1 /*- 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if.c 8.5 (Berkeley) 1/9/95 30 * $FreeBSD$ 31 */ 32 33 #include "opt_compat.h" 34 #include "opt_inet6.h" 35 #include "opt_inet.h" 36 37 #include <sys/param.h> 38 #include <sys/types.h> 39 #include <sys/conf.h> 40 #include <sys/malloc.h> 41 #include <sys/sbuf.h> 42 #include <sys/bus.h> 43 #include <sys/mbuf.h> 44 #include <sys/systm.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/protosw.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/refcount.h> 53 #include <sys/module.h> 54 #include <sys/rwlock.h> 55 #include <sys/sockio.h> 56 #include <sys/syslog.h> 57 #include <sys/sysctl.h> 58 #include <sys/taskqueue.h> 59 #include <sys/domain.h> 60 #include <sys/jail.h> 61 #include <sys/priv.h> 62 63 #include <machine/stdarg.h> 64 #include <vm/uma.h> 65 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/if.h> 69 #include <net/if_arp.h> 70 #include <net/if_clone.h> 71 #include <net/if_dl.h> 72 #include <net/if_types.h> 73 #include <net/if_var.h> 74 #include <net/if_media.h> 75 #include <net/if_vlan_var.h> 76 #include <net/radix.h> 77 #include <net/route.h> 78 #include <net/vnet.h> 79 80 #if defined(INET) || defined(INET6) 81 #include <net/ethernet.h> 82 #include <netinet/in.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_carp.h> 86 #ifdef INET 87 #include <netinet/if_ether.h> 88 #endif /* INET */ 89 #ifdef INET6 90 #include <netinet6/in6_var.h> 91 #include <netinet6/in6_ifattach.h> 92 #endif /* INET6 */ 93 #endif /* INET || INET6 */ 94 95 #include <security/mac/mac_framework.h> 96 97 #ifdef COMPAT_FREEBSD32 98 #include <sys/mount.h> 99 #include <compat/freebsd32/freebsd32.h> 100 #endif 101 102 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 103 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 104 105 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 106 &ifqmaxlen, 0, "max send queue size"); 107 108 /* Log link state change events */ 109 static int log_link_state_change = 1; 110 111 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 112 &log_link_state_change, 0, 113 "log interface link state change events"); 114 115 /* Interface description */ 116 static unsigned int ifdescr_maxlen = 1024; 117 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 118 &ifdescr_maxlen, 0, 119 "administrative maximum length for interface description"); 120 121 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 122 123 /* global sx for non-critical path ifdescr */ 124 static struct sx ifdescr_sx; 125 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 126 127 void (*bridge_linkstate_p)(struct ifnet *ifp); 128 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 129 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 130 /* These are external hooks for CARP. */ 131 void (*carp_linkstate_p)(struct ifnet *ifp); 132 void (*carp_demote_adj_p)(int, char *); 133 int (*carp_master_p)(struct ifaddr *); 134 #if defined(INET) || defined(INET6) 135 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 136 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 137 const struct sockaddr *sa); 138 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 139 int (*carp_attach_p)(struct ifaddr *, int); 140 void (*carp_detach_p)(struct ifaddr *); 141 #endif 142 #ifdef INET 143 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 144 #endif 145 #ifdef INET6 146 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 147 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 148 const struct in6_addr *taddr); 149 #endif 150 151 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 152 153 /* 154 * XXX: Style; these should be sorted alphabetically, and unprototyped 155 * static functions should be prototyped. Currently they are sorted by 156 * declaration order. 157 */ 158 static void if_attachdomain(void *); 159 static void if_attachdomain1(struct ifnet *); 160 static int ifconf(u_long, caddr_t); 161 static void if_freemulti(struct ifmultiaddr *); 162 static void if_grow(void); 163 static void if_route(struct ifnet *, int flag, int fam); 164 static int if_setflag(struct ifnet *, int, int, int *, int); 165 static int if_transmit(struct ifnet *ifp, struct mbuf *m); 166 static void if_unroute(struct ifnet *, int flag, int fam); 167 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 168 static int if_rtdel(struct radix_node *, void *); 169 static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *); 170 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 171 static void do_link_state_change(void *, int); 172 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 173 static int if_getgroupmembers(struct ifgroupreq *); 174 static void if_delgroups(struct ifnet *); 175 static void if_attach_internal(struct ifnet *, int); 176 static void if_detach_internal(struct ifnet *, int); 177 178 #ifdef INET6 179 /* 180 * XXX: declare here to avoid to include many inet6 related files.. 181 * should be more generalized? 182 */ 183 extern void nd6_setmtu(struct ifnet *); 184 #endif 185 186 VNET_DEFINE(int, if_index); 187 int ifqmaxlen = IFQ_MAXLEN; 188 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 189 VNET_DEFINE(struct ifgrouphead, ifg_head); 190 191 static VNET_DEFINE(int, if_indexlim) = 8; 192 193 /* Table of ifnet by index. */ 194 VNET_DEFINE(struct ifnet **, ifindex_table); 195 196 #define V_if_indexlim VNET(if_indexlim) 197 #define V_ifindex_table VNET(ifindex_table) 198 199 /* 200 * The global network interface list (V_ifnet) and related state (such as 201 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and 202 * an rwlock. Either may be acquired shared to stablize the list, but both 203 * must be acquired writable to modify the list. This model allows us to 204 * both stablize the interface list during interrupt thread processing, but 205 * also to stablize it over long-running ioctls, without introducing priority 206 * inversions and deadlocks. 