xref: /freebsd/sys/net/if.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1980, 1986, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)if.c	8.5 (Berkeley) 1/9/95
32  * $FreeBSD$
33  */
34 
35 #include "opt_inet6.h"
36 #include "opt_inet.h"
37 
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/eventhandler.h>
41 #include <sys/malloc.h>
42 #include <sys/domainset.h>
43 #include <sys/sbuf.h>
44 #include <sys/bus.h>
45 #include <sys/epoch.h>
46 #include <sys/mbuf.h>
47 #include <sys/systm.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/protosw.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/refcount.h>
56 #include <sys/module.h>
57 #include <sys/rwlock.h>
58 #include <sys/sockio.h>
59 #include <sys/syslog.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysent.h>
62 #include <sys/taskqueue.h>
63 #include <sys/domain.h>
64 #include <sys/jail.h>
65 #include <sys/priv.h>
66 
67 #include <machine/stdarg.h>
68 #include <vm/uma.h>
69 
70 #include <net/bpf.h>
71 #include <net/ethernet.h>
72 #include <net/if.h>
73 #include <net/if_arp.h>
74 #include <net/if_clone.h>
75 #include <net/if_dl.h>
76 #include <net/if_types.h>
77 #include <net/if_var.h>
78 #include <net/if_media.h>
79 #include <net/if_vlan_var.h>
80 #include <net/radix.h>
81 #include <net/route.h>
82 #include <net/vnet.h>
83 
84 #if defined(INET) || defined(INET6)
85 #include <net/ethernet.h>
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_carp.h>
90 #ifdef INET
91 #include <netinet/if_ether.h>
92 #include <netinet/netdump/netdump.h>
93 #endif /* INET */
94 #ifdef INET6
95 #include <netinet6/in6_var.h>
96 #include <netinet6/in6_ifattach.h>
97 #endif /* INET6 */
98 #endif /* INET || INET6 */
99 
100 #include <security/mac/mac_framework.h>
101 
102 /*
103  * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name
104  * and ifr_ifru when it is used in SIOCGIFCONF.
105  */
106 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) ==
107     offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru");
108 
109 __read_mostly epoch_t net_epoch_preempt;
110 __read_mostly epoch_t net_epoch;
111 #ifdef COMPAT_FREEBSD32
112 #include <sys/mount.h>
113 #include <compat/freebsd32/freebsd32.h>
114 
115 struct ifreq_buffer32 {
116 	uint32_t	length;		/* (size_t) */
117 	uint32_t	buffer;		/* (void *) */
118 };
119 
120 /*
121  * Interface request structure used for socket
122  * ioctl's.  All interface ioctl's must have parameter
123  * definitions which begin with ifr_name.  The
124  * remainder may be interface specific.
125  */
126 struct ifreq32 {
127 	char	ifr_name[IFNAMSIZ];		/* if name, e.g. "en0" */
128 	union {
129 		struct sockaddr	ifru_addr;
130 		struct sockaddr	ifru_dstaddr;
131 		struct sockaddr	ifru_broadaddr;
132 		struct ifreq_buffer32 ifru_buffer;
133 		short		ifru_flags[2];
134 		short		ifru_index;
135 		int		ifru_jid;
136 		int		ifru_metric;
137 		int		ifru_mtu;
138 		int		ifru_phys;
139 		int		ifru_media;
140 		uint32_t	ifru_data;
141 		int		ifru_cap[2];
142 		u_int		ifru_fib;
143 		u_char		ifru_vlan_pcp;
144 	} ifr_ifru;
145 };
146 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32));
147 CTASSERT(__offsetof(struct ifreq, ifr_ifru) ==
148     __offsetof(struct ifreq32, ifr_ifru));
149 
150 struct ifgroupreq32 {
151 	char	ifgr_name[IFNAMSIZ];
152 	u_int	ifgr_len;
153 	union {
154 		char		ifgru_group[IFNAMSIZ];
155 		uint32_t	ifgru_groups;
156 	} ifgr_ifgru;
157 };
158 
159 struct ifmediareq32 {
160 	char		ifm_name[IFNAMSIZ];
161 	int		ifm_current;
162 	int		ifm_mask;
163 	int		ifm_status;
164 	int		ifm_active;
165 	int		ifm_count;
166 	uint32_t	ifm_ulist;	/* (int *) */
167 };
168 #define	SIOCGIFMEDIA32	_IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32)
169 #define	SIOCGIFXMEDIA32	_IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32)
170 
171 #define	_CASE_IOC_IFGROUPREQ_32(cmd)				\
172     _IOC_NEWTYPE((cmd), struct ifgroupreq32): case
173 #else /* !COMPAT_FREEBSD32 */
174 #define _CASE_IOC_IFGROUPREQ_32(cmd)
175 #endif /* !COMPAT_FREEBSD32 */
176 
177 #define CASE_IOC_IFGROUPREQ(cmd)	\
178     _CASE_IOC_IFGROUPREQ_32(cmd)	\
179     (cmd)
180 
181 union ifreq_union {
182 	struct ifreq	ifr;
183 #ifdef COMPAT_FREEBSD32
184 	struct ifreq32	ifr32;
185 #endif
186 };
187 
188 union ifgroupreq_union {
189 	struct ifgroupreq ifgr;
190 #ifdef COMPAT_FREEBSD32
191 	struct ifgroupreq32 ifgr32;
192 #endif
193 };
194 
195 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
196 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
197 
198 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN,
199     &ifqmaxlen, 0, "max send queue size");
200 
201 /* Log link state change events */
202 static int log_link_state_change = 1;
203 
204 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW,
205 	&log_link_state_change, 0,
206 	"log interface link state change events");
207 
208 /* Log promiscuous mode change events */
209 static int log_promisc_mode_change = 1;
210 
211 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN,
212 	&log_promisc_mode_change, 1,
213 	"log promiscuous mode change events");
214 
215 /* Interface description */
216 static unsigned int ifdescr_maxlen = 1024;
217 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW,
218 	&ifdescr_maxlen, 0,
219 	"administrative maximum length for interface description");
220 
221 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions");
222 
223 /* global sx for non-critical path ifdescr */
224 static struct sx ifdescr_sx;
225 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr");
226 
227 void	(*ng_ether_link_state_p)(struct ifnet *ifp, int state);
228 void	(*lagg_linkstate_p)(struct ifnet *ifp, int state);
229 /* These are external hooks for CARP. */
230 void	(*carp_linkstate_p)(struct ifnet *ifp);
231 void	(*carp_demote_adj_p)(int, char *);
232 int	(*carp_master_p)(struct ifaddr *);
233 #if defined(INET) || defined(INET6)
234 int	(*carp_forus_p)(struct ifnet *ifp, u_char *dhost);
235 int	(*carp_output_p)(struct ifnet *ifp, struct mbuf *m,
236     const struct sockaddr *sa);
237 int	(*carp_ioctl_p)(struct ifreq *, u_long, struct thread *);
238 int	(*carp_attach_p)(struct ifaddr *, int);
239 void	(*carp_detach_p)(struct ifaddr *, bool);
240 #endif
241 #ifdef INET
242 int	(*carp_iamatch_p)(struct ifaddr *, uint8_t **);
243 #endif
244 #ifdef INET6
245 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6);
246 caddr_t	(*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m,
247     const struct in6_addr *taddr);
248 #endif
249 
250 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL;
251 
252 /*
253  * XXX: Style; these should be sorted alphabetically, and unprototyped
254  * static functions should be prototyped. Currently they are sorted by
255  * declaration order.
256  */
257 static void	if_attachdomain(void *);
258 static void	if_attachdomain1(struct ifnet *);
259 static int	ifconf(u_long, caddr_t);
260 static void	*if_grow(void);
261 static void	if_input_default(struct ifnet *, struct mbuf *);
262 static int	if_requestencap_default(struct ifnet *, struct if_encap_req *);
263 static void	if_route(struct ifnet *, int flag, int fam);
264 static int	if_setflag(struct ifnet *, int, int, int *, int);
265 static int	if_transmit(struct ifnet *ifp, struct mbuf *m);
266 static void	if_unroute(struct ifnet *, int flag, int fam);
267 static int	if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int);
268 static void	do_link_state_change(void *, int);
269 static int	if_getgroup(struct ifgroupreq *, struct ifnet *);
270 static int	if_getgroupmembers(struct ifgroupreq *);
271 static void	if_delgroups(struct ifnet *);
272 static void	if_attach_internal(struct ifnet *, int, struct if_clone *);
273 static int	if_detach_internal(struct ifnet *, int, struct if_clone **);
274 #ifdef VIMAGE
275 static void	if_vmove(struct ifnet *, struct vnet *);
276 #endif
277 
278 #ifdef INET6
279 /*
280  * XXX: declare here to avoid to include many inet6 related files..
281  * should be more generalized?
282  */
283 extern void	nd6_setmtu(struct ifnet *);
284 #endif
285 
286 /* ipsec helper hooks */
287 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]);
288 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]);
289 
290 VNET_DEFINE(int, if_index);
291 int	ifqmaxlen = IFQ_MAXLEN;
292 VNET_DEFINE(struct ifnethead, ifnet);	/* depend on static init XXX */
293 VNET_DEFINE(struct ifgrouphead, ifg_head);
294 
295 VNET_DEFINE_STATIC(int, if_indexlim) = 8;
296 
297 /* Table of ifnet by index. */
298 VNET_DEFINE(struct ifnet **, ifindex_table);
299 
300 #define	V_if_indexlim		VNET(if_indexlim)
301 #define	V_ifindex_table		VNET(ifindex_table)
302 
303 /*
304  * The global network interface list (V_ifnet) and related state (such as
305  * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and
306  * an rwlock.  Either may be acquired shared to stablize the list, but both
307  * must be acquired writable to modify the list.  This model allows us to
308  * both stablize the interface list during interrupt thread processing, but
309  * also to stablize it over long-running ioctls, without introducing priority
310  * inversions and deadlocks.
311  */
312 struct rwlock ifnet_rwlock;
313 RW_SYSINIT_FLAGS(ifnet_rw, &ifnet_rwlock, "ifnet_rw", RW_RECURSE);
314 struct sx ifnet_sxlock;
315 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE);
316 
317 /*
318  * The allocation of network interfaces is a rather non-atomic affair; we
319  * need to select an index before we are ready to expose the interface for
320  * use, so will use this pointer value to indicate reservation.
321  */
322 #define	IFNET_HOLD	(void *)(uintptr_t)(-1)
323 
324 static	if_com_alloc_t *if_com_alloc[256];
325 static	if_com_free_t *if_com_free[256];
326 
327 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals");
328 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
329 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
330 
331 struct ifnet *
332 ifnet_byindex_locked(u_short idx)
333 {
334 
335 	if (idx > V_if_index)
336 		return (NULL);
337 	if (V_ifindex_table[idx] == IFNET_HOLD)
338 		return (NULL);
339 	return (V_ifindex_table[idx]);
340 }
341 
342 struct ifnet *
343 ifnet_byindex(u_short idx)
344 {
345 	struct ifnet *ifp;
346 
347 	ifp = ifnet_byindex_locked(idx);
348 	return (ifp);
349 }
350 
351 struct ifnet *
352 ifnet_byindex_ref(u_short idx)
353 {
354 	struct epoch_tracker et;
355 	struct ifnet *ifp;
356 
357 	NET_EPOCH_ENTER(et);
358 	ifp = ifnet_byindex_locked(idx);
359 	if (ifp == NULL || (ifp->if_flags & IFF_DYING)) {
360 		NET_EPOCH_EXIT(et);
361 		return (NULL);
362 	}
363 	if_ref(ifp);
364 	NET_EPOCH_EXIT(et);
365 	return (ifp);
366 }
367 
368 /*
369  * Allocate an ifindex array entry; return 0 on success or an error on
370  * failure.
371  */
372 static u_short
373 ifindex_alloc(void **old)
374 {
375 	u_short idx;
376 
377 	IFNET_WLOCK_ASSERT();
378 	/*
379 	 * Try to find an empty slot below V_if_index.  If we fail, take the
380 	 * next slot.
381 	 */
382 	for (idx = 1; idx <= V_if_index; idx++) {
383 		if (V_ifindex_table[idx] == NULL)
384 			break;
385 	}
386 
387 	/* Catch if_index overflow. */
388 	if (idx >= V_if_indexlim) {
389 		*old = if_grow();
390 		return (USHRT_MAX);
391 	}
392 	if (idx > V_if_index)
393 		V_if_index = idx;
394 	return (idx);
395 }
396 
397 static void
398 ifindex_free_locked(u_short idx)
399 {
400 
401 	IFNET_WLOCK_ASSERT();
402 
403 	V_ifindex_table[idx] = NULL;
404 	while (V_if_index > 0 &&
405 	    V_ifindex_table[V_if_index] == NULL)
406 		V_if_index--;
407 }
408 
409 static void
410 ifindex_free(u_short idx)
411 {
412 
413 	IFNET_WLOCK();
414 	ifindex_free_locked(idx);
415 	IFNET_WUNLOCK();
416 }
417 
418 static void
419 ifnet_setbyindex(u_short idx, struct ifnet *ifp)
420 {
421 
422 	V_ifindex_table[idx] = ifp;
423 }
424 
425 struct ifaddr *
426 ifaddr_byindex(u_short idx)
427 {
428 	struct epoch_tracker et;
429 	struct ifnet *ifp;
430 	struct ifaddr *ifa = NULL;
431 
432 	NET_EPOCH_ENTER(et);
433 	ifp = ifnet_byindex_locked(idx);
434 	if (ifp != NULL && (ifa = ifp->if_addr) != NULL)
435 		ifa_ref(ifa);
436 	NET_EPOCH_EXIT(et);
437 	return (ifa);
438 }
439 
440 /*
441  * Network interface utility routines.
442  *
443  * Routines with ifa_ifwith* names take sockaddr *'s as
444  * parameters.
445  */
446 
447 static void
448 vnet_if_init(const void *unused __unused)
449 {
450 	void *old;
451 
452 	CK_STAILQ_INIT(&V_ifnet);
453 	CK_STAILQ_INIT(&V_ifg_head);
454 	IFNET_WLOCK();
455 	old = if_grow();				/* create initial table */
456 	IFNET_WUNLOCK();
457 	epoch_wait_preempt(net_epoch_preempt);
458 	free(old, M_IFNET);
459 	vnet_if_clone_init();
460 }
461 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init,
462     NULL);
463 
464 #ifdef VIMAGE
465 static void
466 vnet_if_uninit(const void *unused __unused)
467 {
468 
469 	VNET_ASSERT(CK_STAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p "
470 	    "not empty", __func__, __LINE__, &V_ifnet));
471 	VNET_ASSERT(CK_STAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p "
472 	    "not empty", __func__, __LINE__, &V_ifg_head));
473 
474 	free((caddr_t)V_ifindex_table, M_IFNET);
475 }
476 VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST,
477     vnet_if_uninit, NULL);
478 
479 static void
480 vnet_if_return(const void *unused __unused)
481 {
482 	struct ifnet *ifp, *nifp;
483 
484 	/* Return all inherited interfaces to their parent vnets. */
485 	CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) {
486 		if (ifp->if_home_vnet != ifp->if_vnet)
487 			if_vmove(ifp, ifp->if_home_vnet);
488 	}
489 }
490 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY,
491     vnet_if_return, NULL);
492 #endif
493 
494 
495 static void *
496 if_grow(void)
497 {
498 	int oldlim;
499 	u_int n;
500 	struct ifnet **e;
501 	void *old;
502 
503 	old = NULL;
504 	IFNET_WLOCK_ASSERT();
505 	oldlim = V_if_indexlim;
506 	IFNET_WUNLOCK();
507 	n = (oldlim << 1) * sizeof(*e);
508 	e = malloc(n, M_IFNET, M_WAITOK | M_ZERO);
509 	IFNET_WLOCK();
510 	if (V_if_indexlim != oldlim) {
511 		free(e, M_IFNET);
512 		return (NULL);
513 	}
514 	if (V_ifindex_table != NULL) {
515 		memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2);
516 		old = V_ifindex_table;
517 	}
518 	V_if_indexlim <<= 1;
519 	V_ifindex_table = e;
520 	return (old);
521 }
522 
523 /*
524  * Allocate a struct ifnet and an index for an interface.  A layer 2
525  * common structure will also be allocated if an allocation routine is
526  * registered for the passed type.
527  */
528 struct ifnet *
529 if_alloc_domain(u_char type, int numa_domain)
530 {
531 	struct ifnet *ifp;
532 	u_short idx;
533 	void *old;
534 
535 	KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large"));
536 	if (numa_domain == IF_NODOM)
537 		ifp = malloc(sizeof(struct ifnet), M_IFNET,
538 		    M_WAITOK | M_ZERO);
539 	else
540 		ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET,
541 		    DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO);
542  restart:
543 	IFNET_WLOCK();
544 	idx = ifindex_alloc(&old);
545 	if (__predict_false(idx == USHRT_MAX)) {
546 		IFNET_WUNLOCK();
547 		epoch_wait_preempt(net_epoch_preempt);
548 		free(old, M_IFNET);
549 		goto restart;
550 	}
551 	ifnet_setbyindex(idx, IFNET_HOLD);
552 	IFNET_WUNLOCK();
553 	ifp->if_index = idx;
554 	ifp->if_type = type;
555 	ifp->if_alloctype = type;
556 	ifp->if_numa_domain = numa_domain;
557 #ifdef VIMAGE
558 	ifp->if_vnet = curvnet;
559 #endif
560 	if (if_com_alloc[type] != NULL) {
561 		ifp->if_l2com = if_com_alloc[type](type, ifp);
562 		if (ifp->if_l2com == NULL) {
563 			free(ifp, M_IFNET);
564 			ifindex_free(idx);
565 			return (NULL);
566 		}
567 	}
568 
569 	IF_ADDR_LOCK_INIT(ifp);
570 	TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp);
571 	ifp->if_afdata_initialized = 0;
572 	IF_AFDATA_LOCK_INIT(ifp);
573 	CK_STAILQ_INIT(&ifp->if_addrhead);
574 	CK_STAILQ_INIT(&ifp->if_multiaddrs);
575 	CK_STAILQ_INIT(&ifp->if_groups);
576 #ifdef MAC
577 	mac_ifnet_init(ifp);
578 #endif
579 	ifq_init(&ifp->if_snd, ifp);
580 
581 	refcount_init(&ifp->if_refcount, 1);	/* Index reference. */
582 	for (int i = 0; i < IFCOUNTERS; i++)
583 		ifp->if_counters[i] = counter_u64_alloc(M_WAITOK);
584 	ifp->if_get_counter = if_get_counter_default;
585 	ifp->if_pcp = IFNET_PCP_NONE;
586 	ifnet_setbyindex(ifp->if_index, ifp);
587 	return (ifp);
588 }
589 
590 struct ifnet *
591 if_alloc_dev(u_char type, device_t dev)
592 {
593 	int numa_domain;
594 
595 	if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0)
596 		return (if_alloc_domain(type, IF_NODOM));
597 	return (if_alloc_domain(type, numa_domain));
598 }
599 
600 struct ifnet *
601 if_alloc(u_char type)
602 {
603 
604 	return (if_alloc_domain(type, IF_NODOM));
605 }
606 /*
607  * Do the actual work of freeing a struct ifnet, and layer 2 common
608  * structure.  This call is made when the last reference to an
609  * interface is released.
