDR_WLOCK(ifp); 1567 CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1568 CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1569 IF_ADDR_WUNLOCK(ifp); 1570 1571 IFNET_WUNLOCK(); 1572 1573 if (new) 1574 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1575 EVENTHANDLER_INVOKE(group_change_event, groupname); 1576 1577 return (0); 1578 } 1579 1580 /* 1581 * Helper function to remove a group out of an interface. Expects the global 1582 * ifnet lock to be write-locked, and drops it before returning. 1583 */ 1584 static void 1585 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl, 1586 const char *groupname) 1587 { 1588 struct ifg_member *ifgm; 1589 bool freeifgl; 1590 1591 IFNET_WLOCK_ASSERT(); 1592 1593 IF_ADDR_WLOCK(ifp); 1594 CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next); 1595 IF_ADDR_WUNLOCK(ifp); 1596 1597 CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { 1598 if (ifgm->ifgm_ifp == ifp) { 1599 CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1600 ifg_member, ifgm_next); 1601 break; 1602 } 1603 } 1604 1605 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1606 CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, 1607 ifg_next); 1608 freeifgl = true; 1609 } else { 1610 freeifgl = false; 1611 } 1612 IFNET_WUNLOCK(); 1613 1614 epoch_wait_preempt(net_epoch_preempt); 1615 if (freeifgl) { 1616 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1617 free(ifgl->ifgl_group, M_TEMP); 1618 } 1619 free(ifgm, M_TEMP); 1620 free(ifgl, M_TEMP); 1621 1622 EVENTHANDLER_INVOKE(group_change_event, groupname); 1623 } 1624 1625 /* 1626 * Remove a group from an interface 1627 */ 1628 int 1629 if_delgroup(struct ifnet *ifp, const char *groupname) 1630 { 1631 struct ifg_list *ifgl; 1632 1633 IFNET_WLOCK(); 1634 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1635 if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) 1636 break; 1637 if (ifgl == NULL) { 1638 IFNET_WUNLOCK(); 1639 return (ENOENT); 1640 } 1641 1642 _if_delgroup_locked(ifp, ifgl, groupname); 1643 1644 return (0); 1645 } 1646 1647 /* 1648 * Remove an interface from all groups 1649 */ 1650 static void 1651 if_delgroups(struct ifnet *ifp) 1652 { 1653 struct ifg_list *ifgl; 1654 char groupname[IFNAMSIZ]; 1655 1656 IFNET_WLOCK(); 1657 while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) { 1658 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1659 _if_delgroup_locked(ifp, ifgl, groupname); 1660 IFNET_WLOCK(); 1661 } 1662 IFNET_WUNLOCK(); 1663 } 1664 1665 /* 1666 * Stores all groups from an interface in memory pointed to by ifgr. 1667 */ 1668 static int 1669 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp) 1670 { 1671 int len, error; 1672 struct ifg_list *ifgl; 1673 struct ifg_req ifgrq, *ifgp; 1674 1675 NET_EPOCH_ASSERT(); 1676 1677 if (ifgr->ifgr_len == 0) { 1678 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1679 ifgr->ifgr_len += sizeof(struct ifg_req); 1680 return (0); 1681 } 1682 1683 len = ifgr->ifgr_len; 1684 ifgp = ifgr->ifgr_groups; 1685 /* XXX: wire */ 1686 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1687 if (len < sizeof(ifgrq)) 1688 return (EINVAL); 1689 bzero(&ifgrq, sizeof ifgrq); 1690 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1691 sizeof(ifgrq.ifgrq_group)); 1692 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) 1693 return (error); 1694 len -= sizeof(ifgrq); 1695 ifgp++; 1696 } 1697 1698 return (0); 1699 } 1700 1701 /* 1702 * Stores all members of a group in memory pointed to by igfr 1703 */ 1704 static int 1705 if_getgroupmembers(struct ifgroupreq *ifgr) 1706 { 1707 struct ifg_group *ifg; 1708 struct ifg_member *ifgm; 1709 struct ifg_req ifgrq, *ifgp; 1710 int len, error; 1711 1712 IFNET_RLOCK(); 1713 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1714 if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) 1715 break; 1716 if (ifg == NULL) { 1717 IFNET_RUNLOCK(); 1718 return (ENOENT); 1719 } 1720 1721 if (ifgr->ifgr_len == 0) { 1722 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1723 ifgr->ifgr_len += sizeof(ifgrq); 1724 IFNET_RUNLOCK(); 1725 return (0); 1726 } 1727 1728 len = ifgr->ifgr_len; 1729 ifgp = ifgr->ifgr_groups; 1730 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1731 if (len < sizeof(ifgrq)) { 1732 IFNET_RUNLOCK(); 1733 return (EINVAL); 1734 } 1735 bzero(&ifgrq, sizeof ifgrq); 1736 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1737 sizeof(ifgrq.ifgrq_member)); 1738 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1739 IFNET_RUNLOCK(); 1740 return (error); 1741 } 1742 len -= sizeof(ifgrq); 1743 ifgp++; 1744 } 1745 IFNET_RUNLOCK(); 1746 1747 return (0); 1748 } 1749 1750 /* 1751 * Return counter values from counter(9)s stored in ifnet. 1752 */ 1753 uint64_t 1754 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1755 { 1756 1757 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1758 1759 return (counter_u64_fetch(ifp->if_counters[cnt])); 1760 } 1761 1762 /* 1763 * Increase an ifnet counter. Usually used for counters shared 1764 * between the stack and a driver, but function supports them all. 1765 */ 1766 void 1767 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1768 { 1769 1770 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1771 1772 counter_u64_add(ifp->if_counters[cnt], inc); 1773 } 1774 1775 /* 1776 * Copy data from ifnet to userland API structure if_data. 1777 */ 1778 void 1779 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1780 { 1781 1782 ifd->ifi_type = ifp->if_type; 1783 ifd->ifi_physical = 0; 1784 ifd->ifi_addrlen = ifp->if_addrlen; 1785 ifd->ifi_hdrlen = ifp->if_hdrlen; 1786 ifd->ifi_link_state = ifp->if_link_state; 1787 ifd->ifi_vhid = 0; 1788 ifd->ifi_datalen = sizeof(struct if_data); 1789 ifd->ifi_mtu = ifp->if_mtu; 1790 ifd->ifi_metric = ifp->if_metric; 1791 ifd->ifi_baudrate = ifp->if_baudrate; 1792 ifd->ifi_hwassist = ifp->if_hwassist; 1793 ifd->ifi_epoch = ifp->if_epoch; 1794 ifd->ifi_lastchange = ifp->if_lastchange; 1795 1796 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1797 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1798 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1799 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1800 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1801 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1802 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1803 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1804 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1805 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1806 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1807 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1808 } 1809 1810 /* 1811 * Initialization, destruction and refcounting functions for ifaddrs. 1812 */ 1813 struct ifaddr * 1814 ifa_alloc(size_t size, int flags) 1815 { 1816 struct ifaddr *ifa; 1817 1818 KASSERT(size >= sizeof(struct ifaddr), 1819 ("%s: invalid size %zu", __func__, size)); 1820 1821 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1822 if (ifa == NULL) 1823 return (NULL); 1824 1825 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1826 goto fail; 1827 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1828 goto fail; 1829 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1830 goto fail; 1831 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1832 goto fail; 1833 1834 refcount_init(&ifa->ifa_refcnt, 1); 1835 1836 return (ifa); 1837 1838 fail: 1839 /* free(NULL) is okay */ 1840 counter_u64_free(ifa->ifa_opackets); 1841 counter_u64_free(ifa->ifa_ipackets); 1842 counter_u64_free(ifa->ifa_obytes); 1843 counter_u64_free(ifa->ifa_ibytes); 1844 free(ifa, M_IFADDR); 1845 1846 return (NULL); 1847 } 1848 1849 void 1850 ifa_ref(struct ifaddr *ifa) 1851 { 1852 u_int old __diagused; 1853 1854 old = refcount_acquire(&ifa->ifa_refcnt); 1855 KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa)); 1856 } 1857 1858 int 1859 ifa_try_ref(struct ifaddr *ifa) 1860 { 1861 1862 NET_EPOCH_ASSERT(); 1863 return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt)); 1864 } 1865 1866 static void 1867 ifa_destroy(epoch_context_t ctx) 1868 { 1869 struct ifaddr *ifa; 1870 1871 ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx); 1872 counter_u64_free(ifa->ifa_opackets); 1873 counter_u64_free(ifa->ifa_ipackets); 1874 counter_u64_free(ifa->ifa_obytes); 1875 counter_u64_free(ifa->ifa_ibytes); 1876 free(ifa, M_IFADDR); 1877 } 1878 1879 void 1880 ifa_free(struct ifaddr *ifa) 1881 { 1882 1883 if (refcount_release(&ifa->ifa_refcnt)) 1884 NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx); 1885 } 1886 1887 /* 1888 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1889 * structs used to represent other address families, it is necessary 1890 * to perform a different comparison. 1891 */ 1892 1893 #define sa_dl_equal(a1, a2) \ 1894 ((((const struct sockaddr_dl *)(a1))->sdl_len == \ 1895 ((const struct sockaddr_dl *)(a2))->sdl_len) && \ 1896 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \ 1897 CLLADDR((const struct sockaddr_dl *)(a2)), \ 1898 ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1899 1900 /* 1901 * Locate an interface based on a complete address. 1902 */ 1903 /*ARGSUSED*/ 1904 struct ifaddr * 1905 ifa_ifwithaddr(const struct sockaddr *addr) 1906 { 1907 struct ifnet *ifp; 1908 struct ifaddr *ifa; 1909 1910 NET_EPOCH_ASSERT(); 1911 1912 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1913 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1914 if (ifa->ifa_addr->sa_family != addr->sa_family) 1915 continue; 1916 if (sa_equal(addr, ifa->ifa_addr)) { 1917 goto done; 1918 } 1919 /* IP6 doesn't have broadcast */ 1920 if ((ifp->if_flags & IFF_BROADCAST) && 1921 ifa->ifa_broadaddr && 1922 ifa->ifa_broadaddr->sa_len != 0 && 1923 sa_equal(ifa->ifa_broadaddr, addr)) { 1924 goto done; 1925 } 1926 } 1927 } 1928 ifa = NULL; 1929 done: 1930 return (ifa); 1931 } 1932 1933 int 1934 ifa_ifwithaddr_check(const struct sockaddr *addr) 1935 { 1936 struct epoch_tracker et; 1937 int rc; 1938 1939 NET_EPOCH_ENTER(et); 1940 rc = (ifa_ifwithaddr(addr) != NULL); 1941 NET_EPOCH_EXIT(et); 1942 return (rc); 1943 } 1944 1945 /* 1946 * Locate an interface based on the broadcast address. 