207 */ 208 struct rwlock ifnet_rwlock; 209 RW_SYSINIT_FLAGS(ifnet_rw, &ifnet_rwlock, "ifnet_rw", RW_RECURSE); 210 struct sx ifnet_sxlock; 211 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 212 213 /* 214 * The allocation of network interfaces is a rather non-atomic affair; we 215 * need to select an index before we are ready to expose the interface for 216 * use, so will use this pointer value to indicate reservation. 217 */ 218 #define IFNET_HOLD (void *)(uintptr_t)(-1) 219 220 static if_com_alloc_t *if_com_alloc[256]; 221 static if_com_free_t *if_com_free[256]; 222 223 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 224 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 225 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 226 227 struct ifnet * 228 ifnet_byindex_locked(u_short idx) 229 { 230 231 if (idx > V_if_index) 232 return (NULL); 233 if (V_ifindex_table[idx] == IFNET_HOLD) 234 return (NULL); 235 return (V_ifindex_table[idx]); 236 } 237 238 struct ifnet * 239 ifnet_byindex(u_short idx) 240 { 241 struct ifnet *ifp; 242 243 IFNET_RLOCK_NOSLEEP(); 244 ifp = ifnet_byindex_locked(idx); 245 IFNET_RUNLOCK_NOSLEEP(); 246 return (ifp); 247 } 248 249 struct ifnet * 250 ifnet_byindex_ref(u_short idx) 251 { 252 struct ifnet *ifp; 253 254 IFNET_RLOCK_NOSLEEP(); 255 ifp = ifnet_byindex_locked(idx); 256 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) { 257 IFNET_RUNLOCK_NOSLEEP(); 258 return (NULL); 259 } 260 if_ref(ifp); 261 IFNET_RUNLOCK_NOSLEEP(); 262 return (ifp); 263 } 264 265 /* 266 * Allocate an ifindex array entry; return 0 on success or an error on 267 * failure. 268 */ 269 static u_short 270 ifindex_alloc(void) 271 { 272 u_short idx; 273 274 IFNET_WLOCK_ASSERT(); 275 retry: 276 /* 277 * Try to find an empty slot below V_if_index. If we fail, take the 278 * next slot. 279 */ 280 for (idx = 1; idx <= V_if_index; idx++) { 281 if (V_ifindex_table[idx] == NULL) 282 break; 283 } 284 285 /* Catch if_index overflow. */ 286 if (idx >= V_if_indexlim) { 287 if_grow(); 288 goto retry; 289 } 290 if (idx > V_if_index) 291 V_if_index = idx; 292 return (idx); 293 } 294 295 static void 296 ifindex_free_locked(u_short idx) 297 { 298 299 IFNET_WLOCK_ASSERT(); 300 301 V_ifindex_table[idx] = NULL; 302 while (V_if_index > 0 && 303 V_ifindex_table[V_if_index] == NULL) 304 V_if_index--; 305 } 306 307 static void 308 ifindex_free(u_short idx) 309 { 310 311 IFNET_WLOCK(); 312 ifindex_free_locked(idx); 313 IFNET_WUNLOCK(); 314 } 315 316 static void 317 ifnet_setbyindex_locked(u_short idx, struct ifnet *ifp) 318 { 319 320 IFNET_WLOCK_ASSERT(); 321 322 V_ifindex_table[idx] = ifp; 323 } 324 325 static void 326 ifnet_setbyindex(u_short idx, struct ifnet *ifp) 327 { 328 329 IFNET_WLOCK(); 330 ifnet_setbyindex_locked(idx, ifp); 331 IFNET_WUNLOCK(); 332 } 333 334 struct ifaddr * 335 ifaddr_byindex(u_short idx) 336 { 337 struct ifaddr *ifa; 338 339 IFNET_RLOCK_NOSLEEP(); 340 ifa = ifnet_byindex_locked(idx)->if_addr; 341 if (ifa != NULL) 342 ifa_ref(ifa); 343 IFNET_RUNLOCK_NOSLEEP(); 344 return (ifa); 345 } 346 347 /* 348 * Network interface utility routines. 349 * 350 * Routines with ifa_ifwith* names take sockaddr *'s as 351 * parameters. 352 */ 353 354 static void 355 vnet_if_init(const void *unused __unused) 356 { 357 358 TAILQ_INIT(&V_ifnet); 359 TAILQ_INIT(&V_ifg_head); 360 IFNET_WLOCK(); 361 if_grow(); /* create initial table */ 362 IFNET_WUNLOCK(); 363 vnet_if_clone_init(); 364 } 365 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 366 NULL); 367 368 #ifdef VIMAGE 369 static void 370 vnet_if_uninit(const void *unused __unused) 371 { 372 373 VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " 374 "not empty", __func__, __LINE__, &V_ifnet)); 375 VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " 376 "not empty", __func__, __LINE__, &V_ifg_head)); 377 378 free((caddr_t)V_ifindex_table, M_IFNET); 379 } 380 VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, 381 vnet_if_uninit, NULL); 382 #endif 383 384 static void 385 if_grow(void) 386 { 387 int oldlim; 388 u_int n; 389 struct ifnet **e; 390 391 IFNET_WLOCK_ASSERT(); 392 oldlim = V_if_indexlim; 393 IFNET_WUNLOCK(); 394 n = (oldlim << 1) * sizeof(*e); 395 e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); 396 IFNET_WLOCK(); 397 if (V_if_indexlim != oldlim) { 398 free(e, M_IFNET); 399 return; 400 } 401 if (V_ifindex_table != NULL) { 402 memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); 403 free((caddr_t)V_ifindex_table, M_IFNET); 404 } 405 V_if_indexlim <<= 1; 406 V_ifindex_table = e; 407 } 408 409 /* 410 * Allocate a struct ifnet and an index for an interface. A layer 2 411 * common structure will also be allocated if an allocation routine is 412 * registered for the passed type. 413 */ 414 struct ifnet * 415 if_alloc(u_char type) 416 { 417 struct ifnet *ifp; 418 u_short idx; 419 420 ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO); 421 IFNET_WLOCK(); 422 idx = ifindex_alloc(); 423 ifnet_setbyindex_locked(idx, IFNET_HOLD); 424 IFNET_WUNLOCK(); 425 ifp->if_index = idx; 426 ifp->if_type = type; 427 ifp->if_alloctype = type; 428 if (if_com_alloc[type] != NULL) { 429 ifp->if_l2com = if_com_alloc[type](type, ifp); 430 if (ifp->if_l2com == NULL) { 431 free(ifp, M_IFNET); 432 ifindex_free(idx); 433 return (NULL); 434 } 435 } 436 437 IF_ADDR_LOCK_INIT(ifp); 438 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 439 ifp->if_afdata_initialized = 0; 440 IF_AFDATA_LOCK_INIT(ifp); 441 TAILQ_INIT(&ifp->if_addrhead); 442 TAILQ_INIT(&ifp->if_multiaddrs); 443 TAILQ_INIT(&ifp->if_groups); 444 #ifdef MAC 445 mac_ifnet_init(ifp); 446 #endif 447 ifq_init(&ifp->if_snd, ifp); 448 449 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 450 for (int i = 0; i < IFCOUNTERS; i++) 451 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 452 ifp->if_get_counter = if_get_counter_default; 453 ifnet_setbyindex(ifp->if_index, ifp); 454 return (ifp); 455 } 456 457 /* 458 * Do the actual work of freeing a struct ifnet, and layer 2 common 459 * structure. This call is made when the last reference to an 460 * interface is released. 