610  */
611 static void
612 if_free_internal(struct ifnet *ifp)
613 {
614 
615 	KASSERT((ifp->if_flags & IFF_DYING),
616 	    ("if_free_internal: interface not dying"));
617 
618 	if (if_com_free[ifp->if_alloctype] != NULL)
619 		if_com_free[ifp->if_alloctype](ifp->if_l2com,
620 		    ifp->if_alloctype);
621 
622 #ifdef MAC
623 	mac_ifnet_destroy(ifp);
624 #endif /* MAC */
625 	IF_AFDATA_DESTROY(ifp);
626 	IF_ADDR_LOCK_DESTROY(ifp);
627 	ifq_delete(&ifp->if_snd);
628 
629 	for (int i = 0; i < IFCOUNTERS; i++)
630 		counter_u64_free(ifp->if_counters[i]);
631 
632 	free(ifp->if_description, M_IFDESCR);
633 	free(ifp->if_hw_addr, M_IFADDR);
634 	if (ifp->if_numa_domain == IF_NODOM)
635 		free(ifp, M_IFNET);
636 	else
637 		free_domain(ifp, M_IFNET);
638 }
639 
640 static void
641 if_destroy(epoch_context_t ctx)
642 {
643 	struct ifnet *ifp;
644 
645 	ifp = __containerof(ctx, struct ifnet, if_epoch_ctx);
646 	if_free_internal(ifp);
647 }
648 
649 /*
650  * Deregister an interface and free the associated storage.
651  */
652 void
653 if_free(struct ifnet *ifp)
654 {
655 
656 	ifp->if_flags |= IFF_DYING;			/* XXX: Locking */
657 
658 	CURVNET_SET_QUIET(ifp->if_vnet);
659 	IFNET_WLOCK();
660 	KASSERT(ifp == ifnet_byindex_locked(ifp->if_index),
661 	    ("%s: freeing unallocated ifnet", ifp->if_xname));
662 
663 	ifindex_free_locked(ifp->if_index);
664 	IFNET_WUNLOCK();
665 
666 	if (refcount_release(&ifp->if_refcount))
667 		epoch_call(net_epoch_preempt, &ifp->if_epoch_ctx, if_destroy);
668 	CURVNET_RESTORE();
669 }
670 
671 /*
672  * Interfaces to keep an ifnet type-stable despite the possibility of the
673  * driver calling if_free().  If there are additional references, we defer
674  * freeing the underlying data structure.
675  */
676 void
677 if_ref(struct ifnet *ifp)
678 {
679 
680 	/* We don't assert the ifnet list lock here, but arguably should. */
681 	refcount_acquire(&ifp->if_refcount);
682 }
683 
684 void
685 if_rele(struct ifnet *ifp)
686 {
687 
688 	if (!refcount_release(&ifp->if_refcount))
689 		return;
690 	epoch_call(net_epoch_preempt, &ifp->if_epoch_ctx, if_destroy);
691 }
692 
693 void
694 ifq_init(struct ifaltq *ifq, struct ifnet *ifp)
695 {
696 
697 	mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF);
698 
699 	if (ifq->ifq_maxlen == 0)
700 		ifq->ifq_maxlen = ifqmaxlen;
701 
702 	ifq->altq_type = 0;
703 	ifq->altq_disc = NULL;
704 	ifq->altq_flags &= ALTQF_CANTCHANGE;
705 	ifq->altq_tbr  = NULL;
706 	ifq->altq_ifp  = ifp;
707 }
708 
709 void
710 ifq_delete(struct ifaltq *ifq)
711 {
712 	mtx_destroy(&ifq->ifq_mtx);
713 }
714 
715 /*
716  * Perform generic interface initialization tasks and attach the interface
717  * to the list of "active" interfaces.  If vmove flag is set on entry
718  * to if_attach_internal(), perform only a limited subset of initialization
719  * tasks, given that we are moving from one vnet to another an ifnet which
720  * has already been fully initialized.
721  *
722  * Note that if_detach_internal() removes group membership unconditionally
723  * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL.
724  * Thus, when if_vmove() is applied to a cloned interface, group membership
725  * is lost while a cloned one always joins a group whose name is
726  * ifc->ifc_name.  To recover this after if_detach_internal() and
727  * if_attach_internal(), the cloner should be specified to
728  * if_attach_internal() via ifc.  If it is non-NULL, if_attach_internal()
729  * attempts to join a group whose name is ifc->ifc_name.
730  *
731  * XXX:
732  *  - The decision to return void and thus require this function to
733  *    succeed is questionable.
734  *  - We should probably do more sanity checking.  For instance we don't
735  *    do anything to insure if_xname is unique or non-empty.
736  */
737 void
738 if_attach(struct ifnet *ifp)
739 {
740 
741 	if_attach_internal(ifp, 0, NULL);
742 }
743 
744 /*
745  * Compute the least common TSO limit.
746  */
747 void
748 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax)
749 {
750 	/*
751 	 * 1) If there is no limit currently, take the limit from
752 	 * the network adapter.
753 	 *
754 	 * 2) If the network adapter has a limit below the current
755 	 * limit, apply it.
756 	 */
757 	if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 &&
758 	    ifp->if_hw_tsomax < pmax->tsomaxbytes)) {
759 		pmax->tsomaxbytes = ifp->if_hw_tsomax;
760 	}
761 	if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 &&
762 	    ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) {
763 		pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
764 	}
765 	if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 &&
766 	    ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) {
767 		pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
768 	}
769 }
770 
771 /*
772  * Update TSO limit of a network adapter.
773  *
774  * Returns zero if no change. Else non-zero.
775  */
776 int
777 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax)
778 {
779 	int retval = 0;
780 	if (ifp->if_hw_tsomax != pmax->tsomaxbytes) {
781 		ifp->if_hw_tsomax = pmax->tsomaxbytes;
782 		retval++;
783 	}
784 	if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) {
785 		ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize;
786 		retval++;
787 	}
788 	if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) {
789 		ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount;
790 		retval++;
791 	}
792 	return (retval);
793 }
794 
795 static void
796 if_attach_internal(struct ifnet *ifp, int vmove, struct if_clone *ifc)
797 {
798 	unsigned socksize, ifasize;
799 	int namelen, masklen;
800 	struct sockaddr_dl *sdl;
801 	struct ifaddr *ifa;
802 
803 	if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index))
804 		panic ("%s: BUG: if_attach called without if_alloc'd input()\n",
805 		    ifp->if_xname);
806 
807 #ifdef VIMAGE
808 	ifp->if_vnet = curvnet;
809 	if (ifp->if_home_vnet == NULL)
810 		ifp->if_home_vnet = curvnet;
811 #endif
812 
813 	if_addgroup(ifp, IFG_ALL);
814 
815 	/* Restore group membership for cloned interfaces. */
816 	if (vmove && ifc != NULL)
817 		if_clone_addgroup(ifp, ifc);
818 
819 	getmicrotime(&ifp->if_lastchange);
820 	ifp->if_epoch = time_uptime;
821 
822 	KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) ||
823 	    (ifp->if_transmit != NULL && ifp->if_qflush != NULL),
824 	    ("transmit and qflush must both either be set or both be NULL"));
825 	if (ifp->if_transmit == NULL) {
826 		ifp->if_transmit = if_transmit;
827 		ifp->if_qflush = if_qflush;
828 	}
829 	if (ifp->if_input == NULL)
830 		ifp->if_input = if_input_default;
831 
832 	if (ifp->if_requestencap == NULL)
833 		ifp->if_requestencap = if_requestencap_default;
834 
835 	if (!vmove) {
836 #ifdef MAC
837 		mac_ifnet_create(ifp);
838 #endif
839 
840 		/*
841 		 * Create a Link Level name for this device.
842 		 */
843 		namelen = strlen(ifp->if_xname);
844 		/*
845 		 * Always save enough space for any possiable name so we
846 		 * can do a rename in place later.
847 		 */
848 		masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ;
849 		socksize = masklen + ifp->if_addrlen;
850 		if (socksize < sizeof(*sdl))
851 			socksize = sizeof(*sdl);
852 		socksize = roundup2(socksize, sizeof(long));
853 		ifasize = sizeof(*ifa) + 2 * socksize;
854 		ifa = ifa_alloc(ifasize, M_WAITOK);
855 		sdl = (struct sockaddr_dl *)(ifa + 1);
856 		sdl->sdl_len = socksize;
857 		sdl->sdl_family = AF_LINK;
858 		bcopy(ifp->if_xname, sdl->sdl_data, namelen);
859 		sdl->sdl_nlen = namelen;
860 		sdl->sdl_index = ifp->if_index;
861 		sdl->sdl_type = ifp->if_type;
862 		ifp->if_addr = ifa;
863 		ifa->ifa_ifp = ifp;
864 		ifa->ifa_addr = (struct sockaddr *)sdl;
865 		sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
866 		ifa->ifa_netmask = (struct sockaddr *)sdl;
867 		sdl->sdl_len = masklen;
868 		while (namelen != 0)
869 			sdl->sdl_data[--namelen] = 0xff;
870 		CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
871 		/* Reliably crash if used uninitialized. */
872 		ifp->if_broadcastaddr = NULL;
873 
874 		if (ifp->if_type == IFT_ETHER) {
875 			ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR,
876 			    M_WAITOK | M_ZERO);
877 		}
878 
879 #if defined(INET) || defined(INET6)
880 		/* Use defaults for TSO, if nothing is set */
881 		if (ifp->if_hw_tsomax == 0 &&
882 		    ifp->if_hw_tsomaxsegcount == 0 &&
883 		    ifp->if_hw_tsomaxsegsize == 0) {
884 			/*
885 			 * The TSO defaults needs to be such that an
886 			 * NFS mbuf list of 35 mbufs totalling just
887 			 * below 64K works and that a chain of mbufs
888 			 * can be defragged into at most 32 segments:
889 			 */
890 			ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) -
891 			    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN));
892 			ifp->if_hw_tsomaxsegcount = 35;
893 			ifp->if_hw_tsomaxsegsize = 2048;	/* 2K */
894 
895 			/* XXX some drivers set IFCAP_TSO after ethernet attach */
896 			if (ifp->if_capabilities & IFCAP_TSO) {
897 				if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n",
898 				    ifp->if_hw_tsomax,
899 				    ifp->if_hw_tsomaxsegcount,
900 				    ifp->if_hw_tsomaxsegsize);
901 			}
902 		}
903 #endif
904 	}
905 #ifdef VIMAGE
906 	else {
907 		/*
908 		 * Update the interface index in the link layer address
909 		 * of the interface.
910 		 */
911 		for (ifa = ifp->if_addr; ifa != NULL;
912 		    ifa = CK_STAILQ_NEXT(ifa, ifa_link)) {
913 			if (ifa->ifa_addr->sa_family == AF_LINK) {
914 				sdl = (struct sockaddr_dl *)ifa->ifa_addr;
915 				sdl->sdl_index = ifp->if_index;
916 			}
917 		}
918 	}
919 #endif
920 
921 	IFNET_WLOCK();
922 	CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link);
923 #ifdef VIMAGE
924 	curvnet->vnet_ifcnt++;
925 #endif
926 	IFNET_WUNLOCK();
927 
928 	if (domain_init_status >= 2)
929 		if_attachdomain1(ifp);
930 
931 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
932 	if (IS_DEFAULT_VNET(curvnet))
933 		devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
934 
935 	/* Announce the interface. */
936 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
937 }
938 
939 static void
940 if_epochalloc(void *dummy __unused)
941 {
942 
943 	net_epoch_preempt = epoch_alloc(EPOCH_PREEMPT);
944 	net_epoch = epoch_alloc(0);
945 }
946 SYSINIT(ifepochalloc, SI_SUB_TASKQ + 1, SI_ORDER_ANY,
947     if_epochalloc, NULL);
948 
949 static void
950 if_attachdomain(void *dummy)
951 {
952 	struct ifnet *ifp;
953 
954 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link)
955 		if_attachdomain1(ifp);
956 }
957 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND,
958     if_attachdomain, NULL);
959 
960 static void
961 if_attachdomain1(struct ifnet *ifp)
962 {
963 	struct domain *dp;
964 
965 	/*
966 	 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we
967 	 * cannot lock ifp->if_afdata initialization, entirely.
968 	 */
969 	IF_AFDATA_LOCK(ifp);
970 	if (ifp->if_afdata_initialized >= domain_init_status) {
971 		IF_AFDATA_UNLOCK(ifp);
972 		log(LOG_WARNING, "%s called more than once on %s\n",
973 		    __func__, ifp->if_xname);
974 		return;
975 	}
976 	ifp->if_afdata_initialized = domain_init_status;
977 	IF_AFDATA_UNLOCK(ifp);
978 
979 	/* address family dependent data region */
980 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
981 	for (dp = domains; dp; dp = dp->dom_next) {
982 		if (dp->dom_ifattach)
983 			ifp->if_afdata[dp->dom_family] =
984 			    (*dp->dom_ifattach)(ifp);
985 	}
986 }
987 
988 /*
989  * Remove any unicast or broadcast network addresses from an interface.
990  */
991 void
992 if_purgeaddrs(struct ifnet *ifp)
993 {
994 	struct ifaddr *ifa;
995 
996 	while (1) {
997 		struct epoch_tracker et;
998 
999 		NET_EPOCH_ENTER(et);
1000 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1001 			if (ifa->ifa_addr->sa_family != AF_LINK)
1002 				break;
1003 		}
1004 		NET_EPOCH_EXIT(et);
1005 
1006 		if (ifa == NULL)
1007 			break;
1008 #ifdef INET
1009 		/* XXX: Ugly!! ad hoc just for INET */
1010 		if (ifa->ifa_addr->sa_family == AF_INET) {
1011 			struct ifaliasreq ifr;
1012 
1013 			bzero(&ifr, sizeof(ifr));
1014 			ifr.ifra_addr = *ifa->ifa_addr;
1015 			if (ifa->ifa_dstaddr)
1016 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
1017 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
1018 			    NULL) == 0)
1019 				continue;
1020 		}
1021 #endif /* INET */
1022 #ifdef INET6
1023 		if (ifa->ifa_addr->sa_family == AF_INET6) {
1024 			in6_purgeaddr(ifa);
1025 			/* ifp_addrhead is already updated */
1026 			continue;
1027 		}
1028 #endif /* INET6 */
1029 		IF_ADDR_WLOCK(ifp);
1030 		CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1031 		IF_ADDR_WUNLOCK(ifp);
1032 		ifa_free(ifa);
1033 	}
1034 }
1035 
1036 /*
1037  * Remove any multicast network addresses from an interface when an ifnet
1038  * is going away.
1039  */
1040 static void
1041 if_purgemaddrs(struct ifnet *ifp)
1042 {
1043 	struct ifmultiaddr *ifma;
1044 
1045 	IF_ADDR_WLOCK(ifp);
1046 	while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) {
1047 		ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs);
1048 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
1049 		if_delmulti_locked(ifp, ifma, 1);
1050 	}
1051 	IF_ADDR_WUNLOCK(ifp);
1052 }
1053 
1054 /*
1055  * Detach an interface, removing it from the list of "active" interfaces.
1056  * If vmove flag is set on entry to if_detach_internal(), perform only a
1057  * limited subset of cleanup tasks, given that we are moving an ifnet from
1058  * one vnet to another, where it must be fully operational.
1059  *
1060  * XXXRW: There are some significant questions about event ordering, and
1061  * how to prevent things from starting to use the interface during detach.
1062  */
1063 void
1064 if_detach(struct ifnet *ifp)
1065 {
1066 
1067 	CURVNET_SET_QUIET(ifp->if_vnet);
1068 	if_detach_internal(ifp, 0, NULL);
1069 	CURVNET_RESTORE();
1070 }
1071 
1072 /*
1073  * The vmove flag, if set, indicates that we are called from a callpath
1074  * that is moving an interface to a different vnet instance.
1075  *
1076  * The shutdown flag, if set, indicates that we are called in the
1077  * process of shutting down a vnet instance.  Currently only the
1078  * vnet_if_return SYSUNINIT function sets it.  Note: we can be called
1079  * on a vnet instance shutdown without this flag being set, e.g., when
1080  * the cloned interfaces are destoyed as first thing of teardown.
1081  */
1082 static int
1083 if_detach_internal(struct ifnet *ifp, int vmove, struct if_clone **ifcp)
1084 {
1085 	struct ifaddr *ifa;
1086 	int i;
1087 	struct domain *dp;
1088  	struct ifnet *iter;
1089  	int found = 0;
1090 #ifdef VIMAGE
1091 	int shutdown;
1092 
1093 	shutdown = (ifp->if_vnet->vnet_state > SI_SUB_VNET &&
1094 		 ifp->if_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
1095 #endif
1096 	IFNET_WLOCK();
1097 	CK_STAILQ_FOREACH(iter, &V_ifnet, if_link)
1098 		if (iter == ifp) {
1099 			CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link);
1100 			if (!vmove)
1101 				ifp->if_flags |= IFF_DYING;
1102 			found = 1;
1103 			break;
1104 		}
1105 	IFNET_WUNLOCK();
1106 	if (!found) {
1107 		/*
1108 		 * While we would want to panic here, we cannot
1109 		 * guarantee that the interface is indeed still on
1110 		 * the list given we don't hold locks all the way.
1111 		 */
1112 		return (ENOENT);
1113 #if 0
1114 		if (vmove)
1115 			panic("%s: ifp=%p not on the ifnet tailq %p",
1116 			    __func__, ifp, &V_ifnet);
1117 		else
1118 			return; /* XXX this should panic as well? */
1119 #endif
1120 	}
1121 
1122 	/*
1123 	 * At this point we know the interface still was on the ifnet list
1124 	 * and we removed it so we are in a stable state.
1125 	 */
1126 #ifdef VIMAGE
1127 	curvnet->vnet_ifcnt--;
1128 #endif
1129 	epoch_wait_preempt(net_epoch_preempt);
1130 
1131 	/*
1132 	 * Ensure all pending EPOCH(9) callbacks have been executed. This
1133 	 * fixes issues about late destruction of multicast options
1134 	 * which lead to leave group calls, which in turn access the
1135 	 * belonging ifnet structure:
1136 	 */
1137 	epoch_drain_callbacks(net_epoch_preempt);
1138 
1139 	/*
1140 	 * In any case (destroy or vmove) detach us from the groups
1141 	 * and remove/wait for pending events on the taskq.
1142 	 * XXX-BZ in theory an interface could still enqueue a taskq change?
1143 	 */
1144 	if_delgroups(ifp);
1145 
1146 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
1147 
1148 	/*
1149 	 * Check if this is a cloned interface or not. Must do even if
1150 	 * shutting down as a if_vmove_reclaim() would move the ifp and
1151 	 * the if_clone_addgroup() will have a corrupted string overwise
1152 	 * from a gibberish pointer.
