1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org> 5 * Copyright (c) 1980, 1986, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)if.c 8.5 (Berkeley) 1/9/95 33 * $FreeBSD$ 34 */ 35 36 #include "opt_bpf.h" 37 #include "opt_inet6.h" 38 #include "opt_inet.h" 39 #include "opt_ddb.h" 40 41 #include <sys/param.h> 42 #include <sys/capsicum.h> 43 #include <sys/conf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/malloc.h> 46 #include <sys/domainset.h> 47 #include <sys/sbuf.h> 48 #include <sys/bus.h> 49 #include <sys/epoch.h> 50 #include <sys/mbuf.h> 51 #include <sys/systm.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/protosw.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/refcount.h> 60 #include <sys/module.h> 61 #include <sys/nv.h> 62 #include <sys/rwlock.h> 63 #include <sys/sockio.h> 64 #include <sys/syslog.h> 65 #include <sys/sysctl.h> 66 #include <sys/sysent.h> 67 #include <sys/taskqueue.h> 68 #include <sys/domain.h> 69 #include <sys/jail.h> 70 #include <sys/priv.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <machine/stdarg.h> 77 #include <vm/uma.h> 78 79 #include <net/bpf.h> 80 #include <net/ethernet.h> 81 #include <net/if.h> 82 #include <net/if_arp.h> 83 #include <net/if_clone.h> 84 #include <net/if_dl.h> 85 #include <net/if_types.h> 86 #include <net/if_var.h> 87 #include <net/if_media.h> 88 #include <net/if_mib.h> 89 #include <net/if_vlan_var.h> 90 #include <net/radix.h> 91 #include <net/route.h> 92 #include <net/route/route_ctl.h> 93 #include <net/vnet.h> 94 95 #if defined(INET) || defined(INET6) 96 #include <net/ethernet.h> 97 #include <netinet/in.h> 98 #include <netinet/in_var.h> 99 #include <netinet/ip.h> 100 #include <netinet/ip_carp.h> 101 #ifdef INET 102 #include <net/debugnet.h> 103 #include <netinet/if_ether.h> 104 #endif /* INET */ 105 #ifdef INET6 106 #include <netinet6/in6_var.h> 107 #include <netinet6/in6_ifattach.h> 108 #endif /* INET6 */ 109 #endif /* INET || INET6 */ 110 111 #include <security/mac/mac_framework.h> 112 113 /* 114 * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name 115 * and ifr_ifru when it is used in SIOCGIFCONF. 116 */ 117 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) == 118 offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru"); 119 120 __read_mostly epoch_t net_epoch_preempt; 121 #ifdef COMPAT_FREEBSD32 122 #include <sys/mount.h> 123 #include <compat/freebsd32/freebsd32.h> 124 125 struct ifreq_buffer32 { 126 uint32_t length; /* (size_t) */ 127 uint32_t buffer; /* (void *) */ 128 }; 129 130 /* 131 * Interface request structure used for socket 132 * ioctl's. All interface ioctl's must have parameter 133 * definitions which begin with ifr_name. The 134 * remainder may be interface specific. 135 */ 136 struct ifreq32 { 137 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ 138 union { 139 struct sockaddr ifru_addr; 140 struct sockaddr ifru_dstaddr; 141 struct sockaddr ifru_broadaddr; 142 struct ifreq_buffer32 ifru_buffer; 143 short ifru_flags[2]; 144 short ifru_index; 145 int ifru_jid; 146 int ifru_metric; 147 int ifru_mtu; 148 int ifru_phys; 149 int ifru_media; 150 uint32_t ifru_data; 151 int ifru_cap[2]; 152 u_int ifru_fib; 153 u_char ifru_vlan_pcp; 154 } ifr_ifru; 155 }; 156 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32)); 157 CTASSERT(__offsetof(struct ifreq, ifr_ifru) == 158 __offsetof(struct ifreq32, ifr_ifru)); 159 160 struct ifconf32 { 161 int32_t ifc_len; 162 union { 163 uint32_t ifcu_buf; 164 uint32_t ifcu_req; 165 } ifc_ifcu; 166 }; 167 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 168 169 struct ifdrv32 { 170 char ifd_name[IFNAMSIZ]; 171 uint32_t ifd_cmd; 172 uint32_t ifd_len; 173 uint32_t ifd_data; 174 }; 175 #define SIOCSDRVSPEC32 _IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32) 176 #define SIOCGDRVSPEC32 _IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32) 177 178 struct ifgroupreq32 { 179 char ifgr_name[IFNAMSIZ]; 180 u_int ifgr_len; 181 union { 182 char ifgru_group[IFNAMSIZ]; 183 uint32_t ifgru_groups; 184 } ifgr_ifgru; 185 }; 186 #define SIOCAIFGROUP32 _IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32) 187 #define SIOCGIFGROUP32 _IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32) 188 #define SIOCDIFGROUP32 _IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32) 189 #define SIOCGIFGMEMB32 _IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32) 190 191 struct ifmediareq32 { 192 char ifm_name[IFNAMSIZ]; 193 int ifm_current; 194 int ifm_mask; 195 int ifm_status; 196 int ifm_active; 197 int ifm_count; 198 uint32_t ifm_ulist; /* (int *) */ 199 }; 200 #define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32) 201 #define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32) 202 #endif /* COMPAT_FREEBSD32 */ 203 204 union ifreq_union { 205 struct ifreq ifr; 206 #ifdef COMPAT_FREEBSD32 207 struct ifreq32 ifr32; 208 #endif 209 }; 210 211 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 212 "Link layers"); 213 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 214 "Generic link-management"); 215 216 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 217 &ifqmaxlen, 0, "max send queue size"); 218 219 /* Log link state change events */ 220 static int log_link_state_change = 1; 221 222 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 223 &log_link_state_change, 0, 224 "log interface link state change events"); 225 226 /* Log promiscuous mode change events */ 227 static int log_promisc_mode_change = 1; 228 229 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN, 230 &log_promisc_mode_change, 1, 231 "log promiscuous mode change events"); 232 233 /* Interface description */ 234 static unsigned int ifdescr_maxlen = 1024; 235 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 236 &ifdescr_maxlen, 0, 237 "administrative maximum length for interface description"); 238 239 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 240 241 /* global sx for non-critical path ifdescr */ 242 static struct sx ifdescr_sx; 243 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 244 245 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 246 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 247 /* These are external hooks for CARP. */ 248 void (*carp_linkstate_p)(struct ifnet *ifp); 249 void (*carp_demote_adj_p)(int, char *); 250 int (*carp_master_p)(struct ifaddr *); 251 #if defined(INET) || defined(INET6) 252 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 253 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 254 const struct sockaddr *sa); 255 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 256 int (*carp_attach_p)(struct ifaddr *, int); 257 void (*carp_detach_p)(struct ifaddr *, bool); 258 #endif 259 #ifdef INET 260 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 261 #endif 262 #ifdef INET6 263 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 264 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 265 const struct in6_addr *taddr); 266 #endif 267 268 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 269 270 /* 271 * XXX: Style; these should be sorted alphabetically, and unprototyped 272 * static functions should be prototyped. Currently they are sorted by 273 * declaration order. 274 */ 275 static void if_attachdomain(void *); 276 static void if_attachdomain1(struct ifnet *); 277 static int ifconf(u_long, caddr_t); 278 static void if_input_default(struct ifnet *, struct mbuf *); 279 static int if_requestencap_default(struct ifnet *, struct if_encap_req *); 280 static void if_route(struct ifnet *, int flag, int fam); 281 static int if_setflag(struct ifnet *, int, int, int *, int); 282 static int if_transmit(struct ifnet *ifp, struct mbuf *m); 283 static void if_unroute(struct ifnet *, int flag, int fam); 284 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 285 static void do_link_state_change(void *, int); 286 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 287 static int if_getgroupmembers(struct ifgroupreq *); 288 static void if_delgroups(struct ifnet *); 289 static void if_attach_internal(struct ifnet *, bool); 290 static int if_detach_internal(struct ifnet *, bool); 291 static void if_siocaddmulti(void *, int); 292 static void if_link_ifnet(struct ifnet *); 293 static bool if_unlink_ifnet(struct ifnet *, bool); 294 #ifdef VIMAGE 295 static int if_vmove(struct ifnet *, struct vnet *); 296 #endif 297 298 #ifdef INET6 299 /* 300 * XXX: declare here to avoid to include many inet6 related files.. 301 * should be more generalized? 302 */ 303 extern void nd6_setmtu(struct ifnet *); 304 #endif 305 306 /* ipsec helper hooks */ 307 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); 308 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); 309 310 int ifqmaxlen = IFQ_MAXLEN; 311 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 312 VNET_DEFINE(struct ifgrouphead, ifg_head); 313 314 /* Table of ifnet by index. */ 315 static int if_index; 316 static int if_indexlim = 8; 317 static struct ifindex_entry { 318 struct ifnet *ife_ifnet; 319 uint16_t ife_gencnt; 320 } *ifindex_table; 321 322 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system, 323 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 324 "Variables global to all interfaces"); 325 static int 326 sysctl_ifcount(SYSCTL_HANDLER_ARGS) 327 { 328 int rv = 0; 329 330 IFNET_RLOCK(); 331 for (int i = 1; i <= if_index; i++) 332 if (ifindex_table[i].ife_ifnet != NULL && 333 ifindex_table[i].ife_ifnet->if_vnet == curvnet) 334 rv = i; 335 IFNET_RUNLOCK(); 336 337 return (sysctl_handle_int(oidp, &rv, 0, req)); 338 } 339 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount, 340 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I", 341 "Maximum known interface index"); 342 343 /* 344 * The global network interface list (V_ifnet) and related state (such as 345 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock. 346 * This may be acquired to stabilise the list, or we may rely on NET_EPOCH. 347 */ 348 struct sx ifnet_sxlock; 349 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 350 351 struct sx ifnet_detach_sxlock; 352 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx", 353 SX_RECURSE); 354 355 #ifdef VIMAGE 356 #define VNET_IS_SHUTTING_DOWN(_vnet) \ 357 ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE) 358 #endif 359 360 static if_com_alloc_t *if_com_alloc[256]; 361 static if_com_free_t *if_com_free[256]; 362 363 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 364 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 365 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 366 367 struct ifnet * 368 ifnet_byindex(u_int idx) 369 { 370 struct ifnet *ifp; 371 372 NET_EPOCH_ASSERT(); 373 374 if (__predict_false(idx > if_index)) 375 return (NULL); 376 377 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 378 379 if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet) 380 ifp = NULL; 381 382 return (ifp); 383 } 384 385 struct ifnet * 386 ifnet_byindex_ref(u_int idx) 387 { 388 struct ifnet *ifp; 389 390 ifp = ifnet_byindex(idx); 391 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) 392 return (NULL); 393 if (!if_try_ref(ifp)) 394 return (NULL); 395 return (ifp); 396 } 397 398 struct ifnet * 399 ifnet_byindexgen(uint16_t idx, uint16_t gen) 400 { 401 struct ifnet *ifp; 402 403 NET_EPOCH_ASSERT(); 404 405 if (__predict_false(idx > if_index)) 406 return (NULL); 407 408 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 409 410 if (ifindex_table[idx].ife_gencnt == gen) 411 return (ifp); 412 else 413 return (NULL); 414 } 415 416 /* 417 * Network interface utility routines. 418 * 419 * Routines with ifa_ifwith* names take sockaddr *'s as 420 * parameters. 421 */ 422 423 static void 424 if_init(void *arg __unused) 425 { 426 427 ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table), 428 M_IFNET, M_WAITOK | M_ZERO); 429 } 430 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init, NULL); 431 432 static void 433 vnet_if_init(const void *unused __unused) 434 { 435 436 CK_STAILQ_INIT(&V_ifnet); 437 CK_STAILQ_INIT(&V_ifg_head); 438 vnet_if_clone_init(); 439 } 440 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 441 NULL); 442 443 static void 444 if_link_ifnet(struct ifnet *ifp) 445 { 446 447 IFNET_WLOCK(); 448 CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 449 #ifdef VIMAGE 450 curvnet->vnet_ifcnt++; 451 #endif 452 IFNET_WUNLOCK(); 453 } 454 455 static bool 456 if_unlink_ifnet(struct ifnet *ifp, bool vmove) 457 { 458 struct ifnet *iter; 459 int found = 0; 460 461 IFNET_WLOCK(); 462 CK_STAILQ_FOREACH(iter, &V_ifnet, if_link) 463 if (iter == ifp) { 464 CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link); 465 if (!vmove) 466 ifp->if_flags |= IFF_DYING; 467 found = 1; 468 break; 469 } 470 #ifdef VIMAGE 471 curvnet->vnet_ifcnt--; 472 #endif 473 IFNET_WUNLOCK(); 474 475 return (found); 476 } 477 478 #ifdef VIMAGE 479 static void 480 vnet_if_return(const void *unused __unused) 481 { 482 struct ifnet *ifp, *nifp; 483 struct ifnet **pending; 484 int found __diagused; 485 int i; 486 487 i = 0; 488 489 /* 490 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd 491 * enter NET_EPOCH, but that's not possible, because if_vmove() calls 492 * if_detach_internal(), which waits for NET_EPOCH callbacks to 493 * complete. We can't do that from within NET_EPOCH. 494 * 495 * However, we can also use the IFNET_xLOCK, which is the V_ifnet 496 * read/write lock. We cannot hold the lock as we call if_vmove() 497 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib 498 * ctx lock. 499 */ 500 IFNET_WLOCK(); 501 502 pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt, 503 M_IFNET, M_WAITOK | M_ZERO); 504 505 /* Return all inherited interfaces to their parent vnets. */ 506 CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 507 if (ifp->if_home_vnet != ifp->if_vnet) { 508 found = if_unlink_ifnet(ifp, true); 509 MPASS(found); 510 511 pending[i++] = ifp; 512 } 513 } 514 IFNET_WUNLOCK(); 515 516 for (int j = 0; j < i; j++) { 517 sx_xlock(&ifnet_detach_sxlock); 518 if_vmove(pending[j], pending[j]->if_home_vnet); 519 sx_xunlock(&ifnet_detach_sxlock); 520 } 521 522 free(pending, M_IFNET); 523 } 524 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, 525 vnet_if_return, NULL); 526 #endif 527 528 /* 529 * Allocate a struct ifnet and an index for an interface. A layer 2 530 * common structure will also be allocated if an allocation routine is 531 * registered for the passed type. 532 */ 533 static struct ifnet * 534 if_alloc_domain(u_char type, int numa_domain) 535 { 536 struct ifnet *ifp; 537 u_short idx; 538 539 KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large")); 540 if (numa_domain == IF_NODOM) 541 ifp = malloc(sizeof(struct ifnet), M_IFNET, 542 M_WAITOK | M_ZERO); 543 else 544 ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET, 545 DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO); 546 ifp->if_type = type; 547 ifp->if_alloctype = type; 548 ifp->if_numa_domain = numa_domain; 549 #ifdef VIMAGE 550 ifp->if_vnet = curvnet; 551 #endif 552 if (if_com_alloc[type] != NULL) { 553 ifp->if_l2com = if_com_alloc[type](type, ifp); 554 KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__, 555 type)); 556 } 557 558 IF_ADDR_LOCK_INIT(ifp); 559 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 560 TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp); 561 ifp->if_afdata_initialized = 0; 562 IF_AFDATA_LOCK_INIT(ifp); 563 CK_STAILQ_INIT(&ifp->if_addrhead); 564 CK_STAILQ_INIT(&ifp->if_multiaddrs); 565 CK_STAILQ_INIT(&ifp->if_groups); 566 #ifdef MAC 567 mac_ifnet_init(ifp); 568 #endif 569 ifq_init(&ifp->if_snd, ifp); 570 571 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 572 for (int i = 0; i < IFCOUNTERS; i++) 573 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 574 ifp->if_get_counter = if_get_counter_default; 575 ifp->if_pcp = IFNET_PCP_NONE; 576 577 /* Allocate an ifindex array entry. */ 578 IFNET_WLOCK(); 579 /* 580 * Try to find an empty slot below if_index. If we fail, take the 581 * next slot. 582 */ 583 for (idx = 1; idx <= if_index; idx++) { 584 if (ifindex_table[idx].ife_ifnet == NULL) 585 break; 586 } 587 588 /* Catch if_index overflow. */ 589 if (idx >= if_indexlim) { 590 struct ifindex_entry *new, *old; 591 int newlim; 592 593 newlim = if_indexlim * 2; 594 new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO); 595 memcpy(new, ifindex_table, if_indexlim * sizeof(*new)); 596 old = ifindex_table; 597 ck_pr_store_ptr(&ifindex_table, new); 598 if_indexlim = newlim; 599 epoch_wait_preempt(net_epoch_preempt); 600 free(old, M_IFNET); 601 } 602 if (idx > if_index) 603 if_index = idx; 604 605 ifp->if_index = idx; 606 ifp->if_idxgen = ifindex_table[idx].ife_gencnt; 607 ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp); 608 IFNET_WUNLOCK(); 609 610 return (ifp); 611 } 612 613 struct ifnet * 614 if_alloc_dev(u_char type, device_t dev) 615 { 616 int numa_domain; 617 618 if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0) 619 return (if_alloc_domain(type, IF_NODOM)); 620 return (if_alloc_domain(type, numa_domain)); 621 } 622 623 struct ifnet * 624 if_alloc(u_char type) 625 { 626 627 return (if_alloc_domain(type, IF_NODOM)); 628 } 629 /* 630 * Do the actual work of freeing a struct ifnet, and layer 2 common 631 * structure. This call is made when the network epoch guarantees 632 * us that nobody holds a pointer to the interface. 