461 */ 462 static void 463 if_free_internal(struct ifnet *ifp) 464 { 465 466 KASSERT((ifp->if_flags & IFF_DYING), 467 ("if_free_internal: interface not dying")); 468 469 if (if_com_free[ifp->if_alloctype] != NULL) 470 if_com_free[ifp->if_alloctype](ifp->if_l2com, 471 ifp->if_alloctype); 472 473 #ifdef MAC 474 mac_ifnet_destroy(ifp); 475 #endif /* MAC */ 476 if (ifp->if_description != NULL) 477 free(ifp->if_description, M_IFDESCR); 478 IF_AFDATA_DESTROY(ifp); 479 IF_ADDR_LOCK_DESTROY(ifp); 480 ifq_delete(&ifp->if_snd); 481 482 for (int i = 0; i < IFCOUNTERS; i++) 483 counter_u64_free(ifp->if_counters[i]); 484 485 free(ifp, M_IFNET); 486 } 487 488 /* 489 * Deregister an interface and free the associated storage. 490 */ 491 void 492 if_free(struct ifnet *ifp) 493 { 494 495 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 496 497 CURVNET_SET_QUIET(ifp->if_vnet); 498 IFNET_WLOCK(); 499 KASSERT(ifp == ifnet_byindex_locked(ifp->if_index), 500 ("%s: freeing unallocated ifnet", ifp->if_xname)); 501 502 ifindex_free_locked(ifp->if_index); 503 IFNET_WUNLOCK(); 504 505 if (refcount_release(&ifp->if_refcount)) 506 if_free_internal(ifp); 507 CURVNET_RESTORE(); 508 } 509 510 /* 511 * Interfaces to keep an ifnet type-stable despite the possibility of the 512 * driver calling if_free(). If there are additional references, we defer 513 * freeing the underlying data structure. 514 */ 515 void 516 if_ref(struct ifnet *ifp) 517 { 518 519 /* We don't assert the ifnet list lock here, but arguably should. */ 520 refcount_acquire(&ifp->if_refcount); 521 } 522 523 void 524 if_rele(struct ifnet *ifp) 525 { 526 527 if (!refcount_release(&ifp->if_refcount)) 528 return; 529 if_free_internal(ifp); 530 } 531 532 void 533 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 534 { 535 536 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 537 538 if (ifq->ifq_maxlen == 0) 539 ifq->ifq_maxlen = ifqmaxlen; 540 541 ifq->altq_type = 0; 542 ifq->altq_disc = NULL; 543 ifq->altq_flags &= ALTQF_CANTCHANGE; 544 ifq->altq_tbr = NULL; 545 ifq->altq_ifp = ifp; 546 } 547 548 void 549 ifq_delete(struct ifaltq *ifq) 550 { 551 mtx_destroy(&ifq->ifq_mtx); 552 } 553 554 /* 555 * Perform generic interface initalization tasks and attach the interface 556 * to the list of "active" interfaces. If vmove flag is set on entry 557 * to if_attach_internal(), perform only a limited subset of initialization 558 * tasks, given that we are moving from one vnet to another an ifnet which 559 * has already been fully initialized. 560 * 561 * XXX: 562 * - The decision to return void and thus require this function to 563 * succeed is questionable. 564 * - We should probably do more sanity checking. For instance we don't 565 * do anything to insure if_xname is unique or non-empty. 566 */ 567 void 568 if_attach(struct ifnet *ifp) 569 { 570 571 if_attach_internal(ifp, 0); 572 } 573 574 /* 575 * Compute the least common TSO limit. 576 */ 577 void 578 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 579 { 580 /* 581 * 1) If there is no limit currently, take the limit from 582 * the network adapter. 583 * 584 * 2) If the network adapter has a limit below the current 585 * limit, apply it. 586 */ 587 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 588 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 589 pmax->tsomaxbytes = ifp->if_hw_tsomax; 590 } 591 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 592 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 593 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 594 } 595 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 596 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 597 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 598 } 599 } 600 601 /* 602 * Update TSO limit of a network adapter. 603 * 604 * Returns zero if no change. Else non-zero. 605 */ 606 int 607 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 608 { 609 int retval = 0; 610 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 611 ifp->if_hw_tsomax = pmax->tsomaxbytes; 612 retval++; 613 } 614 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 615 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 616 retval++; 617 } 618 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 619 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 620 retval++; 621 } 622 return (retval); 623 } 624 625 static void 626 if_attach_internal(struct ifnet *ifp, int vmove) 627 { 628 unsigned socksize, ifasize; 629 int namelen, masklen; 630 struct sockaddr_dl *sdl; 631 struct ifaddr *ifa; 632 633 if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) 634 panic ("%s: BUG: if_attach called without if_alloc'd input()\n", 635 ifp->if_xname); 636 637 #ifdef VIMAGE 638 ifp->if_vnet = curvnet; 639 if (ifp->if_home_vnet == NULL) 640 ifp->if_home_vnet = curvnet; 641 #endif 642 643 if_addgroup(ifp, IFG_ALL); 644 645 getmicrotime(&ifp->if_lastchange); 646 ifp->if_epoch = time_uptime; 647 648 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 649 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 650 ("transmit and qflush must both either be set or both be NULL")); 651 if (ifp->if_transmit == NULL) { 652 ifp->if_transmit = if_transmit; 653 ifp->if_qflush = if_qflush; 654 } 655 656 if (!vmove) { 657 #ifdef MAC 658 mac_ifnet_create(ifp); 659 #endif 660 661 /* 662 * Create a Link Level name for this device. 663 */ 664 namelen = strlen(ifp->if_xname); 665 /* 666 * Always save enough space for any possiable name so we 667 * can do a rename in place later. 