1153 	 */
1154 	if (vmove && ifcp != NULL)
1155 		*ifcp = if_clone_findifc(ifp);
1156 
1157 	if_down(ifp);
1158 
1159 #ifdef VIMAGE
1160 	/*
1161 	 * On VNET shutdown abort here as the stack teardown will do all
1162 	 * the work top-down for us.
1163 	 */
1164 	if (shutdown) {
1165 		/* Give interface users the chance to clean up. */
1166 		EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1167 
1168 		/*
1169 		 * In case of a vmove we are done here without error.
1170 		 * If we would signal an error it would lead to the same
1171 		 * abort as if we did not find the ifnet anymore.
1172 		 * if_detach() calls us in void context and does not care
1173 		 * about an early abort notification, so life is splendid :)
1174 		 */
1175 		goto finish_vnet_shutdown;
1176 	}
1177 #endif
1178 
1179 	/*
1180 	 * At this point we are not tearing down a VNET and are either
1181 	 * going to destroy or vmove the interface and have to cleanup
1182 	 * accordingly.
1183 	 */
1184 
1185 	/*
1186 	 * Remove routes and flush queues.
1187 	 */
1188 #ifdef ALTQ
1189 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
1190 		altq_disable(&ifp->if_snd);
1191 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1192 		altq_detach(&ifp->if_snd);
1193 #endif
1194 
1195 	if_purgeaddrs(ifp);
1196 
1197 #ifdef INET
1198 	in_ifdetach(ifp);
1199 #endif
1200 
1201 #ifdef INET6
1202 	/*
1203 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
1204 	 * before removing routing entries below, since IPv6 interface direct
1205 	 * routes are expected to be removed by the IPv6-specific kernel API.
1206 	 * Otherwise, the kernel will detect some inconsistency and bark it.
1207 	 */
1208 	in6_ifdetach(ifp);
1209 #endif
1210 	if_purgemaddrs(ifp);
1211 
1212 	/* Announce that the interface is gone. */
1213 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1214 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1215 	if (IS_DEFAULT_VNET(curvnet))
1216 		devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
1217 
1218 	if (!vmove) {
1219 		/*
1220 		 * Prevent further calls into the device driver via ifnet.
1221 		 */
1222 		if_dead(ifp);
1223 
1224 		/*
1225 		 * Clean up all addresses.
1226 		 */
1227 		IF_ADDR_WLOCK(ifp);
1228 		if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) {
1229 			ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
1230 			CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1231 			IF_ADDR_WUNLOCK(ifp);
1232 			ifa_free(ifa);
1233 		} else
1234 			IF_ADDR_WUNLOCK(ifp);
1235 	}
1236 
1237 	rt_flushifroutes(ifp);
1238 
1239 #ifdef VIMAGE
1240 finish_vnet_shutdown:
1241 #endif
1242 	/*
1243 	 * We cannot hold the lock over dom_ifdetach calls as they might
1244 	 * sleep, for example trying to drain a callout, thus open up the
1245 	 * theoretical race with re-attaching.
1246 	 */
1247 	IF_AFDATA_LOCK(ifp);
1248 	i = ifp->if_afdata_initialized;
1249 	ifp->if_afdata_initialized = 0;
1250 	IF_AFDATA_UNLOCK(ifp);
1251 	for (dp = domains; i > 0 && dp; dp = dp->dom_next) {
1252 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) {
1253 			(*dp->dom_ifdetach)(ifp,
1254 			    ifp->if_afdata[dp->dom_family]);
1255 			ifp->if_afdata[dp->dom_family] = NULL;
1256 		}
1257 	}
1258 
1259 	return (0);
1260 }
1261 
1262 #ifdef VIMAGE
1263 /*
1264  * if_vmove() performs a limited version of if_detach() in current
1265  * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg.
1266  * An attempt is made to shrink if_index in current vnet, find an
1267  * unused if_index in target vnet and calls if_grow() if necessary,
1268  * and finally find an unused if_xname for the target vnet.
1269  */
1270 static void
1271 if_vmove(struct ifnet *ifp, struct vnet *new_vnet)
1272 {
1273 	struct if_clone *ifc;
1274 	u_int bif_dlt, bif_hdrlen;
1275 	void *old;
1276 	int rc;
1277 
1278  	/*
1279 	 * if_detach_internal() will call the eventhandler to notify
1280 	 * interface departure.  That will detach if_bpf.  We need to
1281 	 * safe the dlt and hdrlen so we can re-attach it later.
1282 	 */
1283 	bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen);
1284 
1285 	/*
1286 	 * Detach from current vnet, but preserve LLADDR info, do not
1287 	 * mark as dead etc. so that the ifnet can be reattached later.
1288 	 * If we cannot find it, we lost the race to someone else.
1289 	 */
1290 	rc = if_detach_internal(ifp, 1, &ifc);
1291 	if (rc != 0)
1292 		return;
1293 
1294 	/*
1295 	 * Unlink the ifnet from ifindex_table[] in current vnet, and shrink
1296 	 * the if_index for that vnet if possible.
1297 	 *
1298 	 * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized,
1299 	 * or we'd lock on one vnet and unlock on another.
1300 	 */
1301 	IFNET_WLOCK();
1302 	ifindex_free_locked(ifp->if_index);
1303 	IFNET_WUNLOCK();
1304 
1305 	/*
1306 	 * Perform interface-specific reassignment tasks, if provided by
1307 	 * the driver.
1308 	 */
1309 	if (ifp->if_reassign != NULL)
1310 		ifp->if_reassign(ifp, new_vnet, NULL);
1311 
1312 	/*
1313 	 * Switch to the context of the target vnet.
1314 	 */
1315 	CURVNET_SET_QUIET(new_vnet);
1316  restart:
1317 	IFNET_WLOCK();
1318 	ifp->if_index = ifindex_alloc(&old);
1319 	if (__predict_false(ifp->if_index == USHRT_MAX)) {
1320 		IFNET_WUNLOCK();
1321 		epoch_wait_preempt(net_epoch_preempt);
1322 		free(old, M_IFNET);
1323 		goto restart;
1324 	}
1325 	ifnet_setbyindex(ifp->if_index, ifp);
1326 	IFNET_WUNLOCK();
1327 
1328 	if_attach_internal(ifp, 1, ifc);
1329 
1330 	if (ifp->if_bpf == NULL)
1331 		bpfattach(ifp, bif_dlt, bif_hdrlen);
1332 
1333 	CURVNET_RESTORE();
1334 }
1335 
1336 /*
1337  * Move an ifnet to or from another child prison/vnet, specified by the jail id.
1338  */
1339 static int
1340 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid)
1341 {
1342 	struct prison *pr;
1343 	struct ifnet *difp;
1344 	int shutdown;
1345 
1346 	/* Try to find the prison within our visibility. */
1347 	sx_slock(&allprison_lock);
1348 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1349 	sx_sunlock(&allprison_lock);
1350 	if (pr == NULL)
1351 		return (ENXIO);
1352 	prison_hold_locked(pr);
1353 	mtx_unlock(&pr->pr_mtx);
1354 
1355 	/* Do not try to move the iface from and to the same prison. */
1356 	if (pr->pr_vnet == ifp->if_vnet) {
1357 		prison_free(pr);
1358 		return (EEXIST);
1359 	}
1360 
1361 	/* Make sure the named iface does not exists in the dst. prison/vnet. */
1362 	/* XXX Lock interfaces to avoid races. */
1363 	CURVNET_SET_QUIET(pr->pr_vnet);
1364 	difp = ifunit(ifname);
1365 	if (difp != NULL) {
1366 		CURVNET_RESTORE();
1367 		prison_free(pr);
1368 		return (EEXIST);
1369 	}
1370 
1371 	/* Make sure the VNET is stable. */
1372 	shutdown = (ifp->if_vnet->vnet_state > SI_SUB_VNET &&
1373 		 ifp->if_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
1374 	if (shutdown) {
1375 		CURVNET_RESTORE();
1376 		prison_free(pr);
1377 		return (EBUSY);
1378 	}
1379 	CURVNET_RESTORE();
1380 
1381 	/* Move the interface into the child jail/vnet. */
1382 	if_vmove(ifp, pr->pr_vnet);
1383 
1384 	/* Report the new if_xname back to the userland. */
1385 	sprintf(ifname, "%s", ifp->if_xname);
1386 
1387 	prison_free(pr);
1388 	return (0);
1389 }
1390 
1391 static int
1392 if_vmove_reclaim(struct thread *td, char *ifname, int jid)
1393 {
1394 	struct prison *pr;
1395 	struct vnet *vnet_dst;
1396 	struct ifnet *ifp;
1397  	int shutdown;
1398 
1399 	/* Try to find the prison within our visibility. */
1400 	sx_slock(&allprison_lock);
1401 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1402 	sx_sunlock(&allprison_lock);
1403 	if (pr == NULL)
1404 		return (ENXIO);
1405 	prison_hold_locked(pr);
1406 	mtx_unlock(&pr->pr_mtx);
1407 
1408 	/* Make sure the named iface exists in the source prison/vnet. */
1409 	CURVNET_SET(pr->pr_vnet);
1410 	ifp = ifunit(ifname);		/* XXX Lock to avoid races. */
1411 	if (ifp == NULL) {
1412 		CURVNET_RESTORE();
1413 		prison_free(pr);
1414 		return (ENXIO);
1415 	}
1416 
1417 	/* Do not try to move the iface from and to the same prison. */
1418 	vnet_dst = TD_TO_VNET(td);
1419 	if (vnet_dst == ifp->if_vnet) {
1420 		CURVNET_RESTORE();
1421 		prison_free(pr);
1422 		return (EEXIST);
1423 	}
1424 
1425 	/* Make sure the VNET is stable. */
1426 	shutdown = (ifp->if_vnet->vnet_state > SI_SUB_VNET &&
1427 		 ifp->if_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
1428 	if (shutdown) {
1429 		CURVNET_RESTORE();
1430 		prison_free(pr);
1431 		return (EBUSY);
1432 	}
1433 
1434 	/* Get interface back from child jail/vnet. */
1435 	if_vmove(ifp, vnet_dst);
1436 	CURVNET_RESTORE();
1437 
1438 	/* Report the new if_xname back to the userland. */
1439 	sprintf(ifname, "%s", ifp->if_xname);
1440 
1441 	prison_free(pr);
1442 	return (0);
1443 }
1444 #endif /* VIMAGE */
1445 
1446 /*
1447  * Add a group to an interface
1448  */
1449 int
1450 if_addgroup(struct ifnet *ifp, const char *groupname)
1451 {
1452 	struct ifg_list		*ifgl;
1453 	struct ifg_group	*ifg = NULL;
1454 	struct ifg_member	*ifgm;
1455 	int 			 new = 0;
1456 
1457 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1458 	    groupname[strlen(groupname) - 1] <= '9')
1459 		return (EINVAL);
1460 
1461 	IFNET_WLOCK();
1462 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1463 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) {
1464 			IFNET_WUNLOCK();
1465 			return (EEXIST);
1466 		}
1467 
1468 	if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP,
1469 	    M_NOWAIT)) == NULL) {
1470 	    	IFNET_WUNLOCK();
1471 		return (ENOMEM);
1472 	}
1473 
1474 	if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member),
1475 	    M_TEMP, M_NOWAIT)) == NULL) {
1476 		free(ifgl, M_TEMP);
1477 		IFNET_WUNLOCK();
1478 		return (ENOMEM);
1479 	}
1480 
1481 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1482 		if (!strcmp(ifg->ifg_group, groupname))
1483 			break;
1484 
1485 	if (ifg == NULL) {
1486 		if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group),
1487 		    M_TEMP, M_NOWAIT)) == NULL) {
1488 			free(ifgl, M_TEMP);
1489 			free(ifgm, M_TEMP);
1490 			IFNET_WUNLOCK();
1491 			return (ENOMEM);
1492 		}
1493 		strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1494 		ifg->ifg_refcnt = 0;
1495 		CK_STAILQ_INIT(&ifg->ifg_members);
1496 		CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next);
1497 		new = 1;
1498 	}
1499 
1500 	ifg->ifg_refcnt++;
1501 	ifgl->ifgl_group = ifg;
1502 	ifgm->ifgm_ifp = ifp;
1503 
1504 	IF_ADDR_WLOCK(ifp);
1505 	CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1506 	CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1507 	IF_ADDR_WUNLOCK(ifp);
1508 
1509 	IFNET_WUNLOCK();
1510 
1511 	if (new)
1512 		EVENTHANDLER_INVOKE(group_attach_event, ifg);
1513 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1514 
1515 	return (0);
1516 }
1517 
1518 /*
1519  * Remove a group from an interface
1520  */
1521 int
1522 if_delgroup(struct ifnet *ifp, const char *groupname)
1523 {
1524 	struct ifg_list		*ifgl;
1525 	struct ifg_member	*ifgm;
1526 	int freeifgl;
1527 
1528 	IFNET_WLOCK();
1529 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1530 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1531 			break;
1532 	if (ifgl == NULL) {
1533 		IFNET_WUNLOCK();
1534 		return (ENOENT);
1535 	}
1536 
1537 	freeifgl = 0;
1538 	IF_ADDR_WLOCK(ifp);
1539 	CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next);
1540 	IF_ADDR_WUNLOCK(ifp);
1541 
1542 	CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1543 		if (ifgm->ifgm_ifp == ifp)
1544 			break;
1545 
1546 	if (ifgm != NULL)
1547 		CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifg_member, ifgm_next);
1548 
1549 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1550 		CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, ifg_next);
1551 		freeifgl = 1;
1552 	}
1553 	IFNET_WUNLOCK();
1554 
1555 	epoch_wait_preempt(net_epoch_preempt);
1556 	if (freeifgl) {
1557 		EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group);
1558 		free(ifgl->ifgl_group, M_TEMP);
1559 	}
1560 	free(ifgm, M_TEMP);
1561 	free(ifgl, M_TEMP);
1562 
1563 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1564 
1565 	return (0);
1566 }
1567 
1568 /*
1569  * Remove an interface from all groups
1570  */
1571 static void
1572 if_delgroups(struct ifnet *ifp)
1573 {
1574 	struct ifg_list		*ifgl;
1575 	struct ifg_member	*ifgm;
1576 	char groupname[IFNAMSIZ];
1577 	int ifglfree;
1578 
1579 	IFNET_WLOCK();
1580 	while (!CK_STAILQ_EMPTY(&ifp->if_groups)) {
1581 		ifgl = CK_STAILQ_FIRST(&ifp->if_groups);
1582 
1583 		strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ);
1584 
1585 		IF_ADDR_WLOCK(ifp);
1586 		CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next);
1587 		IF_ADDR_WUNLOCK(ifp);
1588 
1589 		CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1590 			if (ifgm->ifgm_ifp == ifp)
1591 				break;
1592 
1593 		if (ifgm != NULL)
1594 			CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifg_member,
1595 			    ifgm_next);
1596 		ifglfree = 0;
1597 		if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1598 			CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, ifg_next);
1599 			ifglfree = 1;
1600 		}
1601 
1602 		IFNET_WUNLOCK();
1603 		epoch_wait_preempt(net_epoch_preempt);
1604 		free(ifgm, M_TEMP);
1605 		if (ifglfree) {
1606 			EVENTHANDLER_INVOKE(group_detach_event,
1607 								ifgl->ifgl_group);
1608 			free(ifgl->ifgl_group, M_TEMP);
1609 		}
1610 		EVENTHANDLER_INVOKE(group_change_event, groupname);
1611 
1612 		IFNET_WLOCK();
1613 	}
1614 	IFNET_WUNLOCK();
1615 }
1616 
1617 static char *
1618 ifgr_group_get(void *ifgrp)
1619 {
1620 	union ifgroupreq_union *ifgrup;
1621 
1622 	ifgrup = ifgrp;
1623 #ifdef COMPAT_FREEBSD32
1624 	if (SV_CURPROC_FLAG(SV_ILP32))
1625 		return (&ifgrup->ifgr32.ifgr_ifgru.ifgru_group[0]);
1626 #endif
1627 	return (&ifgrup->ifgr.ifgr_ifgru.ifgru_group[0]);
1628 }
1629 
1630 static struct ifg_req *
1631 ifgr_groups_get(void *ifgrp)
1632 {
1633 	union ifgroupreq_union *ifgrup;
1634 
1635 	ifgrup = ifgrp;
1636 #ifdef COMPAT_FREEBSD32
1637 	if (SV_CURPROC_FLAG(SV_ILP32))
1638 		return ((struct ifg_req *)(uintptr_t)
1639 		    ifgrup->ifgr32.ifgr_ifgru.ifgru_groups);
1640 #endif
1641 	return (ifgrup->ifgr.ifgr_ifgru.ifgru_groups);
1642 }
1643 
1644 /*
1645  * Stores all groups from an interface in memory pointed to by ifgr.
1646  */
1647 static int
1648 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp)
1649 {
1650 	struct epoch_tracker	 et;
1651 	int			 len, error;
1652 	struct ifg_list		*ifgl;
1653 	struct ifg_req		 ifgrq, *ifgp;
1654 
1655 	if (ifgr->ifgr_len == 0) {
1656 		NET_EPOCH_ENTER(et);
1657 		CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1658 			ifgr->ifgr_len += sizeof(struct ifg_req);
1659 		NET_EPOCH_EXIT(et);
1660 		return (0);
1661 	}
1662 
1663 	len = ifgr->ifgr_len;
1664 	ifgp = ifgr_groups_get(ifgr);
1665 	/* XXX: wire */
1666 	NET_EPOCH_ENTER(et);
1667 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1668 		if (len < sizeof(ifgrq)) {
1669 			NET_EPOCH_EXIT(et);
1670 			return (EINVAL);
1671 		}
1672 		bzero(&ifgrq, sizeof ifgrq);
1673 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1674 		    sizeof(ifgrq.ifgrq_group));
1675 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
1676 		    	NET_EPOCH_EXIT(et);
1677 			return (error);
1678 		}
1679 		len -= sizeof(ifgrq);
1680 		ifgp++;
1681 	}
1682 	NET_EPOCH_EXIT(et);
1683 
1684 	return (0);
1685 }
1686 
1687 /*
1688  * Stores all members of a group in memory pointed to by igfr
1689  */
1690 static int
1691 if_getgroupmembers(struct ifgroupreq *ifgr)
1692 {
1693 	struct ifg_group	*ifg;
1694 	struct ifg_member	*ifgm;
1695 	struct ifg_req		 ifgrq, *ifgp;
1696 	int			 len, error;
1697 
1698 	IFNET_RLOCK();
1699 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1700 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1701 			break;
1702 	if (ifg == NULL) {
1703 		IFNET_RUNLOCK();
1704 		return (ENOENT);
1705 	}
1706 
1707 	if (ifgr->ifgr_len == 0) {
1708 		CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1709 			ifgr->ifgr_len += sizeof(ifgrq);
1710 		IFNET_RUNLOCK();
1711 		return (0);
1712 	}
1713 
1714 	len = ifgr->ifgr_len;
1715 	ifgp = ifgr_groups_get(ifgr);
1716 	CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1717 		if (len < sizeof(ifgrq)) {
1718 			IFNET_RUNLOCK();
1719 			return (EINVAL);
1720 		}
1721 		bzero(&ifgrq, sizeof ifgrq);
1722 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1723 		    sizeof(ifgrq.ifgrq_member));
1724 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
1725 			IFNET_RUNLOCK();
1726 			return (error);
1727 		}
1728 		len -= sizeof(ifgrq);
1729 		ifgp++;
1730 	}
1731 	IFNET_RUNLOCK();
1732 
1733 	return (0);
1734 }
1735 
1736 /*
1737  * Return counter values from counter(9)s stored in ifnet.