633 */ 634 static void 635 if_free_deferred(epoch_context_t ctx) 636 { 637 struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx); 638 639 KASSERT((ifp->if_flags & IFF_DYING), 640 ("%s: interface not dying", __func__)); 641 642 if (if_com_free[ifp->if_alloctype] != NULL) 643 if_com_free[ifp->if_alloctype](ifp->if_l2com, 644 ifp->if_alloctype); 645 646 #ifdef MAC 647 mac_ifnet_destroy(ifp); 648 #endif /* MAC */ 649 IF_AFDATA_DESTROY(ifp); 650 IF_ADDR_LOCK_DESTROY(ifp); 651 ifq_delete(&ifp->if_snd); 652 653 for (int i = 0; i < IFCOUNTERS; i++) 654 counter_u64_free(ifp->if_counters[i]); 655 656 free(ifp->if_description, M_IFDESCR); 657 free(ifp->if_hw_addr, M_IFADDR); 658 free(ifp, M_IFNET); 659 } 660 661 /* 662 * Deregister an interface and free the associated storage. 663 */ 664 void 665 if_free(struct ifnet *ifp) 666 { 667 668 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 669 670 /* 671 * XXXGL: An interface index is really an alias to ifp pointer. 672 * Why would we clear the alias now, and not in the deferred 673 * context? Indeed there is nothing wrong with some network 674 * thread obtaining ifp via ifnet_byindex() inside the network 675 * epoch and then dereferencing ifp while we perform if_free(), 676 * and after if_free() finished, too. 677 * 678 * This early index freeing was important back when ifindex was 679 * virtualized and interface would outlive the vnet. 680 */ 681 IFNET_WLOCK(); 682 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 683 ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL); 684 ifindex_table[ifp->if_index].ife_gencnt++; 685 while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL) 686 if_index--; 687 IFNET_WUNLOCK(); 688 689 if (refcount_release(&ifp->if_refcount)) 690 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 691 } 692 693 /* 694 * Interfaces to keep an ifnet type-stable despite the possibility of the 695 * driver calling if_free(). If there are additional references, we defer 696 * freeing the underlying data structure. 697 */ 698 void 699 if_ref(struct ifnet *ifp) 700 { 701 u_int old __diagused; 702 703 /* We don't assert the ifnet list lock here, but arguably should. */ 704 old = refcount_acquire(&ifp->if_refcount); 705 KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp)); 706 } 707 708 bool 709 if_try_ref(struct ifnet *ifp) 710 { 711 NET_EPOCH_ASSERT(); 712 return (refcount_acquire_if_not_zero(&ifp->if_refcount)); 713 } 714 715 void 716 if_rele(struct ifnet *ifp) 717 { 718 719 if (!refcount_release(&ifp->if_refcount)) 720 return; 721 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 722 } 723 724 void 725 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 726 { 727 728 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 729 730 if (ifq->ifq_maxlen == 0) 731 ifq->ifq_maxlen = ifqmaxlen; 732 733 ifq->altq_type = 0; 734 ifq->altq_disc = NULL; 735 ifq->altq_flags &= ALTQF_CANTCHANGE; 736 ifq->altq_tbr = NULL; 737 ifq->altq_ifp = ifp; 738 } 739 740 void 741 ifq_delete(struct ifaltq *ifq) 742 { 743 mtx_destroy(&ifq->ifq_mtx); 744 } 745 746 /* 747 * Perform generic interface initialization tasks and attach the interface 748 * to the list of "active" interfaces. If vmove flag is set on entry 749 * to if_attach_internal(), perform only a limited subset of initialization 750 * tasks, given that we are moving from one vnet to another an ifnet which 751 * has already been fully initialized. 752 * 753 * Note that if_detach_internal() removes group membership unconditionally 754 * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. 755 * Thus, when if_vmove() is applied to a cloned interface, group membership 756 * is lost while a cloned one always joins a group whose name is 757 * ifc->ifc_name. To recover this after if_detach_internal() and 758 * if_attach_internal(), the cloner should be specified to 759 * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() 760 * attempts to join a group whose name is ifc->ifc_name. 761 * 762 * XXX: 763 * - The decision to return void and thus require this function to 764 * succeed is questionable. 765 * - We should probably do more sanity checking. For instance we don't 766 * do anything to insure if_xname is unique or non-empty. 767 */ 768 void 769 if_attach(struct ifnet *ifp) 770 { 771 772 if_attach_internal(ifp, false); 773 } 774 775 /* 776 * Compute the least common TSO limit. 777 */ 778 void 779 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 780 { 781 /* 782 * 1) If there is no limit currently, take the limit from 783 * the network adapter. 784 * 785 * 2) If the network adapter has a limit below the current 786 * limit, apply it. 787 */ 788 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 789 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 790 pmax->tsomaxbytes = ifp->if_hw_tsomax; 791 } 792 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 793 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 794 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 795 } 796 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 797 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 798 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 799 } 800 } 801 802 /* 803 * Update TSO limit of a network adapter. 804 * 805 * Returns zero if no change. Else non-zero. 806 */ 807 int 808 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 809 { 810 int retval = 0; 811 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 812 ifp->if_hw_tsomax = pmax->tsomaxbytes; 813 retval++; 814 } 815 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 816 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 817 retval++; 818 } 819 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 820 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 821 retval++; 822 } 823 return (retval); 824 } 825 826 static void 827 if_attach_internal(struct ifnet *ifp, bool vmove) 828 { 829 unsigned socksize, ifasize; 830 int namelen, masklen; 831 struct sockaddr_dl *sdl; 832 struct ifaddr *ifa; 833 834 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 835 836 #ifdef VIMAGE 837 ifp->if_vnet = curvnet; 838 if (ifp->if_home_vnet == NULL) 839 ifp->if_home_vnet = curvnet; 840 #endif 841 842 if_addgroup(ifp, IFG_ALL); 843 844 #ifdef VIMAGE 845 /* Restore group membership for cloned interface. */ 846 if (vmove) 847 if_clone_restoregroup(ifp); 848 #endif 849 850 getmicrotime(&ifp->if_lastchange); 851 ifp->if_epoch = time_uptime; 852 853 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 854 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 855 ("transmit and qflush must both either be set or both be NULL")); 856 if (ifp->if_transmit == NULL) { 857 ifp->if_transmit = if_transmit; 858 ifp->if_qflush = if_qflush; 859 } 860 if (ifp->if_input == NULL) 861 ifp->if_input = if_input_default; 862 863 if (ifp->if_requestencap == NULL) 864 ifp->if_requestencap = if_requestencap_default; 865 866 if (!vmove) { 867 #ifdef MAC 868 mac_ifnet_create(ifp); 869 #endif 870 871 /* 872 * Create a Link Level name for this device. 873 */ 874 namelen = strlen(ifp->if_xname); 875 /* 876 * Always save enough space for any possiable name so we 877 * can do a rename in place later. 878 */ 879 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 880 socksize = masklen + ifp->if_addrlen; 881 if (socksize < sizeof(*sdl)) 882 socksize = sizeof(*sdl); 883 socksize = roundup2(socksize, sizeof(long)); 884 ifasize = sizeof(*ifa) + 2 * socksize; 885 ifa = ifa_alloc(ifasize, M_WAITOK); 886 sdl = (struct sockaddr_dl *)(ifa + 1); 887 sdl->sdl_len = socksize; 888 sdl->sdl_family = AF_LINK; 889 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 890 sdl->sdl_nlen = namelen; 891 sdl->sdl_index = ifp->if_index; 892 sdl->sdl_type = ifp->if_type; 893 ifp->if_addr = ifa; 894 ifa->ifa_ifp = ifp; 895 ifa->ifa_addr = (struct sockaddr *)sdl; 896 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 897 ifa->ifa_netmask = (struct sockaddr *)sdl; 898 sdl->sdl_len = masklen; 899 while (namelen != 0) 900 sdl->sdl_data[--namelen] = 0xff; 901 CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 902 /* Reliably crash if used uninitialized. */ 903 ifp->if_broadcastaddr = NULL; 904 905 if (ifp->if_type == IFT_ETHER) { 906 ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR, 907 M_WAITOK | M_ZERO); 908 } 909 910 #if defined(INET) || defined(INET6) 911 /* Use defaults for TSO, if nothing is set */ 912 if (ifp->if_hw_tsomax == 0 && 913 ifp->if_hw_tsomaxsegcount == 0 && 914 ifp->if_hw_tsomaxsegsize == 0) { 915 /* 916 * The TSO defaults needs to be such that an 917 * NFS mbuf list of 35 mbufs totalling just 918 * below 64K works and that a chain of mbufs 919 * can be defragged into at most 32 segments: 920 */ 921 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 922 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 923 ifp->if_hw_tsomaxsegcount = 35; 924 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 925 926 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 927 if (ifp->if_capabilities & IFCAP_TSO) { 928 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 929 ifp->if_hw_tsomax, 930 ifp->if_hw_tsomaxsegcount, 931 ifp->if_hw_tsomaxsegsize); 932 } 933 } 934 #endif 935 } 936 #ifdef VIMAGE 937 else { 938 /* 939 * Update the interface index in the link layer address 940 * of the interface. 941 */ 942 for (ifa = ifp->if_addr; ifa != NULL; 943 ifa = CK_STAILQ_NEXT(ifa, ifa_link)) { 944 if (ifa->ifa_addr->sa_family == AF_LINK) { 945 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 946 sdl->sdl_index = ifp->if_index; 947 } 948 } 949 } 950 #endif 951 952 if_link_ifnet(ifp); 953 954 if (domain_init_status >= 2) 955 if_attachdomain1(ifp); 956 957 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 958 if (IS_DEFAULT_VNET(curvnet)) 959 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 960 961 /* Announce the interface. */ 962 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 963 } 964 965 static void 966 if_epochalloc(void *dummy __unused) 967 { 968 969 net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT); 970 } 971 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL); 972 973 static void 974 if_attachdomain(void *dummy) 975 { 976 struct ifnet *ifp; 977 978 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 979 if_attachdomain1(ifp); 980 } 981 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 982 if_attachdomain, NULL); 983 984 static void 985 if_attachdomain1(struct ifnet *ifp) 986 { 987 struct domain *dp; 988 989 /* 990 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 991 * cannot lock ifp->if_afdata initialization, entirely. 992 */ 993 IF_AFDATA_LOCK(ifp); 994 if (ifp->if_afdata_initialized >= domain_init_status) { 995 IF_AFDATA_UNLOCK(ifp); 996 log(LOG_WARNING, "%s called more than once on %s\n", 997 __func__, ifp->if_xname); 998 return; 999 } 1000 ifp->if_afdata_initialized = domain_init_status; 1001 IF_AFDATA_UNLOCK(ifp); 1002 1003 /* address family dependent data region */ 1004 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 1005 for (dp = domains; dp; dp = dp->dom_next) { 1006 if (dp->dom_ifattach) 1007 ifp->if_afdata[dp->dom_family] = 1008 (*dp->dom_ifattach)(ifp); 1009 } 1010 } 1011 1012 /* 1013 * Remove any unicast or broadcast network addresses from an interface. 1014 */ 1015 void 1016 if_purgeaddrs(struct ifnet *ifp) 1017 { 1018 struct ifaddr *ifa; 1019 1020 #ifdef INET6 1021 /* 1022 * Need to leave multicast addresses of proxy NDP llentries 1023 * before in6_purgeifaddr() because the llentries are keys 1024 * for in6_multi objects of proxy NDP entries. 1025 * in6_purgeifaddr()s clean up llentries including proxy NDPs 1026 * then we would lose the keys if they are called earlier. 1027 */ 1028 in6_purge_proxy_ndp(ifp); 1029 #endif 1030 while (1) { 1031 struct epoch_tracker et; 1032 1033 NET_EPOCH_ENTER(et); 1034 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1035 if (ifa->ifa_addr->sa_family != AF_LINK) 1036 break; 1037 } 1038 NET_EPOCH_EXIT(et); 1039 1040 if (ifa == NULL) 1041 break; 1042 #ifdef INET 1043 /* XXX: Ugly!! ad hoc just for INET */ 1044 if (ifa->ifa_addr->sa_family == AF_INET) { 1045 struct ifaliasreq ifr; 1046 1047 bzero(&ifr, sizeof(ifr)); 1048 ifr.ifra_addr = *ifa->ifa_addr; 1049 if (ifa->ifa_dstaddr) 1050 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 1051 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 1052 NULL) == 0) 1053 continue; 1054 } 1055 #endif /* INET */ 1056 #ifdef INET6 1057 if (ifa->ifa_addr->sa_family == AF_INET6) { 1058 in6_purgeifaddr((struct in6_ifaddr *)ifa); 1059 /* ifp_addrhead is already updated */ 1060 continue; 1061 } 1062 #endif /* INET6 */ 1063 IF_ADDR_WLOCK(ifp); 1064 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1065 IF_ADDR_WUNLOCK(ifp); 1066 ifa_free(ifa); 1067 } 1068 } 1069 1070 /* 1071 * Remove any multicast network addresses from an interface when an ifnet 1072 * is going away. 1073 */ 1074 static void 1075 if_purgemaddrs(struct ifnet *ifp) 1076 { 1077 struct ifmultiaddr *ifma; 1078 1079 IF_ADDR_WLOCK(ifp); 1080 while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) { 1081 ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs); 1082 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 1083 if_delmulti_locked(ifp, ifma, 1); 1084 } 1085 IF_ADDR_WUNLOCK(ifp); 1086 } 1087 1088 /* 1089 * Detach an interface, removing it from the list of "active" interfaces. 1090 * If vmove flag is set on entry to if_detach_internal(), perform only a 1091 * limited subset of cleanup tasks, given that we are moving an ifnet from 1092 * one vnet to another, where it must be fully operational. 1093 * 1094 * XXXRW: There are some significant questions about event ordering, and 1095 * how to prevent things from starting to use the interface during detach. 1096 */ 1097 void 1098 if_detach(struct ifnet *ifp) 1099 { 1100 bool found; 1101 1102 CURVNET_SET_QUIET(ifp->if_vnet); 1103 found = if_unlink_ifnet(ifp, false); 1104 if (found) { 1105 sx_xlock(&ifnet_detach_sxlock); 1106 if_detach_internal(ifp, false); 1107 sx_xunlock(&ifnet_detach_sxlock); 1108 } 1109 CURVNET_RESTORE(); 1110 } 1111 1112 /* 1113 * The vmove flag, if set, indicates that we are called from a callpath 1114 * that is moving an interface to a different vnet instance. 1115 * 1116 * The shutdown flag, if set, indicates that we are called in the 1117 * process of shutting down a vnet instance. Currently only the 1118 * vnet_if_return SYSUNINIT function sets it. Note: we can be called 1119 * on a vnet instance shutdown without this flag being set, e.g., when 1120 * the cloned interfaces are destoyed as first thing of teardown. 1121 */ 1122 static int 1123 if_detach_internal(struct ifnet *ifp, bool vmove) 1124 { 1125 struct ifaddr *ifa; 1126 int i; 1127 struct domain *dp; 1128 #ifdef VIMAGE 1129 bool shutdown; 1130 1131 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1132 #endif 1133 1134 /* 1135 * At this point we know the interface still was on the ifnet list 1136 * and we removed it so we are in a stable state. 