1947 */ 1948 /* ARGSUSED */ 1949 struct ifaddr * 1950 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) 1951 { 1952 struct ifnet *ifp; 1953 struct ifaddr *ifa; 1954 1955 NET_EPOCH_ASSERT(); 1956 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1957 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1958 continue; 1959 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1960 if (ifa->ifa_addr->sa_family != addr->sa_family) 1961 continue; 1962 if ((ifp->if_flags & IFF_BROADCAST) && 1963 ifa->ifa_broadaddr && 1964 ifa->ifa_broadaddr->sa_len != 0 && 1965 sa_equal(ifa->ifa_broadaddr, addr)) { 1966 goto done; 1967 } 1968 } 1969 } 1970 ifa = NULL; 1971 done: 1972 return (ifa); 1973 } 1974 1975 /* 1976 * Locate the point to point interface with a given destination address. 1977 */ 1978 /*ARGSUSED*/ 1979 struct ifaddr * 1980 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) 1981 { 1982 struct ifnet *ifp; 1983 struct ifaddr *ifa; 1984 1985 NET_EPOCH_ASSERT(); 1986 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1987 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1988 continue; 1989 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1990 continue; 1991 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1992 if (ifa->ifa_addr->sa_family != addr->sa_family) 1993 continue; 1994 if (ifa->ifa_dstaddr != NULL && 1995 sa_equal(addr, ifa->ifa_dstaddr)) { 1996 goto done; 1997 } 1998 } 1999 } 2000 ifa = NULL; 2001 done: 2002 return (ifa); 2003 } 2004 2005 /* 2006 * Find an interface on a specific network. If many, choice 2007 * is most specific found. 2008 */ 2009 struct ifaddr * 2010 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) 2011 { 2012 struct ifnet *ifp; 2013 struct ifaddr *ifa; 2014 struct ifaddr *ifa_maybe = NULL; 2015 u_int af = addr->sa_family; 2016 const char *addr_data = addr->sa_data, *cplim; 2017 2018 NET_EPOCH_ASSERT(); 2019 /* 2020 * AF_LINK addresses can be looked up directly by their index number, 2021 * so do that if we can. 2022 */ 2023 if (af == AF_LINK) { 2024 const struct sockaddr_dl *sdl = (const struct sockaddr_dl *)addr; 2025 if (sdl->sdl_index && sdl->sdl_index <= V_if_index) 2026 return (ifaddr_byindex(sdl->sdl_index)); 2027 } 2028 2029 /* 2030 * Scan though each interface, looking for ones that have addresses 2031 * in this address family and the requested fib. 2032 */ 2033 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2034 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 2035 continue; 2036 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2037 const char *cp, *cp2, *cp3; 2038 2039 if (ifa->ifa_addr->sa_family != af) 2040 next: continue; 2041 if (af == AF_INET && 2042 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 2043 /* 2044 * This is a bit broken as it doesn't 2045 * take into account that the remote end may 2046 * be a single node in the network we are 2047 * looking for. 2048 * The trouble is that we don't know the 2049 * netmask for the remote end. 2050 */ 2051 if (ifa->ifa_dstaddr != NULL && 2052 sa_equal(addr, ifa->ifa_dstaddr)) { 2053 goto done; 2054 } 2055 } else { 2056 /* 2057 * Scan all the bits in the ifa's address. 2058 * If a bit dissagrees with what we are 2059 * looking for, mask it with the netmask 2060 * to see if it really matters. 2061 * (A byte at a time) 2062 */ 2063 if (ifa->ifa_netmask == 0) 2064 continue; 2065 cp = addr_data; 2066 cp2 = ifa->ifa_addr->sa_data; 2067 cp3 = ifa->ifa_netmask->sa_data; 2068 cplim = ifa->ifa_netmask->sa_len 2069 + (char *)ifa->ifa_netmask; 2070 while (cp3 < cplim) 2071 if ((*cp++ ^ *cp2++) & *cp3++) 2072 goto next; /* next address! */ 2073 /* 2074 * If the netmask of what we just found 2075 * is more specific than what we had before 2076 * (if we had one), or if the virtual status 2077 * of new prefix is better than of the old one, 2078 * then remember the new one before continuing 2079 * to search for an even better one. 2080 */ 2081 if (ifa_maybe == NULL || 2082 ifa_preferred(ifa_maybe, ifa) || 2083 rn_refines((caddr_t)ifa->ifa_netmask, 2084 (caddr_t)ifa_maybe->ifa_netmask)) { 2085 ifa_maybe = ifa; 2086 } 2087 } 2088 } 2089 } 2090 ifa = ifa_maybe; 2091 ifa_maybe = NULL; 2092 done: 2093 return (ifa); 2094 } 2095 2096 /* 2097 * Find an interface address specific to an interface best matching 2098 * a given address. 2099 */ 2100 struct ifaddr * 2101 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2102 { 2103 struct ifaddr *ifa; 2104 const char *cp, *cp2, *cp3; 2105 char *cplim; 2106 struct ifaddr *ifa_maybe = NULL; 2107 u_int af = addr->sa_family; 2108 2109 if (af >= AF_MAX) 2110 return (NULL); 2111 2112 NET_EPOCH_ASSERT(); 2113 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2114 if (ifa->ifa_addr->sa_family != af) 2115 continue; 2116 if (ifa_maybe == NULL) 2117 ifa_maybe = ifa; 2118 if (ifa->ifa_netmask == 0) { 2119 if (sa_equal(addr, ifa->ifa_addr) || 2120 (ifa->ifa_dstaddr && 2121 sa_equal(addr, ifa->ifa_dstaddr))) 2122 goto done; 2123 continue; 2124 } 2125 if (ifp->if_flags & IFF_POINTOPOINT) { 2126 if (sa_equal(addr, ifa->ifa_dstaddr)) 2127 goto done; 2128 } else { 2129 cp = addr->sa_data; 2130 cp2 = ifa->ifa_addr->sa_data; 2131 cp3 = ifa->ifa_netmask->sa_data; 2132 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2133 for (; cp3 < cplim; cp3++) 2134 if ((*cp++ ^ *cp2++) & *cp3) 2135 break; 2136 if (cp3 == cplim) 2137 goto done; 2138 } 2139 } 2140 ifa = ifa_maybe; 2141 done: 2142 return (ifa); 2143 } 2144 2145 /* 2146 * See whether new ifa is better than current one: 2147 * 1) A non-virtual one is preferred over virtual. 2148 * 2) A virtual in master state preferred over any other state. 2149 * 2150 * Used in several address selecting functions. 2151 */ 2152 int 2153 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 2154 { 2155 2156 return (cur->ifa_carp && (!next->ifa_carp || 2157 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 2158 } 2159 2160 struct sockaddr_dl * 2161 link_alloc_sdl(size_t size, int flags) 2162 { 2163 2164 return (malloc(size, M_TEMP, flags)); 2165 } 2166 2167 void 2168 link_free_sdl(struct sockaddr *sa) 2169 { 2170 free(sa, M_TEMP); 2171 } 2172 2173 /* 2174 * Fills in given sdl with interface basic info. 2175 * Returns pointer to filled sdl. 2176 */ 2177 struct sockaddr_dl * 2178 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2179 { 2180 struct sockaddr_dl *sdl; 2181 2182 sdl = (struct sockaddr_dl *)paddr; 2183 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2184 sdl->sdl_len = sizeof(struct sockaddr_dl); 2185 sdl->sdl_family = AF_LINK; 2186 sdl->sdl_index = ifp->if_index; 2187 sdl->sdl_type = iftype; 2188 2189 return (sdl); 2190 } 2191 2192 /* 2193 * Mark an interface down and notify protocols of 2194 * the transition. 2195 */ 2196 static void 2197 if_unroute(struct ifnet *ifp, int flag, int fam) 2198 { 2199 struct ifaddr *ifa; 2200 struct epoch_tracker et; 2201 2202 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 2203 2204 ifp->if_flags &= ~flag; 2205 getmicrotime(&ifp->if_lastchange); 2206 NET_EPOCH_ENTER(et); 2207 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2208 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2209 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2210 NET_EPOCH_EXIT(et); 2211 ifp->if_qflush(ifp); 2212 2213 if (ifp->if_carp) 2214 (*carp_linkstate_p)(ifp); 2215 rt_ifmsg(ifp); 2216 } 2217 2218 /* 2219 * Mark an interface up and notify protocols of 2220 * the transition. 2221 */ 2222 static void 2223 if_route(struct ifnet *ifp, int flag, int fam) 2224 { 2225 struct ifaddr *ifa; 2226 struct epoch_tracker et; 2227 2228 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 2229 2230 ifp->if_flags |= flag; 2231 getmicrotime(&ifp->if_lastchange); 2232 NET_EPOCH_ENTER(et); 2233 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2234 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2235 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2236 NET_EPOCH_EXIT(et); 2237 if (ifp->if_carp) 2238 (*carp_linkstate_p)(ifp); 2239 rt_ifmsg(ifp); 2240 #ifdef INET6 2241 in6_if_up(ifp); 2242 #endif 2243 } 2244 2245 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2246 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2247 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2248 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2249 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2250 int (*vlan_pcp_p)(struct ifnet *, uint16_t *); 2251 int (*vlan_setcookie_p)(struct ifnet *, void *); 2252 void *(*vlan_cookie_p)(struct ifnet *); 2253 2254 /* 2255 * Handle a change in the interface link state. To avoid LORs 2256 * between driver lock and upper layer locks, as well as possible 2257 * recursions, we post event to taskqueue, and all job 2258 * is done in static do_link_state_change(). 2259 */ 2260 void 2261 if_link_state_change(struct ifnet *ifp, int link_state) 2262 { 2263 /* Return if state hasn't changed. */ 2264 if (ifp->if_link_state == link_state) 2265 return; 2266 2267 ifp->if_link_state = link_state; 2268 2269 /* XXXGL: reference ifp? */ 2270 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2271 } 2272 2273 static void 2274 do_link_state_change(void *arg, int pending) 2275 { 2276 struct ifnet *ifp; 2277 int link_state; 2278 2279 ifp = arg; 2280 link_state = ifp->if_link_state; 2281 2282 CURVNET_SET(ifp->if_vnet); 2283 rt_ifmsg(ifp); 2284 if (ifp->if_vlantrunk != NULL) 2285 (*vlan_link_state_p)(ifp); 2286 2287 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2288 ifp->if_l2com != NULL) 2289 (*ng_ether_link_state_p)(ifp, link_state); 2290 if (ifp->if_carp) 2291 (*carp_linkstate_p)(ifp); 2292 if (ifp->if_bridge) 2293 ifp->if_bridge_linkstate(ifp); 2294 if (ifp->if_lagg) 2295 (*lagg_linkstate_p)(ifp, link_state); 2296 2297 if (IS_DEFAULT_VNET(curvnet)) 2298 devctl_notify("IFNET", ifp->if_xname, 2299 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2300 NULL); 2301 if (pending > 1) 2302 if_printf(ifp, "%d link states coalesced\n", pending); 2303 if (log_link_state_change) 2304 if_printf(ifp, "link state changed to %s\n", 2305 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2306 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); 2307 CURVNET_RESTORE(); 2308 } 2309 2310 /* 2311 * Mark an interface down and notify protocols of 2312 * the transition. 