1738  */
1739 uint64_t
1740 if_get_counter_default(struct ifnet *ifp, ift_counter cnt)
1741 {
1742 
1743 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1744 
1745 	return (counter_u64_fetch(ifp->if_counters[cnt]));
1746 }
1747 
1748 /*
1749  * Increase an ifnet counter. Usually used for counters shared
1750  * between the stack and a driver, but function supports them all.
1751  */
1752 void
1753 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc)
1754 {
1755 
1756 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1757 
1758 	counter_u64_add(ifp->if_counters[cnt], inc);
1759 }
1760 
1761 /*
1762  * Copy data from ifnet to userland API structure if_data.
1763  */
1764 void
1765 if_data_copy(struct ifnet *ifp, struct if_data *ifd)
1766 {
1767 
1768 	ifd->ifi_type = ifp->if_type;
1769 	ifd->ifi_physical = 0;
1770 	ifd->ifi_addrlen = ifp->if_addrlen;
1771 	ifd->ifi_hdrlen = ifp->if_hdrlen;
1772 	ifd->ifi_link_state = ifp->if_link_state;
1773 	ifd->ifi_vhid = 0;
1774 	ifd->ifi_datalen = sizeof(struct if_data);
1775 	ifd->ifi_mtu = ifp->if_mtu;
1776 	ifd->ifi_metric = ifp->if_metric;
1777 	ifd->ifi_baudrate = ifp->if_baudrate;
1778 	ifd->ifi_hwassist = ifp->if_hwassist;
1779 	ifd->ifi_epoch = ifp->if_epoch;
1780 	ifd->ifi_lastchange = ifp->if_lastchange;
1781 
1782 	ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
1783 	ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS);
1784 	ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
1785 	ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS);
1786 	ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS);
1787 	ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES);
1788 	ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES);
1789 	ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS);
1790 	ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS);
1791 	ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS);
1792 	ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS);
1793 	ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO);
1794 }
1795 
1796 /*
1797  * Wrapper functions for struct ifnet address list locking macros.  These are
1798  * used by kernel modules to avoid encoding programming interface or binary
1799  * interface assumptions that may be violated when kernel-internal locking
1800  * approaches change.
1801  */
1802 void
1803 if_addr_rlock(struct ifnet *ifp)
1804 {
1805 
1806 	epoch_enter_preempt(net_epoch_preempt, curthread->td_et);
1807 }
1808 
1809 void
1810 if_addr_runlock(struct ifnet *ifp)
1811 {
1812 
1813 	epoch_exit_preempt(net_epoch_preempt, curthread->td_et);
1814 }
1815 
1816 void
1817 if_maddr_rlock(if_t ifp)
1818 {
1819 
1820 	epoch_enter_preempt(net_epoch_preempt, curthread->td_et);
1821 }
1822 
1823 void
1824 if_maddr_runlock(if_t ifp)
1825 {
1826 
1827 	epoch_exit_preempt(net_epoch_preempt, curthread->td_et);
1828 }
1829 
1830 /*
1831  * Initialization, destruction and refcounting functions for ifaddrs.
1832  */
1833 struct ifaddr *
1834 ifa_alloc(size_t size, int flags)
1835 {
1836 	struct ifaddr *ifa;
1837 
1838 	KASSERT(size >= sizeof(struct ifaddr),
1839 	    ("%s: invalid size %zu", __func__, size));
1840 
1841 	ifa = malloc(size, M_IFADDR, M_ZERO | flags);
1842 	if (ifa == NULL)
1843 		return (NULL);
1844 
1845 	if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL)
1846 		goto fail;
1847 	if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL)
1848 		goto fail;
1849 	if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL)
1850 		goto fail;
1851 	if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL)
1852 		goto fail;
1853 
1854 	refcount_init(&ifa->ifa_refcnt, 1);
1855 
1856 	return (ifa);
1857 
1858 fail:
1859 	/* free(NULL) is okay */
1860 	counter_u64_free(ifa->ifa_opackets);
1861 	counter_u64_free(ifa->ifa_ipackets);
1862 	counter_u64_free(ifa->ifa_obytes);
1863 	counter_u64_free(ifa->ifa_ibytes);
1864 	free(ifa, M_IFADDR);
1865 
1866 	return (NULL);
1867 }
1868 
1869 void
1870 ifa_ref(struct ifaddr *ifa)
1871 {
1872 
1873 	refcount_acquire(&ifa->ifa_refcnt);
1874 }
1875 
1876 static void
1877 ifa_destroy(epoch_context_t ctx)
1878 {
1879 	struct ifaddr *ifa;
1880 
1881 	ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx);
1882 	counter_u64_free(ifa->ifa_opackets);
1883 	counter_u64_free(ifa->ifa_ipackets);
1884 	counter_u64_free(ifa->ifa_obytes);
1885 	counter_u64_free(ifa->ifa_ibytes);
1886 	free(ifa, M_IFADDR);
1887 }
1888 
1889 void
1890 ifa_free(struct ifaddr *ifa)
1891 {
1892 
1893 	if (refcount_release(&ifa->ifa_refcnt))
1894 		epoch_call(net_epoch_preempt, &ifa->ifa_epoch_ctx, ifa_destroy);
1895 }
1896 
1897 
1898 static int
1899 ifa_maintain_loopback_route(int cmd, const char *otype, struct ifaddr *ifa,
1900     struct sockaddr *ia)
1901 {
1902 	struct epoch_tracker et;
1903 	int error;
1904 	struct rt_addrinfo info;
1905 	struct sockaddr_dl null_sdl;
1906 	struct ifnet *ifp;
1907 
1908 	ifp = ifa->ifa_ifp;
1909 
1910 	bzero(&info, sizeof(info));
1911 	if (cmd != RTM_DELETE)
1912 		info.rti_ifp = V_loif;
1913 	if (cmd == RTM_ADD) {
1914 		/* explicitly specify (loopback) ifa */
1915 		if (info.rti_ifp != NULL) {
1916 			NET_EPOCH_ENTER(et);
1917 			info.rti_ifa = ifaof_ifpforaddr(ifa->ifa_addr, info.rti_ifp);
1918 			if (info.rti_ifa != NULL)
1919 				ifa_ref(info.rti_ifa);
1920 			NET_EPOCH_EXIT(et);
1921 		}
1922 	}
1923 	info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC | RTF_PINNED;
1924 	info.rti_info[RTAX_DST] = ia;
1925 	info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl;
1926 	link_init_sdl(ifp, (struct sockaddr *)&null_sdl, ifp->if_type);
1927 
1928 	error = rtrequest1_fib(cmd, &info, NULL, ifp->if_fib);
1929 
1930 	if (error != 0 &&
1931 	    !(cmd == RTM_ADD && error == EEXIST) &&
1932 	    !(cmd == RTM_DELETE && error == ENOENT))
1933 		if_printf(ifp, "%s failed: %d\n", otype, error);
1934 
1935 	return (error);
1936 }
1937 
1938 int
1939 ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia)
1940 {
1941 
1942 	return (ifa_maintain_loopback_route(RTM_ADD, "insertion", ifa, ia));
1943 }
1944 
1945 int
1946 ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia)
1947 {
1948 
1949 	return (ifa_maintain_loopback_route(RTM_DELETE, "deletion", ifa, ia));
1950 }
1951 
1952 int
1953 ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *ia)
1954 {
1955 
1956 	return (ifa_maintain_loopback_route(RTM_CHANGE, "switch", ifa, ia));
1957 }
1958 
1959 /*
1960  * XXX: Because sockaddr_dl has deeper structure than the sockaddr
1961  * structs used to represent other address families, it is necessary
1962  * to perform a different comparison.
1963  */
1964 
1965 #define	sa_dl_equal(a1, a2)	\
1966 	((((const struct sockaddr_dl *)(a1))->sdl_len ==		\
1967 	 ((const struct sockaddr_dl *)(a2))->sdl_len) &&		\
1968 	 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)),		\
1969 	       CLLADDR((const struct sockaddr_dl *)(a2)),		\
1970 	       ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0))
1971 
1972 /*
1973  * Locate an interface based on a complete address.
1974  */
1975 /*ARGSUSED*/
1976 struct ifaddr *
1977 ifa_ifwithaddr(const struct sockaddr *addr)
1978 {
1979 	struct ifnet *ifp;
1980 	struct ifaddr *ifa;
1981 
1982 	MPASS(in_epoch(net_epoch_preempt));
1983 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1984 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1985 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1986 				continue;
1987 			if (sa_equal(addr, ifa->ifa_addr)) {
1988 				goto done;
1989 			}
1990 			/* IP6 doesn't have broadcast */
1991 			if ((ifp->if_flags & IFF_BROADCAST) &&
1992 			    ifa->ifa_broadaddr &&
1993 			    ifa->ifa_broadaddr->sa_len != 0 &&
1994 			    sa_equal(ifa->ifa_broadaddr, addr)) {
1995 				goto done;
1996 			}
1997 		}
1998 	}
1999 	ifa = NULL;
2000 done:
2001 	return (ifa);
2002 }
2003 
2004 int
2005 ifa_ifwithaddr_check(const struct sockaddr *addr)
2006 {
2007 	struct epoch_tracker et;
2008 	int rc;
2009 
2010 	NET_EPOCH_ENTER(et);
2011 	rc = (ifa_ifwithaddr(addr) != NULL);
2012 	NET_EPOCH_EXIT(et);
2013 	return (rc);
2014 }
2015 
2016 /*
2017  * Locate an interface based on the broadcast address.
2018  */
2019 /* ARGSUSED */
2020 struct ifaddr *
2021 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum)
2022 {
2023 	struct ifnet *ifp;
2024 	struct ifaddr *ifa;
2025 
2026 	MPASS(in_epoch(net_epoch_preempt));
2027 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2028 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
2029 			continue;
2030 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2031 			if (ifa->ifa_addr->sa_family != addr->sa_family)
2032 				continue;
2033 			if ((ifp->if_flags & IFF_BROADCAST) &&
2034 			    ifa->ifa_broadaddr &&
2035 			    ifa->ifa_broadaddr->sa_len != 0 &&
2036 			    sa_equal(ifa->ifa_broadaddr, addr)) {
2037 				goto done;
2038 			}
2039 		}
2040 	}
2041 	ifa = NULL;
2042 done:
2043 	return (ifa);
2044 }
2045 
2046 /*
2047  * Locate the point to point interface with a given destination address.
2048  */
2049 /*ARGSUSED*/
2050 struct ifaddr *
2051 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum)
2052 {
2053 	struct ifnet *ifp;
2054 	struct ifaddr *ifa;
2055 
2056 	MPASS(in_epoch(net_epoch_preempt));
2057 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2058 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
2059 			continue;
2060 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
2061 			continue;
2062 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2063 			if (ifa->ifa_addr->sa_family != addr->sa_family)
2064 				continue;
2065 			if (ifa->ifa_dstaddr != NULL &&
2066 			    sa_equal(addr, ifa->ifa_dstaddr)) {
2067 				goto done;
2068 			}
2069 		}
2070 	}
2071 	ifa = NULL;
2072 done:
2073 	return (ifa);
2074 }
2075 
2076 /*
2077  * Find an interface on a specific network.  If many, choice
2078  * is most specific found.
2079  */
2080 struct ifaddr *
2081 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum)
2082 {
2083 	struct ifnet *ifp;
2084 	struct ifaddr *ifa;
2085 	struct ifaddr *ifa_maybe = NULL;
2086 	u_int af = addr->sa_family;
2087 	const char *addr_data = addr->sa_data, *cplim;
2088 
2089 	MPASS(in_epoch(net_epoch_preempt));
2090 	/*
2091 	 * AF_LINK addresses can be looked up directly by their index number,
2092 	 * so do that if we can.
2093 	 */
2094 	if (af == AF_LINK) {
2095 	    const struct sockaddr_dl *sdl = (const struct sockaddr_dl *)addr;
2096 	    if (sdl->sdl_index && sdl->sdl_index <= V_if_index)
2097 		return (ifaddr_byindex(sdl->sdl_index));
2098 	}
2099 
2100 	/*
2101 	 * Scan though each interface, looking for ones that have addresses
2102 	 * in this address family and the requested fib.
2103 	 */
2104 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2105 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
2106 			continue;
2107 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2108 			const char *cp, *cp2, *cp3;
2109 
2110 			if (ifa->ifa_addr->sa_family != af)
2111 next:				continue;
2112 			if (af == AF_INET &&
2113 			    ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) {
2114 				/*
2115 				 * This is a bit broken as it doesn't
2116 				 * take into account that the remote end may
2117 				 * be a single node in the network we are
2118 				 * looking for.
2119 				 * The trouble is that we don't know the
2120 				 * netmask for the remote end.
2121 				 */
2122 				if (ifa->ifa_dstaddr != NULL &&
2123 				    sa_equal(addr, ifa->ifa_dstaddr)) {
2124 					goto done;
2125 				}
2126 			} else {
2127 				/*
2128 				 * Scan all the bits in the ifa's address.
2129 				 * If a bit dissagrees with what we are
2130 				 * looking for, mask it with the netmask
2131 				 * to see if it really matters.
2132 				 * (A byte at a time)
2133 				 */
2134 				if (ifa->ifa_netmask == 0)
2135 					continue;
2136 				cp = addr_data;
2137 				cp2 = ifa->ifa_addr->sa_data;
2138 				cp3 = ifa->ifa_netmask->sa_data;
2139 				cplim = ifa->ifa_netmask->sa_len
2140 					+ (char *)ifa->ifa_netmask;
2141 				while (cp3 < cplim)
2142 					if ((*cp++ ^ *cp2++) & *cp3++)
2143 						goto next; /* next address! */
2144 				/*
2145 				 * If the netmask of what we just found
2146 				 * is more specific than what we had before
2147 				 * (if we had one), or if the virtual status
2148 				 * of new prefix is better than of the old one,
2149 				 * then remember the new one before continuing
2150 				 * to search for an even better one.
2151 				 */
2152 				if (ifa_maybe == NULL ||
2153 				    ifa_preferred(ifa_maybe, ifa) ||
2154 				    rn_refines((caddr_t)ifa->ifa_netmask,
2155 				    (caddr_t)ifa_maybe->ifa_netmask)) {
2156 					ifa_maybe = ifa;
2157 				}
2158 			}
2159 		}
2160 	}
2161 	ifa = ifa_maybe;
2162 	ifa_maybe = NULL;
2163 done:
2164 	return (ifa);
2165 }
2166 
2167 /*
2168  * Find an interface address specific to an interface best matching
2169  * a given address.
2170  */
2171 struct ifaddr *
2172 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2173 {
2174 	struct ifaddr *ifa;
2175 	const char *cp, *cp2, *cp3;
2176 	char *cplim;
2177 	struct ifaddr *ifa_maybe = NULL;
2178 	u_int af = addr->sa_family;
2179 
2180 	if (af >= AF_MAX)
2181 		return (NULL);
2182 
2183 	MPASS(in_epoch(net_epoch_preempt));
2184 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2185 		if (ifa->ifa_addr->sa_family != af)
2186 			continue;
2187 		if (ifa_maybe == NULL)
2188 			ifa_maybe = ifa;
2189 		if (ifa->ifa_netmask == 0) {
2190 			if (sa_equal(addr, ifa->ifa_addr) ||
2191 			    (ifa->ifa_dstaddr &&
2192 			    sa_equal(addr, ifa->ifa_dstaddr)))
2193 				goto done;
2194 			continue;
2195 		}
2196 		if (ifp->if_flags & IFF_POINTOPOINT) {
2197 			if (sa_equal(addr, ifa->ifa_dstaddr))
2198 				goto done;
2199 		} else {
2200 			cp = addr->sa_data;
2201 			cp2 = ifa->ifa_addr->sa_data;
2202 			cp3 = ifa->ifa_netmask->sa_data;
2203 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2204 			for (; cp3 < cplim; cp3++)
2205 				if ((*cp++ ^ *cp2++) & *cp3)
2206 					break;
2207 			if (cp3 == cplim)
2208 				goto done;
2209 		}
2210 	}
2211 	ifa = ifa_maybe;
2212 done:
2213 	return (ifa);
2214 }
2215 
2216 /*
2217  * See whether new ifa is better than current one:
2218  * 1) A non-virtual one is preferred over virtual.
2219  * 2) A virtual in master state preferred over any other state.
2220  *
2221  * Used in several address selecting functions.
2222  */
2223 int
2224 ifa_preferred(struct ifaddr *cur, struct ifaddr *next)
2225 {
2226 
2227 	return (cur->ifa_carp && (!next->ifa_carp ||
2228 	    ((*carp_master_p)(next) && !(*carp_master_p)(cur))));
2229 }
2230 
2231 struct sockaddr_dl *
2232 link_alloc_sdl(size_t size, int flags)
2233 {
2234 
2235 	return (malloc(size, M_TEMP, flags));
2236 }
2237 
2238 void
2239 link_free_sdl(struct sockaddr *sa)
2240 {
2241 	free(sa, M_TEMP);
2242 }
2243 
2244 /*
2245  * Fills in given sdl with interface basic info.
2246  * Returns pointer to filled sdl.
2247  */
2248 struct sockaddr_dl *
2249 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype)
2250 {
2251 	struct sockaddr_dl *sdl;
2252 
2253 	sdl = (struct sockaddr_dl *)paddr;
2254 	memset(sdl, 0, sizeof(struct sockaddr_dl));
2255 	sdl->sdl_len = sizeof(struct sockaddr_dl);
2256 	sdl->sdl_family = AF_LINK;
2257 	sdl->sdl_index = ifp->if_index;
2258 	sdl->sdl_type = iftype;
2259 
2260 	return (sdl);
2261 }
2262 
2263 /*
2264  * Mark an interface down and notify protocols of
2265  * the transition.
2266  */
2267 static void
2268 if_unroute(struct ifnet *ifp, int flag, int fam)
2269 {
2270 	struct ifaddr *ifa;
2271 
2272 	KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP"));
2273 
2274 	ifp->if_flags &= ~flag;
2275 	getmicrotime(&ifp->if_lastchange);
2276 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
2277 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
2278 			pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2279 	ifp->if_qflush(ifp);
2280 
2281 	if (ifp->if_carp)
2282 		(*carp_linkstate_p)(ifp);
2283 	rt_ifmsg(ifp);
2284 }
2285 
2286 /*
2287  * Mark an interface up and notify protocols of
2288  * the transition.