668 */ 669 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 670 socksize = masklen + ifp->if_addrlen; 671 if (socksize < sizeof(*sdl)) 672 socksize = sizeof(*sdl); 673 socksize = roundup2(socksize, sizeof(long)); 674 ifasize = sizeof(*ifa) + 2 * socksize; 675 ifa = ifa_alloc(ifasize, M_WAITOK); 676 sdl = (struct sockaddr_dl *)(ifa + 1); 677 sdl->sdl_len = socksize; 678 sdl->sdl_family = AF_LINK; 679 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 680 sdl->sdl_nlen = namelen; 681 sdl->sdl_index = ifp->if_index; 682 sdl->sdl_type = ifp->if_type; 683 ifp->if_addr = ifa; 684 ifa->ifa_ifp = ifp; 685 ifa->ifa_rtrequest = link_rtrequest; 686 ifa->ifa_addr = (struct sockaddr *)sdl; 687 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 688 ifa->ifa_netmask = (struct sockaddr *)sdl; 689 sdl->sdl_len = masklen; 690 while (namelen != 0) 691 sdl->sdl_data[--namelen] = 0xff; 692 TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 693 /* Reliably crash if used uninitialized. */ 694 ifp->if_broadcastaddr = NULL; 695 696 #if defined(INET) || defined(INET6) 697 /* Use defaults for TSO, if nothing is set */ 698 if (ifp->if_hw_tsomax == 0 && 699 ifp->if_hw_tsomaxsegcount == 0 && 700 ifp->if_hw_tsomaxsegsize == 0) { 701 /* 702 * The TSO defaults needs to be such that an 703 * NFS mbuf list of 35 mbufs totalling just 704 * below 64K works and that a chain of mbufs 705 * can be defragged into at most 32 segments: 706 */ 707 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 708 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 709 ifp->if_hw_tsomaxsegcount = 35; 710 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 711 712 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 713 if (ifp->if_capabilities & IFCAP_TSO) { 714 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 715 ifp->if_hw_tsomax, 716 ifp->if_hw_tsomaxsegcount, 717 ifp->if_hw_tsomaxsegsize); 718 } 719 } 720 /* 721 * If the "if_hw_tsomax" limit is set, check if it is 722 * too small: 723 */ 724 KASSERT(ifp->if_hw_tsomax == 0 || 725 ifp->if_hw_tsomax >= (IP_MAXPACKET / 8), 726 ("%s: if_hw_tsomax is outside of range", __func__)); 727 #endif 728 } 729 #ifdef VIMAGE 730 else { 731 /* 732 * Update the interface index in the link layer address 733 * of the interface. 734 */ 735 for (ifa = ifp->if_addr; ifa != NULL; 736 ifa = TAILQ_NEXT(ifa, ifa_link)) { 737 if (ifa->ifa_addr->sa_family == AF_LINK) { 738 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 739 sdl->sdl_index = ifp->if_index; 740 } 741 } 742 } 743 #endif 744 745 IFNET_WLOCK(); 746 TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 747 #ifdef VIMAGE 748 curvnet->vnet_ifcnt++; 749 #endif 750 IFNET_WUNLOCK(); 751 752 if (domain_init_status >= 2) 753 if_attachdomain1(ifp); 754 755 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 756 if (IS_DEFAULT_VNET(curvnet)) 757 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 758 759 /* Announce the interface. */ 760 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 761 } 762 763 static void 764 if_attachdomain(void *dummy) 765 { 766 struct ifnet *ifp; 767 768 TAILQ_FOREACH(ifp, &V_ifnet, if_link) 769 if_attachdomain1(ifp); 770 } 771 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 772 if_attachdomain, NULL); 773 774 static void 775 if_attachdomain1(struct ifnet *ifp) 776 { 777 struct domain *dp; 778 779 /* 780 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 781 * cannot lock ifp->if_afdata initialization, entirely. 782 */ 783 if (IF_AFDATA_TRYLOCK(ifp) == 0) 784 return; 785 if (ifp->if_afdata_initialized >= domain_init_status) { 786 IF_AFDATA_UNLOCK(ifp); 787 log(LOG_WARNING, "%s called more than once on %s\n", 788 __func__, ifp->if_xname); 789 return; 790 } 791 ifp->if_afdata_initialized = domain_init_status; 792 IF_AFDATA_UNLOCK(ifp); 793 794 /* address family dependent data region */ 795 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 796 for (dp = domains; dp; dp = dp->dom_next) { 797 if (dp->dom_ifattach) 798 ifp->if_afdata[dp->dom_family] = 799 (*dp->dom_ifattach)(ifp); 800 } 801 } 802 803 /* 804 * Remove any unicast or broadcast network addresses from an interface. 805 */ 806 void 807 if_purgeaddrs(struct ifnet *ifp) 808 { 809 struct ifaddr *ifa, *next; 810 811 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 812 if (ifa->ifa_addr->sa_family == AF_LINK) 813 continue; 814 #ifdef INET 815 /* XXX: Ugly!! ad hoc just for INET */ 816 if (ifa->ifa_addr->sa_family == AF_INET) { 817 struct ifaliasreq ifr; 818 819 bzero(&ifr, sizeof(ifr)); 820 ifr.ifra_addr = *ifa->ifa_addr; 821 if (ifa->ifa_dstaddr) 822 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 823 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 824 NULL) == 0) 825 continue; 826 } 827 #endif /* INET */ 828 #ifdef INET6 829 if (ifa->ifa_addr->sa_family == AF_INET6) { 830 in6_purgeaddr(ifa); 831 /* ifp_addrhead is already updated */ 832 continue; 833 } 834 #endif /* INET6 */ 835 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 836 ifa_free(ifa); 837 } 838 } 839 840 /* 841 * Remove any multicast network addresses from an interface when an ifnet 842 * is going away. 843 */ 844 static void 845 if_purgemaddrs(struct ifnet *ifp) 846 { 847 struct ifmultiaddr *ifma; 848 struct ifmultiaddr *next; 849 850 IF_ADDR_WLOCK(ifp); 851 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 852 if_delmulti_locked(ifp, ifma, 1); 853 IF_ADDR_WUNLOCK(ifp); 854 } 855 856 /* 857 * Detach an interface, removing it from the list of "active" interfaces. 858 * If vmove flag is set on entry to if_detach_internal(), perform only a 859 * limited subset of cleanup tasks, given that we are moving an ifnet from 860 * one vnet to another, where it must be fully operational. 861 * 862 * XXXRW: There are some significant questions about event ordering, and 863 * how to prevent things from starting to use the interface during detach. 