1137 */ 1138 epoch_wait_preempt(net_epoch_preempt); 1139 1140 /* 1141 * Ensure all pending EPOCH(9) callbacks have been executed. This 1142 * fixes issues about late destruction of multicast options 1143 * which lead to leave group calls, which in turn access the 1144 * belonging ifnet structure: 1145 */ 1146 NET_EPOCH_DRAIN_CALLBACKS(); 1147 1148 /* 1149 * In any case (destroy or vmove) detach us from the groups 1150 * and remove/wait for pending events on the taskq. 1151 * XXX-BZ in theory an interface could still enqueue a taskq change? 1152 */ 1153 if_delgroups(ifp); 1154 1155 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 1156 taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask); 1157 1158 if_down(ifp); 1159 1160 #ifdef VIMAGE 1161 /* 1162 * On VNET shutdown abort here as the stack teardown will do all 1163 * the work top-down for us. 1164 */ 1165 if (shutdown) { 1166 /* Give interface users the chance to clean up. */ 1167 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1168 1169 /* 1170 * In case of a vmove we are done here without error. 1171 * If we would signal an error it would lead to the same 1172 * abort as if we did not find the ifnet anymore. 1173 * if_detach() calls us in void context and does not care 1174 * about an early abort notification, so life is splendid :) 1175 */ 1176 goto finish_vnet_shutdown; 1177 } 1178 #endif 1179 1180 /* 1181 * At this point we are not tearing down a VNET and are either 1182 * going to destroy or vmove the interface and have to cleanup 1183 * accordingly. 1184 */ 1185 1186 /* 1187 * Remove routes and flush queues. 1188 */ 1189 #ifdef ALTQ 1190 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1191 altq_disable(&ifp->if_snd); 1192 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1193 altq_detach(&ifp->if_snd); 1194 #endif 1195 1196 if_purgeaddrs(ifp); 1197 1198 #ifdef INET 1199 in_ifdetach(ifp); 1200 #endif 1201 1202 #ifdef INET6 1203 /* 1204 * Remove all IPv6 kernel structs related to ifp. This should be done 1205 * before removing routing entries below, since IPv6 interface direct 1206 * routes are expected to be removed by the IPv6-specific kernel API. 1207 * Otherwise, the kernel will detect some inconsistency and bark it. 1208 */ 1209 in6_ifdetach(ifp); 1210 #endif 1211 if_purgemaddrs(ifp); 1212 1213 /* Announce that the interface is gone. */ 1214 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1215 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1216 if (IS_DEFAULT_VNET(curvnet)) 1217 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 1218 1219 if (!vmove) { 1220 /* 1221 * Prevent further calls into the device driver via ifnet. 1222 */ 1223 if_dead(ifp); 1224 1225 /* 1226 * Clean up all addresses. 1227 */ 1228 IF_ADDR_WLOCK(ifp); 1229 if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) { 1230 ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); 1231 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1232 IF_ADDR_WUNLOCK(ifp); 1233 ifa_free(ifa); 1234 } else 1235 IF_ADDR_WUNLOCK(ifp); 1236 } 1237 1238 rt_flushifroutes(ifp); 1239 1240 #ifdef VIMAGE 1241 finish_vnet_shutdown: 1242 #endif 1243 /* 1244 * We cannot hold the lock over dom_ifdetach calls as they might 1245 * sleep, for example trying to drain a callout, thus open up the 1246 * theoretical race with re-attaching. 1247 */ 1248 IF_AFDATA_LOCK(ifp); 1249 i = ifp->if_afdata_initialized; 1250 ifp->if_afdata_initialized = 0; 1251 IF_AFDATA_UNLOCK(ifp); 1252 for (dp = domains; i > 0 && dp; dp = dp->dom_next) { 1253 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) { 1254 (*dp->dom_ifdetach)(ifp, 1255 ifp->if_afdata[dp->dom_family]); 1256 ifp->if_afdata[dp->dom_family] = NULL; 1257 } 1258 } 1259 1260 return (0); 1261 } 1262 1263 #ifdef VIMAGE 1264 /* 1265 * if_vmove() performs a limited version of if_detach() in current 1266 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1267 */ 1268 static int 1269 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1270 { 1271 #ifdef DEV_BPF 1272 u_int bif_dlt, bif_hdrlen; 1273 #endif 1274 int rc; 1275 1276 #ifdef DEV_BPF 1277 /* 1278 * if_detach_internal() will call the eventhandler to notify 1279 * interface departure. That will detach if_bpf. We need to 1280 * safe the dlt and hdrlen so we can re-attach it later. 1281 */ 1282 bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen); 1283 #endif 1284 1285 /* 1286 * Detach from current vnet, but preserve LLADDR info, do not 1287 * mark as dead etc. so that the ifnet can be reattached later. 1288 * If we cannot find it, we lost the race to someone else. 1289 */ 1290 rc = if_detach_internal(ifp, true); 1291 if (rc != 0) 1292 return (rc); 1293 1294 /* 1295 * Perform interface-specific reassignment tasks, if provided by 1296 * the driver. 1297 */ 1298 if (ifp->if_reassign != NULL) 1299 ifp->if_reassign(ifp, new_vnet, NULL); 1300 1301 /* 1302 * Switch to the context of the target vnet. 1303 */ 1304 CURVNET_SET_QUIET(new_vnet); 1305 if_attach_internal(ifp, true); 1306 1307 #ifdef DEV_BPF 1308 if (ifp->if_bpf == NULL) 1309 bpfattach(ifp, bif_dlt, bif_hdrlen); 1310 #endif 1311 1312 CURVNET_RESTORE(); 1313 return (0); 1314 } 1315 1316 /* 1317 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1318 */ 1319 static int 1320 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1321 { 1322 struct prison *pr; 1323 struct ifnet *difp; 1324 int error; 1325 bool found __diagused; 1326 bool shutdown; 1327 1328 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 1329 1330 /* Try to find the prison within our visibility. */ 1331 sx_slock(&allprison_lock); 1332 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1333 sx_sunlock(&allprison_lock); 1334 if (pr == NULL) 1335 return (ENXIO); 1336 prison_hold_locked(pr); 1337 mtx_unlock(&pr->pr_mtx); 1338 1339 /* Do not try to move the iface from and to the same prison. */ 1340 if (pr->pr_vnet == ifp->if_vnet) { 1341 prison_free(pr); 1342 return (EEXIST); 1343 } 1344 1345 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1346 /* XXX Lock interfaces to avoid races. */ 1347 CURVNET_SET_QUIET(pr->pr_vnet); 1348 difp = ifunit(ifname); 1349 if (difp != NULL) { 1350 CURVNET_RESTORE(); 1351 prison_free(pr); 1352 return (EEXIST); 1353 } 1354 sx_xlock(&ifnet_detach_sxlock); 1355 1356 /* Make sure the VNET is stable. */ 1357 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1358 if (shutdown) { 1359 sx_xunlock(&ifnet_detach_sxlock); 1360 CURVNET_RESTORE(); 1361 prison_free(pr); 1362 return (EBUSY); 1363 } 1364 CURVNET_RESTORE(); 1365 1366 found = if_unlink_ifnet(ifp, true); 1367 if (! found) { 1368 sx_xunlock(&ifnet_detach_sxlock); 1369 CURVNET_RESTORE(); 1370 prison_free(pr); 1371 return (ENODEV); 1372 } 1373 1374 /* Move the interface into the child jail/vnet. */ 1375 error = if_vmove(ifp, pr->pr_vnet); 1376 1377 /* Report the new if_xname back to the userland on success. */ 1378 if (error == 0) 1379 sprintf(ifname, "%s", ifp->if_xname); 1380 1381 sx_xunlock(&ifnet_detach_sxlock); 1382 1383 prison_free(pr); 1384 return (error); 1385 } 1386 1387 static int 1388 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1389 { 1390 struct prison *pr; 1391 struct vnet *vnet_dst; 1392 struct ifnet *ifp; 1393 int error, found __diagused; 1394 bool shutdown; 1395 1396 /* Try to find the prison within our visibility. */ 1397 sx_slock(&allprison_lock); 1398 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1399 sx_sunlock(&allprison_lock); 1400 if (pr == NULL) 1401 return (ENXIO); 1402 prison_hold_locked(pr); 1403 mtx_unlock(&pr->pr_mtx); 1404 1405 /* Make sure the named iface exists in the source prison/vnet. */ 1406 CURVNET_SET(pr->pr_vnet); 1407 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1408 if (ifp == NULL) { 1409 CURVNET_RESTORE(); 1410 prison_free(pr); 1411 return (ENXIO); 1412 } 1413 1414 /* Do not try to move the iface from and to the same prison. */ 1415 vnet_dst = TD_TO_VNET(td); 1416 if (vnet_dst == ifp->if_vnet) { 1417 CURVNET_RESTORE(); 1418 prison_free(pr); 1419 return (EEXIST); 1420 } 1421 1422 /* Make sure the VNET is stable. */ 1423 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1424 if (shutdown) { 1425 CURVNET_RESTORE(); 1426 prison_free(pr); 1427 return (EBUSY); 1428 } 1429 1430 /* Get interface back from child jail/vnet. */ 1431 found = if_unlink_ifnet(ifp, true); 1432 MPASS(found); 1433 sx_xlock(&ifnet_detach_sxlock); 1434 error = if_vmove(ifp, vnet_dst); 1435 sx_xunlock(&ifnet_detach_sxlock); 1436 CURVNET_RESTORE(); 1437 1438 /* Report the new if_xname back to the userland on success. */ 1439 if (error == 0) 1440 sprintf(ifname, "%s", ifp->if_xname); 1441 1442 prison_free(pr); 1443 return (error); 1444 } 1445 #endif /* VIMAGE */ 1446 1447 /* 1448 * Add a group to an interface 1449 */ 1450 int 1451 if_addgroup(struct ifnet *ifp, const char *groupname) 1452 { 1453 struct ifg_list *ifgl; 1454 struct ifg_group *ifg = NULL; 1455 struct ifg_member *ifgm; 1456 int new = 0; 1457 1458 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1459 groupname[strlen(groupname) - 1] <= '9') 1460 return (EINVAL); 1461 1462 IFNET_WLOCK(); 1463 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1464 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1465 IFNET_WUNLOCK(); 1466 return (EEXIST); 1467 } 1468 1469 if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) { 1470 IFNET_WUNLOCK(); 1471 return (ENOMEM); 1472 } 1473 1474 if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 1475 free(ifgl, M_TEMP); 1476 IFNET_WUNLOCK(); 1477 return (ENOMEM); 1478 } 1479 1480 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1481 if (!strcmp(ifg->ifg_group, groupname)) 1482 break; 1483 1484 if (ifg == NULL) { 1485 if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) { 1486 free(ifgl, M_TEMP); 1487 free(ifgm, M_TEMP); 1488 IFNET_WUNLOCK(); 1489 return (ENOMEM); 1490 } 1491 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1492 ifg->ifg_refcnt = 0; 1493 CK_STAILQ_INIT(&ifg->ifg_members); 1494 CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1495 new = 1; 1496 } 1497 1498 ifg->ifg_refcnt++; 1499 ifgl->ifgl_group = ifg; 1500 ifgm->ifgm_ifp = ifp; 1501 1502 IF_ADDR_WLOCK(ifp); 1503 CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1504 CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1505 IF_ADDR_WUNLOCK(ifp); 1506 1507 IFNET_WUNLOCK(); 1508 1509 if (new) 1510 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1511 EVENTHANDLER_INVOKE(group_change_event, groupname); 1512 1513 return (0); 1514 } 1515 1516 /* 1517 * Helper function to remove a group out of an interface. Expects the global 1518 * ifnet lock to be write-locked, and drops it before returning. 1519 */ 1520 static void 1521 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl, 1522 const char *groupname) 1523 { 1524 struct ifg_member *ifgm; 1525 bool freeifgl; 1526 1527 IFNET_WLOCK_ASSERT(); 1528 1529 IF_ADDR_WLOCK(ifp); 1530 CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next); 1531 IF_ADDR_WUNLOCK(ifp); 1532 1533 CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { 1534 if (ifgm->ifgm_ifp == ifp) { 1535 CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1536 ifg_member, ifgm_next); 1537 break; 1538 } 1539 } 1540 1541 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1542 CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, 1543 ifg_next); 1544 freeifgl = true; 1545 } else { 1546 freeifgl = false; 1547 } 1548 IFNET_WUNLOCK(); 1549 1550 epoch_wait_preempt(net_epoch_preempt); 1551 if (freeifgl) { 1552 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1553 free(ifgl->ifgl_group, M_TEMP); 1554 } 1555 free(ifgm, M_TEMP); 1556 free(ifgl, M_TEMP); 1557 1558 EVENTHANDLER_INVOKE(group_change_event, groupname); 1559 } 1560 1561 /* 1562 * Remove a group from an interface 1563 */ 1564 int 1565 if_delgroup(struct ifnet *ifp, const char *groupname) 1566 { 1567 struct ifg_list *ifgl; 1568 1569 IFNET_WLOCK(); 1570 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1571 if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) 1572 break; 1573 if (ifgl == NULL) { 1574 IFNET_WUNLOCK(); 1575 return (ENOENT); 1576 } 1577 1578 _if_delgroup_locked(ifp, ifgl, groupname); 1579 1580 return (0); 1581 } 1582 1583 /* 1584 * Remove an interface from all groups 1585 */ 1586 static void 1587 if_delgroups(struct ifnet *ifp) 1588 { 1589 struct ifg_list *ifgl; 1590 char groupname[IFNAMSIZ]; 1591 1592 IFNET_WLOCK(); 1593 while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) { 1594 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1595 _if_delgroup_locked(ifp, ifgl, groupname); 1596 IFNET_WLOCK(); 1597 } 1598 IFNET_WUNLOCK(); 1599 } 1600 1601 /* 1602 * Stores all groups from an interface in memory pointed to by ifgr. 1603 */ 1604 static int 1605 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp) 1606 { 1607 int len, error; 1608 struct ifg_list *ifgl; 1609 struct ifg_req ifgrq, *ifgp; 1610 1611 NET_EPOCH_ASSERT(); 1612 1613 if (ifgr->ifgr_len == 0) { 1614 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1615 ifgr->ifgr_len += sizeof(struct ifg_req); 1616 return (0); 1617 } 1618 1619 len = ifgr->ifgr_len; 1620 ifgp = ifgr->ifgr_groups; 1621 /* XXX: wire */ 1622 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1623 if (len < sizeof(ifgrq)) 1624 return (EINVAL); 1625 bzero(&ifgrq, sizeof ifgrq); 1626 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1627 sizeof(ifgrq.ifgrq_group)); 1628 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) 1629 return (error); 1630 len -= sizeof(ifgrq); 1631 ifgp++; 1632 } 1633 1634 return (0); 1635 } 1636 1637 /* 1638 * Stores all members of a group in memory pointed to by igfr 1639 */ 1640 static int 1641 if_getgroupmembers(struct ifgroupreq *ifgr) 1642 { 1643 struct ifg_group *ifg; 1644 struct ifg_member *ifgm; 1645 struct ifg_req ifgrq, *ifgp; 1646 int len, error; 1647 1648 IFNET_RLOCK(); 1649 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1650 if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) 1651 break; 1652 if (ifg == NULL) { 1653 IFNET_RUNLOCK(); 1654 return (ENOENT); 1655 } 1656 1657 if (ifgr->ifgr_len == 0) { 1658 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1659 ifgr->ifgr_len += sizeof(ifgrq); 1660 IFNET_RUNLOCK(); 1661 return (0); 1662 } 1663 1664 len = ifgr->ifgr_len; 1665 ifgp = ifgr->ifgr_groups; 1666 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1667 if (len < sizeof(ifgrq)) { 1668 IFNET_RUNLOCK(); 1669 return (EINVAL); 1670 } 1671 bzero(&ifgrq, sizeof ifgrq); 1672 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1673 sizeof(ifgrq.ifgrq_member)); 1674 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1675 IFNET_RUNLOCK(); 1676 return (error); 1677 } 1678 len -= sizeof(ifgrq); 1679 ifgp++; 1680 } 1681 IFNET_RUNLOCK(); 1682 1683 return (0); 1684 } 1685 1686 /* 1687 * Return counter values from counter(9)s stored in ifnet. 1688 */ 1689 uint64_t 1690 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1691 { 1692 1693 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1694 1695 return (counter_u64_fetch(ifp->if_counters[cnt])); 1696 } 1697 1698 /* 1699 * Increase an ifnet counter. Usually used for counters shared 1700 * between the stack and a driver, but function supports them all. 1701 */ 1702 void 1703 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1704 { 1705 1706 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1707 1708 counter_u64_add(ifp->if_counters[cnt], inc); 1709 } 1710 1711 /* 1712 * Copy data from ifnet to userland API structure if_data. 1713 */ 1714 void 1715 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1716 { 1717 1718 ifd->ifi_type = ifp->if_type; 1719 ifd->ifi_physical = 0; 1720 ifd->ifi_addrlen = ifp->if_addrlen; 1721 ifd->ifi_hdrlen = ifp->if_hdrlen; 1722 ifd->ifi_link_state = ifp->if_link_state; 1723 ifd->ifi_vhid = 0; 1724 ifd->ifi_datalen = sizeof(struct if_data); 1725 ifd->ifi_mtu = ifp->if_mtu; 1726 ifd->ifi_metric = ifp->if_metric; 1727 ifd->ifi_baudrate = ifp->if_baudrate; 1728 ifd->ifi_hwassist = ifp->if_hwassist; 1729 ifd->ifi_epoch = ifp->if_epoch; 1730 ifd->ifi_lastchange = ifp->if_lastchange; 1731 1732 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1733 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1734 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1735 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1736 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1737 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1738 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1739 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1740 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1741 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1742 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1743 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1744 } 1745 1746 /* 1747 * Initialization, destruction and refcounting functions for ifaddrs. 