2289  */
2290 static void
2291 if_route(struct ifnet *ifp, int flag, int fam)
2292 {
2293 	struct ifaddr *ifa;
2294 
2295 	KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP"));
2296 
2297 	ifp->if_flags |= flag;
2298 	getmicrotime(&ifp->if_lastchange);
2299 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
2300 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
2301 			pfctlinput(PRC_IFUP, ifa->ifa_addr);
2302 	if (ifp->if_carp)
2303 		(*carp_linkstate_p)(ifp);
2304 	rt_ifmsg(ifp);
2305 #ifdef INET6
2306 	in6_if_up(ifp);
2307 #endif
2308 }
2309 
2310 void	(*vlan_link_state_p)(struct ifnet *);	/* XXX: private from if_vlan */
2311 void	(*vlan_trunk_cap_p)(struct ifnet *);		/* XXX: private from if_vlan */
2312 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *);
2313 struct	ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t);
2314 int	(*vlan_tag_p)(struct ifnet *, uint16_t *);
2315 int	(*vlan_pcp_p)(struct ifnet *, uint16_t *);
2316 int	(*vlan_setcookie_p)(struct ifnet *, void *);
2317 void	*(*vlan_cookie_p)(struct ifnet *);
2318 
2319 /*
2320  * Handle a change in the interface link state. To avoid LORs
2321  * between driver lock and upper layer locks, as well as possible
2322  * recursions, we post event to taskqueue, and all job
2323  * is done in static do_link_state_change().
2324  */
2325 void
2326 if_link_state_change(struct ifnet *ifp, int link_state)
2327 {
2328 	/* Return if state hasn't changed. */
2329 	if (ifp->if_link_state == link_state)
2330 		return;
2331 
2332 	ifp->if_link_state = link_state;
2333 
2334 	taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask);
2335 }
2336 
2337 static void
2338 do_link_state_change(void *arg, int pending)
2339 {
2340 	struct ifnet *ifp = (struct ifnet *)arg;
2341 	int link_state = ifp->if_link_state;
2342 	CURVNET_SET(ifp->if_vnet);
2343 
2344 	/* Notify that the link state has changed. */
2345 	rt_ifmsg(ifp);
2346 	if (ifp->if_vlantrunk != NULL)
2347 		(*vlan_link_state_p)(ifp);
2348 
2349 	if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) &&
2350 	    ifp->if_l2com != NULL)
2351 		(*ng_ether_link_state_p)(ifp, link_state);
2352 	if (ifp->if_carp)
2353 		(*carp_linkstate_p)(ifp);
2354 	if (ifp->if_bridge)
2355 		ifp->if_bridge_linkstate(ifp);
2356 	if (ifp->if_lagg)
2357 		(*lagg_linkstate_p)(ifp, link_state);
2358 
2359 	if (IS_DEFAULT_VNET(curvnet))
2360 		devctl_notify("IFNET", ifp->if_xname,
2361 		    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN",
2362 		    NULL);
2363 	if (pending > 1)
2364 		if_printf(ifp, "%d link states coalesced\n", pending);
2365 	if (log_link_state_change)
2366 		if_printf(ifp, "link state changed to %s\n",
2367 		    (link_state == LINK_STATE_UP) ? "UP" : "DOWN" );
2368 	EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
2369 	CURVNET_RESTORE();
2370 }
2371 
2372 /*
2373  * Mark an interface down and notify protocols of
2374  * the transition.
2375  */
2376 void
2377 if_down(struct ifnet *ifp)
2378 {
2379 
2380 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN);
2381 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
2382 }
2383 
2384 /*
2385  * Mark an interface up and notify protocols of
2386  * the transition.
2387  */
2388 void
2389 if_up(struct ifnet *ifp)
2390 {
2391 
2392 	if_route(ifp, IFF_UP, AF_UNSPEC);
2393 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP);
2394 }
2395 
2396 /*
2397  * Flush an interface queue.
2398  */
2399 void
2400 if_qflush(struct ifnet *ifp)
2401 {
2402 	struct mbuf *m, *n;
2403 	struct ifaltq *ifq;
2404 
2405 	ifq = &ifp->if_snd;
2406 	IFQ_LOCK(ifq);
2407 #ifdef ALTQ
2408 	if (ALTQ_IS_ENABLED(ifq))
2409 		ALTQ_PURGE(ifq);
2410 #endif
2411 	n = ifq->ifq_head;
2412 	while ((m = n) != NULL) {
2413 		n = m->m_nextpkt;
2414 		m_freem(m);
2415 	}
2416 	ifq->ifq_head = 0;
2417 	ifq->ifq_tail = 0;
2418 	ifq->ifq_len = 0;
2419 	IFQ_UNLOCK(ifq);
2420 }
2421 
2422 /*
2423  * Map interface name to interface structure pointer, with or without
2424  * returning a reference.
2425  */
2426 struct ifnet *
2427 ifunit_ref(const char *name)
2428 {
2429 	struct epoch_tracker et;
2430 	struct ifnet *ifp;
2431 
2432 	NET_EPOCH_ENTER(et);
2433 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2434 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 &&
2435 		    !(ifp->if_flags & IFF_DYING))
2436 			break;
2437 	}
2438 	if (ifp != NULL)
2439 		if_ref(ifp);
2440 	NET_EPOCH_EXIT(et);
2441 	return (ifp);
2442 }
2443 
2444 struct ifnet *
2445 ifunit(const char *name)
2446 {
2447 	struct epoch_tracker et;
2448 	struct ifnet *ifp;
2449 
2450 	NET_EPOCH_ENTER(et);
2451 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2452 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0)
2453 			break;
2454 	}
2455 	NET_EPOCH_EXIT(et);
2456 	return (ifp);
2457 }
2458 
2459 static void *
2460 ifr_buffer_get_buffer(void *data)
2461 {
2462 	union ifreq_union *ifrup;
2463 
2464 	ifrup = data;
2465 #ifdef COMPAT_FREEBSD32
2466 	if (SV_CURPROC_FLAG(SV_ILP32))
2467 		return ((void *)(uintptr_t)
2468 		    ifrup->ifr32.ifr_ifru.ifru_buffer.buffer);
2469 #endif
2470 	return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer);
2471 }
2472 
2473 static void
2474 ifr_buffer_set_buffer_null(void *data)
2475 {
2476 	union ifreq_union *ifrup;
2477 
2478 	ifrup = data;
2479 #ifdef COMPAT_FREEBSD32
2480 	if (SV_CURPROC_FLAG(SV_ILP32))
2481 		ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0;
2482 	else
2483 #endif
2484 		ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL;
2485 }
2486 
2487 static size_t
2488 ifr_buffer_get_length(void *data)
2489 {
2490 	union ifreq_union *ifrup;
2491 
2492 	ifrup = data;
2493 #ifdef COMPAT_FREEBSD32
2494 	if (SV_CURPROC_FLAG(SV_ILP32))
2495 		return (ifrup->ifr32.ifr_ifru.ifru_buffer.length);
2496 #endif
2497 	return (ifrup->ifr.ifr_ifru.ifru_buffer.length);
2498 }
2499 
2500 static void
2501 ifr_buffer_set_length(void *data, size_t len)
2502 {
2503 	union ifreq_union *ifrup;
2504 
2505 	ifrup = data;
2506 #ifdef COMPAT_FREEBSD32
2507 	if (SV_CURPROC_FLAG(SV_ILP32))
2508 		ifrup->ifr32.ifr_ifru.ifru_buffer.length = len;
2509 	else
2510 #endif
2511 		ifrup->ifr.ifr_ifru.ifru_buffer.length = len;
2512 }
2513 
2514 void *
2515 ifr_data_get_ptr(void *ifrp)
2516 {
2517 	union ifreq_union *ifrup;
2518 
2519 	ifrup = ifrp;
2520 #ifdef COMPAT_FREEBSD32
2521 	if (SV_CURPROC_FLAG(SV_ILP32))
2522 		return ((void *)(uintptr_t)
2523 		    ifrup->ifr32.ifr_ifru.ifru_data);
2524 #endif
2525 		return (ifrup->ifr.ifr_ifru.ifru_data);
2526 }
2527 
2528 /*
2529  * Hardware specific interface ioctls.
2530  */
2531 int
2532 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
2533 {
2534 	struct ifreq *ifr;
2535 	int error = 0, do_ifup = 0;
2536 	int new_flags, temp_flags;
2537 	size_t namelen, onamelen;
2538 	size_t descrlen;
2539 	char *descrbuf, *odescrbuf;
2540 	char new_name[IFNAMSIZ];
2541 	struct ifaddr *ifa;
2542 	struct sockaddr_dl *sdl;
2543 
2544 	ifr = (struct ifreq *)data;
2545 	switch (cmd) {
2546 	case SIOCGIFINDEX:
2547 		ifr->ifr_index = ifp->if_index;
2548 		break;
2549 
2550 	case SIOCGIFFLAGS:
2551 		temp_flags = ifp->if_flags | ifp->if_drv_flags;
2552 		ifr->ifr_flags = temp_flags & 0xffff;
2553 		ifr->ifr_flagshigh = temp_flags >> 16;
2554 		break;
2555 
2556 	case SIOCGIFCAP:
2557 		ifr->ifr_reqcap = ifp->if_capabilities;
2558 		ifr->ifr_curcap = ifp->if_capenable;
2559 		break;
2560 
2561 #ifdef MAC
2562 	case SIOCGIFMAC:
2563 		error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp);
2564 		break;
2565 #endif
2566 
2567 	case SIOCGIFMETRIC:
2568 		ifr->ifr_metric = ifp->if_metric;
2569 		break;
2570 
2571 	case SIOCGIFMTU:
2572 		ifr->ifr_mtu = ifp->if_mtu;
2573 		break;
2574 
2575 	case SIOCGIFPHYS:
2576 		/* XXXGL: did this ever worked? */
2577 		ifr->ifr_phys = 0;
2578 		break;
2579 
2580 	case SIOCGIFDESCR:
2581 		error = 0;
2582 		sx_slock(&ifdescr_sx);
2583 		if (ifp->if_description == NULL)
2584 			error = ENOMSG;
2585 		else {
2586 			/* space for terminating nul */
2587 			descrlen = strlen(ifp->if_description) + 1;
2588 			if (ifr_buffer_get_length(ifr) < descrlen)
2589 				ifr_buffer_set_buffer_null(ifr);
2590 			else
2591 				error = copyout(ifp->if_description,
2592 				    ifr_buffer_get_buffer(ifr), descrlen);
2593 			ifr_buffer_set_length(ifr, descrlen);
2594 		}
2595 		sx_sunlock(&ifdescr_sx);
2596 		break;
2597 
2598 	case SIOCSIFDESCR:
2599 		error = priv_check(td, PRIV_NET_SETIFDESCR);
2600 		if (error)
2601 			return (error);
2602 
2603 		/*
2604 		 * Copy only (length-1) bytes to make sure that
2605 		 * if_description is always nul terminated.  The
2606 		 * length parameter is supposed to count the
2607 		 * terminating nul in.
2608 		 */
2609 		if (ifr_buffer_get_length(ifr) > ifdescr_maxlen)
2610 			return (ENAMETOOLONG);
2611 		else if (ifr_buffer_get_length(ifr) == 0)
2612 			descrbuf = NULL;
2613 		else {
2614 			descrbuf = malloc(ifr_buffer_get_length(ifr),
2615 			    M_IFDESCR, M_WAITOK | M_ZERO);
2616 			error = copyin(ifr_buffer_get_buffer(ifr), descrbuf,
2617 			    ifr_buffer_get_length(ifr) - 1);
2618 			if (error) {
2619 				free(descrbuf, M_IFDESCR);
2620 				break;
2621 			}
2622 		}
2623 
2624 		sx_xlock(&ifdescr_sx);
2625 		odescrbuf = ifp->if_description;
2626 		ifp->if_description = descrbuf;
2627 		sx_xunlock(&ifdescr_sx);
2628 
2629 		getmicrotime(&ifp->if_lastchange);
2630 		free(odescrbuf, M_IFDESCR);
2631 		break;
2632 
2633 	case SIOCGIFFIB:
2634 		ifr->ifr_fib = ifp->if_fib;
2635 		break;
2636 
2637 	case SIOCSIFFIB:
2638 		error = priv_check(td, PRIV_NET_SETIFFIB);
2639 		if (error)
2640 			return (error);
2641 		if (ifr->ifr_fib >= rt_numfibs)
2642 			return (EINVAL);
2643 
2644 		ifp->if_fib = ifr->ifr_fib;
2645 		break;
2646 
2647 	case SIOCSIFFLAGS:
2648 		error = priv_check(td, PRIV_NET_SETIFFLAGS);
2649 		if (error)
2650 			return (error);
2651 		/*
2652 		 * Currently, no driver owned flags pass the IFF_CANTCHANGE
2653 		 * check, so we don't need special handling here yet.
2654 		 */
2655 		new_flags = (ifr->ifr_flags & 0xffff) |
2656 		    (ifr->ifr_flagshigh << 16);
2657 		if (ifp->if_flags & IFF_UP &&
2658 		    (new_flags & IFF_UP) == 0) {
2659 			if_down(ifp);
2660 		} else if (new_flags & IFF_UP &&
2661 		    (ifp->if_flags & IFF_UP) == 0) {
2662 			do_ifup = 1;
2663 		}
2664 		/* See if permanently promiscuous mode bit is about to flip */
2665 		if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) {
2666 			if (new_flags & IFF_PPROMISC)
2667 				ifp->if_flags |= IFF_PROMISC;
2668 			else if (ifp->if_pcount == 0)
2669 				ifp->if_flags &= ~IFF_PROMISC;
2670 			if (log_promisc_mode_change)
2671                                 if_printf(ifp, "permanently promiscuous mode %s\n",
2672                                     ((new_flags & IFF_PPROMISC) ?
2673                                      "enabled" : "disabled"));
2674 		}
2675 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2676 			(new_flags &~ IFF_CANTCHANGE);
2677 		if (ifp->if_ioctl) {
2678 			(void) (*ifp->if_ioctl)(ifp, cmd, data);
2679 		}
2680 		if (do_ifup)
2681 			if_up(ifp);
2682 		getmicrotime(&ifp->if_lastchange);
2683 		break;
2684 
2685 	case SIOCSIFCAP:
2686 		error = priv_check(td, PRIV_NET_SETIFCAP);
2687 		if (error)
2688 			return (error);
2689 		if (ifp->if_ioctl == NULL)
2690 			return (EOPNOTSUPP);
2691 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
2692 			return (EINVAL);
2693 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2694 		if (error == 0)
2695 			getmicrotime(&ifp->if_lastchange);
2696 		break;
2697 
2698 #ifdef MAC
2699 	case SIOCSIFMAC:
2700 		error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp);
2701 		break;
2702 #endif
2703 
2704 	case SIOCSIFNAME:
2705 		error = priv_check(td, PRIV_NET_SETIFNAME);
2706 		if (error)
2707 			return (error);
2708 		error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ,
2709 		    NULL);
2710 		if (error != 0)
2711 			return (error);
2712 		if (new_name[0] == '\0')
2713 			return (EINVAL);
2714 		if (new_name[IFNAMSIZ-1] != '\0') {
2715 			new_name[IFNAMSIZ-1] = '\0';
2716 			if (strlen(new_name) == IFNAMSIZ-1)
2717 				return (EINVAL);
2718 		}
2719 		if (ifunit(new_name) != NULL)
2720 			return (EEXIST);
2721 
2722 		/*
2723 		 * XXX: Locking.  Nothing else seems to lock if_flags,
2724 		 * and there are numerous other races with the
2725 		 * ifunit() checks not being atomic with namespace
2726 		 * changes (renames, vmoves, if_attach, etc).
2727 		 */
2728 		ifp->if_flags |= IFF_RENAMING;
2729 
2730 		/* Announce the departure of the interface. */
2731 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
2732 		EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
2733 
2734 		if_printf(ifp, "changing name to '%s'\n", new_name);
2735 
2736 		IF_ADDR_WLOCK(ifp);
2737 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
2738 		ifa = ifp->if_addr;
2739 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
2740 		namelen = strlen(new_name);
2741 		onamelen = sdl->sdl_nlen;
2742 		/*
2743 		 * Move the address if needed.  This is safe because we
2744 		 * allocate space for a name of length IFNAMSIZ when we
2745 		 * create this in if_attach().
2746 		 */
2747 		if (namelen != onamelen) {
2748 			bcopy(sdl->sdl_data + onamelen,
2749 			    sdl->sdl_data + namelen, sdl->sdl_alen);
2750 		}
2751 		bcopy(new_name, sdl->sdl_data, namelen);
2752 		sdl->sdl_nlen = namelen;
2753 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
2754 		bzero(sdl->sdl_data, onamelen);
2755 		while (namelen != 0)
2756 			sdl->sdl_data[--namelen] = 0xff;
2757 		IF_ADDR_WUNLOCK(ifp);
2758 
2759 		EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
2760 		/* Announce the return of the interface. */
2761 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
2762 
2763 		ifp->if_flags &= ~IFF_RENAMING;
2764 		break;
2765 
2766 #ifdef VIMAGE
2767 	case SIOCSIFVNET:
2768 		error = priv_check(td, PRIV_NET_SETIFVNET);
2769 		if (error)
2770 			return (error);
2771 		error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid);
2772 		break;
2773 #endif
2774 
2775 	case SIOCSIFMETRIC:
2776 		error = priv_check(td, PRIV_NET_SETIFMETRIC);
2777 		if (error)
2778 			return (error);
2779 		ifp->if_metric = ifr->ifr_metric;
2780 		getmicrotime(&ifp->if_lastchange);
2781 		break;
2782 
2783 	case SIOCSIFPHYS:
2784 		error = priv_check(td, PRIV_NET_SETIFPHYS);
2785 		if (error)
2786 			return (error);
2787 		if (ifp->if_ioctl == NULL)
2788 			return (EOPNOTSUPP);
2789 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2790 		if (error == 0)
2791 			getmicrotime(&ifp->if_lastchange);
2792 		break;
2793 
2794 	case SIOCSIFMTU:
2795 	{
2796 		u_long oldmtu = ifp->if_mtu;
2797 
2798 		error = priv_check(td, PRIV_NET_SETIFMTU);
2799 		if (error)
2800 			return (error);
2801 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
2802 			return (EINVAL);
2803 		if (ifp->if_ioctl == NULL)
2804 			return (EOPNOTSUPP);
2805 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2806 		if (error == 0) {
2807 			getmicrotime(&ifp->if_lastchange);
2808 			rt_ifmsg(ifp);
2809 #ifdef INET
2810 			NETDUMP_REINIT(ifp);
2811 #endif
2812 		}
2813 		/*
2814 		 * If the link MTU changed, do network layer specific procedure.