864 */ 865 void 866 if_detach(struct ifnet *ifp) 867 { 868 869 CURVNET_SET_QUIET(ifp->if_vnet); 870 if_detach_internal(ifp, 0); 871 CURVNET_RESTORE(); 872 } 873 874 static void 875 if_detach_internal(struct ifnet *ifp, int vmove) 876 { 877 struct ifaddr *ifa; 878 struct radix_node_head *rnh; 879 int i, j; 880 struct domain *dp; 881 struct ifnet *iter; 882 int found = 0; 883 884 IFNET_WLOCK(); 885 TAILQ_FOREACH(iter, &V_ifnet, if_link) 886 if (iter == ifp) { 887 TAILQ_REMOVE(&V_ifnet, ifp, if_link); 888 found = 1; 889 break; 890 } 891 #ifdef VIMAGE 892 if (found) 893 curvnet->vnet_ifcnt--; 894 #endif 895 IFNET_WUNLOCK(); 896 if (!found) { 897 if (vmove) 898 panic("%s: ifp=%p not on the ifnet tailq %p", 899 __func__, ifp, &V_ifnet); 900 else 901 return; /* XXX this should panic as well? */ 902 } 903 904 /* 905 * Remove/wait for pending events. 906 */ 907 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 908 909 /* 910 * Remove routes and flush queues. 911 */ 912 if_down(ifp); 913 #ifdef ALTQ 914 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 915 altq_disable(&ifp->if_snd); 916 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 917 altq_detach(&ifp->if_snd); 918 #endif 919 920 if_purgeaddrs(ifp); 921 922 #ifdef INET 923 in_ifdetach(ifp); 924 #endif 925 926 #ifdef INET6 927 /* 928 * Remove all IPv6 kernel structs related to ifp. This should be done 929 * before removing routing entries below, since IPv6 interface direct 930 * routes are expected to be removed by the IPv6-specific kernel API. 931 * Otherwise, the kernel will detect some inconsistency and bark it. 932 */ 933 in6_ifdetach(ifp); 934 #endif 935 if_purgemaddrs(ifp); 936 937 /* Announce that the interface is gone. */ 938 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 939 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 940 if (IS_DEFAULT_VNET(curvnet)) 941 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 942 943 if (!vmove) { 944 /* 945 * Prevent further calls into the device driver via ifnet. 946 */ 947 if_dead(ifp); 948 949 /* 950 * Remove link ifaddr pointer and maybe decrement if_index. 951 * Clean up all addresses. 952 */ 953 ifp->if_addr = NULL; 954 955 /* We can now free link ifaddr. */ 956 if (!TAILQ_EMPTY(&ifp->if_addrhead)) { 957 ifa = TAILQ_FIRST(&ifp->if_addrhead); 958 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 959 ifa_free(ifa); 960 } 961 } 962 963 /* 964 * Delete all remaining routes using this interface 965 * Unfortuneatly the only way to do this is to slog through 966 * the entire routing table looking for routes which point 967 * to this interface...oh well... 968 */ 969 for (i = 1; i <= AF_MAX; i++) { 970 for (j = 0; j < rt_numfibs; j++) { 971 rnh = rt_tables_get_rnh(j, i); 972 if (rnh == NULL) 973 continue; 974 RADIX_NODE_HEAD_LOCK(rnh); 975 (void) rnh->rnh_walktree(rnh, if_rtdel, ifp); 976 RADIX_NODE_HEAD_UNLOCK(rnh); 977 } 978 } 979 980 if_delgroups(ifp); 981 982 /* 983 * We cannot hold the lock over dom_ifdetach calls as they might 984 * sleep, for example trying to drain a callout, thus open up the 985 * theoretical race with re-attaching. 986 */ 987 IF_AFDATA_LOCK(ifp); 988 i = ifp->if_afdata_initialized; 989 ifp->if_afdata_initialized = 0; 990 IF_AFDATA_UNLOCK(ifp); 991 for (dp = domains; i > 0 && dp; dp = dp->dom_next) { 992 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 993 (*dp->dom_ifdetach)(ifp, 994 ifp->if_afdata[dp->dom_family]); 995 } 996 } 997 998 #ifdef VIMAGE 999 /* 1000 * if_vmove() performs a limited version of if_detach() in current 1001 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1002 * An attempt is made to shrink if_index in current vnet, find an 1003 * unused if_index in target vnet and calls if_grow() if necessary, 1004 * and finally find an unused if_xname for the target vnet. 1005 */ 1006 void 1007 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1008 { 1009 1010 /* 1011 * Detach from current vnet, but preserve LLADDR info, do not 1012 * mark as dead etc. so that the ifnet can be reattached later. 1013 */ 1014 if_detach_internal(ifp, 1); 1015 1016 /* 1017 * Unlink the ifnet from ifindex_table[] in current vnet, and shrink 1018 * the if_index for that vnet if possible. 1019 * 1020 * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, 1021 * or we'd lock on one vnet and unlock on another. 1022 */ 1023 IFNET_WLOCK(); 1024 ifindex_free_locked(ifp->if_index); 1025 IFNET_WUNLOCK(); 1026 1027 /* 1028 * Perform interface-specific reassignment tasks, if provided by 1029 * the driver. 1030 */ 1031 if (ifp->if_reassign != NULL) 1032 ifp->if_reassign(ifp, new_vnet, NULL); 1033 1034 /* 1035 * Switch to the context of the target vnet. 1036 */ 1037 CURVNET_SET_QUIET(new_vnet); 1038 1039 IFNET_WLOCK(); 1040 ifp->if_index = ifindex_alloc(); 1041 ifnet_setbyindex_locked(ifp->if_index, ifp); 1042 IFNET_WUNLOCK(); 1043 1044 if_attach_internal(ifp, 1); 1045 1046 CURVNET_RESTORE(); 1047 } 1048 1049 /* 1050 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1051 */ 1052 static int 1053 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1054 { 1055 struct prison *pr; 1056 struct ifnet *difp; 1057 1058 /* Try to find the prison within our visibility. */ 1059 sx_slock(&allprison_lock); 1060 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1061 sx_sunlock(&allprison_lock); 1062 if (pr == NULL) 1063 return (ENXIO); 1064 prison_hold_locked(pr); 1065 mtx_unlock(&pr->pr_mtx); 1066 1067 /* Do not try to move the iface from and to the same prison. */ 1068 if (pr->pr_vnet == ifp->if_vnet) { 1069 prison_free(pr); 1070 return (EEXIST); 1071 } 1072 1073 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1074 /* XXX Lock interfaces to avoid races. */ 1075 CURVNET_SET_QUIET(pr->pr_vnet); 1076 difp = ifunit(ifname); 1077 CURVNET_RESTORE(); 1078 if (difp != NULL) { 1079 prison_free(pr); 1080 return (EEXIST); 1081 } 1082 1083 /* Move the interface into the child jail/vnet. */ 1084 if_vmove(ifp, pr->pr_vnet); 1085 1086 /* Report the new if_xname back to the userland. */ 1087 sprintf(ifname, "%s", ifp->if_xname); 1088 1089 prison_free(pr); 1090 return (0); 1091 } 1092 1093 static int 1094 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1095 { 1096 struct prison *pr; 1097 struct vnet *vnet_dst; 1098 struct