1748 */ 1749 struct ifaddr * 1750 ifa_alloc(size_t size, int flags) 1751 { 1752 struct ifaddr *ifa; 1753 1754 KASSERT(size >= sizeof(struct ifaddr), 1755 ("%s: invalid size %zu", __func__, size)); 1756 1757 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1758 if (ifa == NULL) 1759 return (NULL); 1760 1761 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1762 goto fail; 1763 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1764 goto fail; 1765 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1766 goto fail; 1767 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1768 goto fail; 1769 1770 refcount_init(&ifa->ifa_refcnt, 1); 1771 1772 return (ifa); 1773 1774 fail: 1775 /* free(NULL) is okay */ 1776 counter_u64_free(ifa->ifa_opackets); 1777 counter_u64_free(ifa->ifa_ipackets); 1778 counter_u64_free(ifa->ifa_obytes); 1779 counter_u64_free(ifa->ifa_ibytes); 1780 free(ifa, M_IFADDR); 1781 1782 return (NULL); 1783 } 1784 1785 void 1786 ifa_ref(struct ifaddr *ifa) 1787 { 1788 u_int old __diagused; 1789 1790 old = refcount_acquire(&ifa->ifa_refcnt); 1791 KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa)); 1792 } 1793 1794 int 1795 ifa_try_ref(struct ifaddr *ifa) 1796 { 1797 1798 NET_EPOCH_ASSERT(); 1799 return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt)); 1800 } 1801 1802 static void 1803 ifa_destroy(epoch_context_t ctx) 1804 { 1805 struct ifaddr *ifa; 1806 1807 ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx); 1808 counter_u64_free(ifa->ifa_opackets); 1809 counter_u64_free(ifa->ifa_ipackets); 1810 counter_u64_free(ifa->ifa_obytes); 1811 counter_u64_free(ifa->ifa_ibytes); 1812 free(ifa, M_IFADDR); 1813 } 1814 1815 void 1816 ifa_free(struct ifaddr *ifa) 1817 { 1818 1819 if (refcount_release(&ifa->ifa_refcnt)) 1820 NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx); 1821 } 1822 1823 /* 1824 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1825 * structs used to represent other address families, it is necessary 1826 * to perform a different comparison. 1827 */ 1828 1829 #define sa_dl_equal(a1, a2) \ 1830 ((((const struct sockaddr_dl *)(a1))->sdl_len == \ 1831 ((const struct sockaddr_dl *)(a2))->sdl_len) && \ 1832 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \ 1833 CLLADDR((const struct sockaddr_dl *)(a2)), \ 1834 ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1835 1836 /* 1837 * Locate an interface based on a complete address. 1838 */ 1839 /*ARGSUSED*/ 1840 struct ifaddr * 1841 ifa_ifwithaddr(const struct sockaddr *addr) 1842 { 1843 struct ifnet *ifp; 1844 struct ifaddr *ifa; 1845 1846 NET_EPOCH_ASSERT(); 1847 1848 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1849 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1850 if (ifa->ifa_addr->sa_family != addr->sa_family) 1851 continue; 1852 if (sa_equal(addr, ifa->ifa_addr)) { 1853 goto done; 1854 } 1855 /* IP6 doesn't have broadcast */ 1856 if ((ifp->if_flags & IFF_BROADCAST) && 1857 ifa->ifa_broadaddr && 1858 ifa->ifa_broadaddr->sa_len != 0 && 1859 sa_equal(ifa->ifa_broadaddr, addr)) { 1860 goto done; 1861 } 1862 } 1863 } 1864 ifa = NULL; 1865 done: 1866 return (ifa); 1867 } 1868 1869 int 1870 ifa_ifwithaddr_check(const struct sockaddr *addr) 1871 { 1872 struct epoch_tracker et; 1873 int rc; 1874 1875 NET_EPOCH_ENTER(et); 1876 rc = (ifa_ifwithaddr(addr) != NULL); 1877 NET_EPOCH_EXIT(et); 1878 return (rc); 1879 } 1880 1881 /* 1882 * Locate an interface based on the broadcast address. 1883 */ 1884 /* ARGSUSED */ 1885 struct ifaddr * 1886 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) 1887 { 1888 struct ifnet *ifp; 1889 struct ifaddr *ifa; 1890 1891 NET_EPOCH_ASSERT(); 1892 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1893 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1894 continue; 1895 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1896 if (ifa->ifa_addr->sa_family != addr->sa_family) 1897 continue; 1898 if ((ifp->if_flags & IFF_BROADCAST) && 1899 ifa->ifa_broadaddr && 1900 ifa->ifa_broadaddr->sa_len != 0 && 1901 sa_equal(ifa->ifa_broadaddr, addr)) { 1902 goto done; 1903 } 1904 } 1905 } 1906 ifa = NULL; 1907 done: 1908 return (ifa); 1909 } 1910 1911 /* 1912 * Locate the point to point interface with a given destination address. 1913 */ 1914 /*ARGSUSED*/ 1915 struct ifaddr * 1916 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) 1917 { 1918 struct ifnet *ifp; 1919 struct ifaddr *ifa; 1920 1921 NET_EPOCH_ASSERT(); 1922 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1923 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1924 continue; 1925 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1926 continue; 1927 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1928 if (ifa->ifa_addr->sa_family != addr->sa_family) 1929 continue; 1930 if (ifa->ifa_dstaddr != NULL && 1931 sa_equal(addr, ifa->ifa_dstaddr)) { 1932 goto done; 1933 } 1934 } 1935 } 1936 ifa = NULL; 1937 done: 1938 return (ifa); 1939 } 1940 1941 /* 1942 * Find an interface on a specific network. If many, choice 1943 * is most specific found. 1944 */ 1945 struct ifaddr * 1946 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) 1947 { 1948 struct ifnet *ifp; 1949 struct ifaddr *ifa; 1950 struct ifaddr *ifa_maybe = NULL; 1951 u_int af = addr->sa_family; 1952 const char *addr_data = addr->sa_data, *cplim; 1953 1954 NET_EPOCH_ASSERT(); 1955 /* 1956 * AF_LINK addresses can be looked up directly by their index number, 1957 * so do that if we can. 1958 */ 1959 if (af == AF_LINK) { 1960 ifp = ifnet_byindex( 1961 ((const struct sockaddr_dl *)addr)->sdl_index); 1962 return (ifp ? ifp->if_addr : NULL); 1963 } 1964 1965 /* 1966 * Scan though each interface, looking for ones that have addresses 1967 * in this address family and the requested fib. 1968 */ 1969 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1970 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1971 continue; 1972 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1973 const char *cp, *cp2, *cp3; 1974 1975 if (ifa->ifa_addr->sa_family != af) 1976 next: continue; 1977 if (af == AF_INET && 1978 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1979 /* 1980 * This is a bit broken as it doesn't 1981 * take into account that the remote end may 1982 * be a single node in the network we are 1983 * looking for. 1984 * The trouble is that we don't know the 1985 * netmask for the remote end. 1986 */ 1987 if (ifa->ifa_dstaddr != NULL && 1988 sa_equal(addr, ifa->ifa_dstaddr)) { 1989 goto done; 1990 } 1991 } else { 1992 /* 1993 * Scan all the bits in the ifa's address. 1994 * If a bit dissagrees with what we are 1995 * looking for, mask it with the netmask 1996 * to see if it really matters. 1997 * (A byte at a time) 1998 */ 1999 if (ifa->ifa_netmask == 0) 2000 continue; 2001 cp = addr_data; 2002 cp2 = ifa->ifa_addr->sa_data; 2003 cp3 = ifa->ifa_netmask->sa_data; 2004 cplim = ifa->ifa_netmask->sa_len 2005 + (char *)ifa->ifa_netmask; 2006 while (cp3 < cplim) 2007 if ((*cp++ ^ *cp2++) & *cp3++) 2008 goto next; /* next address! */ 2009 /* 2010 * If the netmask of what we just found 2011 * is more specific than what we had before 2012 * (if we had one), or if the virtual status 2013 * of new prefix is better than of the old one, 2014 * then remember the new one before continuing 2015 * to search for an even better one. 2016 */ 2017 if (ifa_maybe == NULL || 2018 ifa_preferred(ifa_maybe, ifa) || 2019 rn_refines((caddr_t)ifa->ifa_netmask, 2020 (caddr_t)ifa_maybe->ifa_netmask)) { 2021 ifa_maybe = ifa; 2022 } 2023 } 2024 } 2025 } 2026 ifa = ifa_maybe; 2027 ifa_maybe = NULL; 2028 done: 2029 return (ifa); 2030 } 2031 2032 /* 2033 * Find an interface address specific to an interface best matching 2034 * a given address. 2035 */ 2036 struct ifaddr * 2037 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2038 { 2039 struct ifaddr *ifa; 2040 const char *cp, *cp2, *cp3; 2041 char *cplim; 2042 struct ifaddr *ifa_maybe = NULL; 2043 u_int af = addr->sa_family; 2044 2045 if (af >= AF_MAX) 2046 return (NULL); 2047 2048 NET_EPOCH_ASSERT(); 2049 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2050 if (ifa->ifa_addr->sa_family != af) 2051 continue; 2052 if (ifa_maybe == NULL) 2053 ifa_maybe = ifa; 2054 if (ifa->ifa_netmask == 0) { 2055 if (sa_equal(addr, ifa->ifa_addr) || 2056 (ifa->ifa_dstaddr && 2057 sa_equal(addr, ifa->ifa_dstaddr))) 2058 goto done; 2059 continue; 2060 } 2061 if (ifp->if_flags & IFF_POINTOPOINT) { 2062 if (sa_equal(addr, ifa->ifa_dstaddr)) 2063 goto done; 2064 } else { 2065 cp = addr->sa_data; 2066 cp2 = ifa->ifa_addr->sa_data; 2067 cp3 = ifa->ifa_netmask->sa_data; 2068 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2069 for (; cp3 < cplim; cp3++) 2070 if ((*cp++ ^ *cp2++) & *cp3) 2071 break; 2072 if (cp3 == cplim) 2073 goto done; 2074 } 2075 } 2076 ifa = ifa_maybe; 2077 done: 2078 return (ifa); 2079 } 2080 2081 /* 2082 * See whether new ifa is better than current one: 2083 * 1) A non-virtual one is preferred over virtual. 2084 * 2) A virtual in master state preferred over any other state. 2085 * 2086 * Used in several address selecting functions. 2087 */ 2088 int 2089 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 2090 { 2091 2092 return (cur->ifa_carp && (!next->ifa_carp || 2093 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 2094 } 2095 2096 struct sockaddr_dl * 2097 link_alloc_sdl(size_t size, int flags) 2098 { 2099 2100 return (malloc(size, M_TEMP, flags)); 2101 } 2102 2103 void 2104 link_free_sdl(struct sockaddr *sa) 2105 { 2106 free(sa, M_TEMP); 2107 } 2108 2109 /* 2110 * Fills in given sdl with interface basic info. 2111 * Returns pointer to filled sdl. 2112 */ 2113 struct sockaddr_dl * 2114 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2115 { 2116 struct sockaddr_dl *sdl; 2117 2118 sdl = (struct sockaddr_dl *)paddr; 2119 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2120 sdl->sdl_len = sizeof(struct sockaddr_dl); 2121 sdl->sdl_family = AF_LINK; 2122 sdl->sdl_index = ifp->if_index; 2123 sdl->sdl_type = iftype; 2124 2125 return (sdl); 2126 } 2127 2128 /* 2129 * Mark an interface down and notify protocols of 2130 * the transition. 2131 */ 2132 static void 2133 if_unroute(struct ifnet *ifp, int flag, int fam) 2134 { 2135 2136 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 2137 2138 ifp->if_flags &= ~flag; 2139 getmicrotime(&ifp->if_lastchange); 2140 ifp->if_qflush(ifp); 2141 2142 if (ifp->if_carp) 2143 (*carp_linkstate_p)(ifp); 2144 rt_ifmsg(ifp); 2145 } 2146 2147 /* 2148 * Mark an interface up and notify protocols of 2149 * the transition. 2150 */ 2151 static void 2152 if_route(struct ifnet *ifp, int flag, int fam) 2153 { 2154 2155 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 2156 2157 ifp->if_flags |= flag; 2158 getmicrotime(&ifp->if_lastchange); 2159 if (ifp->if_carp) 2160 (*carp_linkstate_p)(ifp); 2161 rt_ifmsg(ifp); 2162 #ifdef INET6 2163 in6_if_up(ifp); 2164 #endif 2165 } 2166 2167 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2168 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2169 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2170 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2171 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2172 int (*vlan_pcp_p)(struct ifnet *, uint16_t *); 2173 int (*vlan_setcookie_p)(struct ifnet *, void *); 2174 void *(*vlan_cookie_p)(struct ifnet *); 2175 2176 /* 2177 * Handle a change in the interface link state. To avoid LORs 2178 * between driver lock and upper layer locks, as well as possible 2179 * recursions, we post event to taskqueue, and all job 2180 * is done in static do_link_state_change(). 2181 */ 2182 void 2183 if_link_state_change(struct ifnet *ifp, int link_state) 2184 { 2185 /* Return if state hasn't changed. */ 2186 if (ifp->if_link_state == link_state) 2187 return; 2188 2189 ifp->if_link_state = link_state; 2190 2191 /* XXXGL: reference ifp? */ 2192 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2193 } 2194 2195 static void 2196 do_link_state_change(void *arg, int pending) 2197 { 2198 struct ifnet *ifp; 2199 int link_state; 2200 2201 ifp = arg; 2202 link_state = ifp->if_link_state; 2203 2204 CURVNET_SET(ifp->if_vnet); 2205 rt_ifmsg(ifp); 2206 if (ifp->if_vlantrunk != NULL) 2207 (*vlan_link_state_p)(ifp); 2208 2209 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2210 ifp->if_l2com != NULL) 2211 (*ng_ether_link_state_p)(ifp, link_state); 2212 if (ifp->if_carp) 2213 (*carp_linkstate_p)(ifp); 2214 if (ifp->if_bridge) 2215 ifp->if_bridge_linkstate(ifp); 2216 if (ifp->if_lagg) 2217 (*lagg_linkstate_p)(ifp, link_state); 2218 2219 if (IS_DEFAULT_VNET(curvnet)) 2220 devctl_notify("IFNET", ifp->if_xname, 2221 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2222 NULL); 2223 if (pending > 1) 2224 if_printf(ifp, "%d link states coalesced\n", pending); 2225 if (log_link_state_change) 2226 if_printf(ifp, "link state changed to %s\n", 2227 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2228 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); 2229 CURVNET_RESTORE(); 2230 } 2231 2232 /* 2233 * Mark an interface down and notify protocols of 2234 * the transition. 2235 */ 2236 void 2237 if_down(struct ifnet *ifp) 2238 { 2239 2240 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); 2241 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2242 } 2243 2244 /* 2245 * Mark an interface up and notify protocols of 2246 * the transition. 2247 */ 2248 void 2249 if_up(struct ifnet *ifp) 2250 { 2251 2252 if_route(ifp, IFF_UP, AF_UNSPEC); 2253 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); 2254 } 2255 2256 /* 2257 * Flush an interface queue. 2258 */ 2259 void 2260 if_qflush(struct ifnet *ifp) 2261 { 2262 struct mbuf *m, *n; 2263 struct ifaltq *ifq; 2264 2265 ifq = &ifp->if_snd; 2266 IFQ_LOCK(ifq); 2267 #ifdef ALTQ 2268 if (ALTQ_IS_ENABLED(ifq)) 2269 ALTQ_PURGE(ifq); 2270 #endif 2271 n = ifq->ifq_head; 2272 while ((m = n) != NULL) { 2273 n = m->m_nextpkt; 2274 m_freem(m); 2275 } 2276 ifq->ifq_head = 0; 2277 ifq->ifq_tail = 0; 2278 ifq->ifq_len = 0; 2279 IFQ_UNLOCK(ifq); 2280 } 2281 2282 /* 2283 * Map interface name to interface structure pointer, with or without 2284 * returning a reference. 2285 */ 2286 struct ifnet * 2287 ifunit_ref(const char *name) 2288 { 2289 struct epoch_tracker et; 2290 struct ifnet *ifp; 2291 2292 NET_EPOCH_ENTER(et); 2293 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2294 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2295 !