2815 		 */
2816 		if (ifp->if_mtu != oldmtu) {
2817 #ifdef INET6
2818 			nd6_setmtu(ifp);
2819 #endif
2820 			rt_updatemtu(ifp);
2821 		}
2822 		break;
2823 	}
2824 
2825 	case SIOCADDMULTI:
2826 	case SIOCDELMULTI:
2827 		if (cmd == SIOCADDMULTI)
2828 			error = priv_check(td, PRIV_NET_ADDMULTI);
2829 		else
2830 			error = priv_check(td, PRIV_NET_DELMULTI);
2831 		if (error)
2832 			return (error);
2833 
2834 		/* Don't allow group membership on non-multicast interfaces. */
2835 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
2836 			return (EOPNOTSUPP);
2837 
2838 		/* Don't let users screw up protocols' entries. */
2839 		if (ifr->ifr_addr.sa_family != AF_LINK)
2840 			return (EINVAL);
2841 
2842 		if (cmd == SIOCADDMULTI) {
2843 			struct epoch_tracker et;
2844 			struct ifmultiaddr *ifma;
2845 
2846 			/*
2847 			 * Userland is only permitted to join groups once
2848 			 * via the if_addmulti() KPI, because it cannot hold
2849 			 * struct ifmultiaddr * between calls. It may also
2850 			 * lose a race while we check if the membership
2851 			 * already exists.
2852 			 */
2853 			NET_EPOCH_ENTER(et);
2854 			ifma = if_findmulti(ifp, &ifr->ifr_addr);
2855 			NET_EPOCH_EXIT(et);
2856 			if (ifma != NULL)
2857 				error = EADDRINUSE;
2858 			else
2859 				error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2860 		} else {
2861 			error = if_delmulti(ifp, &ifr->ifr_addr);
2862 		}
2863 		if (error == 0)
2864 			getmicrotime(&ifp->if_lastchange);
2865 		break;
2866 
2867 	case SIOCSIFPHYADDR:
2868 	case SIOCDIFPHYADDR:
2869 #ifdef INET6
2870 	case SIOCSIFPHYADDR_IN6:
2871 #endif
2872 	case SIOCSIFMEDIA:
2873 	case SIOCSIFGENERIC:
2874 		error = priv_check(td, PRIV_NET_HWIOCTL);
2875 		if (error)
2876 			return (error);
2877 		if (ifp->if_ioctl == NULL)
2878 			return (EOPNOTSUPP);
2879 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2880 		if (error == 0)
2881 			getmicrotime(&ifp->if_lastchange);
2882 		break;
2883 
2884 	case SIOCGIFSTATUS:
2885 	case SIOCGIFPSRCADDR:
2886 	case SIOCGIFPDSTADDR:
2887 	case SIOCGIFMEDIA:
2888 	case SIOCGIFXMEDIA:
2889 	case SIOCGIFGENERIC:
2890 	case SIOCGIFRSSKEY:
2891 	case SIOCGIFRSSHASH:
2892 		if (ifp->if_ioctl == NULL)
2893 			return (EOPNOTSUPP);
2894 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2895 		break;
2896 
2897 	case SIOCSIFLLADDR:
2898 		error = priv_check(td, PRIV_NET_SETLLADDR);
2899 		if (error)
2900 			return (error);
2901 		error = if_setlladdr(ifp,
2902 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
2903 		break;
2904 
2905 	case SIOCGHWADDR:
2906 		error = if_gethwaddr(ifp, ifr);
2907 		break;
2908 
2909 	case CASE_IOC_IFGROUPREQ(SIOCAIFGROUP):
2910 		error = priv_check(td, PRIV_NET_ADDIFGROUP);
2911 		if (error)
2912 			return (error);
2913 		if ((error = if_addgroup(ifp,
2914 		    ifgr_group_get((struct ifgroupreq *)data))))
2915 			return (error);
2916 		break;
2917 
2918 	case CASE_IOC_IFGROUPREQ(SIOCGIFGROUP):
2919 		if ((error = if_getgroup((struct ifgroupreq *)data, ifp)))
2920 			return (error);
2921 		break;
2922 
2923 	case CASE_IOC_IFGROUPREQ(SIOCDIFGROUP):
2924 		error = priv_check(td, PRIV_NET_DELIFGROUP);
2925 		if (error)
2926 			return (error);
2927 		if ((error = if_delgroup(ifp,
2928 		    ifgr_group_get((struct ifgroupreq *)data))))
2929 			return (error);
2930 		break;
2931 
2932 	default:
2933 		error = ENOIOCTL;
2934 		break;
2935 	}
2936 	return (error);
2937 }
2938 
2939 #ifdef COMPAT_FREEBSD32
2940 struct ifconf32 {
2941 	int32_t	ifc_len;
2942 	union {
2943 		uint32_t	ifcu_buf;
2944 		uint32_t	ifcu_req;
2945 	} ifc_ifcu;
2946 };
2947 #define	SIOCGIFCONF32	_IOWR('i', 36, struct ifconf32)
2948 #endif
2949 
2950 #ifdef COMPAT_FREEBSD32
2951 static void
2952 ifmr_init(struct ifmediareq *ifmr, caddr_t data)
2953 {
2954 	struct ifmediareq32 *ifmr32;
2955 
2956 	ifmr32 = (struct ifmediareq32 *)data;
2957 	memcpy(ifmr->ifm_name, ifmr32->ifm_name,
2958 	    sizeof(ifmr->ifm_name));
2959 	ifmr->ifm_current = ifmr32->ifm_current;
2960 	ifmr->ifm_mask = ifmr32->ifm_mask;
2961 	ifmr->ifm_status = ifmr32->ifm_status;
2962 	ifmr->ifm_active = ifmr32->ifm_active;
2963 	ifmr->ifm_count = ifmr32->ifm_count;
2964 	ifmr->ifm_ulist = (int *)(uintptr_t)ifmr32->ifm_ulist;
2965 }
2966 
2967 static void
2968 ifmr_update(const struct ifmediareq *ifmr, caddr_t data)
2969 {
2970 	struct ifmediareq32 *ifmr32;
2971 
2972 	ifmr32 = (struct ifmediareq32 *)data;
2973 	ifmr32->ifm_current = ifmr->ifm_current;
2974 	ifmr32->ifm_mask = ifmr->ifm_mask;
2975 	ifmr32->ifm_status = ifmr->ifm_status;
2976 	ifmr32->ifm_active = ifmr->ifm_active;
2977 	ifmr32->ifm_count = ifmr->ifm_count;
2978 }
2979 #endif
2980 
2981 /*
2982  * Interface ioctls.
2983  */
2984 int
2985 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td)
2986 {
2987 #ifdef COMPAT_FREEBSD32
2988 	caddr_t saved_data = NULL;
2989 	struct ifmediareq ifmr;
2990 	struct ifmediareq *ifmrp;
2991 #endif
2992 	struct ifnet *ifp;
2993 	struct ifreq *ifr;
2994 	int error;
2995 	int oif_flags;
2996 #ifdef VIMAGE
2997 	int shutdown;
2998 #endif
2999 
3000 	CURVNET_SET(so->so_vnet);
3001 #ifdef VIMAGE
3002 	/* Make sure the VNET is stable. */
3003 	shutdown = (so->so_vnet->vnet_state > SI_SUB_VNET &&
3004 		 so->so_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
3005 	if (shutdown) {
3006 		CURVNET_RESTORE();
3007 		return (EBUSY);
3008 	}
3009 #endif
3010 
3011 
3012 	switch (cmd) {
3013 	case SIOCGIFCONF:
3014 		error = ifconf(cmd, data);
3015 		CURVNET_RESTORE();
3016 		return (error);
3017 
3018 #ifdef COMPAT_FREEBSD32
3019 	case SIOCGIFCONF32:
3020 		{
3021 			struct ifconf32 *ifc32;
3022 			struct ifconf ifc;
3023 
3024 			ifc32 = (struct ifconf32 *)data;
3025 			ifc.ifc_len = ifc32->ifc_len;
3026 			ifc.ifc_buf = PTRIN(ifc32->ifc_buf);
3027 
3028 			error = ifconf(SIOCGIFCONF, (void *)&ifc);
3029 			CURVNET_RESTORE();
3030 			if (error == 0)
3031 				ifc32->ifc_len = ifc.ifc_len;
3032 			return (error);
3033 		}
3034 #endif
3035 	}
3036 
3037 #ifdef COMPAT_FREEBSD32
3038 	ifmrp = NULL;
3039 	switch (cmd) {
3040 	case SIOCGIFMEDIA32:
3041 	case SIOCGIFXMEDIA32:
3042 		ifmrp = &ifmr;
3043 		ifmr_init(ifmrp, data);
3044 		cmd = _IOC_NEWTYPE(cmd, struct ifmediareq);
3045 		saved_data = data;
3046 		data = (caddr_t)ifmrp;
3047 	}
3048 #endif
3049 
3050 	ifr = (struct ifreq *)data;
3051 	switch (cmd) {
3052 #ifdef VIMAGE
3053 	case SIOCSIFRVNET:
3054 		error = priv_check(td, PRIV_NET_SETIFVNET);
3055 		if (error == 0)
3056 			error = if_vmove_reclaim(td, ifr->ifr_name,
3057 			    ifr->ifr_jid);
3058 		goto out_noref;
3059 #endif
3060 	case SIOCIFCREATE:
3061 	case SIOCIFCREATE2:
3062 		error = priv_check(td, PRIV_NET_IFCREATE);
3063 		if (error == 0)
3064 			error = if_clone_create(ifr->ifr_name,
3065 			    sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ?
3066 			    ifr_data_get_ptr(ifr) : NULL);
3067 		goto out_noref;
3068 	case SIOCIFDESTROY:
3069 		error = priv_check(td, PRIV_NET_IFDESTROY);
3070 		if (error == 0)
3071 			error = if_clone_destroy(ifr->ifr_name);
3072 		goto out_noref;
3073 
3074 	case SIOCIFGCLONERS:
3075 		error = if_clone_list((struct if_clonereq *)data);
3076 		goto out_noref;
3077 
3078 	case CASE_IOC_IFGROUPREQ(SIOCGIFGMEMB):
3079 		error = if_getgroupmembers((struct ifgroupreq *)data);
3080 		goto out_noref;
3081 
3082 #if defined(INET) || defined(INET6)
3083 	case SIOCSVH:
3084 	case SIOCGVH:
3085 		if (carp_ioctl_p == NULL)
3086 			error = EPROTONOSUPPORT;
3087 		else
3088 			error = (*carp_ioctl_p)(ifr, cmd, td);
3089 		goto out_noref;
3090 #endif
3091 	}
3092 
3093 	ifp = ifunit_ref(ifr->ifr_name);
3094 	if (ifp == NULL) {
3095 		error = ENXIO;
3096 		goto out_noref;
3097 	}
3098 
3099 	error = ifhwioctl(cmd, ifp, data, td);
3100 	if (error != ENOIOCTL)
3101 		goto out_ref;
3102 
3103 	oif_flags = ifp->if_flags;
3104 	if (so->so_proto == NULL) {
3105 		error = EOPNOTSUPP;
3106 		goto out_ref;
3107 	}
3108 
3109 	/*
3110 	 * Pass the request on to the socket control method, and if the
3111 	 * latter returns EOPNOTSUPP, directly to the interface.
3112 	 *
3113 	 * Make an exception for the legacy SIOCSIF* requests.  Drivers
3114 	 * trust SIOCSIFADDR et al to come from an already privileged
3115 	 * layer, and do not perform any credentials checks or input
3116 	 * validation.
3117 	 */
3118 	error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data,
3119 	    ifp, td));
3120 	if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL &&
3121 	    cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR &&
3122 	    cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK)
3123 		error = (*ifp->if_ioctl)(ifp, cmd, data);
3124 
3125 	if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
3126 #ifdef INET6
3127 		if (ifp->if_flags & IFF_UP)
3128 			in6_if_up(ifp);
3129 #endif
3130 	}
3131 
3132 out_ref:
3133 	if_rele(ifp);
3134 out_noref:
3135 #ifdef COMPAT_FREEBSD32
3136 	if (ifmrp != NULL) {
3137 		KASSERT((cmd == SIOCGIFMEDIA || cmd == SIOCGIFXMEDIA),
3138 		    ("ifmrp non-NULL, but cmd is not an ifmedia req 0x%lx",
3139 		     cmd));
3140 		data = saved_data;
3141 		ifmr_update(ifmrp, data);
3142 	}
3143 #endif
3144 	CURVNET_RESTORE();
3145 	return (error);
3146 }
3147 
3148 /*
3149  * The code common to handling reference counted flags,
3150  * e.g., in ifpromisc() and if_allmulti().
3151  * The "pflag" argument can specify a permanent mode flag to check,
3152  * such as IFF_PPROMISC for promiscuous mode; should be 0 if none.
3153  *
3154  * Only to be used on stack-owned flags, not driver-owned flags.
3155  */
3156 static int
3157 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch)
3158 {
3159 	struct ifreq ifr;
3160 	int error;
3161 	int oldflags, oldcount;
3162 
3163 	/* Sanity checks to catch programming errors */
3164 	KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0,
3165 	    ("%s: setting driver-owned flag %d", __func__, flag));
3166 
3167 	if (onswitch)
3168 		KASSERT(*refcount >= 0,
3169 		    ("%s: increment negative refcount %d for flag %d",
3170 		    __func__, *refcount, flag));
3171 	else
3172 		KASSERT(*refcount > 0,
3173 		    ("%s: decrement non-positive refcount %d for flag %d",
3174 		    __func__, *refcount, flag));
3175 
3176 	/* In case this mode is permanent, just touch refcount */
3177 	if (ifp->if_flags & pflag) {
3178 		*refcount += onswitch ? 1 : -1;
3179 		return (0);
3180 	}
3181 
3182 	/* Save ifnet parameters for if_ioctl() may fail */
3183 	oldcount = *refcount;
3184 	oldflags = ifp->if_flags;
3185 
3186 	/*
3187 	 * See if we aren't the only and touching refcount is enough.
3188 	 * Actually toggle interface flag if we are the first or last.
3189 	 */
3190 	if (onswitch) {
3191 		if ((*refcount)++)
3192 			return (0);
3193 		ifp->if_flags |= flag;
3194 	} else {
3195 		if (--(*refcount))
3196 			return (0);
3197 		ifp->if_flags &= ~flag;
3198 	}
3199 
3200 	/* Call down the driver since we've changed interface flags */
3201 	if (ifp->if_ioctl == NULL) {
3202 		error = EOPNOTSUPP;
3203 		goto recover;
3204 	}
3205 	ifr.ifr_flags = ifp->if_flags & 0xffff;
3206 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
3207 	error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3208 	if (error)
3209 		goto recover;
3210 	/* Notify userland that interface flags have changed */
3211 	rt_ifmsg(ifp);
3212 	return (0);
3213 
3214 recover:
3215 	/* Recover after driver error */
3216 	*refcount = oldcount;
3217 	ifp->if_flags = oldflags;
3218 	return (error);
3219 }
3220 
3221 /*
3222  * Set/clear promiscuous mode on interface ifp based on the truth value
3223  * of pswitch.  The calls are reference counted so that only the first
3224  * "on" request actually has an effect, as does the final "off" request.
3225  * Results are undefined if the "off" and "on" requests are not matched.
3226  */
3227 int
3228 ifpromisc(struct ifnet *ifp, int pswitch)
3229 {
3230 	int error;
3231 	int oldflags = ifp->if_flags;
3232 
3233 	error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC,
3234 			   &ifp->if_pcount, pswitch);
3235 	/* If promiscuous mode status has changed, log a message */
3236 	if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) &&
3237             log_promisc_mode_change)
3238 		if_printf(ifp, "promiscuous mode %s\n",
3239 		    (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
3240 	return (error);
3241 }
3242 
3243 /*
3244  * Return interface configuration
3245  * of system.  List may be used
3246  * in later ioctl's (above) to get
3247  * other information.
3248  */
3249 /*ARGSUSED*/
3250 static int
3251 ifconf(u_long cmd, caddr_t data)
3252 {
3253 	struct ifconf *ifc = (struct ifconf *)data;
3254 	struct ifnet *ifp;
3255 	struct ifaddr *ifa;
3256 	struct ifreq ifr;
3257 	struct sbuf *sb;
3258 	int error, full = 0, valid_len, max_len;
3259 
3260 	/* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */
3261 	max_len = MAXPHYS - 1;
3262 
3263 	/* Prevent hostile input from being able to crash the system */
3264 	if (ifc->ifc_len <= 0)
3265 		return (EINVAL);
3266 
3267 again:
3268 	if (ifc->ifc_len <= max_len) {
3269 		max_len = ifc->ifc_len;
3270 		full = 1;
3271 	}
3272 	sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN);
3273 	max_len = 0;
3274 	valid_len = 0;
3275 
3276 	IFNET_RLOCK();
3277 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
3278 		struct epoch_tracker et;
3279 		int addrs;
3280 
3281 		/*
3282 		 * Zero the ifr to make sure we don't disclose the contents
3283 		 * of the stack.
3284 		 */
3285 		memset(&ifr, 0, sizeof(ifr));
3286 
3287 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
3288 		    >= sizeof(ifr.ifr_name)) {
3289 			sbuf_delete(sb);
3290 			IFNET_RUNLOCK();
3291 			return (ENAMETOOLONG);
3292 		}
3293 
3294 		addrs = 0;
3295 		NET_EPOCH_ENTER(et);
3296 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
3297 			struct sockaddr *sa = ifa->ifa_addr;
3298 
3299 			if (prison_if(curthread->td_ucred, sa) != 0)
3300 				continue;
3301 			addrs++;
3302 			if (sa->sa_len <= sizeof(*sa)) {
3303 				if (sa->sa_len < sizeof(*sa)) {
3304 					memset(&ifr.ifr_ifru.ifru_addr, 0,
3305 					    sizeof(ifr.ifr_ifru.ifru_addr));
3306 					memcpy(&ifr.ifr_ifru.ifru_addr, sa,
3307 					    sa->sa_len);
3308 				} else
3309 					ifr.ifr_ifru.ifru_addr = *sa;
3310 				sbuf_bcat(sb, &ifr, sizeof(ifr));
3311 				max_len += sizeof(ifr);
3312 			} else {
3313 				sbuf_bcat(sb, &ifr,
3314 				    offsetof(struct ifreq, ifr_addr));
3315 				max_len += offsetof(struct ifreq, ifr_addr);
3316 				sbuf_bcat(sb, sa, sa->sa_len);
3317 				max_len += sa->sa_len;
3318 			}
3319 
3320 			if (sbuf_error(sb) == 0)
3321 				valid_len = sbuf_len(sb);
3322 		}
3323 		NET_EPOCH_EXIT(et);
3324 		if (addrs == 0) {
3325 			sbuf_bcat(sb, &ifr, sizeof(ifr));
3326 			max_len += sizeof(ifr);
3327 
3328 			if (sbuf_error(sb) == 0)
3329 				valid_len = sbuf_len(sb);
3330 		}
3331 	}
3332 	IFNET_RUNLOCK();
3333 
3334 	/*
3335 	 * If we didn't allocate enough space (uncommon), try again.  If
3336 	 * we have already allocated as much space as we are allowed,
3337 	 * return what we've got.
3338 	 */
3339 	if (valid_len != max_len && !full) {
3340 		sbuf_delete(sb);
3341 		goto again;
3342 	}
3343 
3344 	ifc->ifc_len = valid_len;
3345 	sbuf_finish(sb);
3346 	error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len);
3347 	sbuf_delete(sb);
3348 	return (error);
3349 }
3350 
3351 /*
3352  * Just like ifpromisc(), but for all-multicast-reception mode.