2313 */ 2314 void 2315 if_down(struct ifnet *ifp) 2316 { 2317 2318 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); 2319 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2320 } 2321 2322 /* 2323 * Mark an interface up and notify protocols of 2324 * the transition. 2325 */ 2326 void 2327 if_up(struct ifnet *ifp) 2328 { 2329 2330 if_route(ifp, IFF_UP, AF_UNSPEC); 2331 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); 2332 } 2333 2334 /* 2335 * Flush an interface queue. 2336 */ 2337 void 2338 if_qflush(struct ifnet *ifp) 2339 { 2340 struct mbuf *m, *n; 2341 struct ifaltq *ifq; 2342 2343 ifq = &ifp->if_snd; 2344 IFQ_LOCK(ifq); 2345 #ifdef ALTQ 2346 if (ALTQ_IS_ENABLED(ifq)) 2347 ALTQ_PURGE(ifq); 2348 #endif 2349 n = ifq->ifq_head; 2350 while ((m = n) != NULL) { 2351 n = m->m_nextpkt; 2352 m_freem(m); 2353 } 2354 ifq->ifq_head = 0; 2355 ifq->ifq_tail = 0; 2356 ifq->ifq_len = 0; 2357 IFQ_UNLOCK(ifq); 2358 } 2359 2360 /* 2361 * Map interface name to interface structure pointer, with or without 2362 * returning a reference. 2363 */ 2364 struct ifnet * 2365 ifunit_ref(const char *name) 2366 { 2367 struct epoch_tracker et; 2368 struct ifnet *ifp; 2369 2370 NET_EPOCH_ENTER(et); 2371 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2372 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2373 !(ifp->if_flags & IFF_DYING)) 2374 break; 2375 } 2376 if (ifp != NULL) 2377 if_ref(ifp); 2378 NET_EPOCH_EXIT(et); 2379 return (ifp); 2380 } 2381 2382 struct ifnet * 2383 ifunit(const char *name) 2384 { 2385 struct epoch_tracker et; 2386 struct ifnet *ifp; 2387 2388 NET_EPOCH_ENTER(et); 2389 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2390 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2391 break; 2392 } 2393 NET_EPOCH_EXIT(et); 2394 return (ifp); 2395 } 2396 2397 void * 2398 ifr_buffer_get_buffer(void *data) 2399 { 2400 union ifreq_union *ifrup; 2401 2402 ifrup = data; 2403 #ifdef COMPAT_FREEBSD32 2404 if (SV_CURPROC_FLAG(SV_ILP32)) 2405 return ((void *)(uintptr_t) 2406 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer); 2407 #endif 2408 return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer); 2409 } 2410 2411 static void 2412 ifr_buffer_set_buffer_null(void *data) 2413 { 2414 union ifreq_union *ifrup; 2415 2416 ifrup = data; 2417 #ifdef COMPAT_FREEBSD32 2418 if (SV_CURPROC_FLAG(SV_ILP32)) 2419 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0; 2420 else 2421 #endif 2422 ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL; 2423 } 2424 2425 size_t 2426 ifr_buffer_get_length(void *data) 2427 { 2428 union ifreq_union *ifrup; 2429 2430 ifrup = data; 2431 #ifdef COMPAT_FREEBSD32 2432 if (SV_CURPROC_FLAG(SV_ILP32)) 2433 return (ifrup->ifr32.ifr_ifru.ifru_buffer.length); 2434 #endif 2435 return (ifrup->ifr.ifr_ifru.ifru_buffer.length); 2436 } 2437 2438 static void 2439 ifr_buffer_set_length(void *data, size_t len) 2440 { 2441 union ifreq_union *ifrup; 2442 2443 ifrup = data; 2444 #ifdef COMPAT_FREEBSD32 2445 if (SV_CURPROC_FLAG(SV_ILP32)) 2446 ifrup->ifr32.ifr_ifru.ifru_buffer.length = len; 2447 else 2448 #endif 2449 ifrup->ifr.ifr_ifru.ifru_buffer.length = len; 2450 } 2451 2452 void * 2453 ifr_data_get_ptr(void *ifrp) 2454 { 2455 union ifreq_union *ifrup; 2456 2457 ifrup = ifrp; 2458 #ifdef COMPAT_FREEBSD32 2459 if (SV_CURPROC_FLAG(SV_ILP32)) 2460 return ((void *)(uintptr_t) 2461 ifrup->ifr32.ifr_ifru.ifru_data); 2462 #endif 2463 return (ifrup->ifr.ifr_ifru.ifru_data); 2464 } 2465 2466 /* 2467 * Hardware specific interface ioctls. 2468 */ 2469 int 2470 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2471 { 2472 struct ifreq *ifr; 2473 int error = 0, do_ifup = 0; 2474 int new_flags, temp_flags; 2475 size_t namelen, onamelen; 2476 size_t descrlen; 2477 char *descrbuf, *odescrbuf; 2478 char new_name[IFNAMSIZ]; 2479 char old_name[IFNAMSIZ], strbuf[IFNAMSIZ + 8]; 2480 struct ifaddr *ifa; 2481 struct sockaddr_dl *sdl; 2482 2483 ifr = (struct ifreq *)data; 2484 switch (cmd) { 2485 case SIOCGIFINDEX: 2486 ifr->ifr_index = ifp->if_index; 2487 break; 2488 2489 case SIOCGIFFLAGS: 2490 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2491 ifr->ifr_flags = temp_flags & 0xffff; 2492 ifr->ifr_flagshigh = temp_flags >> 16; 2493 break; 2494 2495 case SIOCGIFCAP: 2496 ifr->ifr_reqcap = ifp->if_capabilities; 2497 ifr->ifr_curcap = ifp->if_capenable; 2498 break; 2499 2500 case SIOCGIFDATA: 2501 { 2502 struct if_data ifd; 2503 2504 /* Ensure uninitialised padding is not leaked. */ 2505 memset(&ifd, 0, sizeof(ifd)); 2506 2507 if_data_copy(ifp, &ifd); 2508 error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd)); 2509 break; 2510 } 2511 2512 #ifdef MAC 2513 case SIOCGIFMAC: 2514 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2515 break; 2516 #endif 2517 2518 case SIOCGIFMETRIC: 2519 ifr->ifr_metric = ifp->if_metric; 2520 break; 2521 2522 case SIOCGIFMTU: 2523 ifr->ifr_mtu = ifp->if_mtu; 2524 break; 2525 2526 case SIOCGIFPHYS: 2527 /* XXXGL: did this ever worked? */ 2528 ifr->ifr_phys = 0; 2529 break; 2530 2531 case SIOCGIFDESCR: 2532 error = 0; 2533 sx_slock(&ifdescr_sx); 2534 if (ifp->if_description == NULL) 2535 error = ENOMSG; 2536 else { 2537 /* space for terminating nul */ 2538 descrlen = strlen(ifp->if_description) + 1; 2539 if (ifr_buffer_get_length(ifr) < descrlen) 2540 ifr_buffer_set_buffer_null(ifr); 2541 else 2542 error = copyout(ifp->if_description, 2543 ifr_buffer_get_buffer(ifr), descrlen); 2544 ifr_buffer_set_length(ifr, descrlen); 2545 } 2546 sx_sunlock(&ifdescr_sx); 2547 break; 2548 2549 case SIOCSIFDESCR: 2550 error = priv_check(td, PRIV_NET_SETIFDESCR); 2551 if (error) 2552 return (error); 2553 2554 /* 2555 * Copy only (length-1) bytes to make sure that 2556 * if_description is always nul terminated. The 2557 * length parameter is supposed to count the 2558 * terminating nul in. 2559 */ 2560 if (ifr_buffer_get_length(ifr) > ifdescr_maxlen) 2561 return (ENAMETOOLONG); 2562 else if (ifr_buffer_get_length(ifr) == 0) 2563 descrbuf = NULL; 2564 else { 2565 descrbuf = malloc(ifr_buffer_get_length(ifr), 2566 M_IFDESCR, M_WAITOK | M_ZERO); 2567 error = copyin(ifr_buffer_get_buffer(ifr), descrbuf, 2568 ifr_buffer_get_length(ifr) - 1); 2569 if (error) { 2570 free(descrbuf, M_IFDESCR); 2571 break; 2572 } 2573 } 2574 2575 sx_xlock(&ifdescr_sx); 2576 odescrbuf = ifp->if_description; 2577 ifp->if_description = descrbuf; 2578 sx_xunlock(&ifdescr_sx); 2579 2580 getmicrotime(&ifp->if_lastchange); 2581 free(odescrbuf, M_IFDESCR); 2582 break; 2583 2584 case SIOCGIFFIB: 2585 ifr->ifr_fib = ifp->if_fib; 2586 break; 2587 2588 case SIOCSIFFIB: 2589 error = priv_check(td, PRIV_NET_SETIFFIB); 2590 if (error) 2591 return (error); 2592 if (ifr->ifr_fib >= rt_numfibs) 2593 return (EINVAL); 2594 2595 ifp->if_fib = ifr->ifr_fib; 2596 break; 2597 2598 case SIOCSIFFLAGS: 2599 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2600 if (error) 2601 return (error); 2602 /* 2603 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2604 * check, so we don't need special handling here yet. 2605 */ 2606 new_flags = (ifr->ifr_flags & 0xffff) | 2607 (ifr->ifr_flagshigh << 16); 2608 if (ifp->if_flags & IFF_UP && 2609 (new_flags & IFF_UP) == 0) { 2610 if_down(ifp); 2611 } else if (new_flags & IFF_UP && 2612 (ifp->if_flags & IFF_UP) == 0) { 2613 do_ifup = 1; 2614 } 2615 /* See if permanently promiscuous mode bit is about to flip */ 2616 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2617 if (new_flags & IFF_PPROMISC) 2618 ifp->if_flags |= IFF_PROMISC; 2619 else if (ifp->if_pcount == 0) 2620 ifp->if_flags &= ~IFF_PROMISC; 2621 if (log_promisc_mode_change) 2622 if_printf(ifp, "permanently promiscuous mode %s\n", 2623 ((new_flags & IFF_PPROMISC) ? 2624 "enabled" : "disabled")); 2625 } 2626 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2627 (new_flags &~ IFF_CANTCHANGE); 2628 if (ifp->if_ioctl) { 2629 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2630 } 2631 if (do_ifup) 2632 if_up(ifp); 2633 getmicrotime(&ifp->if_lastchange); 2634 break; 2635 2636 case SIOCSIFCAP: 2637 error = priv_check(td, PRIV_NET_SETIFCAP); 2638 if (error) 2639 return (error); 2640 if (ifp->if_ioctl == NULL) 2641 return (EOPNOTSUPP); 2642 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2643 return (EINVAL); 2644 error = (*ifp->if_ioctl)(ifp, cmd, data); 2645 if (error == 0) 2646 getmicrotime(&ifp->if_lastchange); 2647 break; 2648 2649 #ifdef MAC 2650 case SIOCSIFMAC: 2651 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2652 break; 2653 #endif 2654 2655 case SIOCSIFNAME: 2656 error = priv_check(td, PRIV_NET_SETIFNAME); 2657 if (error) 2658 return (error); 2659 error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ, 2660 NULL); 2661 if (error != 0) 2662 return (error); 2663 if (new_name[0] == '\0') 2664 return (EINVAL); 2665 if (strcmp(new_name, ifp->if_xname) == 0) 2666 break; 2667 if (ifunit(new_name) != NULL) 2668 return (EEXIST); 2669 2670 /* 2671 * XXX: Locking. Nothing else seems to lock if_flags, 2672 * and there are numerous other races with the 2673 * ifunit() checks not being atomic with namespace 2674 * changes (renames, vmoves, if_attach, etc). 2675 */ 2676 ifp->if_flags |= IFF_RENAMING; 2677 2678 /* Announce the departure of the interface. */ 2679 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 2680 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 2681 2682 if_printf(ifp, "changing name to '%s'\n", new_name); 2683 2684 IF_ADDR_WLOCK(ifp); 2685 strlcpy(old_name, ifp->if_xname, sizeof(old_name)); 2686 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 2687 ifa = ifp->if_addr; 2688 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 2689 namelen = strlen(new_name); 2690 onamelen = sdl->sdl_nlen; 2691 /* 2692 * Move the address if needed. This is safe because we 2693 * allocate space for a name of length IFNAMSIZ when we 2694 * create this in if_attach(). 