(ifp->if_flags & IFF_DYING)) 2296 break; 2297 } 2298 if (ifp != NULL) { 2299 if_ref(ifp); 2300 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 2301 } 2302 2303 NET_EPOCH_EXIT(et); 2304 return (ifp); 2305 } 2306 2307 struct ifnet * 2308 ifunit(const char *name) 2309 { 2310 struct epoch_tracker et; 2311 struct ifnet *ifp; 2312 2313 NET_EPOCH_ENTER(et); 2314 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2315 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2316 break; 2317 } 2318 NET_EPOCH_EXIT(et); 2319 return (ifp); 2320 } 2321 2322 void * 2323 ifr_buffer_get_buffer(void *data) 2324 { 2325 union ifreq_union *ifrup; 2326 2327 ifrup = data; 2328 #ifdef COMPAT_FREEBSD32 2329 if (SV_CURPROC_FLAG(SV_ILP32)) 2330 return ((void *)(uintptr_t) 2331 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer); 2332 #endif 2333 return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer); 2334 } 2335 2336 static void 2337 ifr_buffer_set_buffer_null(void *data) 2338 { 2339 union ifreq_union *ifrup; 2340 2341 ifrup = data; 2342 #ifdef COMPAT_FREEBSD32 2343 if (SV_CURPROC_FLAG(SV_ILP32)) 2344 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0; 2345 else 2346 #endif 2347 ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL; 2348 } 2349 2350 size_t 2351 ifr_buffer_get_length(void *data) 2352 { 2353 union ifreq_union *ifrup; 2354 2355 ifrup = data; 2356 #ifdef COMPAT_FREEBSD32 2357 if (SV_CURPROC_FLAG(SV_ILP32)) 2358 return (ifrup->ifr32.ifr_ifru.ifru_buffer.length); 2359 #endif 2360 return (ifrup->ifr.ifr_ifru.ifru_buffer.length); 2361 } 2362 2363 static void 2364 ifr_buffer_set_length(void *data, size_t len) 2365 { 2366 union ifreq_union *ifrup; 2367 2368 ifrup = data; 2369 #ifdef COMPAT_FREEBSD32 2370 if (SV_CURPROC_FLAG(SV_ILP32)) 2371 ifrup->ifr32.ifr_ifru.ifru_buffer.length = len; 2372 else 2373 #endif 2374 ifrup->ifr.ifr_ifru.ifru_buffer.length = len; 2375 } 2376 2377 void * 2378 ifr_data_get_ptr(void *ifrp) 2379 { 2380 union ifreq_union *ifrup; 2381 2382 ifrup = ifrp; 2383 #ifdef COMPAT_FREEBSD32 2384 if (SV_CURPROC_FLAG(SV_ILP32)) 2385 return ((void *)(uintptr_t) 2386 ifrup->ifr32.ifr_ifru.ifru_data); 2387 #endif 2388 return (ifrup->ifr.ifr_ifru.ifru_data); 2389 } 2390 2391 struct ifcap_nv_bit_name { 2392 int cap_bit; 2393 const char *cap_name; 2394 }; 2395 #define CAPNV(x) {.cap_bit = IFCAP_##x, \ 2396 .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) } 2397 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = { 2398 CAPNV(RXCSUM), 2399 CAPNV(TXCSUM), 2400 CAPNV(NETCONS), 2401 CAPNV(VLAN_MTU), 2402 CAPNV(VLAN_HWTAGGING), 2403 CAPNV(JUMBO_MTU), 2404 CAPNV(POLLING), 2405 CAPNV(VLAN_HWCSUM), 2406 CAPNV(TSO4), 2407 CAPNV(TSO6), 2408 CAPNV(LRO), 2409 CAPNV(WOL_UCAST), 2410 CAPNV(WOL_MCAST), 2411 CAPNV(WOL_MAGIC), 2412 CAPNV(TOE4), 2413 CAPNV(TOE6), 2414 CAPNV(VLAN_HWFILTER), 2415 CAPNV(VLAN_HWTSO), 2416 CAPNV(LINKSTATE), 2417 CAPNV(NETMAP), 2418 CAPNV(RXCSUM_IPV6), 2419 CAPNV(TXCSUM_IPV6), 2420 CAPNV(HWSTATS), 2421 CAPNV(TXRTLMT), 2422 CAPNV(HWRXTSTMP), 2423 CAPNV(MEXTPG), 2424 CAPNV(TXTLS4), 2425 CAPNV(TXTLS6), 2426 CAPNV(VXLAN_HWCSUM), 2427 CAPNV(VXLAN_HWTSO), 2428 CAPNV(TXTLS_RTLMT), 2429 {0, NULL} 2430 }; 2431 #define CAP2NV(x) {.cap_bit = IFCAP2_##x, \ 2432 .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) } 2433 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = { 2434 CAP2NV(RXTLS4), 2435 CAP2NV(RXTLS6), 2436 {0, NULL} 2437 }; 2438 #undef CAPNV 2439 #undef CAP2NV 2440 2441 int 2442 if_capnv_to_capint(const nvlist_t *nv, int *old_cap, 2443 const struct ifcap_nv_bit_name *nn, bool all) 2444 { 2445 int i, res; 2446 2447 res = 0; 2448 for (i = 0; nn[i].cap_name != NULL; i++) { 2449 if (nvlist_exists_bool(nv, nn[i].cap_name)) { 2450 if (all || nvlist_get_bool(nv, nn[i].cap_name)) 2451 res |= nn[i].cap_bit; 2452 } else { 2453 res |= *old_cap & nn[i].cap_bit; 2454 } 2455 } 2456 return (res); 2457 } 2458 2459 void 2460 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn, 2461 int ifr_cap, int ifr_req) 2462 { 2463 int i; 2464 2465 for (i = 0; nn[i].cap_name != NULL; i++) { 2466 if ((nn[i].cap_bit & ifr_cap) != 0) { 2467 nvlist_add_bool(nv, nn[i].cap_name, 2468 (nn[i].cap_bit & ifr_req) != 0); 2469 } 2470 } 2471 } 2472 2473 /* 2474 * Hardware specific interface ioctls. 2475 */ 2476 int 2477 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2478 { 2479 struct ifreq *ifr; 2480 int error = 0, do_ifup = 0; 2481 int new_flags, temp_flags; 2482 size_t namelen, onamelen; 2483 size_t descrlen, nvbuflen; 2484 char *descrbuf, *odescrbuf; 2485 char new_name[IFNAMSIZ]; 2486 char old_name[IFNAMSIZ], strbuf[IFNAMSIZ + 8]; 2487 struct ifaddr *ifa; 2488 struct sockaddr_dl *sdl; 2489 void *buf; 2490 nvlist_t *nvcap; 2491 struct siocsifcapnv_driver_data drv_ioctl_data; 2492 2493 ifr = (struct ifreq *)data; 2494 switch (cmd) { 2495 case SIOCGIFINDEX: 2496 ifr->ifr_index = ifp->if_index; 2497 break; 2498 2499 case SIOCGIFFLAGS: 2500 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2501 ifr->ifr_flags = temp_flags & 0xffff; 2502 ifr->ifr_flagshigh = temp_flags >> 16; 2503 break; 2504 2505 case SIOCGIFCAP: 2506 ifr->ifr_reqcap = ifp->if_capabilities; 2507 ifr->ifr_curcap = ifp->if_capenable; 2508 break; 2509 2510 case SIOCGIFCAPNV: 2511 if ((ifp->if_capabilities & IFCAP_NV) == 0) { 2512 error = EINVAL; 2513 break; 2514 } 2515 buf = NULL; 2516 nvcap = nvlist_create(0); 2517 for (;;) { 2518 if_capint_to_capnv(nvcap, ifcap_nv_bit_names, 2519 ifp->if_capabilities, ifp->if_capenable); 2520 if_capint_to_capnv(nvcap, ifcap2_nv_bit_names, 2521 ifp->if_capabilities2, ifp->if_capenable2); 2522 error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV, 2523 __DECONST(caddr_t, nvcap)); 2524 if (error != 0) { 2525 if_printf(ifp, 2526 "SIOCGIFCAPNV driver mistake: nvlist error %d\n", 2527 error); 2528 break; 2529 } 2530 buf = nvlist_pack(nvcap, &nvbuflen); 2531 if (buf == NULL) { 2532 error = nvlist_error(nvcap); 2533 if (error == 0) 2534 error = EDOOFUS; 2535 break; 2536 } 2537 if (nvbuflen > ifr->ifr_cap_nv.buf_length) { 2538 ifr->ifr_cap_nv.length = nvbuflen; 2539 ifr->ifr_cap_nv.buffer = NULL; 2540 error = EFBIG; 2541 break; 2542 } 2543 ifr->ifr_cap_nv.length = nvbuflen; 2544 error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen); 2545 break; 2546 } 2547 free(buf, M_NVLIST); 2548 nvlist_destroy(nvcap); 2549 break; 2550 2551 case SIOCGIFDATA: 2552 { 2553 struct if_data ifd; 2554 2555 /* Ensure uninitialised padding is not leaked. */ 2556 memset(&ifd, 0, sizeof(ifd)); 2557 2558 if_data_copy(ifp, &ifd); 2559 error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd)); 2560 break; 2561 } 2562 2563 #ifdef MAC 2564 case SIOCGIFMAC: 2565 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2566 break; 2567 #endif 2568 2569 case SIOCGIFMETRIC: 2570 ifr->ifr_metric = ifp->if_metric; 2571 break; 2572 2573 case SIOCGIFMTU: 2574 ifr->ifr_mtu = ifp->if_mtu; 2575 break; 2576 2577 case SIOCGIFPHYS: 2578 /* XXXGL: did this ever worked? */ 2579 ifr->ifr_phys = 0; 2580 break; 2581 2582 case SIOCGIFDESCR: 2583 error = 0; 2584 sx_slock(&ifdescr_sx); 2585 if (ifp->if_description == NULL) 2586 error = ENOMSG; 2587 else { 2588 /* space for terminating nul */ 2589 descrlen = strlen(ifp->if_description) + 1; 2590 if (ifr_buffer_get_length(ifr) < descrlen) 2591 ifr_buffer_set_buffer_null(ifr); 2592 else 2593 error = copyout(ifp->if_description, 2594 ifr_buffer_get_buffer(ifr), descrlen); 2595 ifr_buffer_set_length(ifr, descrlen); 2596 } 2597 sx_sunlock(&ifdescr_sx); 2598 break; 2599 2600 case SIOCSIFDESCR: 2601 error = priv_check(td, PRIV_NET_SETIFDESCR); 2602 if (error) 2603 return (error); 2604 2605 /* 2606 * Copy only (length-1) bytes to make sure that 2607 * if_description is always nul terminated. The 2608 * length parameter is supposed to count the 2609 * terminating nul in. 2610 */ 2611 if (ifr_buffer_get_length(ifr) > ifdescr_maxlen) 2612 return (ENAMETOOLONG); 2613 else if (ifr_buffer_get_length(ifr) == 0) 2614 descrbuf = NULL; 2615 else { 2616 descrbuf = malloc(ifr_buffer_get_length(ifr), 2617 M_IFDESCR, M_WAITOK | M_ZERO); 2618 error = copyin(ifr_buffer_get_buffer(ifr), descrbuf, 2619 ifr_buffer_get_length(ifr) - 1); 2620 if (error) { 2621 free(descrbuf, M_IFDESCR); 2622 break; 2623 } 2624 } 2625 2626 sx_xlock(&ifdescr_sx); 2627 odescrbuf = ifp->if_description; 2628 ifp->if_description = descrbuf; 2629 sx_xunlock(&ifdescr_sx); 2630 2631 getmicrotime(&ifp->if_lastchange); 2632 free(odescrbuf, M_IFDESCR); 2633 break; 2634 2635 case SIOCGIFFIB: 2636 ifr->ifr_fib = ifp->if_fib; 2637 break; 2638 2639 case SIOCSIFFIB: 2640 error = priv_check(td, PRIV_NET_SETIFFIB); 2641 if (error) 2642 return (error); 2643 if (ifr->ifr_fib >= rt_numfibs) 2644 return (EINVAL); 2645 2646 ifp->if_fib = ifr->ifr_fib; 2647 break; 2648 2649 case SIOCSIFFLAGS: 2650 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2651 if (error) 2652 return (error); 2653 /* 2654 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2655 * check, so we don't need special handling here yet. 2656 */ 2657 new_flags = (ifr->ifr_flags & 0xffff) | 2658 (ifr->ifr_flagshigh << 16); 2659 if (ifp->if_flags & IFF_UP && 2660 (new_flags & IFF_UP) == 0) { 2661 if_down(ifp); 2662 } else if (new_flags & IFF_UP && 2663 (ifp->if_flags & IFF_UP) == 0) { 2664 do_ifup = 1; 2665 } 2666 /* See if permanently promiscuous mode bit is about to flip */ 2667 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2668 if (new_flags & IFF_PPROMISC) 2669 ifp->if_flags |= IFF_PROMISC; 2670 else if (ifp->if_pcount == 0) 2671 ifp->if_flags &= ~IFF_PROMISC; 2672 if (log_promisc_mode_change) 2673 if_printf(ifp, "permanently promiscuous mode %s\n", 2674 ((new_flags & IFF_PPROMISC) ? 2675 "enabled" : "disabled")); 2676 } 2677 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2678 (new_flags &~ IFF_CANTCHANGE); 2679 if (ifp->if_ioctl) { 2680 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2681 } 2682 if (do_ifup) 2683 if_up(ifp); 2684 getmicrotime(&ifp->if_lastchange); 2685 break; 2686 2687 case SIOCSIFCAP: 2688 error = priv_check(td, PRIV_NET_SETIFCAP); 2689 if (error != 0) 2690 return (error); 2691 if (ifp->if_ioctl == NULL) 2692 return (EOPNOTSUPP); 2693 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2694 return (EINVAL); 2695 error = (*ifp->if_ioctl)(ifp, cmd, data); 2696 if (error == 0) 2697 getmicrotime(&ifp->if_lastchange); 2698 break; 2699 2700 case SIOCSIFCAPNV: 2701 error = priv_check(td, PRIV_NET_SETIFCAP); 2702 if (error != 0) 2703 return (error); 2704 if (ifp->if_ioctl == NULL) 2705 return (EOPNOTSUPP); 2706 if ((ifp->if_capabilities & IFCAP_NV) == 0) 2707 return (EINVAL); 2708 if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE) 2709 return (EINVAL); 2710 nvcap = NULL; 2711 buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK); 2712 for (;;) { 2713 error = copyin(ifr->ifr_cap_nv.buffer, buf, 2714 ifr->ifr_cap_nv.length); 2715 if (error != 0) 2716 break; 2717 nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0); 2718 if (nvcap == NULL) { 2719 error = EINVAL; 2720 break; 2721 } 2722 drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap, 2723 &ifp->if_capenable, ifcap_nv_bit_names, false); 2724 if ((drv_ioctl_data.reqcap & 2725 ~ifp->if_capabilities) != 0) { 2726 error = EINVAL; 2727 break; 2728 } 2729 drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap, 2730 &ifp->if_capenable2, ifcap2_nv_bit_names, false); 2731 if ((drv_ioctl_data.reqcap2 & 2732 ~ifp->if_capabilities2) != 0) { 2733 error = EINVAL; 2734 break; 2735 } 2736 drv_ioctl_data.nvcap = nvcap; 2737 error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV, 2738 (caddr_t)&drv_ioctl_data); 2739 break; 2740 } 2741 nvlist_destroy(nvcap); 2742 free(buf, M_TEMP); 2743 if (error == 0) 2744 getmicrotime(&ifp->if_lastchange); 2745 break; 2746 2747 #ifdef MAC 2748 case SIOCSIFMAC: 2749 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2750 break; 2751 #endif 2752 2753 case SIOCSIFNAME: 2754 error = priv_check(td, PRIV_NET_SETIFNAME); 2755 if (error) 2756 return (error); 2757 error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ, 2758 NULL); 2759 if (error != 0) 2760 return (error); 2761 if (new_name[0] == '\0') 2762 return (EINVAL); 2763 if (strcmp(new_name, ifp->if_xname) == 0) 2764 break; 2765 if (ifunit(new_name) != NULL) 2766 return (EEXIST); 2767 2768 /* 2769 * XXX: Locking. Nothing else seems to lock if_flags, 2770 * and there are numerous other races with the 2771 * ifunit() checks not being atomic with namespace 2772 * changes (renames, vmoves, if_attach, etc). 2773 */ 2774 ifp->if_flags |= IFF_RENAMING; 2775 2776 /* Announce the departure of the interface. */ 2777 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 2778 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 2779 2780 if_printf(ifp, "changing name to '%s'\n", new_name); 2781 2782 IF_ADDR_WLOCK(ifp); 2783 strlcpy(old_name, ifp->if_xname, sizeof(old_name)); 2784 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 2785 ifa = ifp->if_addr; 2786 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 2787 namelen = strlen(new_name); 2788 onamelen = sdl->sdl_nlen; 2789 /* 2790 * Move the address if needed. This is safe because we 2791 * allocate space for a name of length IFNAMSIZ when we 2792 * create this in if_attach(). 2793 */ 2794 if (namelen != onamelen) { 2795 bcopy(sdl->sdl_data + onamelen, 2796 sdl->sdl_data + namelen, sdl->sdl_alen); 2797 } 2798 bcopy(new_name, sdl->sdl_data, namelen); 2799 sdl->sdl_nlen = namelen; 2800 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 2801 bzero(sdl->sdl_data, onamelen); 2802 while (namelen != 0) 2803 sdl->sdl_data[--namelen] = 0xff; 2804 IF_ADDR_WUNLOCK(ifp); 2805 2806 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 2807 /* Announce the return of the interface. */ 2808 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 2809 2810 ifp->if_flags &= ~IFF_RENAMING; 2811 2812 snprintf(strbuf, sizeof(strbuf), "name=%s", new_name); 2813 devctl_notify("IFNET", old_name, "RENAME", strbuf); 2814 break; 2815 2816 #ifdef VIMAGE 2817 case SIOCSIFVNET: 2818 error = priv_check(td, PRIV_NET_SETIFVNET); 2819 if (error) 2820 return (error); 2821 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2822 break; 2823 #endif 2824 2825 case SIOCSIFMETRIC: 2826 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2827 if (error) 2828 return (error); 2829 ifp->if_metric = ifr->ifr_metric; 2830 getmicrotime(&ifp->if_lastchange); 2831 break; 2832 2833 case SIOCSIFPHYS: 2834 error = priv_check(td, PRIV_NET_SETIFPHYS); 2835 if (error) 2836 return (error); 2837 if (ifp->if_ioctl == NULL) 2838 return (EOPNOTSUPP); 2839 error = (*ifp->if_ioctl)(ifp, cmd, data); 2840 if (error == 0) 2841 getmicrotime(&ifp->if_lastchange); 2842 break; 2843 2844 case SIOCSIFMTU: 2845 { 2846 u_long oldmtu = ifp->if_mtu; 2847 2848 error = priv_check(td, PRIV_NET_SETIFMTU); 2849 if (error) 2850 return (error); 2851 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2852 return (EINVAL); 2853 if (ifp->if_ioctl == NULL) 2854 return (EOPNOTSUPP); 2855 /* Disallow MTU changes on bridge member interfaces. */ 2856 if (ifp->if_bridge) 2857 return (EOPNOTSUPP); 2858 error = (*ifp->if_ioctl)(ifp, cmd, data); 2859 if (error == 0) { 2860 getmicrotime(&ifp->if_lastchange); 2861 rt_ifmsg(ifp); 2862 #ifdef INET 2863 DEBUGNET_NOTIFY_MTU(ifp); 2864 #endif 2865 } 2866 /* 2867 * If the link MTU changed, do network layer specific procedure. 2868 */ 2869 if (ifp->if_mtu != oldmtu) { 2870 #ifdef INET6 2871 nd6_setmtu(ifp); 2872 #endif 2873 rt_updatemtu(ifp); 2874 } 2875 break; 2876 } 2877 2878 case SIOCADDMULTI: 2879 case SIOCDELMULTI: 2880 if (cmd == SIOCADDMULTI) 2881 error = priv_check(td, PRIV_NET_ADDMULTI); 2882 else 2883 error = priv_check(td, PRIV_NET_DELMULTI); 2884 if (error) 2885 return (error); 2886 2887 /* Don't allow group membership on non-multicast interfaces. */ 2888 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2889 return (EOPNOTSUPP); 2890 2891 /* Don't let users screw up protocols' entries. */ 2892 if (ifr->ifr_addr.sa_family != AF_LINK) 2893 return (EINVAL); 2894 2895 if (cmd == SIOCADDMULTI) { 2896 struct epoch_tracker et; 2897 struct ifmultiaddr *ifma; 2898 2899 /* 2900 * Userland is only permitted to join groups once 2901 * via the if_addmulti() KPI, because it cannot hold 2902 * struct ifmultiaddr * between calls. It may also 2903 * lose a race while we check if the membership 2904 * already exists. 