3353  */
3354 int
3355 if_allmulti(struct ifnet *ifp, int onswitch)
3356 {
3357 
3358 	return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch));
3359 }
3360 
3361 struct ifmultiaddr *
3362 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa)
3363 {
3364 	struct ifmultiaddr *ifma;
3365 
3366 	IF_ADDR_LOCK_ASSERT(ifp);
3367 
3368 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3369 		if (sa->sa_family == AF_LINK) {
3370 			if (sa_dl_equal(ifma->ifma_addr, sa))
3371 				break;
3372 		} else {
3373 			if (sa_equal(ifma->ifma_addr, sa))
3374 				break;
3375 		}
3376 	}
3377 
3378 	return ifma;
3379 }
3380 
3381 /*
3382  * Allocate a new ifmultiaddr and initialize based on passed arguments.  We
3383  * make copies of passed sockaddrs.  The ifmultiaddr will not be added to
3384  * the ifnet multicast address list here, so the caller must do that and
3385  * other setup work (such as notifying the device driver).  The reference
3386  * count is initialized to 1.
3387  */
3388 static struct ifmultiaddr *
3389 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa,
3390     int mflags)
3391 {
3392 	struct ifmultiaddr *ifma;
3393 	struct sockaddr *dupsa;
3394 
3395 	ifma = malloc(sizeof *ifma, M_IFMADDR, mflags |
3396 	    M_ZERO);
3397 	if (ifma == NULL)
3398 		return (NULL);
3399 
3400 	dupsa = malloc(sa->sa_len, M_IFMADDR, mflags);
3401 	if (dupsa == NULL) {
3402 		free(ifma, M_IFMADDR);
3403 		return (NULL);
3404 	}
3405 	bcopy(sa, dupsa, sa->sa_len);
3406 	ifma->ifma_addr = dupsa;
3407 
3408 	ifma->ifma_ifp = ifp;
3409 	ifma->ifma_refcount = 1;
3410 	ifma->ifma_protospec = NULL;
3411 
3412 	if (llsa == NULL) {
3413 		ifma->ifma_lladdr = NULL;
3414 		return (ifma);
3415 	}
3416 
3417 	dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags);
3418 	if (dupsa == NULL) {
3419 		free(ifma->ifma_addr, M_IFMADDR);
3420 		free(ifma, M_IFMADDR);
3421 		return (NULL);
3422 	}
3423 	bcopy(llsa, dupsa, llsa->sa_len);
3424 	ifma->ifma_lladdr = dupsa;
3425 
3426 	return (ifma);
3427 }
3428 
3429 /*
3430  * if_freemulti: free ifmultiaddr structure and possibly attached related
3431  * addresses.  The caller is responsible for implementing reference
3432  * counting, notifying the driver, handling routing messages, and releasing
3433  * any dependent link layer state.
3434  */
3435 #ifdef MCAST_VERBOSE
3436 extern void kdb_backtrace(void);
3437 #endif
3438 static void
3439 if_freemulti_internal(struct ifmultiaddr *ifma)
3440 {
3441 
3442 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d",
3443 	    ifma->ifma_refcount));
3444 
3445 	if (ifma->ifma_lladdr != NULL)
3446 		free(ifma->ifma_lladdr, M_IFMADDR);
3447 #ifdef MCAST_VERBOSE
3448 	kdb_backtrace();
3449 	printf("%s freeing ifma: %p\n", __func__, ifma);
3450 #endif
3451 	free(ifma->ifma_addr, M_IFMADDR);
3452 	free(ifma, M_IFMADDR);
3453 }
3454 
3455 static void
3456 if_destroymulti(epoch_context_t ctx)
3457 {
3458 	struct ifmultiaddr *ifma;
3459 
3460 	ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx);
3461 	if_freemulti_internal(ifma);
3462 }
3463 
3464 void
3465 if_freemulti(struct ifmultiaddr *ifma)
3466 {
3467 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d",
3468 	    ifma->ifma_refcount));
3469 
3470 	epoch_call(net_epoch_preempt, &ifma->ifma_epoch_ctx, if_destroymulti);
3471 }
3472 
3473 
3474 /*
3475  * Register an additional multicast address with a network interface.
3476  *
3477  * - If the address is already present, bump the reference count on the
3478  *   address and return.
3479  * - If the address is not link-layer, look up a link layer address.
3480  * - Allocate address structures for one or both addresses, and attach to the
3481  *   multicast address list on the interface.  If automatically adding a link
3482  *   layer address, the protocol address will own a reference to the link
3483  *   layer address, to be freed when it is freed.
3484  * - Notify the network device driver of an addition to the multicast address
3485  *   list.
3486  *
3487  * 'sa' points to caller-owned memory with the desired multicast address.
3488  *
3489  * 'retifma' will be used to return a pointer to the resulting multicast
3490  * address reference, if desired.
3491  */
3492 int
3493 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
3494     struct ifmultiaddr **retifma)
3495 {
3496 	struct ifmultiaddr *ifma, *ll_ifma;
3497 	struct sockaddr *llsa;
3498 	struct sockaddr_dl sdl;
3499 	int error;
3500 
3501 #ifdef INET
3502 	IN_MULTI_LIST_UNLOCK_ASSERT();
3503 #endif
3504 #ifdef INET6
3505 	IN6_MULTI_LIST_UNLOCK_ASSERT();
3506 #endif
3507 	/*
3508 	 * If the address is already present, return a new reference to it;
3509 	 * otherwise, allocate storage and set up a new address.
3510 	 */
3511 	IF_ADDR_WLOCK(ifp);
3512 	ifma = if_findmulti(ifp, sa);
3513 	if (ifma != NULL) {
3514 		ifma->ifma_refcount++;
3515 		if (retifma != NULL)
3516 			*retifma = ifma;
3517 		IF_ADDR_WUNLOCK(ifp);
3518 		return (0);
3519 	}
3520 
3521 	/*
3522 	 * The address isn't already present; resolve the protocol address
3523 	 * into a link layer address, and then look that up, bump its
3524 	 * refcount or allocate an ifma for that also.
3525 	 * Most link layer resolving functions returns address data which
3526 	 * fits inside default sockaddr_dl structure. However callback
3527 	 * can allocate another sockaddr structure, in that case we need to
3528 	 * free it later.
3529 	 */
3530 	llsa = NULL;
3531 	ll_ifma = NULL;
3532 	if (ifp->if_resolvemulti != NULL) {
3533 		/* Provide called function with buffer size information */
3534 		sdl.sdl_len = sizeof(sdl);
3535 		llsa = (struct sockaddr *)&sdl;
3536 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
3537 		if (error)
3538 			goto unlock_out;
3539 	}
3540 
3541 	/*
3542 	 * Allocate the new address.  Don't hook it up yet, as we may also
3543 	 * need to allocate a link layer multicast address.
3544 	 */
3545 	ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT);
3546 	if (ifma == NULL) {
3547 		error = ENOMEM;
3548 		goto free_llsa_out;
3549 	}
3550 
3551 	/*
3552 	 * If a link layer address is found, we'll need to see if it's
3553 	 * already present in the address list, or allocate is as well.
3554 	 * When this block finishes, the link layer address will be on the
3555 	 * list.
3556 	 */
3557 	if (llsa != NULL) {
3558 		ll_ifma = if_findmulti(ifp, llsa);
3559 		if (ll_ifma == NULL) {
3560 			ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT);
3561 			if (ll_ifma == NULL) {
3562 				--ifma->ifma_refcount;
3563 				if_freemulti(ifma);
3564 				error = ENOMEM;
3565 				goto free_llsa_out;
3566 			}
3567 			ll_ifma->ifma_flags |= IFMA_F_ENQUEUED;
3568 			CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma,
3569 			    ifma_link);
3570 		} else
3571 			ll_ifma->ifma_refcount++;
3572 		ifma->ifma_llifma = ll_ifma;
3573 	}
3574 
3575 	/*
3576 	 * We now have a new multicast address, ifma, and possibly a new or
3577 	 * referenced link layer address.  Add the primary address to the
3578 	 * ifnet address list.
3579 	 */
3580 	ifma->ifma_flags |= IFMA_F_ENQUEUED;
3581 	CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
3582 
3583 	if (retifma != NULL)
3584 		*retifma = ifma;
3585 
3586 	/*
3587 	 * Must generate the message while holding the lock so that 'ifma'
3588 	 * pointer is still valid.
3589 	 */
3590 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
3591 	IF_ADDR_WUNLOCK(ifp);
3592 
3593 	/*
3594 	 * We are certain we have added something, so call down to the
3595 	 * interface to let them know about it.
3596 	 */
3597 	if (ifp->if_ioctl != NULL) {
3598 		(void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
3599 	}
3600 
3601 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3602 		link_free_sdl(llsa);
3603 
3604 	return (0);
3605 
3606 free_llsa_out:
3607 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3608 		link_free_sdl(llsa);
3609 
3610 unlock_out:
3611 	IF_ADDR_WUNLOCK(ifp);
3612 	return (error);
3613 }
3614 
3615 /*
3616  * Delete a multicast group membership by network-layer group address.
3617  *
3618  * Returns ENOENT if the entry could not be found. If ifp no longer
3619  * exists, results are undefined. This entry point should only be used
3620  * from subsystems which do appropriate locking to hold ifp for the
3621  * duration of the call.
3622  * Network-layer protocol domains must use if_delmulti_ifma().
3623  */
3624 int
3625 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
3626 {
3627 	struct ifmultiaddr *ifma;
3628 	int lastref;
3629 #ifdef INVARIANTS
3630 	struct epoch_tracker et;
3631 	struct ifnet *oifp;
3632 
3633 	NET_EPOCH_ENTER(et);
3634 	CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link)
3635 		if (ifp == oifp)
3636 			break;
3637 	if (ifp != oifp)
3638 		ifp = NULL;
3639 	NET_EPOCH_EXIT(et);
3640 
3641 	KASSERT(ifp != NULL, ("%s: ifnet went away", __func__));
3642 #endif
3643 	if (ifp == NULL)
3644 		return (ENOENT);
3645 
3646 	IF_ADDR_WLOCK(ifp);
3647 	lastref = 0;
3648 	ifma = if_findmulti(ifp, sa);
3649 	if (ifma != NULL)
3650 		lastref = if_delmulti_locked(ifp, ifma, 0);
3651 	IF_ADDR_WUNLOCK(ifp);
3652 
3653 	if (ifma == NULL)
3654 		return (ENOENT);
3655 
3656 	if (lastref && ifp->if_ioctl != NULL) {
3657 		(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3658 	}
3659 
3660 	return (0);
3661 }
3662 
3663 /*
3664  * Delete all multicast group membership for an interface.
3665  * Should be used to quickly flush all multicast filters.
3666  */
3667 void
3668 if_delallmulti(struct ifnet *ifp)
3669 {
3670 	struct ifmultiaddr *ifma;
3671 	struct ifmultiaddr *next;
3672 
3673 	IF_ADDR_WLOCK(ifp);
3674 	CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
3675 		if_delmulti_locked(ifp, ifma, 0);
3676 	IF_ADDR_WUNLOCK(ifp);
3677 }
3678 
3679 void
3680 if_delmulti_ifma(struct ifmultiaddr *ifma)
3681 {
3682 	if_delmulti_ifma_flags(ifma, 0);
3683 }
3684 
3685 /*
3686  * Delete a multicast group membership by group membership pointer.
3687  * Network-layer protocol domains must use this routine.
3688  *
3689  * It is safe to call this routine if the ifp disappeared.
3690  */
3691 void
3692 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags)
3693 {
3694 	struct ifnet *ifp;
3695 	int lastref;
3696 	MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma);
3697 #ifdef INET
3698 	IN_MULTI_LIST_UNLOCK_ASSERT();
3699 #endif
3700 	ifp = ifma->ifma_ifp;
3701 #ifdef DIAGNOSTIC
3702 	if (ifp == NULL) {
3703 		printf("%s: ifma_ifp seems to be detached\n", __func__);
3704 	} else {
3705 		struct epoch_tracker et;
3706 		struct ifnet *oifp;
3707 
3708 		NET_EPOCH_ENTER(et);
3709 		CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link)
3710 			if (ifp == oifp)
3711 				break;
3712 		if (ifp != oifp)
3713 			ifp = NULL;
3714 		NET_EPOCH_EXIT(et);
3715 	}
3716 #endif
3717 	/*
3718 	 * If and only if the ifnet instance exists: Acquire the address lock.
3719 	 */
3720 	if (ifp != NULL)
3721 		IF_ADDR_WLOCK(ifp);
3722 
3723 	lastref = if_delmulti_locked(ifp, ifma, flags);
3724 
3725 	if (ifp != NULL) {
3726 		/*
3727 		 * If and only if the ifnet instance exists:
3728 		 *  Release the address lock.
3729 		 *  If the group was left: update the hardware hash filter.
3730 		 */
3731 		IF_ADDR_WUNLOCK(ifp);
3732 		if (lastref && ifp->if_ioctl != NULL) {
3733 			(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3734 		}
3735 	}
3736 }
3737 
3738 /*
3739  * Perform deletion of network-layer and/or link-layer multicast address.
3740  *
3741  * Return 0 if the reference count was decremented.
3742  * Return 1 if the final reference was released, indicating that the
3743  * hardware hash filter should be reprogrammed.
3744  */
3745 static int
3746 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching)
3747 {
3748 	struct ifmultiaddr *ll_ifma;
3749 
3750 	if (ifp != NULL && ifma->ifma_ifp != NULL) {
3751 		KASSERT(ifma->ifma_ifp == ifp,
3752 		    ("%s: inconsistent ifp %p", __func__, ifp));
3753 		IF_ADDR_WLOCK_ASSERT(ifp);
3754 	}
3755 
3756 	ifp = ifma->ifma_ifp;
3757 	MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : "");
3758 
3759 	/*
3760 	 * If the ifnet is detaching, null out references to ifnet,
3761 	 * so that upper protocol layers will notice, and not attempt
3762 	 * to obtain locks for an ifnet which no longer exists. The
3763 	 * routing socket announcement must happen before the ifnet
3764 	 * instance is detached from the system.
3765 	 */
3766 	if (detaching) {
3767 #ifdef DIAGNOSTIC
3768 		printf("%s: detaching ifnet instance %p\n", __func__, ifp);
3769 #endif
3770 		/*
3771 		 * ifp may already be nulled out if we are being reentered
3772 		 * to delete the ll_ifma.
3773 		 */
3774 		if (ifp != NULL) {
3775 			rt_newmaddrmsg(RTM_DELMADDR, ifma);
3776 			ifma->ifma_ifp = NULL;
3777 		}
3778 	}
3779 
3780 	if (--ifma->ifma_refcount > 0)
3781 		return 0;
3782 
3783 	if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) {
3784 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
3785 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3786 	}
3787 	/*
3788 	 * If this ifma is a network-layer ifma, a link-layer ifma may
3789 	 * have been associated with it. Release it first if so.
3790 	 */
3791 	ll_ifma = ifma->ifma_llifma;
3792 	if (ll_ifma != NULL) {
3793 		KASSERT(ifma->ifma_lladdr != NULL,
3794 		    ("%s: llifma w/o lladdr", __func__));
3795 		if (detaching)
3796 			ll_ifma->ifma_ifp = NULL;	/* XXX */
3797 		if (--ll_ifma->ifma_refcount == 0) {
3798 			if (ifp != NULL) {
3799 				if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
3800 					CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr,
3801 						ifma_link);
3802 					ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3803 				}
3804 			}
3805 			if_freemulti(ll_ifma);
3806 		}
3807 	}
3808 #ifdef INVARIANTS
3809 	if (ifp) {
3810 		struct ifmultiaddr *ifmatmp;
3811 
3812 		CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link)
3813 			MPASS(ifma != ifmatmp);
3814 	}
3815 #endif
3816 	if_freemulti(ifma);
3817 	/*
3818 	 * The last reference to this instance of struct ifmultiaddr
3819 	 * was released; the hardware should be notified of this change.
3820 	 */
3821 	return 1;
3822 }
3823 
3824 /*
3825  * Set the link layer address on an interface.
3826  *
3827  * At this time we only support certain types of interfaces,
3828  * and we don't allow the length of the address to change.
3829  *
3830  * Set noinline to be dtrace-friendly
3831  */
3832 __noinline int
3833 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
3834 {
3835 	struct sockaddr_dl *sdl;
3836 	struct ifaddr *ifa;
3837 	struct ifreq ifr;
3838 	struct epoch_tracker et;
3839 	int rc;
3840 
3841 	rc = 0;
3842 	NET_EPOCH_ENTER(et);
3843 	ifa = ifp->if_addr;
3844 	if (ifa == NULL) {
3845 		rc = EINVAL;
3846 		goto out;
3847 	}
3848 
3849 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
3850 	if (sdl == NULL) {
3851 		rc = EINVAL;
3852 		goto out;
3853 	}
3854 	if (len != sdl->sdl_alen) {	/* don't allow length to change */
3855 		rc = EINVAL;
3856 		goto out;
3857 	}
3858 	switch (ifp->if_type) {
3859 	case IFT_ETHER:
3860 	case IFT_XETHER:
3861 	case IFT_L2VLAN:
3862 	case IFT_BRIDGE:
3863 	case IFT_IEEE8023ADLAG:
3864 		bcopy(lladdr, LLADDR(sdl), len);
3865 		break;
3866 	default:
3867 		rc = ENODEV;
3868 		goto out;
3869 	}
3870 
3871 	/*
3872 	 * If the interface is already up, we need
3873 	 * to re-init it in order to reprogram its
3874 	 * address filter.
3875 	 */
3876 	NET_EPOCH_EXIT(et);
3877 	if ((ifp->if_flags & IFF_UP) != 0) {
3878 		if (ifp->if_ioctl) {
3879 			ifp->if_flags &= ~IFF_UP;
3880 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3881 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3882 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3883 			ifp->if_flags |= IFF_UP;
3884 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3885 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3886 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3887 		}
3888 	}
3889 	EVENTHANDLER_INVOKE(iflladdr_event, ifp);
3890 	return (0);
3891  out:
3892 	NET_EPOCH_EXIT(et);
3893 	return (rc);
3894 }
3895 
3896 /*
3897  * Compat function for handling basic encapsulation requests.
3898  * Not converted stacks (FDDI, IB, ..) supports traditional
3899  * output model: ARP (and other similar L2 protocols) are handled
3900  * inside output routine, arpresolve/nd6_resolve() returns MAC
3901  * address instead of full prepend.
3902  *
3903  * This function creates calculated header==MAC for IPv4/IPv6 and
3904  * returns EAFNOSUPPORT (which is then handled in ARP code) for other
3905  * address families.
3906  */
3907 static int
3908 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req)
3909 {
3910 
3911 	if (req->rtype != IFENCAP_LL)
3912 		return (EOPNOTSUPP);
3913 
3914 	if (req->bufsize < req->lladdr_len)
3915 		return (ENOMEM);
3916 
3917 	switch (req->family) {
3918 	case AF_INET:
3919 	case AF_INET6:
3920 		break;
3921 	default:
3922 		return (EAFNOSUPPORT);
3923 	}
3924 
3925 	/* Copy lladdr to storage as is */
3926 	memmove(req->buf, req->lladdr, req->lladdr_len);
3927 	req->bufsize = req->lladdr_len;
3928 	req->lladdr_off = 0;
3929 
3930 	return (0);
3931 }
3932 
3933 /*
3934  * Tunnel interfaces can nest, also they may cause infinite recursion
3935  * calls when misconfigured. We'll prevent this by detecting loops.