2695 */ 2696 if (namelen != onamelen) { 2697 bcopy(sdl->sdl_data + onamelen, 2698 sdl->sdl_data + namelen, sdl->sdl_alen); 2699 } 2700 bcopy(new_name, sdl->sdl_data, namelen); 2701 sdl->sdl_nlen = namelen; 2702 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 2703 bzero(sdl->sdl_data, onamelen); 2704 while (namelen != 0) 2705 sdl->sdl_data[--namelen] = 0xff; 2706 IF_ADDR_WUNLOCK(ifp); 2707 2708 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 2709 /* Announce the return of the interface. */ 2710 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 2711 2712 ifp->if_flags &= ~IFF_RENAMING; 2713 2714 snprintf(strbuf, sizeof(strbuf), "name=%s", new_name); 2715 devctl_notify("IFNET", old_name, "RENAME", strbuf); 2716 break; 2717 2718 #ifdef VIMAGE 2719 case SIOCSIFVNET: 2720 error = priv_check(td, PRIV_NET_SETIFVNET); 2721 if (error) 2722 return (error); 2723 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2724 break; 2725 #endif 2726 2727 case SIOCSIFMETRIC: 2728 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2729 if (error) 2730 return (error); 2731 ifp->if_metric = ifr->ifr_metric; 2732 getmicrotime(&ifp->if_lastchange); 2733 break; 2734 2735 case SIOCSIFPHYS: 2736 error = priv_check(td, PRIV_NET_SETIFPHYS); 2737 if (error) 2738 return (error); 2739 if (ifp->if_ioctl == NULL) 2740 return (EOPNOTSUPP); 2741 error = (*ifp->if_ioctl)(ifp, cmd, data); 2742 if (error == 0) 2743 getmicrotime(&ifp->if_lastchange); 2744 break; 2745 2746 case SIOCSIFMTU: 2747 { 2748 u_long oldmtu = ifp->if_mtu; 2749 2750 error = priv_check(td, PRIV_NET_SETIFMTU); 2751 if (error) 2752 return (error); 2753 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2754 return (EINVAL); 2755 if (ifp->if_ioctl == NULL) 2756 return (EOPNOTSUPP); 2757 /* Disallow MTU changes on bridge member interfaces. */ 2758 if (ifp->if_bridge) 2759 return (EOPNOTSUPP); 2760 error = (*ifp->if_ioctl)(ifp, cmd, data); 2761 if (error == 0) { 2762 getmicrotime(&ifp->if_lastchange); 2763 rt_ifmsg(ifp); 2764 #ifdef INET 2765 DEBUGNET_NOTIFY_MTU(ifp); 2766 #endif 2767 } 2768 /* 2769 * If the link MTU changed, do network layer specific procedure. 2770 */ 2771 if (ifp->if_mtu != oldmtu) { 2772 #ifdef INET6 2773 nd6_setmtu(ifp); 2774 #endif 2775 rt_updatemtu(ifp); 2776 } 2777 break; 2778 } 2779 2780 case SIOCADDMULTI: 2781 case SIOCDELMULTI: 2782 if (cmd == SIOCADDMULTI) 2783 error = priv_check(td, PRIV_NET_ADDMULTI); 2784 else 2785 error = priv_check(td, PRIV_NET_DELMULTI); 2786 if (error) 2787 return (error); 2788 2789 /* Don't allow group membership on non-multicast interfaces. */ 2790 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2791 return (EOPNOTSUPP); 2792 2793 /* Don't let users screw up protocols' entries. */ 2794 if (ifr->ifr_addr.sa_family != AF_LINK) 2795 return (EINVAL); 2796 2797 if (cmd == SIOCADDMULTI) { 2798 struct epoch_tracker et; 2799 struct ifmultiaddr *ifma; 2800 2801 /* 2802 * Userland is only permitted to join groups once 2803 * via the if_addmulti() KPI, because it cannot hold 2804 * struct ifmultiaddr * between calls. It may also 2805 * lose a race while we check if the membership 2806 * already exists. 2807 */ 2808 NET_EPOCH_ENTER(et); 2809 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2810 NET_EPOCH_EXIT(et); 2811 if (ifma != NULL) 2812 error = EADDRINUSE; 2813 else 2814 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2815 } else { 2816 error = if_delmulti(ifp, &ifr->ifr_addr); 2817 } 2818 if (error == 0) 2819 getmicrotime(&ifp->if_lastchange); 2820 break; 2821 2822 case SIOCSIFPHYADDR: 2823 case SIOCDIFPHYADDR: 2824 #ifdef INET6 2825 case SIOCSIFPHYADDR_IN6: 2826 #endif 2827 case SIOCSIFMEDIA: 2828 case SIOCSIFGENERIC: 2829 error = priv_check(td, PRIV_NET_HWIOCTL); 2830 if (error) 2831 return (error); 2832 if (ifp->if_ioctl == NULL) 2833 return (EOPNOTSUPP); 2834 error = (*ifp->if_ioctl)(ifp, cmd, data); 2835 if (error == 0) 2836 getmicrotime(&ifp->if_lastchange); 2837 break; 2838 2839 case SIOCGIFSTATUS: 2840 case SIOCGIFPSRCADDR: 2841 case SIOCGIFPDSTADDR: 2842 case SIOCGIFMEDIA: 2843 case SIOCGIFXMEDIA: 2844 case SIOCGIFGENERIC: 2845 case SIOCGIFRSSKEY: 2846 case SIOCGIFRSSHASH: 2847 case SIOCGIFDOWNREASON: 2848 if (ifp->if_ioctl == NULL) 2849 return (EOPNOTSUPP); 2850 error = (*ifp->if_ioctl)(ifp, cmd, data); 2851 break; 2852 2853 case SIOCSIFLLADDR: 2854 error = priv_check(td, PRIV_NET_SETLLADDR); 2855 if (error) 2856 return (error); 2857 error = if_setlladdr(ifp, 2858 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2859 break; 2860 2861 case SIOCGHWADDR: 2862 error = if_gethwaddr(ifp, ifr); 2863 break; 2864 2865 case SIOCAIFGROUP: 2866 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2867 if (error) 2868 return (error); 2869 error = if_addgroup(ifp, 2870 ((struct ifgroupreq *)data)->ifgr_group); 2871 if (error != 0) 2872 return (error); 2873 break; 2874 2875 case SIOCGIFGROUP: 2876 { 2877 struct epoch_tracker et; 2878 2879 NET_EPOCH_ENTER(et); 2880 error = if_getgroup((struct ifgroupreq *)data, ifp); 2881 NET_EPOCH_EXIT(et); 2882 break; 2883 } 2884 2885 case SIOCDIFGROUP: 2886 error = priv_check(td, PRIV_NET_DELIFGROUP); 2887 if (error) 2888 return (error); 2889 error = if_delgroup(ifp, 2890 ((struct ifgroupreq *)data)->ifgr_group); 2891 if (error != 0) 2892 return (error); 2893 break; 2894 2895 default: 2896 error = ENOIOCTL; 2897 break; 2898 } 2899 return (error); 2900 } 2901 2902 /* 2903 * Interface ioctls. 2904 */ 2905 int 2906 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2907 { 2908 #ifdef COMPAT_FREEBSD32 2909 union { 2910 struct ifconf ifc; 2911 struct ifdrv ifd; 2912 struct ifgroupreq ifgr; 2913 struct ifmediareq ifmr; 2914 } thunk; 2915 u_long saved_cmd; 2916 struct ifconf32 *ifc32; 2917 struct ifdrv32 *ifd32; 2918 struct ifgroupreq32 *ifgr32; 2919 struct ifmediareq32 *ifmr32; 2920 #endif 2921 struct ifnet *ifp; 2922 struct ifreq *ifr; 2923 int error; 2924 int oif_flags; 2925 #ifdef VIMAGE 2926 bool shutdown; 2927 #endif 2928 2929 CURVNET_SET(so->so_vnet); 2930 #ifdef VIMAGE 2931 /* Make sure the VNET is stable. */ 2932 shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet); 2933 if (shutdown) { 2934 CURVNET_RESTORE(); 2935 return (EBUSY); 2936 } 2937 #endif 2938 2939 #ifdef COMPAT_FREEBSD32 2940 saved_cmd = cmd; 2941 switch (cmd) { 2942 case SIOCGIFCONF32: 2943 ifc32 = (struct ifconf32 *)data; 2944 thunk.ifc.ifc_len = ifc32->ifc_len; 2945 thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2946 data = (caddr_t)&thunk.ifc; 2947 cmd = SIOCGIFCONF; 2948 break; 2949 case SIOCGDRVSPEC32: 2950 case SIOCSDRVSPEC32: 2951 ifd32 = (struct ifdrv32 *)data; 2952 memcpy(thunk.ifd.ifd_name, ifd32->ifd_name, 2953 sizeof(thunk.ifd.ifd_name)); 2954 thunk.ifd.ifd_cmd = ifd32->ifd_cmd; 2955 thunk.ifd.ifd_len = ifd32->ifd_len; 2956 thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data); 2957 data = (caddr_t)&thunk.ifd; 2958 cmd = _IOC_NEWTYPE(cmd, struct ifdrv); 2959 break; 2960 case SIOCAIFGROUP32: 2961 case SIOCGIFGROUP32: 2962 case SIOCDIFGROUP32: 2963 case SIOCGIFGMEMB32: 2964 ifgr32 = (struct ifgroupreq32 *)data; 2965 memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name, 2966 sizeof(thunk.ifgr.ifgr_name)); 2967 thunk.ifgr.ifgr_len = ifgr32->ifgr_len; 2968 switch (cmd) { 2969 case SIOCAIFGROUP32: 2970 case SIOCDIFGROUP32: 2971 memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group, 2972 sizeof(thunk.ifgr.ifgr_group)); 2973 break; 2974 case SIOCGIFGROUP32: 2975 case SIOCGIFGMEMB32: 2976 thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups); 2977 break; 2978 } 2979 data = (caddr_t)&thunk.ifgr; 2980 cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq); 2981 break; 2982 case SIOCGIFMEDIA32: 2983 case SIOCGIFXMEDIA32: 2984 ifmr32 = (struct ifmediareq32 *)data; 2985 memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name, 2986 sizeof(thunk.ifmr.ifm_name)); 2987 thunk.ifmr.ifm_current = ifmr32->ifm_current; 2988 thunk.ifmr.ifm_mask = ifmr32->ifm_mask; 2989 thunk.ifmr.ifm_status = ifmr32->ifm_status; 2990 thunk.ifmr.ifm_active = ifmr32->ifm_active; 2991 thunk.ifmr.ifm_count = ifmr32->ifm_count; 2992 thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist); 2993 data = (caddr_t)&thunk.ifmr; 2994 cmd = _IOC_NEWTYPE(cmd, struct ifmediareq); 2995 break; 2996 } 2997 #endif 2998 2999 switch (cmd) { 3000 case SIOCGIFCONF: 3001 error = ifconf(cmd, data); 3002 goto out_noref; 3003 } 3004 3005 ifr = (struct ifreq *)data; 3006 switch (cmd) { 3007 #ifdef VIMAGE 3008 case SIOCSIFRVNET: 3009 error = priv_check(td, PRIV_NET_SETIFVNET); 3010 if (error == 0) 3011 error = if_vmove_reclaim(td, ifr->ifr_name, 3012 ifr->ifr_jid); 3013 goto out_noref; 3014 #endif 3015 case SIOCIFCREATE: 3016 case SIOCIFCREATE2: 3017 error = priv_check(td, PRIV_NET_IFCREATE); 3018 if (error == 0) 3019 error = if_clone_create(ifr->ifr_name, 3020 sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? 3021 ifr_data_get_ptr(ifr) : NULL); 3022 goto out_noref; 3023 case SIOCIFDESTROY: 3024 error = priv_check(td, PRIV_NET_IFDESTROY); 3025 3026 if (error == 0) { 3027 sx_xlock(&ifnet_detach_sxlock); 3028 error = if_clone_destroy(ifr->ifr_name); 3029 sx_xunlock(&ifnet_detach_sxlock); 3030 } 3031 goto out_noref; 3032 3033 case SIOCIFGCLONERS: 3034 error = if_clone_list((struct if_clonereq *)data); 3035 goto out_noref; 3036 3037 case SIOCGIFGMEMB: 3038 error = if_getgroupmembers((struct ifgroupreq *)data); 3039 goto out_noref; 3040 3041 #if defined(INET) || defined(INET6) 3042 case SIOCSVH: 3043 case SIOCGVH: 3044 if (carp_ioctl_p == NULL) 3045 error = EPROTONOSUPPORT; 3046 else 3047 error = (*carp_ioctl_p)(ifr, cmd, td); 3048 goto out_noref; 3049 #endif 3050 } 3051 3052 ifp = ifunit_ref(ifr->ifr_name); 3053 if (ifp == NULL) { 3054 error = ENXIO; 3055 goto out_noref; 3056 } 3057 3058 error = ifhwioctl(cmd, ifp, data, td); 3059 if (error != ENOIOCTL) 3060 goto out_ref; 3061 3062 oif_flags = ifp->if_flags; 3063 if (so->so_proto == NULL) { 3064 error = EOPNOTSUPP; 3065 goto out_ref; 3066 } 3067 3068 /* 3069 * Pass the request on to the socket control method, and if the 3070 * latter returns EOPNOTSUPP, directly to the interface. 3071 * 3072 * Make an exception for the legacy SIOCSIF* requests. Drivers 3073 * trust SIOCSIFADDR et al to come from an already privileged 3074 * layer, and do not perform any credentials checks or input 3075 * validation. 3076 */ 3077 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, 3078 ifp, td)); 3079 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 3080 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 3081 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 3082 error = (*ifp->if_ioctl)(ifp, cmd, data); 3083 3084 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 3085 #ifdef INET6 3086 if (ifp->if_flags & IFF_UP) 3087 in6_if_up(ifp); 3088 #endif 3089 } 3090 3091 out_ref: 3092 if_rele(ifp); 3093 out_noref: 3094 CURVNET_RESTORE(); 3095 #ifdef COMPAT_FREEBSD32 3096 if (error != 0) 3097 return (error); 3098 switch (saved_cmd) { 3099 case SIOCGIFCONF32: 3100 ifc32->ifc_len = thunk.ifc.ifc_len; 3101 break; 3102 case SIOCGDRVSPEC32: 3103 /* 3104 * SIOCGDRVSPEC is IOWR, but nothing actually touches 3105 * the struct so just assert that ifd_len (the only 3106 * field it might make sense to update) hasn't 3107 * changed. 