2905 */ 2906 NET_EPOCH_ENTER(et); 2907 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2908 NET_EPOCH_EXIT(et); 2909 if (ifma != NULL) 2910 error = EADDRINUSE; 2911 else 2912 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2913 } else { 2914 error = if_delmulti(ifp, &ifr->ifr_addr); 2915 } 2916 if (error == 0) 2917 getmicrotime(&ifp->if_lastchange); 2918 break; 2919 2920 case SIOCSIFPHYADDR: 2921 case SIOCDIFPHYADDR: 2922 #ifdef INET6 2923 case SIOCSIFPHYADDR_IN6: 2924 #endif 2925 case SIOCSIFMEDIA: 2926 case SIOCSIFGENERIC: 2927 error = priv_check(td, PRIV_NET_HWIOCTL); 2928 if (error) 2929 return (error); 2930 if (ifp->if_ioctl == NULL) 2931 return (EOPNOTSUPP); 2932 error = (*ifp->if_ioctl)(ifp, cmd, data); 2933 if (error == 0) 2934 getmicrotime(&ifp->if_lastchange); 2935 break; 2936 2937 case SIOCGIFSTATUS: 2938 case SIOCGIFPSRCADDR: 2939 case SIOCGIFPDSTADDR: 2940 case SIOCGIFMEDIA: 2941 case SIOCGIFXMEDIA: 2942 case SIOCGIFGENERIC: 2943 case SIOCGIFRSSKEY: 2944 case SIOCGIFRSSHASH: 2945 case SIOCGIFDOWNREASON: 2946 if (ifp->if_ioctl == NULL) 2947 return (EOPNOTSUPP); 2948 error = (*ifp->if_ioctl)(ifp, cmd, data); 2949 break; 2950 2951 case SIOCSIFLLADDR: 2952 error = priv_check(td, PRIV_NET_SETLLADDR); 2953 if (error) 2954 return (error); 2955 error = if_setlladdr(ifp, 2956 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2957 break; 2958 2959 case SIOCGHWADDR: 2960 error = if_gethwaddr(ifp, ifr); 2961 break; 2962 2963 case SIOCAIFGROUP: 2964 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2965 if (error) 2966 return (error); 2967 error = if_addgroup(ifp, 2968 ((struct ifgroupreq *)data)->ifgr_group); 2969 if (error != 0) 2970 return (error); 2971 break; 2972 2973 case SIOCGIFGROUP: 2974 { 2975 struct epoch_tracker et; 2976 2977 NET_EPOCH_ENTER(et); 2978 error = if_getgroup((struct ifgroupreq *)data, ifp); 2979 NET_EPOCH_EXIT(et); 2980 break; 2981 } 2982 2983 case SIOCDIFGROUP: 2984 error = priv_check(td, PRIV_NET_DELIFGROUP); 2985 if (error) 2986 return (error); 2987 error = if_delgroup(ifp, 2988 ((struct ifgroupreq *)data)->ifgr_group); 2989 if (error != 0) 2990 return (error); 2991 break; 2992 2993 default: 2994 error = ENOIOCTL; 2995 break; 2996 } 2997 return (error); 2998 } 2999 3000 /* 3001 * Interface ioctls. 3002 */ 3003 int 3004 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 3005 { 3006 #ifdef COMPAT_FREEBSD32 3007 union { 3008 struct ifconf ifc; 3009 struct ifdrv ifd; 3010 struct ifgroupreq ifgr; 3011 struct ifmediareq ifmr; 3012 } thunk; 3013 u_long saved_cmd; 3014 struct ifconf32 *ifc32; 3015 struct ifdrv32 *ifd32; 3016 struct ifgroupreq32 *ifgr32; 3017 struct ifmediareq32 *ifmr32; 3018 #endif 3019 struct ifnet *ifp; 3020 struct ifreq *ifr; 3021 int error; 3022 int oif_flags; 3023 #ifdef VIMAGE 3024 bool shutdown; 3025 #endif 3026 3027 CURVNET_SET(so->so_vnet); 3028 #ifdef VIMAGE 3029 /* Make sure the VNET is stable. */ 3030 shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet); 3031 if (shutdown) { 3032 CURVNET_RESTORE(); 3033 return (EBUSY); 3034 } 3035 #endif 3036 3037 #ifdef COMPAT_FREEBSD32 3038 saved_cmd = cmd; 3039 switch (cmd) { 3040 case SIOCGIFCONF32: 3041 ifc32 = (struct ifconf32 *)data; 3042 thunk.ifc.ifc_len = ifc32->ifc_len; 3043 thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 3044 data = (caddr_t)&thunk.ifc; 3045 cmd = SIOCGIFCONF; 3046 break; 3047 case SIOCGDRVSPEC32: 3048 case SIOCSDRVSPEC32: 3049 ifd32 = (struct ifdrv32 *)data; 3050 memcpy(thunk.ifd.ifd_name, ifd32->ifd_name, 3051 sizeof(thunk.ifd.ifd_name)); 3052 thunk.ifd.ifd_cmd = ifd32->ifd_cmd; 3053 thunk.ifd.ifd_len = ifd32->ifd_len; 3054 thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data); 3055 data = (caddr_t)&thunk.ifd; 3056 cmd = _IOC_NEWTYPE(cmd, struct ifdrv); 3057 break; 3058 case SIOCAIFGROUP32: 3059 case SIOCGIFGROUP32: 3060 case SIOCDIFGROUP32: 3061 case SIOCGIFGMEMB32: 3062 ifgr32 = (struct ifgroupreq32 *)data; 3063 memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name, 3064 sizeof(thunk.ifgr.ifgr_name)); 3065 thunk.ifgr.ifgr_len = ifgr32->ifgr_len; 3066 switch (cmd) { 3067 case SIOCAIFGROUP32: 3068 case SIOCDIFGROUP32: 3069 memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group, 3070 sizeof(thunk.ifgr.ifgr_group)); 3071 break; 3072 case SIOCGIFGROUP32: 3073 case SIOCGIFGMEMB32: 3074 thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups); 3075 break; 3076 } 3077 data = (caddr_t)&thunk.ifgr; 3078 cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq); 3079 break; 3080 case SIOCGIFMEDIA32: 3081 case SIOCGIFXMEDIA32: 3082 ifmr32 = (struct ifmediareq32 *)data; 3083 memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name, 3084 sizeof(thunk.ifmr.ifm_name)); 3085 thunk.ifmr.ifm_current = ifmr32->ifm_current; 3086 thunk.ifmr.ifm_mask = ifmr32->ifm_mask; 3087 thunk.ifmr.ifm_status = ifmr32->ifm_status; 3088 thunk.ifmr.ifm_active = ifmr32->ifm_active; 3089 thunk.ifmr.ifm_count = ifmr32->ifm_count; 3090 thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist); 3091 data = (caddr_t)&thunk.ifmr; 3092 cmd = _IOC_NEWTYPE(cmd, struct ifmediareq); 3093 break; 3094 } 3095 #endif 3096 3097 switch (cmd) { 3098 case SIOCGIFCONF: 3099 error = ifconf(cmd, data); 3100 goto out_noref; 3101 } 3102 3103 ifr = (struct ifreq *)data; 3104 switch (cmd) { 3105 #ifdef VIMAGE 3106 case SIOCSIFRVNET: 3107 error = priv_check(td, PRIV_NET_SETIFVNET); 3108 if (error == 0) 3109 error = if_vmove_reclaim(td, ifr->ifr_name, 3110 ifr->ifr_jid); 3111 goto out_noref; 3112 #endif 3113 case SIOCIFCREATE: 3114 case SIOCIFCREATE2: 3115 error = priv_check(td, PRIV_NET_IFCREATE); 3116 if (error == 0) 3117 error = if_clone_create(ifr->ifr_name, 3118 sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? 3119 ifr_data_get_ptr(ifr) : NULL); 3120 goto out_noref; 3121 case SIOCIFDESTROY: 3122 error = priv_check(td, PRIV_NET_IFDESTROY); 3123 3124 if (error == 0) { 3125 sx_xlock(&ifnet_detach_sxlock); 3126 error = if_clone_destroy(ifr->ifr_name); 3127 sx_xunlock(&ifnet_detach_sxlock); 3128 } 3129 goto out_noref; 3130 3131 case SIOCIFGCLONERS: 3132 error = if_clone_list((struct if_clonereq *)data); 3133 goto out_noref; 3134 3135 case SIOCGIFGMEMB: 3136 error = if_getgroupmembers((struct ifgroupreq *)data); 3137 goto out_noref; 3138 3139 #if defined(INET) || defined(INET6) 3140 case SIOCSVH: 3141 case SIOCGVH: 3142 if (carp_ioctl_p == NULL) 3143 error = EPROTONOSUPPORT; 3144 else 3145 error = (*carp_ioctl_p)(ifr, cmd, td); 3146 goto out_noref; 3147 #endif 3148 } 3149 3150 ifp = ifunit_ref(ifr->ifr_name); 3151 if (ifp == NULL) { 3152 error = ENXIO; 3153 goto out_noref; 3154 } 3155 3156 error = ifhwioctl(cmd, ifp, data, td); 3157 if (error != ENOIOCTL) 3158 goto out_ref; 3159 3160 oif_flags = ifp->if_flags; 3161 if (so->so_proto == NULL) { 3162 error = EOPNOTSUPP; 3163 goto out_ref; 3164 } 3165 3166 /* 3167 * Pass the request on to the socket control method, and if the 3168 * latter returns EOPNOTSUPP, directly to the interface. 3169 * 3170 * Make an exception for the legacy SIOCSIF* requests. Drivers 3171 * trust SIOCSIFADDR et al to come from an already privileged 3172 * layer, and do not perform any credentials checks or input 3173 * validation. 3174 */ 3175 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, 3176 ifp, td)); 3177 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 3178 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 3179 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 3180 error = (*ifp->if_ioctl)(ifp, cmd, data); 3181 3182 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 3183 #ifdef INET6 3184 if (ifp->if_flags & IFF_UP) 3185 in6_if_up(ifp); 3186 #endif 3187 } 3188 3189 out_ref: 3190 if_rele(ifp); 3191 out_noref: 3192 CURVNET_RESTORE(); 3193 #ifdef COMPAT_FREEBSD32 3194 if (error != 0) 3195 return (error); 3196 switch (saved_cmd) { 3197 case SIOCGIFCONF32: 3198 ifc32->ifc_len = thunk.ifc.ifc_len; 3199 break; 3200 case SIOCGDRVSPEC32: 3201 /* 3202 * SIOCGDRVSPEC is IOWR, but nothing actually touches 3203 * the struct so just assert that ifd_len (the only 3204 * field it might make sense to update) hasn't 3205 * changed. 3206 */ 3207 KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len, 3208 ("ifd_len was updated %u -> %zu", ifd32->ifd_len, 3209 thunk.ifd.ifd_len)); 3210 break; 3211 case SIOCGIFGROUP32: 3212 case SIOCGIFGMEMB32: 3213 ifgr32->ifgr_len = thunk.ifgr.ifgr_len; 3214 break; 3215 case SIOCGIFMEDIA32: 3216 case SIOCGIFXMEDIA32: 3217 ifmr32->ifm_current = thunk.ifmr.ifm_current; 3218 ifmr32->ifm_mask = thunk.ifmr.ifm_mask; 3219 ifmr32->ifm_status = thunk.ifmr.ifm_status; 3220 ifmr32->ifm_active = thunk.ifmr.ifm_active; 3221 ifmr32->ifm_count = thunk.ifmr.ifm_count; 3222 break; 3223 } 3224 #endif 3225 return (error); 3226 } 3227 3228 /* 3229 * The code common to handling reference counted flags, 3230 * e.g., in ifpromisc() and if_allmulti(). 3231 * The "pflag" argument can specify a permanent mode flag to check, 3232 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 3233 * 3234 * Only to be used on stack-owned flags, not driver-owned flags. 3235 */ 3236 static int 3237 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 3238 { 3239 struct ifreq ifr; 3240 int error; 3241 int oldflags, oldcount; 3242 3243 /* Sanity checks to catch programming errors */ 3244 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 3245 ("%s: setting driver-owned flag %d", __func__, flag)); 3246 3247 if (onswitch) 3248 KASSERT(*refcount >= 0, 3249 ("%s: increment negative refcount %d for flag %d", 3250 __func__, *refcount, flag)); 3251 else 3252 KASSERT(*refcount > 0, 3253 ("%s: decrement non-positive refcount %d for flag %d", 3254 __func__, *refcount, flag)); 3255 3256 /* In case this mode is permanent, just touch refcount */ 3257 if (ifp->if_flags & pflag) { 3258 *refcount += onswitch ? 1 : -1; 3259 return (0); 3260 } 3261 3262 /* Save ifnet parameters for if_ioctl() may fail */ 3263 oldcount = *refcount; 3264 oldflags = ifp->if_flags; 3265 3266 /* 3267 * See if we aren't the only and touching refcount is enough. 3268 * Actually toggle interface flag if we are the first or last. 3269 */ 3270 if (onswitch) { 3271 if ((*refcount)++) 3272 return (0); 3273 ifp->if_flags |= flag; 3274 } else { 3275 if (--(*refcount)) 3276 return (0); 3277 ifp->if_flags &= ~flag; 3278 } 3279 3280 /* Call down the driver since we've changed interface flags */ 3281 if (ifp->if_ioctl == NULL) { 3282 error = EOPNOTSUPP; 3283 goto recover; 3284 } 3285 ifr.ifr_flags = ifp->if_flags & 0xffff; 3286 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3287 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3288 if (error) 3289 goto recover; 3290 /* Notify userland that interface flags have changed */ 3291 rt_ifmsg(ifp); 3292 return (0); 3293 3294 recover: 3295 /* Recover after driver error */ 3296 *refcount = oldcount; 3297 ifp->if_flags = oldflags; 3298 return (error); 3299 } 3300 3301 /* 3302 * Set/clear promiscuous mode on interface ifp based on the truth value 3303 * of pswitch. The calls are reference counted so that only the first 3304 * "on" request actually has an effect, as does the final "off" request. 3305 * Results are undefined if the "off" and "on" requests are not matched. 3306 */ 3307 int 3308 ifpromisc(struct ifnet *ifp, int pswitch) 3309 { 3310 int error; 3311 int oldflags = ifp->if_flags; 3312 3313 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 3314 &ifp->if_pcount, pswitch); 3315 /* If promiscuous mode status has changed, log a message */ 3316 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) && 3317 log_promisc_mode_change) 3318 if_printf(ifp, "promiscuous mode %s\n", 3319 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 3320 return (error); 3321 } 3322 3323 /* 3324 * Return interface configuration 3325 * of system. List may be used 3326 * in later ioctl's (above) to get 3327 * other information. 3328 */ 3329 /*ARGSUSED*/ 3330 static int 3331 ifconf(u_long cmd, caddr_t data) 3332 { 3333 struct ifconf *ifc = (struct ifconf *)data; 3334 struct ifnet *ifp; 3335 struct ifaddr *ifa; 3336 struct ifreq ifr; 3337 struct sbuf *sb; 3338 int error, full = 0, valid_len, max_len; 3339 3340 /* Limit initial buffer size to maxphys to avoid DoS from userspace. */ 3341 max_len = maxphys - 1; 3342 3343 /* Prevent hostile input from being able to crash the system */ 3344 if (ifc->ifc_len <= 0) 3345 return (EINVAL); 3346 3347 again: 3348 if (ifc->ifc_len <= max_len) { 3349 max_len = ifc->ifc_len; 3350 full = 1; 3351 } 3352 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 3353 max_len = 0; 3354 valid_len = 0; 3355 3356 IFNET_RLOCK(); 3357 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 3358 struct epoch_tracker et; 3359 int addrs; 3360 3361 /* 3362 * Zero the ifr to make sure we don't disclose the contents 3363 * of the stack. 3364 */ 3365 memset(&ifr, 0, sizeof(ifr)); 3366 3367 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 3368 >= sizeof(ifr.ifr_name)) { 3369 sbuf_delete(sb); 3370 IFNET_RUNLOCK(); 3371 return (ENAMETOOLONG); 3372 } 3373 3374 addrs = 0; 3375 NET_EPOCH_ENTER(et); 3376 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3377 struct sockaddr *sa = ifa->ifa_addr; 3378 3379 if (prison_if(curthread->td_ucred, sa) != 0) 3380 continue; 3381 addrs++; 3382 if (sa->sa_len <= sizeof(*sa)) { 3383 if (sa->sa_len < sizeof(*sa)) { 3384 memset(&ifr.ifr_ifru.ifru_addr, 0, 3385 sizeof(ifr.ifr_ifru.ifru_addr)); 3386 memcpy(&ifr.ifr_ifru.ifru_addr, sa, 3387 sa->sa_len); 3388 } else 3389 ifr.ifr_ifru.ifru_addr = *sa; 3390 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3391 max_len += sizeof(ifr); 3392 } else { 3393 sbuf_bcat(sb, &ifr, 3394 offsetof(struct ifreq, ifr_addr)); 3395 max_len += offsetof(struct ifreq, ifr_addr); 3396 sbuf_bcat(sb, sa, sa->sa_len); 3397 max_len += sa->sa_len; 3398 } 3399 3400 if (sbuf_error(sb) == 0) 3401 valid_len = sbuf_len(sb); 3402 } 3403 NET_EPOCH_EXIT(et); 3404 if (addrs == 0) { 3405 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3406 max_len += sizeof(ifr); 3407 3408 if (sbuf_error(sb) == 0) 3409 valid_len = sbuf_len(sb); 3410 } 3411 } 3412 IFNET_RUNLOCK(); 3413 3414 /* 3415 * If we didn't allocate enough space (uncommon), try again. If 3416 * we have already allocated as much space as we are allowed, 3417 * return what we've got. 3418 */ 3419 if (valid_len != max_len && !full) { 3420 sbuf_delete(sb); 3421 goto again; 3422 } 3423 3424 ifc->ifc_len = valid_len; 3425 sbuf_finish(sb); 3426 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 3427 sbuf_delete(sb); 3428 return (error); 3429 } 3430 3431 /* 3432 * Just like ifpromisc(), but for all-multicast-reception mode. 3433 */ 3434 int 3435 if_allmulti(struct ifnet *ifp, int onswitch) 3436 { 3437 3438 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 3439 } 3440 3441 struct ifmultiaddr * 3442 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) 3443 { 3444 struct ifmultiaddr *ifma; 3445 3446 IF_ADDR_LOCK_ASSERT(ifp); 3447 3448 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3449 if (sa->sa_family == AF_LINK) { 3450 if (sa_dl_equal(ifma->ifma_addr, sa)) 3451 break; 3452 } else { 3453 if (sa_equal(ifma->ifma_addr, sa)) 3454 break; 3455 } 3456 } 3457 3458 return ifma; 3459 } 3460 3461 /* 3462 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 3463 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 3464 * the ifnet multicast address list here, so the caller must do that and 3465 * other setup work (such as notifying the device driver). The reference 3466 * count is initialized to 1. 3467 */ 3468 static struct ifmultiaddr * 3469 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 3470 int mflags) 3471 { 3472 struct ifmultiaddr *ifma; 3473 struct sockaddr *dupsa; 3474 3475 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3476 M_ZERO); 3477 if (ifma == NULL) 3478 return (NULL); 3479 3480 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3481 if (dupsa == NULL) { 3482 free(ifma, M_IFMADDR); 3483 return (NULL); 3484 } 3485 bcopy(sa, dupsa, sa->sa_len); 3486 ifma->ifma_addr = dupsa; 3487 3488 ifma->ifma_ifp = ifp; 3489 ifma->ifma_refcount = 1; 3490 ifma->ifma_protospec = NULL; 3491 3492 if (llsa == NULL) { 3493 ifma->ifma_lladdr = NULL; 3494 return (ifma); 3495 } 3496 3497 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3498 if (dupsa == NULL) { 3499 free(ifma->ifma_addr, M_IFMADDR); 3500 free(ifma, M_IFMADDR); 3501 return (NULL); 3502 } 3503 bcopy(llsa, dupsa, llsa->sa_len); 3504 ifma->ifma_lladdr = dupsa; 3505 3506 return (ifma); 3507 } 3508 3509 /* 3510 * if_freemulti: free ifmultiaddr structure and possibly attached related 3511 * addresses. The caller is responsible for implementing reference 3512 * counting, notifying the driver, handling routing messages, and releasing 3513 * any dependent link layer state. 