ifnet *ifp; 1099 1100 /* Try to find the prison within our visibility. */ 1101 sx_slock(&allprison_lock); 1102 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1103 sx_sunlock(&allprison_lock); 1104 if (pr == NULL) 1105 return (ENXIO); 1106 prison_hold_locked(pr); 1107 mtx_unlock(&pr->pr_mtx); 1108 1109 /* Make sure the named iface exists in the source prison/vnet. */ 1110 CURVNET_SET(pr->pr_vnet); 1111 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1112 if (ifp == NULL) { 1113 CURVNET_RESTORE(); 1114 prison_free(pr); 1115 return (ENXIO); 1116 } 1117 1118 /* Do not try to move the iface from and to the same prison. */ 1119 vnet_dst = TD_TO_VNET(td); 1120 if (vnet_dst == ifp->if_vnet) { 1121 CURVNET_RESTORE(); 1122 prison_free(pr); 1123 return (EEXIST); 1124 } 1125 1126 /* Get interface back from child jail/vnet. */ 1127 if_vmove(ifp, vnet_dst); 1128 CURVNET_RESTORE(); 1129 1130 /* Report the new if_xname back to the userland. */ 1131 sprintf(ifname, "%s", ifp->if_xname); 1132 1133 prison_free(pr); 1134 return (0); 1135 } 1136 #endif /* VIMAGE */ 1137 1138 /* 1139 * Add a group to an interface 1140 */ 1141 int 1142 if_addgroup(struct ifnet *ifp, const char *groupname) 1143 { 1144 struct ifg_list *ifgl; 1145 struct ifg_group *ifg = NULL; 1146 struct ifg_member *ifgm; 1147 int new = 0; 1148 1149 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1150 groupname[strlen(groupname) - 1] <= '9') 1151 return (EINVAL); 1152 1153 IFNET_WLOCK(); 1154 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1155 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1156 IFNET_WUNLOCK(); 1157 return (EEXIST); 1158 } 1159 1160 if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP, 1161 M_NOWAIT)) == NULL) { 1162 IFNET_WUNLOCK(); 1163 return (ENOMEM); 1164 } 1165 1166 if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member), 1167 M_TEMP, M_NOWAIT)) == NULL) { 1168 free(ifgl, M_TEMP); 1169 IFNET_WUNLOCK(); 1170 return (ENOMEM); 1171 } 1172 1173 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1174 if (!strcmp(ifg->ifg_group, groupname)) 1175 break; 1176 1177 if (ifg == NULL) { 1178 if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group), 1179 M_TEMP, M_NOWAIT)) == NULL) { 1180 free(ifgl, M_TEMP); 1181 free(ifgm, M_TEMP); 1182 IFNET_WUNLOCK(); 1183 return (ENOMEM); 1184 } 1185 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1186 ifg->ifg_refcnt = 0; 1187 TAILQ_INIT(&ifg->ifg_members); 1188 TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1189 new = 1; 1190 } 1191 1192 ifg->ifg_refcnt++; 1193 ifgl->ifgl_group = ifg; 1194 ifgm->ifgm_ifp = ifp; 1195 1196 IF_ADDR_WLOCK(ifp); 1197 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1198 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1199 IF_ADDR_WUNLOCK(ifp); 1200 1201 IFNET_WUNLOCK(); 1202 1203 if (new) 1204 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1205 EVENTHANDLER_INVOKE(group_change_event, groupname); 1206 1207 return (0); 1208 } 1209 1210 /* 1211 * Remove a group from an interface 1212 */ 1213 int 1214 if_delgroup(struct ifnet *ifp, const char *groupname) 1215 { 1216 struct ifg_list *ifgl; 1217 struct ifg_member *ifgm; 1218 1219 IFNET_WLOCK(); 1220 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1221 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 1222 break; 1223 if (ifgl == NULL) { 1224 IFNET_WUNLOCK(); 1225 return (ENOENT); 1226 } 1227 1228 IF_ADDR_WLOCK(ifp); 1229 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1230 IF_ADDR_WUNLOCK(ifp); 1231 1232 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1233 if (ifgm->ifgm_ifp == ifp) 1234 break; 1235 1236 if (ifgm != NULL) { 1237 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 1238 free(ifgm, M_TEMP); 1239 } 1240 1241 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1242 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1243 IFNET_WUNLOCK(); 1244 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1245 free(ifgl->ifgl_group, M_TEMP); 1246 } else 1247 IFNET_WUNLOCK(); 1248 1249 free(ifgl, M_TEMP); 1250 1251 EVENTHANDLER_INVOKE(group_change_event, groupname); 1252 1253 return (0); 1254 } 1255 1256 /* 1257 * Remove an interface from all groups 1258 */ 1259 static void 1260 if_delgroups(struct ifnet *ifp) 1261 { 1262 struct ifg_list *ifgl; 1263 struct ifg_member *ifgm; 1264 char groupname[IFNAMSIZ]; 1265 1266 IFNET_WLOCK(); 1267 while (!TAILQ_EMPTY(&ifp->if_groups)) { 1268 ifgl = TAILQ_FIRST(&ifp->if_groups); 1269 1270 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1271 1272 IF_ADDR_WLOCK(ifp); 1273 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1274 IF_ADDR_WUNLOCK(ifp); 1275 1276 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1277 if (ifgm->ifgm_ifp == ifp) 1278 break; 1279 1280 if (ifgm != NULL) { 1281 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1282 ifgm_next); 1283 free(ifgm, M_TEMP); 1284 } 1285 1286 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1287 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1288 IFNET_WUNLOCK(); 1289 EVENTHANDLER_INVOKE(group_detach_event, 1290 ifgl->ifgl_group); 1291 free(ifgl->ifgl_group, M_TEMP); 1292 } else 1293 IFNET_WUNLOCK(); 1294 1295 free(ifgl, M_TEMP); 1296 1297 EVENTHANDLER_INVOKE(group_change_event, groupname); 1298 1299 IFNET_WLOCK(); 1300 } 1301 IFNET_WUNLOCK(); 1302 } 1303 1304 /* 1305 * Stores all groups from an interface in memory pointed 1306 * to by data 1307 */ 1308 static int 1309 if_getgroup(struct ifgroupreq *data, struct ifnet *ifp) 1310 { 1311 int len, error; 1312 struct ifg_list *ifgl; 1313 struct ifg_req ifgrq, *ifgp; 1314 struct ifgroupreq *ifgr = data; 1315 1316 if (ifgr->ifgr_len == 0) { 1317 IF_ADDR_RLOCK(ifp); 1318 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1319 ifgr->ifgr_len += sizeof(struct ifg_req); 1320 IF_ADDR_RUNLOCK(ifp); 1321 return (0); 1322 } 1323 1324 len = ifgr->ifgr_len; 1325 ifgp = ifgr->ifgr_groups; 1326 /* XXX: wire */ 1327 IF_ADDR_RLOCK(ifp); 