3108 */ 3109 KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len, 3110 ("ifd_len was updated %u -> %zu", ifd32->ifd_len, 3111 thunk.ifd.ifd_len)); 3112 break; 3113 case SIOCGIFGROUP32: 3114 case SIOCGIFGMEMB32: 3115 ifgr32->ifgr_len = thunk.ifgr.ifgr_len; 3116 break; 3117 case SIOCGIFMEDIA32: 3118 case SIOCGIFXMEDIA32: 3119 ifmr32->ifm_current = thunk.ifmr.ifm_current; 3120 ifmr32->ifm_mask = thunk.ifmr.ifm_mask; 3121 ifmr32->ifm_status = thunk.ifmr.ifm_status; 3122 ifmr32->ifm_active = thunk.ifmr.ifm_active; 3123 ifmr32->ifm_count = thunk.ifmr.ifm_count; 3124 break; 3125 } 3126 #endif 3127 return (error); 3128 } 3129 3130 /* 3131 * The code common to handling reference counted flags, 3132 * e.g., in ifpromisc() and if_allmulti(). 3133 * The "pflag" argument can specify a permanent mode flag to check, 3134 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 3135 * 3136 * Only to be used on stack-owned flags, not driver-owned flags. 3137 */ 3138 static int 3139 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 3140 { 3141 struct ifreq ifr; 3142 int error; 3143 int oldflags, oldcount; 3144 3145 /* Sanity checks to catch programming errors */ 3146 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 3147 ("%s: setting driver-owned flag %d", __func__, flag)); 3148 3149 if (onswitch) 3150 KASSERT(*refcount >= 0, 3151 ("%s: increment negative refcount %d for flag %d", 3152 __func__, *refcount, flag)); 3153 else 3154 KASSERT(*refcount > 0, 3155 ("%s: decrement non-positive refcount %d for flag %d", 3156 __func__, *refcount, flag)); 3157 3158 /* In case this mode is permanent, just touch refcount */ 3159 if (ifp->if_flags & pflag) { 3160 *refcount += onswitch ? 1 : -1; 3161 return (0); 3162 } 3163 3164 /* Save ifnet parameters for if_ioctl() may fail */ 3165 oldcount = *refcount; 3166 oldflags = ifp->if_flags; 3167 3168 /* 3169 * See if we aren't the only and touching refcount is enough. 3170 * Actually toggle interface flag if we are the first or last. 3171 */ 3172 if (onswitch) { 3173 if ((*refcount)++) 3174 return (0); 3175 ifp->if_flags |= flag; 3176 } else { 3177 if (--(*refcount)) 3178 return (0); 3179 ifp->if_flags &= ~flag; 3180 } 3181 3182 /* Call down the driver since we've changed interface flags */ 3183 if (ifp->if_ioctl == NULL) { 3184 error = EOPNOTSUPP; 3185 goto recover; 3186 } 3187 ifr.ifr_flags = ifp->if_flags & 0xffff; 3188 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3189 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3190 if (error) 3191 goto recover; 3192 /* Notify userland that interface flags have changed */ 3193 rt_ifmsg(ifp); 3194 return (0); 3195 3196 recover: 3197 /* Recover after driver error */ 3198 *refcount = oldcount; 3199 ifp->if_flags = oldflags; 3200 return (error); 3201 } 3202 3203 /* 3204 * Set/clear promiscuous mode on interface ifp based on the truth value 3205 * of pswitch. The calls are reference counted so that only the first 3206 * "on" request actually has an effect, as does the final "off" request. 3207 * Results are undefined if the "off" and "on" requests are not matched. 3208 */ 3209 int 3210 ifpromisc(struct ifnet *ifp, int pswitch) 3211 { 3212 int error; 3213 int oldflags = ifp->if_flags; 3214 3215 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 3216 &ifp->if_pcount, pswitch); 3217 /* If promiscuous mode status has changed, log a message */ 3218 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) && 3219 log_promisc_mode_change) 3220 if_printf(ifp, "promiscuous mode %s\n", 3221 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 3222 return (error); 3223 } 3224 3225 /* 3226 * Return interface configuration 3227 * of system. List may be used 3228 * in later ioctl's (above) to get 3229 * other information. 3230 */ 3231 /*ARGSUSED*/ 3232 static int 3233 ifconf(u_long cmd, caddr_t data) 3234 { 3235 struct ifconf *ifc = (struct ifconf *)data; 3236 struct ifnet *ifp; 3237 struct ifaddr *ifa; 3238 struct ifreq ifr; 3239 struct sbuf *sb; 3240 int error, full = 0, valid_len, max_len; 3241 3242 /* Limit initial buffer size to maxphys to avoid DoS from userspace. */ 3243 max_len = maxphys - 1; 3244 3245 /* Prevent hostile input from being able to crash the system */ 3246 if (ifc->ifc_len <= 0) 3247 return (EINVAL); 3248 3249 again: 3250 if (ifc->ifc_len <= max_len) { 3251 max_len = ifc->ifc_len; 3252 full = 1; 3253 } 3254 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 3255 max_len = 0; 3256 valid_len = 0; 3257 3258 IFNET_RLOCK(); 3259 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 3260 struct epoch_tracker et; 3261 int addrs; 3262 3263 /* 3264 * Zero the ifr to make sure we don't disclose the contents 3265 * of the stack. 3266 */ 3267 memset(&ifr, 0, sizeof(ifr)); 3268 3269 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 3270 >= sizeof(ifr.ifr_name)) { 3271 sbuf_delete(sb); 3272 IFNET_RUNLOCK(); 3273 return (ENAMETOOLONG); 3274 } 3275 3276 addrs = 0; 3277 NET_EPOCH_ENTER(et); 3278 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3279 struct sockaddr *sa = ifa->ifa_addr; 3280 3281 if (prison_if(curthread->td_ucred, sa) != 0) 3282 continue; 3283 addrs++; 3284 if (sa->sa_len <= sizeof(*sa)) { 3285 if (sa->sa_len < sizeof(*sa)) { 3286 memset(&ifr.ifr_ifru.ifru_addr, 0, 3287 sizeof(ifr.ifr_ifru.ifru_addr)); 3288 memcpy(&ifr.ifr_ifru.ifru_addr, sa, 3289 sa->sa_len); 3290 } else 3291 ifr.ifr_ifru.ifru_addr = *sa; 3292 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3293 max_len += sizeof(ifr); 3294 } else { 3295 sbuf_bcat(sb, &ifr, 3296 offsetof(struct ifreq, ifr_addr)); 3297 max_len += offsetof(struct ifreq, ifr_addr); 3298 sbuf_bcat(sb, sa, sa->sa_len); 3299 max_len += sa->sa_len; 3300 } 3301 3302 if (sbuf_error(sb) == 0) 3303 valid_len = sbuf_len(sb); 3304 } 3305 NET_EPOCH_EXIT(et); 3306 if (addrs == 0) { 3307 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3308 max_len += sizeof(ifr); 3309 3310 if (sbuf_error(sb) == 0) 3311 valid_len = sbuf_len(sb); 3312 } 3313 } 3314 IFNET_RUNLOCK(); 3315 3316 /* 3317 * If we didn't allocate enough space (uncommon), try again. If 3318 * we have already allocated as much space as we are allowed, 3319 * return what we've got. 3320 */ 3321 if (valid_len != max_len && !full) { 3322 sbuf_delete(sb); 3323 goto again; 3324 } 3325 3326 ifc->ifc_len = valid_len; 3327 sbuf_finish(sb); 3328 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 3329 sbuf_delete(sb); 3330 return (error); 3331 } 3332 3333 /* 3334 * Just like ifpromisc(), but for all-multicast-reception mode. 3335 */ 3336 int 3337 if_allmulti(struct ifnet *ifp, int onswitch) 3338 { 3339 3340 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 3341 } 3342 3343 struct ifmultiaddr * 3344 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) 3345 { 3346 struct ifmultiaddr *ifma; 3347 3348 IF_ADDR_LOCK_ASSERT(ifp); 3349 3350 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3351 if (sa->sa_family == AF_LINK) { 3352 if (sa_dl_equal(ifma->ifma_addr, sa)) 3353 break; 3354 } else { 3355 if (sa_equal(ifma->ifma_addr, sa)) 3356 break; 3357 } 3358 } 3359 3360 return ifma; 3361 } 3362 3363 /* 3364 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 3365 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 3366 * the ifnet multicast address list here, so the caller must do that and 3367 * other setup work (such as notifying the device driver). The reference 3368 * count is initialized to 1. 3369 */ 3370 static struct ifmultiaddr * 3371 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 3372 int mflags) 3373 { 3374 struct ifmultiaddr *ifma; 3375 struct sockaddr *dupsa; 3376 3377 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3378 M_ZERO); 3379 if (ifma == NULL) 3380 return (NULL); 3381 3382 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3383 if (dupsa == NULL) { 3384 free(ifma, M_IFMADDR); 3385 return (NULL); 3386 } 3387 bcopy(sa, dupsa, sa->sa_len); 3388 ifma->ifma_addr = dupsa; 3389 3390 ifma->ifma_ifp = ifp; 3391 ifma->ifma_refcount = 1; 3392 ifma->ifma_protospec = NULL; 3393 3394 if (llsa == NULL) { 3395 ifma->ifma_lladdr = NULL; 3396 return (ifma); 3397 } 3398 3399 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3400 if (dupsa == NULL) { 3401 free(ifma->ifma_addr, M_IFMADDR); 3402 free(ifma, M_IFMADDR); 3403 return (NULL); 3404 } 3405 bcopy(llsa, dupsa, llsa->sa_len); 3406 ifma->ifma_lladdr = dupsa; 3407 3408 return (ifma); 3409 } 3410 3411 /* 3412 * if_freemulti: free ifmultiaddr structure and possibly attached related 3413 * addresses. The caller is responsible for implementing reference 3414 * counting, notifying the driver, handling routing messages, and releasing 3415 * any dependent link layer state. 3416 */ 3417 #ifdef MCAST_VERBOSE 3418 extern void kdb_backtrace(void); 3419 #endif 3420 static void 3421 if_freemulti_internal(struct ifmultiaddr *ifma) 3422 { 3423 3424 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3425 ifma->ifma_refcount)); 3426 3427 if (ifma->ifma_lladdr != NULL) 3428 free(ifma->ifma_lladdr, M_IFMADDR); 3429 #ifdef MCAST_VERBOSE 3430 kdb_backtrace(); 3431 printf("%s freeing ifma: %p\n", __func__, ifma); 3432 #endif 3433 free(ifma->ifma_addr, M_IFMADDR); 3434 free(ifma, M_IFMADDR); 3435 } 3436 3437 static void 3438 if_destroymulti(epoch_context_t ctx) 3439 { 3440 struct ifmultiaddr *ifma; 3441 3442 ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx); 3443 if_freemulti_internal(ifma); 3444 } 3445 3446 void 3447 if_freemulti(struct ifmultiaddr *ifma) 3448 { 3449 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d", 3450 ifma->ifma_refcount)); 3451 3452 NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx); 3453 } 3454 3455 /* 3456 * Register an additional multicast address with a network interface. 3457 * 3458 * - If the address is already present, bump the reference count on the 3459 * address and return. 3460 * - If the address is not link-layer, look up a link layer address. 