3514 */ 3515 #ifdef MCAST_VERBOSE 3516 extern void kdb_backtrace(void); 3517 #endif 3518 static void 3519 if_freemulti_internal(struct ifmultiaddr *ifma) 3520 { 3521 3522 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3523 ifma->ifma_refcount)); 3524 3525 if (ifma->ifma_lladdr != NULL) 3526 free(ifma->ifma_lladdr, M_IFMADDR); 3527 #ifdef MCAST_VERBOSE 3528 kdb_backtrace(); 3529 printf("%s freeing ifma: %p\n", __func__, ifma); 3530 #endif 3531 free(ifma->ifma_addr, M_IFMADDR); 3532 free(ifma, M_IFMADDR); 3533 } 3534 3535 static void 3536 if_destroymulti(epoch_context_t ctx) 3537 { 3538 struct ifmultiaddr *ifma; 3539 3540 ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx); 3541 if_freemulti_internal(ifma); 3542 } 3543 3544 void 3545 if_freemulti(struct ifmultiaddr *ifma) 3546 { 3547 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d", 3548 ifma->ifma_refcount)); 3549 3550 NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx); 3551 } 3552 3553 /* 3554 * Register an additional multicast address with a network interface. 3555 * 3556 * - If the address is already present, bump the reference count on the 3557 * address and return. 3558 * - If the address is not link-layer, look up a link layer address. 3559 * - Allocate address structures for one or both addresses, and attach to the 3560 * multicast address list on the interface. If automatically adding a link 3561 * layer address, the protocol address will own a reference to the link 3562 * layer address, to be freed when it is freed. 3563 * - Notify the network device driver of an addition to the multicast address 3564 * list. 3565 * 3566 * 'sa' points to caller-owned memory with the desired multicast address. 3567 * 3568 * 'retifma' will be used to return a pointer to the resulting multicast 3569 * address reference, if desired. 3570 */ 3571 int 3572 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3573 struct ifmultiaddr **retifma) 3574 { 3575 struct ifmultiaddr *ifma, *ll_ifma; 3576 struct sockaddr *llsa; 3577 struct sockaddr_dl sdl; 3578 int error; 3579 3580 #ifdef INET 3581 IN_MULTI_LIST_UNLOCK_ASSERT(); 3582 #endif 3583 #ifdef INET6 3584 IN6_MULTI_LIST_UNLOCK_ASSERT(); 3585 #endif 3586 /* 3587 * If the address is already present, return a new reference to it; 3588 * otherwise, allocate storage and set up a new address. 3589 */ 3590 IF_ADDR_WLOCK(ifp); 3591 ifma = if_findmulti(ifp, sa); 3592 if (ifma != NULL) { 3593 ifma->ifma_refcount++; 3594 if (retifma != NULL) 3595 *retifma = ifma; 3596 IF_ADDR_WUNLOCK(ifp); 3597 return (0); 3598 } 3599 3600 /* 3601 * The address isn't already present; resolve the protocol address 3602 * into a link layer address, and then look that up, bump its 3603 * refcount or allocate an ifma for that also. 3604 * Most link layer resolving functions returns address data which 3605 * fits inside default sockaddr_dl structure. However callback 3606 * can allocate another sockaddr structure, in that case we need to 3607 * free it later. 3608 */ 3609 llsa = NULL; 3610 ll_ifma = NULL; 3611 if (ifp->if_resolvemulti != NULL) { 3612 /* Provide called function with buffer size information */ 3613 sdl.sdl_len = sizeof(sdl); 3614 llsa = (struct sockaddr *)&sdl; 3615 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3616 if (error) 3617 goto unlock_out; 3618 } 3619 3620 /* 3621 * Allocate the new address. Don't hook it up yet, as we may also 3622 * need to allocate a link layer multicast address. 3623 */ 3624 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3625 if (ifma == NULL) { 3626 error = ENOMEM; 3627 goto free_llsa_out; 3628 } 3629 3630 /* 3631 * If a link layer address is found, we'll need to see if it's 3632 * already present in the address list, or allocate is as well. 3633 * When this block finishes, the link layer address will be on the 3634 * list. 3635 */ 3636 if (llsa != NULL) { 3637 ll_ifma = if_findmulti(ifp, llsa); 3638 if (ll_ifma == NULL) { 3639 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3640 if (ll_ifma == NULL) { 3641 --ifma->ifma_refcount; 3642 if_freemulti(ifma); 3643 error = ENOMEM; 3644 goto free_llsa_out; 3645 } 3646 ll_ifma->ifma_flags |= IFMA_F_ENQUEUED; 3647 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3648 ifma_link); 3649 } else 3650 ll_ifma->ifma_refcount++; 3651 ifma->ifma_llifma = ll_ifma; 3652 } 3653 3654 /* 3655 * We now have a new multicast address, ifma, and possibly a new or 3656 * referenced link layer address. Add the primary address to the 3657 * ifnet address list. 3658 */ 3659 ifma->ifma_flags |= IFMA_F_ENQUEUED; 3660 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3661 3662 if (retifma != NULL) 3663 *retifma = ifma; 3664 3665 /* 3666 * Must generate the message while holding the lock so that 'ifma' 3667 * pointer is still valid. 3668 */ 3669 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3670 IF_ADDR_WUNLOCK(ifp); 3671 3672 /* 3673 * We are certain we have added something, so call down to the 3674 * interface to let them know about it. 3675 */ 3676 if (ifp->if_ioctl != NULL) { 3677 if (THREAD_CAN_SLEEP()) 3678 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3679 else 3680 taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask); 3681 } 3682 3683 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3684 link_free_sdl(llsa); 3685 3686 return (0); 3687 3688 free_llsa_out: 3689 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3690 link_free_sdl(llsa); 3691 3692 unlock_out: 3693 IF_ADDR_WUNLOCK(ifp); 3694 return (error); 3695 } 3696 3697 static void 3698 if_siocaddmulti(void *arg, int pending) 3699 { 3700 struct ifnet *ifp; 3701 3702 ifp = arg; 3703 #ifdef DIAGNOSTIC 3704 if (pending > 1) 3705 if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending); 3706 #endif 3707 CURVNET_SET(ifp->if_vnet); 3708 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3709 CURVNET_RESTORE(); 3710 } 3711 3712 /* 3713 * Delete a multicast group membership by network-layer group address. 3714 * 3715 * Returns ENOENT if the entry could not be found. If ifp no longer 3716 * exists, results are undefined. This entry point should only be used 3717 * from subsystems which do appropriate locking to hold ifp for the 3718 * duration of the call. 3719 * Network-layer protocol domains must use if_delmulti_ifma(). 3720 */ 3721 int 3722 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3723 { 3724 struct ifmultiaddr *ifma; 3725 int lastref; 3726 3727 KASSERT(ifp, ("%s: NULL ifp", __func__)); 3728 3729 IF_ADDR_WLOCK(ifp); 3730 lastref = 0; 3731 ifma = if_findmulti(ifp, sa); 3732 if (ifma != NULL) 3733 lastref = if_delmulti_locked(ifp, ifma, 0); 3734 IF_ADDR_WUNLOCK(ifp); 3735 3736 if (ifma == NULL) 3737 return (ENOENT); 3738 3739 if (lastref && ifp->if_ioctl != NULL) { 3740 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3741 } 3742 3743 return (0); 3744 } 3745 3746 /* 3747 * Delete all multicast group membership for an interface. 3748 * Should be used to quickly flush all multicast filters. 3749 */ 3750 void 3751 if_delallmulti(struct ifnet *ifp) 3752 { 3753 struct ifmultiaddr *ifma; 3754 struct ifmultiaddr *next; 3755 3756 IF_ADDR_WLOCK(ifp); 3757 CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3758 if_delmulti_locked(ifp, ifma, 0); 3759 IF_ADDR_WUNLOCK(ifp); 3760 } 3761 3762 void 3763 if_delmulti_ifma(struct ifmultiaddr *ifma) 3764 { 3765 if_delmulti_ifma_flags(ifma, 0); 3766 } 3767 3768 /* 3769 * Delete a multicast group membership by group membership pointer. 3770 * Network-layer protocol domains must use this routine. 3771 * 3772 * It is safe to call this routine if the ifp disappeared. 3773 */ 3774 void 3775 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags) 3776 { 3777 struct ifnet *ifp; 3778 int lastref; 3779 MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma); 3780 #ifdef INET 3781 IN_MULTI_LIST_UNLOCK_ASSERT(); 3782 #endif 3783 ifp = ifma->ifma_ifp; 3784 #ifdef DIAGNOSTIC 3785 if (ifp == NULL) { 3786 printf("%s: ifma_ifp seems to be detached\n", __func__); 3787 } else { 3788 struct epoch_tracker et; 3789 struct ifnet *oifp; 3790 3791 NET_EPOCH_ENTER(et); 3792 CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link) 3793 if (ifp == oifp) 3794 break; 3795 NET_EPOCH_EXIT(et); 3796 if (ifp != oifp) 3797 ifp = NULL; 3798 } 3799 #endif 3800 /* 3801 * If and only if the ifnet instance exists: Acquire the address lock. 3802 */ 3803 if (ifp != NULL) 3804 IF_ADDR_WLOCK(ifp); 3805 3806 lastref = if_delmulti_locked(ifp, ifma, flags); 3807 3808 if (ifp != NULL) { 3809 /* 3810 * If and only if the ifnet instance exists: 3811 * Release the address lock. 3812 * If the group was left: update the hardware hash filter. 3813 */ 3814 IF_ADDR_WUNLOCK(ifp); 3815 if (lastref && ifp->if_ioctl != NULL) { 3816 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3817 } 3818 } 3819 } 3820 3821 /* 3822 * Perform deletion of network-layer and/or link-layer multicast address. 3823 * 3824 * Return 0 if the reference count was decremented. 3825 * Return 1 if the final reference was released, indicating that the 3826 * hardware hash filter should be reprogrammed. 3827 */ 3828 static int 3829 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3830 { 3831 struct ifmultiaddr *ll_ifma; 3832 3833 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3834 KASSERT(ifma->ifma_ifp == ifp, 3835 ("%s: inconsistent ifp %p", __func__, ifp)); 3836 IF_ADDR_WLOCK_ASSERT(ifp); 3837 } 3838 3839 ifp = ifma->ifma_ifp; 3840 MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : ""); 3841 3842 /* 3843 * If the ifnet is detaching, null out references to ifnet, 3844 * so that upper protocol layers will notice, and not attempt 3845 * to obtain locks for an ifnet which no longer exists. The 3846 * routing socket announcement must happen before the ifnet 3847 * instance is detached from the system. 3848 */ 3849 if (detaching) { 3850 #ifdef DIAGNOSTIC 3851 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3852 #endif 3853 /* 3854 * ifp may already be nulled out if we are being reentered 3855 * to delete the ll_ifma. 3856 */ 3857 if (ifp != NULL) { 3858 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3859 ifma->ifma_ifp = NULL; 3860 } 3861 } 3862 3863 if (--ifma->ifma_refcount > 0) 3864 return 0; 3865 3866 if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) { 3867 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 3868 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3869 } 3870 /* 3871 * If this ifma is a network-layer ifma, a link-layer ifma may 3872 * have been associated with it. Release it first if so. 3873 */ 3874 ll_ifma = ifma->ifma_llifma; 3875 if (ll_ifma != NULL) { 3876 KASSERT(ifma->ifma_lladdr != NULL, 3877 ("%s: llifma w/o lladdr", __func__)); 3878 if (detaching) 3879 ll_ifma->ifma_ifp = NULL; /* XXX */ 3880 if (--ll_ifma->ifma_refcount == 0) { 3881 if (ifp != NULL) { 3882 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 3883 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, 3884 ifma_link); 3885 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3886 } 3887 } 3888 if_freemulti(ll_ifma); 3889 } 3890 } 3891 #ifdef INVARIANTS 3892 if (ifp) { 3893 struct ifmultiaddr *ifmatmp; 3894 3895 CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link) 3896 MPASS(ifma != ifmatmp); 3897 } 3898 #endif 3899 if_freemulti(ifma); 3900 /* 3901 * The last reference to this instance of struct ifmultiaddr 3902 * was released; the hardware should be notified of this change. 3903 */ 3904 return 1; 3905 } 3906 3907 /* 3908 * Set the link layer address on an interface. 3909 * 3910 * At this time we only support certain types of interfaces, 3911 * and we don't allow the length of the address to change. 3912 * 3913 * Set noinline to be dtrace-friendly 3914 */ 3915 __noinline int 3916 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3917 { 3918 struct sockaddr_dl *sdl; 3919 struct ifaddr *ifa; 3920 struct ifreq ifr; 3921 3922 ifa = ifp->if_addr; 3923 if (ifa == NULL) 3924 return (EINVAL); 3925 3926 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3927 if (sdl == NULL) 3928 return (EINVAL); 3929 3930 if (len != sdl->sdl_alen) /* don't allow length to change */ 3931 return (EINVAL); 3932 3933 switch (ifp->if_type) { 3934 case IFT_ETHER: 3935 case IFT_XETHER: 3936 case IFT_L2VLAN: 3937 case IFT_BRIDGE: 3938 case IFT_IEEE8023ADLAG: 3939 bcopy(lladdr, LLADDR(sdl), len); 3940 break; 3941 default: 3942 return (ENODEV); 3943 } 3944 3945 /* 3946 * If the interface is already up, we need 3947 * to re-init it in order to reprogram its 3948 * address filter. 3949 */ 3950 if ((ifp->if_flags & IFF_UP) != 0) { 3951 if (ifp->if_ioctl) { 3952 ifp->if_flags &= ~IFF_UP; 3953 ifr.ifr_flags = ifp->if_flags & 0xffff; 3954 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3955 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3956 ifp->if_flags |= IFF_UP; 3957 ifr.ifr_flags = ifp->if_flags & 0xffff; 3958 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3959 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3960 } 3961 } 3962 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 3963 3964 return (0); 3965 } 3966 3967 /* 3968 * Compat function for handling basic encapsulation requests. 3969 * Not converted stacks (FDDI, IB, ..) supports traditional 3970 * output model: ARP (and other similar L2 protocols) are handled 3971 * inside output routine, arpresolve/nd6_resolve() returns MAC 3972 * address instead of full prepend. 3973 * 3974 * This function creates calculated header==MAC for IPv4/IPv6 and 3975 * returns EAFNOSUPPORT (which is then handled in ARP code) for other 3976 * address families. 3977 */ 3978 static int 3979 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) 3980 { 3981 3982 if (req->rtype != IFENCAP_LL) 3983 return (EOPNOTSUPP); 3984 3985 if (req->bufsize < req->lladdr_len) 3986 return (ENOMEM); 3987 3988 switch (req->family) { 3989 case AF_INET: 3990 case AF_INET6: 3991 break; 3992 default: 3993 return (EAFNOSUPPORT); 3994 } 3995 3996 /* Copy lladdr to storage as is */ 3997 memmove(req->buf, req->lladdr, req->lladdr_len); 3998 req->bufsize = req->lladdr_len; 3999 req->lladdr_off = 0; 4000 4001 return (0); 4002 } 4003 4004 /* 4005 * Tunnel interfaces can nest, also they may cause infinite recursion 4006 * calls when misconfigured. We'll prevent this by detecting loops. 4007 * High nesting level may cause stack exhaustion. We'll prevent this 4008 * by introducing upper limit. 4009 * 4010 * Return 0, if tunnel nesting count is equal or less than limit. 4011 */ 4012 int 4013 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie, 4014 int limit) 4015 { 4016 struct m_tag *mtag; 4017 int count; 4018 4019 count = 1; 4020 mtag = NULL; 4021 while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) { 4022 if (*(struct ifnet **)(mtag + 1) == ifp) { 4023 log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp)); 4024 return (EIO); 4025 } 4026 count++; 4027 } 4028 if (count > limit) { 4029 log(LOG_NOTICE, 4030 "%s: if_output recursively called too many times(%d)\n", 4031 if_name(ifp), count); 4032 return (EIO); 4033 } 4034 mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT); 4035 if (mtag == NULL) 4036 return (ENOMEM); 4037 *(struct ifnet **)(mtag + 1) = ifp; 4038 m_tag_prepend(m, mtag); 4039 return (0); 4040 } 4041 4042 /* 4043 * Get the link layer address that was read from the hardware at attach. 4044 * 4045 * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type 4046 * their component interfaces as IFT_IEEE8023ADLAG. 