3936  * High nesting level may cause stack exhaustion. We'll prevent this
3937  * by introducing upper limit.
3938  *
3939  * Return 0, if tunnel nesting count is equal or less than limit.
3940  */
3941 int
3942 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie,
3943     int limit)
3944 {
3945 	struct m_tag *mtag;
3946 	int count;
3947 
3948 	count = 1;
3949 	mtag = NULL;
3950 	while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) {
3951 		if (*(struct ifnet **)(mtag + 1) == ifp) {
3952 			log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp));
3953 			return (EIO);
3954 		}
3955 		count++;
3956 	}
3957 	if (count > limit) {
3958 		log(LOG_NOTICE,
3959 		    "%s: if_output recursively called too many times(%d)\n",
3960 		    if_name(ifp), count);
3961 		return (EIO);
3962 	}
3963 	mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT);
3964 	if (mtag == NULL)
3965 		return (ENOMEM);
3966 	*(struct ifnet **)(mtag + 1) = ifp;
3967 	m_tag_prepend(m, mtag);
3968 	return (0);
3969 }
3970 
3971 /*
3972  * Get the link layer address that was read from the hardware at attach.
3973  *
3974  * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type
3975  * their component interfaces as IFT_IEEE8023ADLAG.
3976  */
3977 int
3978 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr)
3979 {
3980 
3981 	if (ifp->if_hw_addr == NULL)
3982 		return (ENODEV);
3983 
3984 	switch (ifp->if_type) {
3985 	case IFT_ETHER:
3986 	case IFT_IEEE8023ADLAG:
3987 		bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen);
3988 		return (0);
3989 	default:
3990 		return (ENODEV);
3991 	}
3992 }
3993 
3994 /*
3995  * The name argument must be a pointer to storage which will last as
3996  * long as the interface does.  For physical devices, the result of
3997  * device_get_name(dev) is a good choice and for pseudo-devices a
3998  * static string works well.
3999  */
4000 void
4001 if_initname(struct ifnet *ifp, const char *name, int unit)
4002 {
4003 	ifp->if_dname = name;
4004 	ifp->if_dunit = unit;
4005 	if (unit != IF_DUNIT_NONE)
4006 		snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
4007 	else
4008 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
4009 }
4010 
4011 int
4012 if_printf(struct ifnet *ifp, const char *fmt, ...)
4013 {
4014 	char if_fmt[256];
4015 	va_list ap;
4016 
4017 	snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt);
4018 	va_start(ap, fmt);
4019 	vlog(LOG_INFO, if_fmt, ap);
4020 	va_end(ap);
4021 	return (0);
4022 }
4023 
4024 void
4025 if_start(struct ifnet *ifp)
4026 {
4027 
4028 	(*(ifp)->if_start)(ifp);
4029 }
4030 
4031 /*
4032  * Backwards compatibility interface for drivers
4033  * that have not implemented it
4034  */
4035 static int
4036 if_transmit(struct ifnet *ifp, struct mbuf *m)
4037 {
4038 	int error;
4039 
4040 	IFQ_HANDOFF(ifp, m, error);
4041 	return (error);
4042 }
4043 
4044 static void
4045 if_input_default(struct ifnet *ifp __unused, struct mbuf *m)
4046 {
4047 
4048 	m_freem(m);
4049 }
4050 
4051 int
4052 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
4053 {
4054 	int active = 0;
4055 
4056 	IF_LOCK(ifq);
4057 	if (_IF_QFULL(ifq)) {
4058 		IF_UNLOCK(ifq);
4059 		if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4060 		m_freem(m);
4061 		return (0);
4062 	}
4063 	if (ifp != NULL) {
4064 		if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust);
4065 		if (m->m_flags & (M_BCAST|M_MCAST))
4066 			if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4067 		active = ifp->if_drv_flags & IFF_DRV_OACTIVE;
4068 	}
4069 	_IF_ENQUEUE(ifq, m);
4070 	IF_UNLOCK(ifq);
4071 	if (ifp != NULL && !active)
4072 		(*(ifp)->if_start)(ifp);
4073 	return (1);
4074 }
4075 
4076 void
4077 if_register_com_alloc(u_char type,
4078     if_com_alloc_t *a, if_com_free_t *f)
4079 {
4080 
4081 	KASSERT(if_com_alloc[type] == NULL,
4082 	    ("if_register_com_alloc: %d already registered", type));
4083 	KASSERT(if_com_free[type] == NULL,
4084 	    ("if_register_com_alloc: %d free already registered", type));
4085 
4086 	if_com_alloc[type] = a;
4087 	if_com_free[type] = f;
4088 }
4089 
4090 void
4091 if_deregister_com_alloc(u_char type)
4092 {
4093 
4094 	KASSERT(if_com_alloc[type] != NULL,
4095 	    ("if_deregister_com_alloc: %d not registered", type));
4096 	KASSERT(if_com_free[type] != NULL,
4097 	    ("if_deregister_com_alloc: %d free not registered", type));
4098 	if_com_alloc[type] = NULL;
4099 	if_com_free[type] = NULL;
4100 }
4101 
4102 /* API for driver access to network stack owned ifnet.*/
4103 uint64_t
4104 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate)
4105 {
4106 	uint64_t oldbrate;
4107 
4108 	oldbrate = ifp->if_baudrate;
4109 	ifp->if_baudrate = baudrate;
4110 	return (oldbrate);
4111 }
4112 
4113 uint64_t
4114 if_getbaudrate(if_t ifp)
4115 {
4116 
4117 	return (((struct ifnet *)ifp)->if_baudrate);
4118 }
4119 
4120 int
4121 if_setcapabilities(if_t ifp, int capabilities)
4122 {
4123 	((struct ifnet *)ifp)->if_capabilities = capabilities;
4124 	return (0);
4125 }
4126 
4127 int
4128 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit)
4129 {
4130 	((struct ifnet *)ifp)->if_capabilities |= setbit;
4131 	((struct ifnet *)ifp)->if_capabilities &= ~clearbit;
4132 
4133 	return (0);
4134 }
4135 
4136 int
4137 if_getcapabilities(if_t ifp)
4138 {
4139 	return ((struct ifnet *)ifp)->if_capabilities;
4140 }
4141 
4142 int
4143 if_setcapenable(if_t ifp, int capabilities)
4144 {
4145 	((struct ifnet *)ifp)->if_capenable = capabilities;
4146 	return (0);
4147 }
4148 
4149 int
4150 if_setcapenablebit(if_t ifp, int setcap, int clearcap)
4151 {
4152 	if(setcap)
4153 		((struct ifnet *)ifp)->if_capenable |= setcap;
4154 	if(clearcap)
4155 		((struct ifnet *)ifp)->if_capenable &= ~clearcap;
4156 
4157 	return (0);
4158 }
4159 
4160 const char *
4161 if_getdname(if_t ifp)
4162 {
4163 	return ((struct ifnet *)ifp)->if_dname;
4164 }
4165 
4166 int
4167 if_togglecapenable(if_t ifp, int togglecap)
4168 {
4169 	((struct ifnet *)ifp)->if_capenable ^= togglecap;
4170 	return (0);
4171 }
4172 
4173 int
4174 if_getcapenable(if_t ifp)
4175 {
4176 	return ((struct ifnet *)ifp)->if_capenable;
4177 }
4178 
4179 /*
4180  * This is largely undesirable because it ties ifnet to a device, but does
4181  * provide flexiblity for an embedded product vendor. Should be used with
4182  * the understanding that it violates the interface boundaries, and should be
4183  * a last resort only.
4184  */
4185 int
4186 if_setdev(if_t ifp, void *dev)
4187 {
4188 	return (0);
4189 }
4190 
4191 int
4192 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags)
4193 {
4194 	((struct ifnet *)ifp)->if_drv_flags |= set_flags;
4195 	((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags;
4196 
4197 	return (0);
4198 }
4199 
4200 int
4201 if_getdrvflags(if_t ifp)
4202 {
4203 	return ((struct ifnet *)ifp)->if_drv_flags;
4204 }
4205 
4206 int
4207 if_setdrvflags(if_t ifp, int flags)
4208 {
4209 	((struct ifnet *)ifp)->if_drv_flags = flags;
4210 	return (0);
4211 }
4212 
4213 
4214 int
4215 if_setflags(if_t ifp, int flags)
4216 {
4217 	((struct ifnet *)ifp)->if_flags = flags;
4218 	return (0);
4219 }
4220 
4221 int
4222 if_setflagbits(if_t ifp, int set, int clear)
4223 {
4224 	((struct ifnet *)ifp)->if_flags |= set;
4225 	((struct ifnet *)ifp)->if_flags &= ~clear;
4226 
4227 	return (0);
4228 }
4229 
4230 int
4231 if_getflags(if_t ifp)
4232 {
4233 	return ((struct ifnet *)ifp)->if_flags;
4234 }
4235 
4236 int
4237 if_clearhwassist(if_t ifp)
4238 {
4239 	((struct ifnet *)ifp)->if_hwassist = 0;
4240 	return (0);
4241 }
4242 
4243 int
4244 if_sethwassistbits(if_t ifp, int toset, int toclear)
4245 {
4246 	((struct ifnet *)ifp)->if_hwassist |= toset;
4247 	((struct ifnet *)ifp)->if_hwassist &= ~toclear;
4248 
4249 	return (0);
4250 }
4251 
4252 int
4253 if_sethwassist(if_t ifp, int hwassist_bit)
4254 {
4255 	((struct ifnet *)ifp)->if_hwassist = hwassist_bit;
4256 	return (0);
4257 }
4258 
4259 int
4260 if_gethwassist(if_t ifp)
4261 {
4262 	return ((struct ifnet *)ifp)->if_hwassist;
4263 }
4264 
4265 int
4266 if_setmtu(if_t ifp, int mtu)
4267 {
4268 	((struct ifnet *)ifp)->if_mtu = mtu;
4269 	return (0);
4270 }
4271 
4272 int
4273 if_getmtu(if_t ifp)
4274 {
4275 	return ((struct ifnet *)ifp)->if_mtu;
4276 }
4277 
4278 int
4279 if_getmtu_family(if_t ifp, int family)
4280 {
4281 	struct domain *dp;
4282 
4283 	for (dp = domains; dp; dp = dp->dom_next) {
4284 		if (dp->dom_family == family && dp->dom_ifmtu != NULL)
4285 			return (dp->dom_ifmtu((struct ifnet *)ifp));
4286 	}
4287 
4288 	return (((struct ifnet *)ifp)->if_mtu);
4289 }
4290 
4291 int
4292 if_setsoftc(if_t ifp, void *softc)
4293 {
4294 	((struct ifnet *)ifp)->if_softc = softc;
4295 	return (0);
4296 }
4297 
4298 void *
4299 if_getsoftc(if_t ifp)
4300 {
4301 	return ((struct ifnet *)ifp)->if_softc;
4302 }
4303 
4304 void
4305 if_setrcvif(struct mbuf *m, if_t ifp)
4306 {
4307 
4308 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
4309 	m->m_pkthdr.rcvif = (struct ifnet *)ifp;
4310 }
4311 
4312 void
4313 if_setvtag(struct mbuf *m, uint16_t tag)
4314 {
4315 	m->m_pkthdr.ether_vtag = tag;
4316 }
4317 
4318 uint16_t
4319 if_getvtag(struct mbuf *m)
4320 {
4321 
4322 	return (m->m_pkthdr.ether_vtag);
4323 }
4324 
4325 int
4326 if_sendq_empty(if_t ifp)
4327 {
4328 	return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd);
4329 }
4330 
4331 struct ifaddr *
4332 if_getifaddr(if_t ifp)
4333 {
4334 	return ((struct ifnet *)ifp)->if_addr;
4335 }
4336 
4337 int
4338 if_getamcount(if_t ifp)
4339 {
4340 	return ((struct ifnet *)ifp)->if_amcount;
4341 }
4342 
4343 
4344 int
4345 if_setsendqready(if_t ifp)
4346 {
4347 	IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd);
4348 	return (0);
4349 }
4350 
4351 int
4352 if_setsendqlen(if_t ifp, int tx_desc_count)
4353 {
4354 	IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count);
4355 	((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count;
4356 
4357 	return (0);
4358 }
4359 
4360 int
4361 if_vlantrunkinuse(if_t ifp)
4362 {
4363 	return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0;
4364 }
4365 
4366 int
4367 if_input(if_t ifp, struct mbuf* sendmp)
4368 {
4369 	(*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp);
4370 	return (0);
4371 
4372 }
4373 
4374 /* XXX */
4375 #ifndef ETH_ADDR_LEN
4376 #define ETH_ADDR_LEN 6
4377 #endif
4378 
4379 int
4380 if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max)
4381 {
4382 	struct ifmultiaddr *ifma;
4383 	uint8_t *lmta = (uint8_t *)mta;
4384 	int mcnt = 0;
4385 
4386 	CK_STAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) {
4387 		if (ifma->ifma_addr->sa_family != AF_LINK)
4388 			continue;
4389 
4390 		if (mcnt == max)
4391 			break;
4392 
4393 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
4394 		    &lmta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
4395 		mcnt++;
4396 	}
4397 	*cnt = mcnt;
4398 
4399 	return (0);
4400 }
4401 
4402 int
4403 if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max)
4404 {
4405 	int error;
4406 
4407 	if_maddr_rlock(ifp);
4408 	error = if_setupmultiaddr(ifp, mta, cnt, max);
4409 	if_maddr_runlock(ifp);
4410 	return (error);
4411 }
4412 
4413 int
4414 if_multiaddr_count(if_t ifp, int max)
4415 {
4416 	struct ifmultiaddr *ifma;
4417 	int count;
4418 
4419 	count = 0;
4420 	if_maddr_rlock(ifp);
4421 	CK_STAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) {
4422 		if (ifma->ifma_addr->sa_family != AF_LINK)
4423 			continue;
4424 		count++;
4425 		if (count == max)
4426 			break;
4427 	}
4428 	if_maddr_runlock(ifp);
4429 	return (count);
4430 }
4431 
4432 int
4433 if_multi_apply(struct ifnet *ifp, int (*filter)(void *, struct ifmultiaddr *, int), void *arg)
4434 {
4435 	struct ifmultiaddr *ifma;
4436 	int cnt = 0;
4437 
4438 	if_maddr_rlock(ifp);
4439 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
4440 		cnt += filter(arg, ifma, cnt);
4441 	if_maddr_runlock(ifp);
4442 	return (cnt);
4443 }
4444 
4445 struct mbuf *
4446 if_dequeue(if_t ifp)
4447 {
4448 	struct mbuf *m;
4449 	IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m);
4450 
4451 	return (m);
4452 }
4453 
4454 int
4455 if_sendq_prepend(if_t ifp, struct mbuf *m)
4456 {
4457 	IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m);
4458 	return (0);
4459 }
4460 
4461 int
4462 if_setifheaderlen(if_t ifp, int len)
4463 {
4464 	((struct ifnet *)ifp)->if_hdrlen = len;
4465 	return (0);
4466 }
4467 
4468 caddr_t
4469 if_getlladdr(if_t ifp)
4470 {
4471 	return (IF_LLADDR((struct ifnet *)ifp));
4472 }
4473 
4474 void *
4475 if_gethandle(u_char type)
4476 {
4477 	return (if_alloc(type));
4478 }
4479 
4480 void
4481 if_bpfmtap(if_t ifh, struct mbuf *m)
4482 {
4483 	struct ifnet *ifp = (struct ifnet *)ifh;
4484 
4485 	BPF_MTAP(ifp, m);
4486 }
4487 
4488 void
4489 if_etherbpfmtap(if_t ifh, struct mbuf *m)
4490 {
4491 	struct ifnet *ifp = (struct ifnet *)ifh;
4492 
4493 	ETHER_BPF_MTAP(ifp, m);
4494 }
4495 
4496 void
4497 if_vlancap(if_t ifh)
4498 {
4499 	struct ifnet *ifp = (struct ifnet *)ifh;
4500 	VLAN_CAPABILITIES(ifp);
4501 }
4502 
4503 int
4504 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax)
4505 {
4506 
4507 	((struct ifnet *)ifp)->if_hw_tsomax = if_hw_tsomax;
4508         return (0);
4509 }
4510 
4511 int
4512 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount)
4513 {
4514 
4515 	((struct ifnet *)ifp)->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount;
4516         return (0);
4517 }
4518 
4519 int
4520 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize)
4521 {
4522 
4523 	((struct ifnet *)ifp)->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize;
4524         return (0);
4525 }
4526 
4527 u_int
4528 if_gethwtsomax(if_t ifp)
4529 {
4530 
4531 	return (((struct ifnet *)ifp)->if_hw_tsomax);
4532 }
4533 
4534 u_int
4535 if_gethwtsomaxsegcount(if_t ifp)
4536 {
4537 
4538 	return (((struct ifnet *)ifp)->if_hw_tsomaxsegcount);
4539 }
4540 
4541 u_int
4542 if_gethwtsomaxsegsize(if_t ifp)
4543 {
4544 
4545 	return (((struct ifnet *)ifp)->if_hw_tsomaxsegsize);
4546 }
4547 
4548 void
4549 if_setinitfn(if_t ifp, void (*init_fn)(void *))
4550 {
4551 	((struct ifnet *)ifp)->if_init = init_fn;
4552 }
4553 
4554 void
4555 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t))
4556 {
4557 	((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn;
4558 }
4559 
4560 void
4561 if_setstartfn(if_t ifp, void (*start_fn)(if_t))
4562 {
4563 	((struct ifnet *)ifp)->if_start = (void *)start_fn;
4564 }
4565 
4566 void
4567 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn)
4568 {
4569 	((struct ifnet *)ifp)->if_transmit = start_fn;
4570 }
4571 
4572 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn)
4573 {
4574 	((struct ifnet *)ifp)->if_qflush = flush_fn;
4575 
4576 }
4577 
4578 void
4579 if_setgetcounterfn(if_t ifp, if_get_counter_t fn)
4580 {
4581 
4582 	ifp->if_get_counter = fn;
4583 }
4584 
4585 /* Revisit these - These are inline functions originally. */
4586 int
4587 drbr_inuse_drv(if_t ifh, struct buf_ring *br)
4588 {
4589 	return drbr_inuse(ifh, br);
4590 }
4591 
4592 struct mbuf*
4593 drbr_dequeue_drv(if_t ifh, struct buf_ring *br)
4594 {
4595 	return drbr_dequeue(ifh, br);
4596 }
4597 
4598 int
4599 drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br)
4600 {
4601 	return drbr_needs_enqueue(ifh, br);
4602 }
4603 
4604 int
4605 drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m)
4606 {
4607 	return drbr_enqueue(ifh, br, m);
4608 
4609 }
4610