3461 * - Allocate address structures for one or both addresses, and attach to the 3462 * multicast address list on the interface. If automatically adding a link 3463 * layer address, the protocol address will own a reference to the link 3464 * layer address, to be freed when it is freed. 3465 * - Notify the network device driver of an addition to the multicast address 3466 * list. 3467 * 3468 * 'sa' points to caller-owned memory with the desired multicast address. 3469 * 3470 * 'retifma' will be used to return a pointer to the resulting multicast 3471 * address reference, if desired. 3472 */ 3473 int 3474 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3475 struct ifmultiaddr **retifma) 3476 { 3477 struct ifmultiaddr *ifma, *ll_ifma; 3478 struct sockaddr *llsa; 3479 struct sockaddr_dl sdl; 3480 int error; 3481 3482 #ifdef INET 3483 IN_MULTI_LIST_UNLOCK_ASSERT(); 3484 #endif 3485 #ifdef INET6 3486 IN6_MULTI_LIST_UNLOCK_ASSERT(); 3487 #endif 3488 /* 3489 * If the address is already present, return a new reference to it; 3490 * otherwise, allocate storage and set up a new address. 3491 */ 3492 IF_ADDR_WLOCK(ifp); 3493 ifma = if_findmulti(ifp, sa); 3494 if (ifma != NULL) { 3495 ifma->ifma_refcount++; 3496 if (retifma != NULL) 3497 *retifma = ifma; 3498 IF_ADDR_WUNLOCK(ifp); 3499 return (0); 3500 } 3501 3502 /* 3503 * The address isn't already present; resolve the protocol address 3504 * into a link layer address, and then look that up, bump its 3505 * refcount or allocate an ifma for that also. 3506 * Most link layer resolving functions returns address data which 3507 * fits inside default sockaddr_dl structure. However callback 3508 * can allocate another sockaddr structure, in that case we need to 3509 * free it later. 3510 */ 3511 llsa = NULL; 3512 ll_ifma = NULL; 3513 if (ifp->if_resolvemulti != NULL) { 3514 /* Provide called function with buffer size information */ 3515 sdl.sdl_len = sizeof(sdl); 3516 llsa = (struct sockaddr *)&sdl; 3517 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3518 if (error) 3519 goto unlock_out; 3520 } 3521 3522 /* 3523 * Allocate the new address. Don't hook it up yet, as we may also 3524 * need to allocate a link layer multicast address. 3525 */ 3526 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3527 if (ifma == NULL) { 3528 error = ENOMEM; 3529 goto free_llsa_out; 3530 } 3531 3532 /* 3533 * If a link layer address is found, we'll need to see if it's 3534 * already present in the address list, or allocate is as well. 3535 * When this block finishes, the link layer address will be on the 3536 * list. 3537 */ 3538 if (llsa != NULL) { 3539 ll_ifma = if_findmulti(ifp, llsa); 3540 if (ll_ifma == NULL) { 3541 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3542 if (ll_ifma == NULL) { 3543 --ifma->ifma_refcount; 3544 if_freemulti(ifma); 3545 error = ENOMEM; 3546 goto free_llsa_out; 3547 } 3548 ll_ifma->ifma_flags |= IFMA_F_ENQUEUED; 3549 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3550 ifma_link); 3551 } else 3552 ll_ifma->ifma_refcount++; 3553 ifma->ifma_llifma = ll_ifma; 3554 } 3555 3556 /* 3557 * We now have a new multicast address, ifma, and possibly a new or 3558 * referenced link layer address. Add the primary address to the 3559 * ifnet address list. 3560 */ 3561 ifma->ifma_flags |= IFMA_F_ENQUEUED; 3562 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3563 3564 if (retifma != NULL) 3565 *retifma = ifma; 3566 3567 /* 3568 * Must generate the message while holding the lock so that 'ifma' 3569 * pointer is still valid. 3570 */ 3571 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3572 IF_ADDR_WUNLOCK(ifp); 3573 3574 /* 3575 * We are certain we have added something, so call down to the 3576 * interface to let them know about it. 3577 */ 3578 if (ifp->if_ioctl != NULL) { 3579 if (THREAD_CAN_SLEEP()) 3580 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3581 else 3582 taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask); 3583 } 3584 3585 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3586 link_free_sdl(llsa); 3587 3588 return (0); 3589 3590 free_llsa_out: 3591 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3592 link_free_sdl(llsa); 3593 3594 unlock_out: 3595 IF_ADDR_WUNLOCK(ifp); 3596 return (error); 3597 } 3598 3599 static void 3600 if_siocaddmulti(void *arg, int pending) 3601 { 3602 struct ifnet *ifp; 3603 3604 ifp = arg; 3605 #ifdef DIAGNOSTIC 3606 if (pending > 1) 3607 if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending); 3608 #endif 3609 CURVNET_SET(ifp->if_vnet); 3610 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3611 CURVNET_RESTORE(); 3612 } 3613 3614 /* 3615 * Delete a multicast group membership by network-layer group address. 3616 * 3617 * Returns ENOENT if the entry could not be found. If ifp no longer 3618 * exists, results are undefined. This entry point should only be used 3619 * from subsystems which do appropriate locking to hold ifp for the 3620 * duration of the call. 3621 * Network-layer protocol domains must use if_delmulti_ifma(). 3622 */ 3623 int 3624 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3625 { 3626 struct ifmultiaddr *ifma; 3627 int lastref; 3628 3629 KASSERT(ifp, ("%s: NULL ifp", __func__)); 3630 3631 IF_ADDR_WLOCK(ifp); 3632 lastref = 0; 3633 ifma = if_findmulti(ifp, sa); 3634 if (ifma != NULL) 3635 lastref = if_delmulti_locked(ifp, ifma, 0); 3636 IF_ADDR_WUNLOCK(ifp); 3637 3638 if (ifma == NULL) 3639 return (ENOENT); 3640 3641 if (lastref && ifp->if_ioctl != NULL) { 3642 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3643 } 3644 3645 return (0); 3646 } 3647 3648 /* 3649 * Delete all multicast group membership for an interface. 3650 * Should be used to quickly flush all multicast filters. 3651 */ 3652 void 3653 if_delallmulti(struct ifnet *ifp) 3654 { 3655 struct ifmultiaddr *ifma; 3656 struct ifmultiaddr *next; 3657 3658 IF_ADDR_WLOCK(ifp); 3659 CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3660 if_delmulti_locked(ifp, ifma, 0); 3661 IF_ADDR_WUNLOCK(ifp); 3662 } 3663 3664 void 3665 if_delmulti_ifma(struct ifmultiaddr *ifma) 3666 { 3667 if_delmulti_ifma_flags(ifma, 0); 3668 } 3669 3670 /* 3671 * Delete a multicast group membership by group membership pointer. 3672 * Network-layer protocol domains must use this routine. 3673 * 3674 * It is safe to call this routine if the ifp disappeared. 3675 */ 3676 void 3677 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags) 3678 { 3679 struct ifnet *ifp; 3680 int lastref; 3681 MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma); 3682 #ifdef INET 3683 IN_MULTI_LIST_UNLOCK_ASSERT(); 3684 #endif 3685 ifp = ifma->ifma_ifp; 3686 #ifdef DIAGNOSTIC 3687 if (ifp == NULL) { 3688 printf("%s: ifma_ifp seems to be detached\n", __func__); 3689 } else { 3690 struct epoch_tracker et; 3691 struct ifnet *oifp; 3692 3693 NET_EPOCH_ENTER(et); 3694 CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link) 3695 if (ifp == oifp) 3696 break; 3697 NET_EPOCH_EXIT(et); 3698 if (ifp != oifp) 3699 ifp = NULL; 3700 } 3701 #endif 3702 /* 3703 * If and only if the ifnet instance exists: Acquire the address lock. 3704 */ 3705 if (ifp != NULL) 3706 IF_ADDR_WLOCK(ifp); 3707 3708 lastref = if_delmulti_locked(ifp, ifma, flags); 3709 3710 if (ifp != NULL) { 3711 /* 3712 * If and only if the ifnet instance exists: 3713 * Release the address lock. 3714 * If the group was left: update the hardware hash filter. 3715 */ 3716 IF_ADDR_WUNLOCK(ifp); 3717 if (lastref && ifp->if_ioctl != NULL) { 3718 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3719 } 3720 } 3721 } 3722 3723 /* 3724 * Perform deletion of network-layer and/or link-layer multicast address. 3725 * 3726 * Return 0 if the reference count was decremented. 3727 * Return 1 if the final reference was released, indicating that the 3728 * hardware hash filter should be reprogrammed. 3729 */ 3730 static int 3731 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3732 { 3733 struct ifmultiaddr *ll_ifma; 3734 3735 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3736 KASSERT(ifma->ifma_ifp == ifp, 3737 ("%s: inconsistent ifp %p", __func__, ifp)); 3738 IF_ADDR_WLOCK_ASSERT(ifp); 3739 } 3740 3741 ifp = ifma->ifma_ifp; 3742 MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : ""); 3743 3744 /* 3745 * If the ifnet is detaching, null out references to ifnet, 3746 * so that upper protocol layers will notice, and not attempt 3747 * to obtain locks for an ifnet which no longer exists. The 3748 * routing socket announcement must happen before the ifnet 3749 * instance is detached from the system. 3750 */ 3751 if (detaching) { 3752 #ifdef DIAGNOSTIC 3753 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3754 #endif 3755 /* 3756 * ifp may already be nulled out if we are being reentered 3757 * to delete the ll_ifma. 3758 */ 3759 if (ifp != NULL) { 3760 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3761 ifma->ifma_ifp = NULL; 3762 } 3763 } 3764 3765 if (--ifma->ifma_refcount > 0) 3766 return 0; 3767 3768 if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) { 3769 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 3770 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3771 } 3772 /* 3773 * If this ifma is a network-layer ifma, a link-layer ifma may 3774 * have been associated with it. Release it first if so. 3775 */ 3776 ll_ifma = ifma->ifma_llifma; 3777 if (ll_ifma != NULL) { 3778 KASSERT(ifma->ifma_lladdr != NULL, 3779 ("%s: llifma w/o lladdr", __func__)); 3780 if (detaching) 3781 ll_ifma->ifma_ifp = NULL; /* XXX */ 3782 if (--ll_ifma->ifma_refcount == 0) { 3783 if (ifp != NULL) { 3784 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 3785 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, 3786 ifma_link); 3787 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3788 } 3789 } 3790 if_freemulti(ll_ifma); 3791 } 3792 } 3793 #ifdef INVARIANTS 3794 if (ifp) { 3795 struct ifmultiaddr *ifmatmp; 3796 3797 CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link) 3798 MPASS(ifma != ifmatmp); 3799 } 3800 #endif 3801 if_freemulti(ifma); 3802 /* 3803 * The last reference to this instance of struct ifmultiaddr 3804 * was released; the hardware should be notified of this change. 3805 */ 3806 return 1; 3807 } 3808 3809 /* 3810 * Set the link layer address on an interface. 