4047 */ 4048 int 4049 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr) 4050 { 4051 4052 if (ifp->if_hw_addr == NULL) 4053 return (ENODEV); 4054 4055 switch (ifp->if_type) { 4056 case IFT_ETHER: 4057 case IFT_IEEE8023ADLAG: 4058 bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen); 4059 return (0); 4060 default: 4061 return (ENODEV); 4062 } 4063 } 4064 4065 /* 4066 * The name argument must be a pointer to storage which will last as 4067 * long as the interface does. For physical devices, the result of 4068 * device_get_name(dev) is a good choice and for pseudo-devices a 4069 * static string works well. 4070 */ 4071 void 4072 if_initname(struct ifnet *ifp, const char *name, int unit) 4073 { 4074 ifp->if_dname = name; 4075 ifp->if_dunit = unit; 4076 if (unit != IF_DUNIT_NONE) 4077 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 4078 else 4079 strlcpy(ifp->if_xname, name, IFNAMSIZ); 4080 } 4081 4082 static int 4083 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap) 4084 { 4085 char if_fmt[256]; 4086 4087 snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt); 4088 vlog(pri, if_fmt, ap); 4089 return (0); 4090 } 4091 4092 4093 int 4094 if_printf(struct ifnet *ifp, const char *fmt, ...) 4095 { 4096 va_list ap; 4097 4098 va_start(ap, fmt); 4099 if_vlog(ifp, LOG_INFO, fmt, ap); 4100 va_end(ap); 4101 return (0); 4102 } 4103 4104 int 4105 if_log(struct ifnet *ifp, int pri, const char *fmt, ...) 4106 { 4107 va_list ap; 4108 4109 va_start(ap, fmt); 4110 if_vlog(ifp, pri, fmt, ap); 4111 va_end(ap); 4112 return (0); 4113 } 4114 4115 void 4116 if_start(struct ifnet *ifp) 4117 { 4118 4119 (*(ifp)->if_start)(ifp); 4120 } 4121 4122 /* 4123 * Backwards compatibility interface for drivers 4124 * that have not implemented it 4125 */ 4126 static int 4127 if_transmit(struct ifnet *ifp, struct mbuf *m) 4128 { 4129 int error; 4130 4131 IFQ_HANDOFF(ifp, m, error); 4132 return (error); 4133 } 4134 4135 static void 4136 if_input_default(struct ifnet *ifp __unused, struct mbuf *m) 4137 { 4138 4139 m_freem(m); 4140 } 4141 4142 int 4143 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 4144 { 4145 int active = 0; 4146 4147 IF_LOCK(ifq); 4148 if (_IF_QFULL(ifq)) { 4149 IF_UNLOCK(ifq); 4150 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 4151 m_freem(m); 4152 return (0); 4153 } 4154 if (ifp != NULL) { 4155 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 4156 if (m->m_flags & (M_BCAST|M_MCAST)) 4157 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4158 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 4159 } 4160 _IF_ENQUEUE(ifq, m); 4161 IF_UNLOCK(ifq); 4162 if (ifp != NULL && !active) 4163 (*(ifp)->if_start)(ifp); 4164 return (1); 4165 } 4166 4167 void 4168 if_register_com_alloc(u_char type, 4169 if_com_alloc_t *a, if_com_free_t *f) 4170 { 4171 4172 KASSERT(if_com_alloc[type] == NULL, 4173 ("if_register_com_alloc: %d already registered", type)); 4174 KASSERT(if_com_free[type] == NULL, 4175 ("if_register_com_alloc: %d free already registered", type)); 4176 4177 if_com_alloc[type] = a; 4178 if_com_free[type] = f; 4179 } 4180 4181 void 4182 if_deregister_com_alloc(u_char type) 4183 { 4184 4185 KASSERT(if_com_alloc[type] != NULL, 4186 ("if_deregister_com_alloc: %d not registered", type)); 4187 KASSERT(if_com_free[type] != NULL, 4188 ("if_deregister_com_alloc: %d free not registered", type)); 4189 4190 /* 4191 * Ensure all pending EPOCH(9) callbacks have been executed. This 4192 * fixes issues about late invocation of if_destroy(), which leads 4193 * to memory leak from if_com_alloc[type] allocated if_l2com. 4194 */ 4195 NET_EPOCH_DRAIN_CALLBACKS(); 4196 4197 if_com_alloc[type] = NULL; 4198 if_com_free[type] = NULL; 4199 } 4200 4201 /* API for driver access to network stack owned ifnet.*/ 4202 uint64_t 4203 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 4204 { 4205 uint64_t oldbrate; 4206 4207 oldbrate = ifp->if_baudrate; 4208 ifp->if_baudrate = baudrate; 4209 return (oldbrate); 4210 } 4211 4212 uint64_t 4213 if_getbaudrate(if_t ifp) 4214 { 4215 4216 return (((struct ifnet *)ifp)->if_baudrate); 4217 } 4218 4219 int 4220 if_setcapabilities(if_t ifp, int capabilities) 4221 { 4222 ((struct ifnet *)ifp)->if_capabilities = capabilities; 4223 return (0); 4224 } 4225 4226 int 4227 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 4228 { 4229 ((struct ifnet *)ifp)->if_capabilities |= setbit; 4230 ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; 4231 4232 return (0); 4233 } 4234 4235 int 4236 if_getcapabilities(if_t ifp) 4237 { 4238 return ((struct ifnet *)ifp)->if_capabilities; 4239 } 4240 4241 int 4242 if_setcapenable(if_t ifp, int capabilities) 4243 { 4244 ((struct ifnet *)ifp)->if_capenable = capabilities; 4245 return (0); 4246 } 4247 4248 int 4249 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 4250 { 4251 if(setcap) 4252 ((struct ifnet *)ifp)->if_capenable |= setcap; 4253 if(clearcap) 4254 ((struct ifnet *)ifp)->if_capenable &= ~clearcap; 4255 4256 return (0); 4257 } 4258 4259 const char * 4260 if_getdname(if_t ifp) 4261 { 4262 return ((struct ifnet *)ifp)->if_dname; 4263 } 4264 4265 int 4266 if_togglecapenable(if_t ifp, int togglecap) 4267 { 4268 ((struct ifnet *)ifp)->if_capenable ^= togglecap; 4269 return (0); 4270 } 4271 4272 int 4273 if_getcapenable(if_t ifp) 4274 { 4275 return ((struct ifnet *)ifp)->if_capenable; 4276 } 4277 4278 /* 4279 * This is largely undesirable because it ties ifnet to a device, but does 4280 * provide flexiblity for an embedded product vendor. Should be used with 4281 * the understanding that it violates the interface boundaries, and should be 4282 * a last resort only. 4283 */ 4284 int 4285 if_setdev(if_t ifp, void *dev) 4286 { 4287 return (0); 4288 } 4289 4290 int 4291 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 4292 { 4293 ((struct ifnet *)ifp)->if_drv_flags |= set_flags; 4294 ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; 4295 4296 return (0); 4297 } 4298 4299 int 4300 if_getdrvflags(if_t ifp) 4301 { 4302 return ((struct ifnet *)ifp)->if_drv_flags; 4303 } 4304 4305 int 4306 if_setdrvflags(if_t ifp, int flags) 4307 { 4308 ((struct ifnet *)ifp)->if_drv_flags = flags; 4309 return (0); 4310 } 4311 4312 int 4313 if_setflags(if_t ifp, int flags) 4314 { 4315 4316 ifp->if_flags = flags; 4317 return (0); 4318 } 4319 4320 int 4321 if_setflagbits(if_t ifp, int set, int clear) 4322 { 4323 ((struct ifnet *)ifp)->if_flags |= set; 4324 ((struct ifnet *)ifp)->if_flags &= ~clear; 4325 4326 return (0); 4327 } 4328 4329 int 4330 if_getflags(if_t ifp) 4331 { 4332 return ((struct ifnet *)ifp)->if_flags; 4333 } 4334 4335 int 4336 if_clearhwassist(if_t ifp) 4337 { 4338 ((struct ifnet *)ifp)->if_hwassist = 0; 4339 return (0); 4340 } 4341 4342 int 4343 if_sethwassistbits(if_t ifp, int toset, int toclear) 4344 { 4345 ((struct ifnet *)ifp)->if_hwassist |= toset; 4346 ((struct ifnet *)ifp)->if_hwassist &= ~toclear; 4347 4348 return (0); 4349 } 4350 4351 int 4352 if_sethwassist(if_t ifp, int hwassist_bit) 4353 { 4354 ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; 4355 return (0); 4356 } 4357 4358 int 4359 if_gethwassist(if_t ifp) 4360 { 4361 return ((struct ifnet *)ifp)->if_hwassist; 4362 } 4363 4364 int 4365 if_setmtu(if_t ifp, int mtu) 4366 { 4367 ((struct ifnet *)ifp)->if_mtu = mtu; 4368 return (0); 4369 } 4370 4371 int 4372 if_getmtu(if_t ifp) 4373 { 4374 return ((struct ifnet *)ifp)->if_mtu; 4375 } 4376 4377 int 4378 if_getmtu_family(if_t ifp, int family) 4379 { 4380 struct domain *dp; 4381 4382 for (dp = domains; dp; dp = dp->dom_next) { 4383 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 4384 return (dp->dom_ifmtu((struct ifnet *)ifp)); 4385 } 4386 4387 return (((struct ifnet *)ifp)->if_mtu); 4388 } 4389 4390 /* 4391 * Methods for drivers to access interface unicast and multicast 4392 * link level addresses. Driver shall not know 'struct ifaddr' neither 4393 * 'struct ifmultiaddr'. 4394 */ 4395 u_int 4396 if_lladdr_count(if_t ifp) 4397 { 4398 struct epoch_tracker et; 4399 struct ifaddr *ifa; 4400 u_int count; 4401 4402 count = 0; 4403 NET_EPOCH_ENTER(et); 4404 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 4405 if (ifa->ifa_addr->sa_family == AF_LINK) 4406 count++; 4407 NET_EPOCH_EXIT(et); 4408 4409 return (count); 4410 } 4411 4412 u_int 4413 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4414 { 4415 struct epoch_tracker et; 4416 struct ifaddr *ifa; 4417 u_int count; 4418 4419 MPASS(cb); 4420 4421 count = 0; 4422 NET_EPOCH_ENTER(et); 4423 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4424 if (ifa->ifa_addr->sa_family != AF_LINK) 4425 continue; 4426 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr, 4427 count); 4428 } 4429 NET_EPOCH_EXIT(et); 4430 4431 return (count); 4432 } 4433 4434 u_int 4435 if_llmaddr_count(if_t ifp) 4436 { 4437 struct epoch_tracker et; 4438 struct ifmultiaddr *ifma; 4439 int count; 4440 4441 count = 0; 4442 NET_EPOCH_ENTER(et); 4443 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 4444 if (ifma->ifma_addr->sa_family == AF_LINK) 4445 count++; 4446 NET_EPOCH_EXIT(et); 4447 4448 return (count); 4449 } 4450 4451 u_int 4452 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4453 { 4454 struct epoch_tracker et; 4455 struct ifmultiaddr *ifma; 4456 u_int count; 4457 4458 MPASS(cb); 4459 4460 count = 0; 4461 NET_EPOCH_ENTER(et); 4462 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 4463 if (ifma->ifma_addr->sa_family != AF_LINK) 4464 continue; 4465 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr, 4466 count); 4467 } 4468 NET_EPOCH_EXIT(et); 4469 4470 return (count); 4471 } 4472 4473 int 4474 if_setsoftc(if_t ifp, void *softc) 4475 { 4476 ((struct ifnet *)ifp)->if_softc = softc; 4477 return (0); 4478 } 4479 4480 void * 4481 if_getsoftc(if_t ifp) 4482 { 4483 return ((struct ifnet *)ifp)->if_softc; 4484 } 4485 4486 void 4487 if_setrcvif(struct mbuf *m, if_t ifp) 4488 { 4489 4490 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 4491 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 4492 } 4493 4494 void 4495 if_setvtag(struct mbuf *m, uint16_t tag) 4496 { 4497 m->m_pkthdr.ether_vtag = tag; 4498 } 4499 4500 uint16_t 4501 if_getvtag(struct mbuf *m) 4502 { 4503 4504 return (m->m_pkthdr.ether_vtag); 4505 } 4506 4507 int 4508 if_sendq_empty(if_t ifp) 4509 { 4510 return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); 4511 } 4512 4513 struct ifaddr * 4514 if_getifaddr(if_t ifp) 4515 { 4516 return ((struct ifnet *)ifp)->if_addr; 4517 } 4518 4519 int 4520 if_getamcount(if_t ifp) 4521 { 4522 return ((struct ifnet *)ifp)->if_amcount; 4523 } 4524 4525 int 4526 if_setsendqready(if_t ifp) 4527 { 4528 IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); 4529 return (0); 4530 } 4531 4532 int 4533 if_setsendqlen(if_t ifp, int tx_desc_count) 4534 { 4535 IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); 4536 ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; 4537 4538 return (0); 4539 } 4540 4541 int 4542 if_vlantrunkinuse(if_t ifp) 4543 { 4544 return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; 4545 } 4546 4547 int 4548 if_input(if_t ifp, struct mbuf* sendmp) 4549 { 4550 (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); 4551 return (0); 4552 4553 } 4554 4555 struct mbuf * 4556 if_dequeue(if_t ifp) 4557 { 4558 struct mbuf *m; 4559 IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); 4560 4561 return (m); 4562 } 4563 4564 int 4565 if_sendq_prepend(if_t ifp, struct mbuf *m) 4566 { 4567 IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); 4568 return (0); 4569 } 4570 4571 int 4572 if_setifheaderlen(if_t ifp, int len) 4573 { 4574 ((struct ifnet *)ifp)->if_hdrlen = len; 4575 return (0); 4576 } 4577 4578 caddr_t 4579 if_getlladdr(if_t ifp) 4580 { 4581 return (IF_LLADDR((struct ifnet *)ifp)); 4582 } 4583 4584 void * 4585 if_gethandle(u_char type) 4586 { 4587 return (if_alloc(type)); 4588 } 4589 4590 void 4591 if_bpfmtap(if_t ifh, struct mbuf *m) 4592 { 4593 struct ifnet *ifp = (struct ifnet *)ifh; 4594 4595 BPF_MTAP(ifp, m); 4596 } 4597 4598 void 4599 if_etherbpfmtap(if_t ifh, struct mbuf *m) 4600 { 4601 struct ifnet *ifp = (struct ifnet *)ifh; 4602 4603 ETHER_BPF_MTAP(ifp, m); 4604 } 4605 4606 void 4607 if_vlancap(if_t ifh) 4608 { 4609 struct ifnet *ifp = (struct ifnet *)ifh; 4610 VLAN_CAPABILITIES(ifp); 4611 } 4612 4613 int 4614 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax) 4615 { 4616 4617 ((struct ifnet *)ifp)->if_hw_tsomax = if_hw_tsomax; 4618 return (0); 4619 } 4620 4621 int 4622 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount) 4623 { 4624 4625 ((struct ifnet *)ifp)->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount; 4626 return (0); 4627 } 4628 4629 int 4630 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize) 4631 { 4632 4633 ((struct ifnet *)ifp)->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize; 4634 return (0); 4635 } 4636 4637 u_int 4638 if_gethwtsomax(if_t ifp) 4639 { 4640 4641 return (((struct ifnet *)ifp)->if_hw_tsomax); 4642 } 4643 4644 u_int 4645 if_gethwtsomaxsegcount(if_t ifp) 4646 { 4647 4648 return (((struct ifnet *)ifp)->if_hw_tsomaxsegcount); 4649 } 4650 4651 u_int 4652 if_gethwtsomaxsegsize(if_t ifp) 4653 { 4654 4655 return (((struct ifnet *)ifp)->if_hw_tsomaxsegsize); 4656 } 4657 4658 void 4659 if_setinitfn(if_t ifp, void (*init_fn)(void *)) 4660 { 4661 ((struct ifnet *)ifp)->if_init = init_fn; 4662 } 4663 4664 void 4665 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) 4666 { 4667 ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; 4668 } 4669 4670 void 4671 if_setstartfn(if_t ifp, void (*start_fn)(if_t)) 4672 { 4673 ((struct ifnet *)ifp)->if_start = (void *)start_fn; 4674 } 4675 4676 void 4677 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 4678 { 4679 ((struct ifnet *)ifp)->if_transmit = start_fn; 4680 } 4681 4682 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 4683 { 4684 ((struct ifnet *)ifp)->if_qflush = flush_fn; 4685 4686 } 4687 4688 void 4689 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 4690 { 4691 4692 ifp->if_get_counter = fn; 4693 } 4694 4695 #ifdef DDB 4696 static void 4697 if_show_ifnet(struct ifnet *ifp) 4698 { 4699 4700 if (ifp == NULL) 4701 return; 4702 db_printf("%s:\n", ifp->if_xname); 4703 #define IF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, ifp->e); 4704 IF_DB_PRINTF("%s", if_dname); 4705 IF_DB_PRINTF("%d", if_dunit); 4706 IF_DB_PRINTF("%s", if_description); 4707 IF_DB_PRINTF("%u", if_index); 4708 IF_DB_PRINTF("%d", if_idxgen); 4709 IF_DB_PRINTF("%u", if_refcount); 4710 IF_DB_PRINTF("%p", if_softc); 4711 IF_DB_PRINTF("%p", if_l2com); 4712 IF_DB_PRINTF("%p", if_llsoftc); 4713 IF_DB_PRINTF("%d", if_amcount); 4714 IF_DB_PRINTF("%p", if_addr); 4715 IF_DB_PRINTF("%p", if_broadcastaddr); 4716 IF_DB_PRINTF("%p", if_afdata); 4717 IF_DB_PRINTF("%d", if_afdata_initialized); 4718 IF_DB_PRINTF("%u", if_fib); 4719 IF_DB_PRINTF("%p", if_vnet); 4720 IF_DB_PRINTF("%p", if_home_vnet); 4721 IF_DB_PRINTF("%p", if_vlantrunk); 4722 IF_DB_PRINTF("%p", if_bpf); 4723 IF_DB_PRINTF("%u", if_pcount); 4724 IF_DB_PRINTF("%p", if_bridge); 4725 IF_DB_PRINTF("%p", if_lagg); 4726 IF_DB_PRINTF("%p", if_pf_kif); 4727 IF_DB_PRINTF("%p", if_carp); 4728 IF_DB_PRINTF("%p", if_label); 4729 IF_DB_PRINTF("%p", if_netmap); 4730 IF_DB_PRINTF("0x%08x", if_flags); 4731 IF_DB_PRINTF("0x%08x", if_drv_flags); 4732 IF_DB_PRINTF("0x%08x", if_capabilities); 4733 IF_DB_PRINTF("0x%08x", if_capenable); 4734 IF_DB_PRINTF("%p", if_snd.ifq_head); 4735 IF_DB_PRINTF("%p", if_snd.ifq_tail); 4736 IF_DB_PRINTF("%d", if_snd.ifq_len); 4737 IF_DB_PRINTF("%d", if_snd.ifq_maxlen); 4738 IF_DB_PRINTF("%p", if_snd.ifq_drv_head); 4739 IF_DB_PRINTF("%p", if_snd.ifq_drv_tail); 4740 IF_DB_PRINTF("%d", if_snd.ifq_drv_len); 4741 IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen); 4742 IF_DB_PRINTF("%d", if_snd.altq_type); 4743 IF_DB_PRINTF("%x", if_snd.altq_flags); 4744 #undef IF_DB_PRINTF 4745 } 4746 4747 DB_SHOW_COMMAND(ifnet, db_show_ifnet) 4748 { 4749 4750 if (!have_addr) { 4751 db_printf("usage: show ifnet <struct ifnet *>\n"); 4752 return; 4753 } 4754 4755 if_show_ifnet((struct ifnet *)addr); 4756 } 4757 4758 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets) 4759 { 4760 struct ifnet *ifp; 4761 u_short idx; 4762 4763 for (idx = 1; idx <= if_index; idx++) { 4764 ifp = ifindex_table[idx].ife_ifnet; 4765 if (ifp == NULL) 4766 continue; 4767 db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp); 4768 if (db_pager_quit) 4769 break; 4770 } 4771 } 4772 #endif /* DDB */ 4773