1328 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1329 if (len < sizeof(ifgrq)) { 1330 IF_ADDR_RUNLOCK(ifp); 1331 return (EINVAL); 1332 } 1333 bzero(&ifgrq, sizeof ifgrq); 1334 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1335 sizeof(ifgrq.ifgrq_group)); 1336 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1337 IF_ADDR_RUNLOCK(ifp); 1338 return (error); 1339 } 1340 len -= sizeof(ifgrq); 1341 ifgp++; 1342 } 1343 IF_ADDR_RUNLOCK(ifp); 1344 1345 return (0); 1346 } 1347 1348 /* 1349 * Stores all members of a group in memory pointed to by data 1350 */ 1351 static int 1352 if_getgroupmembers(struct ifgroupreq *data) 1353 { 1354 struct ifgroupreq *ifgr = data; 1355 struct ifg_group *ifg; 1356 struct ifg_member *ifgm; 1357 struct ifg_req ifgrq, *ifgp; 1358 int len, error; 1359 1360 IFNET_RLOCK(); 1361 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1362 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1363 break; 1364 if (ifg == NULL) { 1365 IFNET_RUNLOCK(); 1366 return (ENOENT); 1367 } 1368 1369 if (ifgr->ifgr_len == 0) { 1370 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1371 ifgr->ifgr_len += sizeof(ifgrq); 1372 IFNET_RUNLOCK(); 1373 return (0); 1374 } 1375 1376 len = ifgr->ifgr_len; 1377 ifgp = ifgr->ifgr_groups; 1378 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1379 if (len < sizeof(ifgrq)) { 1380 IFNET_RUNLOCK(); 1381 return (EINVAL); 1382 } 1383 bzero(&ifgrq, sizeof ifgrq); 1384 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1385 sizeof(ifgrq.ifgrq_member)); 1386 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1387 IFNET_RUNLOCK(); 1388 return (error); 1389 } 1390 len -= sizeof(ifgrq); 1391 ifgp++; 1392 } 1393 IFNET_RUNLOCK(); 1394 1395 return (0); 1396 } 1397 1398 /* 1399 * Delete Routes for a Network Interface 1400 * 1401 * Called for each routing entry via the rnh->rnh_walktree() call above 1402 * to delete all route entries referencing a detaching network interface. 1403 * 1404 * Arguments: 1405 * rn pointer to node in the routing table 1406 * arg argument passed to rnh->rnh_walktree() - detaching interface 1407 * 1408 * Returns: 1409 * 0 successful 1410 * errno failed - reason indicated 1411 * 1412 */ 1413 static int 1414 if_rtdel(struct radix_node *rn, void *arg) 1415 { 1416 struct rtentry *rt = (struct rtentry *)rn; 1417 struct ifnet *ifp = arg; 1418 int err; 1419 1420 if (rt->rt_ifp == ifp) { 1421 1422 /* 1423 * Protect (sorta) against walktree recursion problems 1424 * with cloned routes 1425 */ 1426 if ((rt->rt_flags & RTF_UP) == 0) 1427 return (0); 1428 1429 err = rtrequest_fib(RTM_DELETE, rt_key(rt), rt->rt_gateway, 1430 rt_mask(rt), 1431 rt->rt_flags|RTF_RNH_LOCKED|RTF_PINNED, 1432 (struct rtentry **) NULL, rt->rt_fibnum); 1433 if (err) { 1434 log(LOG_WARNING, "if_rtdel: error %d\n", err); 1435 } 1436 } 1437 1438 return (0); 1439 } 1440 1441 /* 1442 * Return counter values from counter(9)s stored in ifnet. 1443 */ 1444 uint64_t 1445 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1446 { 1447 1448 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1449 1450 return (counter_u64_fetch(ifp->if_counters[cnt])); 1451 } 1452 1453 /* 1454 * Increase an ifnet counter. Usually used for counters shared 1455 * between the stack and a driver, but function supports them all. 1456 */ 1457 void 1458 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1459 { 1460 1461 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1462 1463 counter_u64_add(ifp->if_counters[cnt], inc); 1464 } 1465 1466 /* 1467 * Copy data from ifnet to userland API structure if_data. 1468 */ 1469 void 1470 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1471 { 1472 1473 ifd->ifi_type = ifp->if_type; 1474 ifd->ifi_physical = 0; 1475 ifd->ifi_addrlen = ifp->if_addrlen; 1476 ifd->ifi_hdrlen = ifp->if_hdrlen; 1477 ifd->ifi_link_state = ifp->if_link_state; 1478 ifd->ifi_vhid = 0; 1479 ifd->ifi_datalen = sizeof(struct if_data); 1480 ifd->ifi_mtu = ifp->if_mtu; 1481 ifd->ifi_metric = ifp->if_metric; 1482 ifd->ifi_baudrate = ifp->if_baudrate; 1483 ifd->ifi_hwassist = ifp->if_hwassist; 1484 ifd->ifi_epoch = ifp->if_epoch; 1485 ifd->ifi_lastchange = ifp->if_lastchange; 1486 1487 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1488 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1489 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1490 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1491 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1492 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1493 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1494 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1495 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1496 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1497 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1498 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1499 } 1500 1501 /* 1502 * Wrapper functions for struct ifnet address list locking macros. These are 1503 * used by kernel modules to avoid encoding programming interface or binary 1504 * interface assumptions that may be violated when kernel-internal locking 1505 * approaches change. 1506 */ 1507 void 1508 if_addr_rlock(struct ifnet *ifp) 1509 { 1510 1511 IF_ADDR_RLOCK(ifp); 1512 } 1513 1514 void 1515 if_addr_runlock(struct ifnet *ifp) 1516 { 1517 1518 IF_ADDR_RUNLOCK(ifp); 1519 } 1520 1521 void 1522 if_maddr_rlock(if_t ifp) 1523 { 1524 1525 IF_ADDR_RLOCK((struct ifnet *)ifp); 1526 } 1527 1528 void 1529 if_maddr_runlock(if_t ifp) 1530 { 1531 1532 IF_ADDR_RUNLOCK((struct ifnet *)ifp); 1533 } 1534 1535 /* 1536 * Initialization, destruction and refcounting functions for ifaddrs. 