3811 * 3812 * At this time we only support certain types of interfaces, 3813 * and we don't allow the length of the address to change. 3814 * 3815 * Set noinline to be dtrace-friendly 3816 */ 3817 __noinline int 3818 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3819 { 3820 struct sockaddr_dl *sdl; 3821 struct ifaddr *ifa; 3822 struct ifreq ifr; 3823 3824 ifa = ifp->if_addr; 3825 if (ifa == NULL) 3826 return (EINVAL); 3827 3828 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3829 if (sdl == NULL) 3830 return (EINVAL); 3831 3832 if (len != sdl->sdl_alen) /* don't allow length to change */ 3833 return (EINVAL); 3834 3835 switch (ifp->if_type) { 3836 case IFT_ETHER: 3837 case IFT_XETHER: 3838 case IFT_L2VLAN: 3839 case IFT_BRIDGE: 3840 case IFT_IEEE8023ADLAG: 3841 bcopy(lladdr, LLADDR(sdl), len); 3842 break; 3843 default: 3844 return (ENODEV); 3845 } 3846 3847 /* 3848 * If the interface is already up, we need 3849 * to re-init it in order to reprogram its 3850 * address filter. 3851 */ 3852 if ((ifp->if_flags & IFF_UP) != 0) { 3853 if (ifp->if_ioctl) { 3854 ifp->if_flags &= ~IFF_UP; 3855 ifr.ifr_flags = ifp->if_flags & 0xffff; 3856 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3857 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3858 ifp->if_flags |= IFF_UP; 3859 ifr.ifr_flags = ifp->if_flags & 0xffff; 3860 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3861 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3862 } 3863 } 3864 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 3865 3866 return (0); 3867 } 3868 3869 /* 3870 * Compat function for handling basic encapsulation requests. 3871 * Not converted stacks (FDDI, IB, ..) supports traditional 3872 * output model: ARP (and other similar L2 protocols) are handled 3873 * inside output routine, arpresolve/nd6_resolve() returns MAC 3874 * address instead of full prepend. 3875 * 3876 * This function creates calculated header==MAC for IPv4/IPv6 and 3877 * returns EAFNOSUPPORT (which is then handled in ARP code) for other 3878 * address families. 3879 */ 3880 static int 3881 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) 3882 { 3883 3884 if (req->rtype != IFENCAP_LL) 3885 return (EOPNOTSUPP); 3886 3887 if (req->bufsize < req->lladdr_len) 3888 return (ENOMEM); 3889 3890 switch (req->family) { 3891 case AF_INET: 3892 case AF_INET6: 3893 break; 3894 default: 3895 return (EAFNOSUPPORT); 3896 } 3897 3898 /* Copy lladdr to storage as is */ 3899 memmove(req->buf, req->lladdr, req->lladdr_len); 3900 req->bufsize = req->lladdr_len; 3901 req->lladdr_off = 0; 3902 3903 return (0); 3904 } 3905 3906 /* 3907 * Tunnel interfaces can nest, also they may cause infinite recursion 3908 * calls when misconfigured. We'll prevent this by detecting loops. 3909 * High nesting level may cause stack exhaustion. We'll prevent this 3910 * by introducing upper limit. 3911 * 3912 * Return 0, if tunnel nesting count is equal or less than limit. 3913 */ 3914 int 3915 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie, 3916 int limit) 3917 { 3918 struct m_tag *mtag; 3919 int count; 3920 3921 count = 1; 3922 mtag = NULL; 3923 while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) { 3924 if (*(struct ifnet **)(mtag + 1) == ifp) { 3925 log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp)); 3926 return (EIO); 3927 } 3928 count++; 3929 } 3930 if (count > limit) { 3931 log(LOG_NOTICE, 3932 "%s: if_output recursively called too many times(%d)\n", 3933 if_name(ifp), count); 3934 return (EIO); 3935 } 3936 mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT); 3937 if (mtag == NULL) 3938 return (ENOMEM); 3939 *(struct ifnet **)(mtag + 1) = ifp; 3940 m_tag_prepend(m, mtag); 3941 return (0); 3942 } 3943 3944 /* 3945 * Get the link layer address that was read from the hardware at attach. 3946 * 3947 * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type 3948 * their component interfaces as IFT_IEEE8023ADLAG. 3949 */ 3950 int 3951 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr) 3952 { 3953 3954 if (ifp->if_hw_addr == NULL) 3955 return (ENODEV); 3956 3957 switch (ifp->if_type) { 3958 case IFT_ETHER: 3959 case IFT_IEEE8023ADLAG: 3960 bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen); 3961 return (0); 3962 default: 3963 return (ENODEV); 3964 } 3965 } 3966 3967 /* 3968 * The name argument must be a pointer to storage which will last as 3969 * long as the interface does. For physical devices, the result of 3970 * device_get_name(dev) is a good choice and for pseudo-devices a 3971 * static string works well. 3972 */ 3973 void 3974 if_initname(struct ifnet *ifp, const char *name, int unit) 3975 { 3976 ifp->if_dname = name; 3977 ifp->if_dunit = unit; 3978 if (unit != IF_DUNIT_NONE) 3979 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 3980 else 3981 strlcpy(ifp->if_xname, name, IFNAMSIZ); 3982 } 3983 3984 static int 3985 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap) 3986 { 3987 char if_fmt[256]; 3988 3989 snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt); 3990 vlog(pri, if_fmt, ap); 3991 return (0); 3992 } 3993 3994 3995 int 3996 if_printf(struct ifnet *ifp, const char *fmt, ...) 3997 { 3998 va_list ap; 3999 4000 va_start(ap, fmt); 4001 if_vlog(ifp, LOG_INFO, fmt, ap); 4002 va_end(ap); 4003 return (0); 4004 } 4005 4006 int 4007 if_log(struct ifnet *ifp, int pri, const char *fmt, ...) 4008 { 4009 va_list ap; 4010 4011 va_start(ap, fmt); 4012 if_vlog(ifp, pri, fmt, ap); 4013 va_end(ap); 4014 return (0); 4015 } 4016 4017 void 4018 if_start(struct ifnet *ifp) 4019 { 4020 4021 (*(ifp)->if_start)(ifp); 4022 } 4023 4024 /* 4025 * Backwards compatibility interface for drivers 4026 * that have not implemented it 4027 */ 4028 static int 4029 if_transmit(struct ifnet *ifp, struct mbuf *m) 4030 { 4031 int error; 4032 4033 IFQ_HANDOFF(ifp, m, error); 4034 return (error); 4035 } 4036 4037 static void 4038 if_input_default(struct ifnet *ifp __unused, struct mbuf *m) 4039 { 4040 4041 m_freem(m); 4042 } 4043 4044 int 4045 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 4046 { 4047 int active = 0; 4048 4049 IF_LOCK(ifq); 4050 if (_IF_QFULL(ifq)) { 4051 IF_UNLOCK(ifq); 4052 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 4053 m_freem(m); 4054 return (0); 4055 } 4056 if (ifp != NULL) { 4057 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 4058 if (m->m_flags & (M_BCAST|M_MCAST)) 4059 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4060 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 4061 } 4062 _IF_ENQUEUE(ifq, m); 4063 IF_UNLOCK(ifq); 4064 if (ifp != NULL && !active) 4065 (*(ifp)->if_start)(ifp); 4066 return (1); 4067 } 4068 4069 void 4070 if_register_com_alloc(u_char type, 4071 if_com_alloc_t *a, if_com_free_t *f) 4072 { 4073 4074 KASSERT(if_com_alloc[type] == NULL, 4075 ("if_register_com_alloc: %d already registered", type)); 4076 KASSERT(if_com_free[type] == NULL, 4077 ("if_register_com_alloc: %d free already registered", type)); 4078 4079 if_com_alloc[type] = a; 4080 if_com_free[type] = f; 4081 } 4082 4083 void 4084 if_deregister_com_alloc(u_char type) 4085 { 4086 4087 KASSERT(if_com_alloc[type] != NULL, 4088 ("if_deregister_com_alloc: %d not registered", type)); 4089 KASSERT(if_com_free[type] != NULL, 4090 ("if_deregister_com_alloc: %d free not registered", type)); 4091 4092 /* 4093 * Ensure all pending EPOCH(9) callbacks have been executed. This 4094 * fixes issues about late invocation of if_destroy(), which leads 4095 * to memory leak from if_com_alloc[type] allocated if_l2com. 4096 */ 4097 epoch_drain_callbacks(net_epoch_preempt); 4098 4099 if_com_alloc[type] = NULL; 4100 if_com_free[type] = NULL; 4101 } 4102 4103 /* API for driver access to network stack owned ifnet.*/ 4104 uint64_t 4105 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 4106 { 4107 uint64_t oldbrate; 4108 4109 oldbrate = ifp->if_baudrate; 4110 ifp->if_baudrate = baudrate; 4111 return (oldbrate); 4112 } 4113 4114 uint64_t 4115 if_getbaudrate(if_t ifp) 4116 { 4117 4118 return (((struct ifnet *)ifp)->if_baudrate); 4119 } 4120 4121 int 4122 if_setcapabilities(if_t ifp, int capabilities) 4123 { 4124 ((struct ifnet *)ifp)->if_capabilities = capabilities; 4125 return (0); 4126 } 4127 4128 int 4129 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 4130 { 4131 ((struct ifnet *)ifp)->if_capabilities |= setbit; 4132 ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; 4133 4134 return (0); 4135 } 4136 4137 int 4138 if_getcapabilities(if_t ifp) 4139 { 4140 return ((struct ifnet *)ifp)->if_capabilities; 4141 } 4142 4143 int 4144 if_setcapenable(if_t ifp, int capabilities) 4145 { 4146 ((struct ifnet *)ifp)->if_capenable = capabilities; 4147 return (0); 4148 } 4149 4150 int 4151 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 4152 { 4153 if(setcap) 4154 ((struct ifnet *)ifp)->if_capenable |= setcap; 4155 if(clearcap) 4156 ((struct ifnet *)ifp)->if_capenable &= ~clearcap; 4157 4158 return (0); 4159 } 4160 4161 const char * 4162 if_getdname(if_t ifp) 4163 { 4164 return ((struct ifnet *)ifp)->if_dname; 4165 } 4166 4167 int 4168 if_togglecapenable(if_t ifp, int togglecap) 4169 { 4170 ((struct ifnet *)ifp)->if_capenable ^= togglecap; 4171 return (0); 4172 } 4173 4174 int 4175 if_getcapenable(if_t ifp) 4176 { 4177 return ((struct ifnet *)ifp)->if_capenable; 4178 } 4179 4180 /* 4181 * This is largely undesirable because it ties ifnet to a device, but does 4182 * provide flexiblity for an embedded product vendor. Should be used with 4183 * the understanding that it violates the interface boundaries, and should be 4184 * a last resort only. 4185 */ 4186 int 4187 if_setdev(if_t ifp, void *dev) 4188 { 4189 return (0); 4190 } 4191 4192 int 4193 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 4194 { 4195 ((struct ifnet *)ifp)->if_drv_flags |= set_flags; 4196 ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; 4197 4198 return (0); 4199 } 4200 4201 int 4202 if_getdrvflags(if_t ifp) 4203 { 4204 return ((struct ifnet *)ifp)->if_drv_flags; 4205 } 4206 4207 int 4208 if_setdrvflags(if_t ifp, int flags) 4209 { 4210 ((struct ifnet *)ifp)->if_drv_flags = flags; 4211 return (0); 4212 } 4213 4214 int 4215 if_setflags(if_t ifp, int flags) 4216 { 4217 4218 ifp->if_flags = flags; 4219 return (0); 4220 } 4221 4222 int 4223 if_setflagbits(if_t ifp, int set, int clear) 4224 { 4225 ((struct ifnet *)ifp)->if_flags |= set; 4226 ((struct ifnet *)ifp)->if_flags &= ~clear; 4227 4228 return (0); 4229 } 4230 4231 int 4232 if_getflags(if_t ifp) 4233 { 4234 return ((struct ifnet *)ifp)->if_flags; 4235 } 4236 4237 int 4238 if_clearhwassist(if_t ifp) 4239 { 4240 ((struct ifnet *)ifp)->if_hwassist = 0; 4241 return (0); 4242 } 4243 4244 int 4245 if_sethwassistbits(if_t ifp, int toset, int toclear) 4246 { 4247 ((struct ifnet *)ifp)->if_hwassist |= toset; 4248 ((struct ifnet *)ifp)->if_hwassist &= ~toclear; 4249 4250 return (0); 4251 } 4252 4253 int 4254 if_sethwassist(if_t ifp, int hwassist_bit) 4255 { 4256 ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; 4257 return (0); 4258 } 4259 4260 int 4261 if_gethwassist(if_t ifp) 4262 { 4263 return ((struct ifnet *)ifp)->if_hwassist; 4264 } 4265 4266 int 4267 if_setmtu(if_t ifp, int mtu) 4268 { 4269 ((struct ifnet *)ifp)->if_mtu = mtu; 4270 return (0); 4271 } 4272 4273 int 4274 if_getmtu(if_t ifp) 4275 { 4276 return ((struct ifnet *)ifp)->if_mtu; 4277 } 4278 4279 int 4280 if_getmtu_family(if_t ifp, int family) 4281 { 4282 struct domain *dp; 4283 4284 for (dp = domains; dp; dp = dp->dom_next) { 4285 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 4286 return (dp->dom_ifmtu((struct ifnet *)ifp)); 4287 } 4288 4289 return (((struct ifnet *)ifp)->if_mtu); 4290 } 4291 4292 /* 4293 * Methods for drivers to access interface unicast and multicast 4294 * link level addresses. Driver shall not know 'struct ifaddr' neither 4295 * 'struct ifmultiaddr'. 4296 */ 4297 u_int 4298 if_lladdr_count(if_t ifp) 4299 { 4300 struct epoch_tracker et; 4301 struct ifaddr *ifa; 4302 u_int count; 4303 4304 count = 0; 4305 NET_EPOCH_ENTER(et); 4306 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 4307 if (ifa->ifa_addr->sa_family == AF_LINK) 4308 count++; 4309 NET_EPOCH_EXIT(et); 4310 4311 return (count); 4312 } 4313 4314 u_int 4315 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4316 { 4317 struct epoch_tracker et; 4318 struct ifaddr *ifa; 4319 u_int count; 4320 4321 MPASS(cb); 4322 4323 count = 0; 4324 NET_EPOCH_ENTER(et); 4325 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4326 if (ifa->ifa_addr->sa_family != AF_LINK) 4327 continue; 4328 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr, 4329 count); 4330 } 4331 NET_EPOCH_EXIT(et); 4332 4333 return (count); 4334 } 4335 4336 u_int 4337 if_llmaddr_count(if_t ifp) 4338 { 4339 struct epoch_tracker et; 4340 struct ifmultiaddr *ifma; 4341 int count; 4342 4343 count = 0; 4344 NET_EPOCH_ENTER(et); 4345 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 4346 if (ifma->ifma_addr->sa_family == AF_LINK) 4347 count++; 4348 NET_EPOCH_EXIT(et); 4349 4350 return (count); 4351 } 4352 4353 u_int 4354 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4355 { 4356 struct epoch_tracker et; 4357 struct ifmultiaddr *ifma; 4358 u_int count; 4359 4360 MPASS(cb); 4361 4362 count = 0; 4363 NET_EPOCH_ENTER(et); 4364 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 4365 if (ifma->ifma_addr->sa_family != AF_LINK) 4366 continue; 4367 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr, 4368 count); 4369 } 4370 NET_EPOCH_EXIT(et); 4371 4372 return (count); 4373 } 4374 4375 int 4376 if_setsoftc(if_t ifp, void *softc) 4377 { 4378 ((struct ifnet *)ifp)->if_softc = softc; 4379 return (0); 4380 } 4381 4382 void * 4383 if_getsoftc(if_t ifp) 4384 { 4385 return ((struct ifnet *)ifp)->if_softc; 4386 } 4387 4388 void 4389 if_setrcvif(struct mbuf *m, if_t ifp) 4390 { 4391 4392 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 4393 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 4394 } 4395 4396 void 4397 if_setvtag(struct mbuf *m, uint16_t tag) 4398 { 4399 m->m_pkthdr.ether_vtag = tag; 4400 } 4401 4402 uint16_t 4403 if_getvtag(struct mbuf *m) 4404 { 4405 4406 return (m->m_pkthdr.ether_vtag); 4407 } 4408 4409 int 4410 if_sendq_empty(if_t ifp) 4411 { 4412 return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); 4413 } 4414 4415 struct ifaddr * 4416 if_getifaddr(if_t ifp) 4417 { 4418 return ((struct ifnet *)ifp)->if_addr; 4419 } 4420 4421 int 4422 if_getamcount(if_t ifp) 4423 { 4424 return ((struct ifnet *)ifp)->if_amcount; 4425 } 4426 4427 int 4428 if_setsendqready(if_t ifp) 4429 { 4430 IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); 4431 return (0); 4432 } 4433 4434 int 4435 if_setsendqlen(if_t ifp, int tx_desc_count) 4436 { 4437 IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); 4438 ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; 4439 4440 return (0); 4441 } 4442 4443 int 4444 if_vlantrunkinuse(if_t ifp) 4445 { 4446 return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; 4447 } 4448 4449 int 4450 if_input(if_t ifp, struct mbuf* sendmp) 4451 { 4452 (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); 4453 return (0); 4454 4455 } 4456 4457 struct mbuf * 4458 if_dequeue(if_t ifp) 4459 { 4460 struct mbuf *m; 4461 IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); 4462 4463 return (m); 4464 } 4465 4466 int 4467 if_sendq_prepend(if_t ifp, struct mbuf *m) 4468 { 4469 IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); 4470 return (0); 4471 } 4472 4473 int 4474 if_setifheaderlen(if_t ifp, int len) 4475 { 4476 ((struct ifnet *)ifp)->if_hdrlen = len; 4477 return (0); 4478 } 4479 4480 caddr_t 4481 if_getlladdr(if_t ifp) 4482 { 4483 return (IF_LLADDR((struct ifnet *)ifp)); 4484 } 4485 4486 void * 4487 if_gethandle(u_char type) 4488 { 4489 return (if_alloc(type)); 4490 } 4491 4492 void 4493 if_bpfmtap(if_t ifh, struct mbuf *m) 4494 { 4495 struct ifnet *ifp = (struct ifnet *)ifh; 4496 4497 BPF_MTAP(ifp, m); 4498 } 4499 4500 void 4501 if_etherbpfmtap(if_t ifh, struct mbuf *m) 4502 { 4503 struct ifnet *ifp = (struct ifnet *)ifh; 4504 4505 ETHER_BPF_MTAP(ifp, m); 4506 } 4507 4508 void 4509 if_vlancap(if_t ifh) 4510 { 4511 struct ifnet *ifp = (struct ifnet *)ifh; 4512 VLAN_CAPABILITIES(ifp); 4513 } 4514 4515 int 4516 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax) 4517 { 4518 4519 ((struct ifnet *)ifp)->if_hw_tsomax = if_hw_tsomax; 4520 return (0); 4521 } 4522 4523 int 4524 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount) 4525 { 4526 4527 ((struct ifnet *)ifp)->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount; 4528 return (0); 4529 } 4530 4531 int 4532 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize) 4533 { 4534 4535 ((struct ifnet *)ifp)->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize; 4536 return (0); 4537 } 4538 4539 u_int 4540 if_gethwtsomax(if_t ifp) 4541 { 4542 4543 return (((struct ifnet *)ifp)->if_hw_tsomax); 4544 } 4545 4546 u_int 4547 if_gethwtsomaxsegcount(if_t ifp) 4548 { 4549 4550 return (((struct ifnet *)ifp)->if_hw_tsomaxsegcount); 4551 } 4552 4553 u_int 4554 if_gethwtsomaxsegsize(if_t ifp) 4555 { 4556 4557 return (((struct ifnet *)ifp)->if_hw_tsomaxsegsize); 4558 } 4559 4560 void 4561 if_setinitfn(if_t ifp, void (*init_fn)(void *)) 4562 { 4563 ((struct ifnet *)ifp)->if_init = init_fn; 4564 } 4565 4566 void 4567 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) 4568 { 4569 ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; 4570 } 4571 4572 void 4573 if_setstartfn(if_t ifp, void (*start_fn)(if_t)) 4574 { 4575 ((struct ifnet *)ifp)->if_start = (void *)start_fn; 4576 } 4577 4578 void 4579 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 4580 { 4581 ((struct ifnet *)ifp)->if_transmit = start_fn; 4582 } 4583 4584 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 4585 { 4586 ((struct ifnet *)ifp)->if_qflush = flush_fn; 4587 4588 } 4589 4590 void 4591 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 4592 { 4593 4594 ifp->if_get_counter = fn; 4595 } 4596 4597 #ifdef DDB 4598 static void 4599 if_show_ifnet(struct ifnet *ifp) 4600 { 4601 4602 if (ifp == NULL) 4603 return; 4604 db_printf("%s:\n", ifp->if_xname); 4605 #define IF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, ifp->e); 4606 IF_DB_PRINTF("%s", if_dname); 4607 IF_DB_PRINTF("%d", if_dunit); 4608 IF_DB_PRINTF("%s", if_description); 4609 IF_DB_PRINTF("%u", if_index); 4610 IF_DB_PRINTF("%u", if_refcount); 4611 IF_DB_PRINTF("%d", if_index_reserved); 4612 IF_DB_PRINTF("%p", if_softc); 4613 IF_DB_PRINTF("%p", if_l2com); 4614 IF_DB_PRINTF("%p", if_llsoftc); 4615 IF_DB_PRINTF("%d", if_amcount); 4616 IF_DB_PRINTF("%p", if_addr); 4617 IF_DB_PRINTF("%p", if_broadcastaddr); 4618 IF_DB_PRINTF("%p", if_afdata); 4619 IF_DB_PRINTF("%d", if_afdata_initialized); 4620 IF_DB_PRINTF("%u", if_fib); 4621 IF_DB_PRINTF("%p", if_vnet); 4622 IF_DB_PRINTF("%p", if_home_vnet); 4623 IF_DB_PRINTF("%p", if_vlantrunk); 4624 IF_DB_PRINTF("%p", if_bpf); 4625 IF_DB_PRINTF("%u", if_pcount); 4626 IF_DB_PRINTF("%p", if_bridge); 4627 IF_DB_PRINTF("%p", if_lagg); 4628 IF_DB_PRINTF("%p", if_pf_kif); 4629 IF_DB_PRINTF("%p", if_carp); 4630 IF_DB_PRINTF("%p", if_label); 4631 IF_DB_PRINTF("%p", if_netmap); 4632 IF_DB_PRINTF("0x%08x", if_flags); 4633 IF_DB_PRINTF("0x%08x", if_drv_flags); 4634 IF_DB_PRINTF("0x%08x", if_capabilities); 4635 IF_DB_PRINTF("0x%08x", if_capenable); 4636 IF_DB_PRINTF("%p", if_snd.ifq_head); 4637 IF_DB_PRINTF("%p", if_snd.ifq_tail); 4638 IF_DB_PRINTF("%d", if_snd.ifq_len); 4639 IF_DB_PRINTF("%d", if_snd.ifq_maxlen); 4640 IF_DB_PRINTF("%p", if_snd.ifq_drv_head); 4641 IF_DB_PRINTF("%p", if_snd.ifq_drv_tail); 4642 IF_DB_PRINTF("%d", if_snd.ifq_drv_len); 4643 IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen); 4644 IF_DB_PRINTF("%d", if_snd.altq_type); 4645 IF_DB_PRINTF("%x", if_snd.altq_flags); 4646 #undef IF_DB_PRINTF 4647 } 4648 4649 DB_SHOW_COMMAND(ifnet, db_show_ifnet) 4650 { 4651 4652 if (!have_addr) { 4653 db_printf("usage: show ifnet <struct ifnet *>\n"); 4654 return; 4655 } 4656 4657 if_show_ifnet((struct ifnet *)addr); 4658 } 4659 4660 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets) 4661 { 4662 VNET_ITERATOR_DECL(vnet_iter); 4663 struct ifnet *ifp; 4664 u_short idx; 4665 4666 VNET_FOREACH(vnet_iter) { 4667 CURVNET_SET_QUIET(vnet_iter); 4668 #ifdef VIMAGE 4669 db_printf("vnet=%p\n", curvnet); 4670 #endif 4671 for (idx = 1; idx <= V_if_index; idx++) { 4672 ifp = V_ifindex_table[idx]; 4673 if (ifp == NULL) 4674 continue; 4675 db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp); 4676 if (db_pager_quit) 4677 break; 4678 } 4679 CURVNET_RESTORE(); 4680 } 4681 } 4682 #endif /* DDB */ 4683