1537 */ 1538 struct ifaddr * 1539 ifa_alloc(size_t size, int flags) 1540 { 1541 struct ifaddr *ifa; 1542 1543 KASSERT(size >= sizeof(struct ifaddr), 1544 ("%s: invalid size %zu", __func__, size)); 1545 1546 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1547 if (ifa == NULL) 1548 return (NULL); 1549 1550 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1551 goto fail; 1552 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1553 goto fail; 1554 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1555 goto fail; 1556 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1557 goto fail; 1558 1559 refcount_init(&ifa->ifa_refcnt, 1); 1560 1561 return (ifa); 1562 1563 fail: 1564 /* free(NULL) is okay */ 1565 counter_u64_free(ifa->ifa_opackets); 1566 counter_u64_free(ifa->ifa_ipackets); 1567 counter_u64_free(ifa->ifa_obytes); 1568 counter_u64_free(ifa->ifa_ibytes); 1569 free(ifa, M_IFADDR); 1570 1571 return (NULL); 1572 } 1573 1574 void 1575 ifa_ref(struct ifaddr *ifa) 1576 { 1577 1578 refcount_acquire(&ifa->ifa_refcnt); 1579 } 1580 1581 void 1582 ifa_free(struct ifaddr *ifa) 1583 { 1584 1585 if (refcount_release(&ifa->ifa_refcnt)) { 1586 counter_u64_free(ifa->ifa_opackets); 1587 counter_u64_free(ifa->ifa_ipackets); 1588 counter_u64_free(ifa->ifa_obytes); 1589 counter_u64_free(ifa->ifa_ibytes); 1590 free(ifa, M_IFADDR); 1591 } 1592 } 1593 1594 int 1595 ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1596 { 1597 int error = 0; 1598 struct rtentry *rt = NULL; 1599 struct rt_addrinfo info; 1600 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1601 1602 bzero(&info, sizeof(info)); 1603 info.rti_ifp = V_loif; 1604 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1605 info.rti_info[RTAX_DST] = ia; 1606 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1607 error = rtrequest1_fib(RTM_ADD, &info, &rt, ifa->ifa_ifp->if_fib); 1608 1609 if (error == 0 && rt != NULL) { 1610 RT_LOCK(rt); 1611 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 1612 ifa->ifa_ifp->if_type; 1613 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 1614 ifa->ifa_ifp->if_index; 1615 RT_REMREF(rt); 1616 RT_UNLOCK(rt); 1617 } else if (error != 0) 1618 log(LOG_DEBUG, "%s: insertion failed: %u\n", __func__, error); 1619 1620 return (error); 1621 } 1622 1623 int 1624 ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1625 { 1626 int error = 0; 1627 struct rt_addrinfo info; 1628 struct sockaddr_dl null_sdl; 1629 1630 bzero(&null_sdl, sizeof(null_sdl)); 1631 null_sdl.sdl_len = sizeof(null_sdl); 1632 null_sdl.sdl_family = AF_LINK; 1633 null_sdl.sdl_type = ifa->ifa_ifp->if_type; 1634 null_sdl.sdl_index = ifa->ifa_ifp->if_index; 1635 bzero(&info, sizeof(info)); 1636 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1637 info.rti_info[RTAX_DST] = ia; 1638 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1639 error = rtrequest1_fib(RTM_DELETE, &info, NULL, ifa->ifa_ifp->if_fib); 1640 1641 if (error != 0) 1642 log(LOG_DEBUG, "%s: deletion failed: %u\n", __func__, error); 1643 1644 return (error); 1645 } 1646 1647 int 1648 ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *sa, int fib) 1649 { 1650 struct rtentry *rt; 1651 1652 rt = rtalloc1_fib(sa, 0, 0, fib); 1653 if (rt == NULL) { 1654 log(LOG_DEBUG, "%s: fail", __func__); 1655 return (EHOSTUNREACH); 1656 } 1657 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 1658 ifa->ifa_ifp->if_type; 1659 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 1660 ifa->ifa_ifp->if_index; 1661 RTFREE_LOCKED(rt); 1662 1663 return (0); 1664 } 1665 1666 /* 1667 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1668 * structs used to represent other address families, it is necessary 1669 * to perform a different comparison. 1670 */ 1671 1672 #define sa_dl_equal(a1, a2) \ 1673 ((((struct sockaddr_dl *)(a1))->sdl_len == \ 1674 ((struct sockaddr_dl *)(a2))->sdl_len) && \ 1675 (bcmp(LLADDR((struct sockaddr_dl *)(a1)), \ 1676 LLADDR((struct sockaddr_dl *)(a2)), \ 1677 ((struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1678 1679 /* 1680 * Locate an interface based on a complete address. 1681 */ 1682 /*ARGSUSED*/ 1683 static struct ifaddr * 1684 ifa_ifwithaddr_internal(struct sockaddr *addr, int getref) 1685 { 1686 struct ifnet *ifp; 1687 struct ifaddr *ifa; 1688 1689 IFNET_RLOCK_NOSLEEP(); 1690 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1691 IF_ADDR_RLOCK(ifp); 1692 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1693 if (ifa->ifa_addr->sa_family != addr->sa_family) 1694 continue; 1695 if (sa_equal(addr, ifa->ifa_addr)) { 1696 if (getref) 1697 ifa_ref(ifa); 1698 IF_ADDR_RUNLOCK(ifp); 1699 goto done; 1700 } 1701 /* IP6 doesn't have broadcast */ 1702 if ((ifp->if_flags & IFF_BROADCAST) && 1703 ifa->ifa_broadaddr && 1704 ifa->ifa_broadaddr->sa_len != 0 && 1705 sa_equal(ifa->ifa_broadaddr, addr)) { 1706 if (getref) 1707 ifa_ref(ifa); 1708 IF_ADDR_RUNLOCK(ifp); 1709 goto done; 1710 } 1711 } 1712 IF_ADDR_RUNLOCK(ifp); 1713 } 1714 ifa = NULL; 1715 done: 1716 IFNET_RUNLOCK_NOSLEEP(); 1717 return (ifa); 1718 } 1719 1720 struct ifaddr * 1721 ifa_ifwithaddr(struct sockaddr *addr) 1722 { 1723 1724 return (ifa_ifwithaddr_internal(addr, 1)); 1725 } 1726 1727 int 1728 ifa_ifwithaddr_check(struct sockaddr *addr) 1729 { 1730 1731 return (ifa_ifwithaddr_internal(addr, 0) != NULL); 1732 } 1733 1734 /* 1735 * Locate an interface based on the broadcast address. 1736 */ 1737 /* ARGSUSED */ 1738 struct ifaddr * 1739 ifa_ifwithbroadaddr(struct sockaddr *addr, int fibnum) 1740 { 1741 struct ifnet *ifp; 1742 struct ifaddr *ifa; 1743 1744 IFNET_RLOCK_NOSLEEP(); 1745 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1746 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1747 continue; 1748 IF_ADDR_RLOCK(ifp); 1749 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1750 if (ifa->ifa_addr->sa_family != addr->sa_family) 1751 continue; 1752 if ((ifp->if_flags & IFF_BROADCAST) && 1753 ifa->ifa_broadaddr && 1754 ifa->ifa_broadaddr->sa_len != 0 && 1755 sa_equal(ifa->ifa_broadaddr, addr)) { 1756 ifa_ref(ifa); 1757 IF_ADDR_RUNLOCK(ifp); 1758 goto done; 1759 } 1760 } 1761 IF_ADDR_RUNLOCK(ifp); 1762 } 1763 ifa = NULL; 1764 done: 1765 IFNET_RUNLOCK_NOSLEEP(); 1766 return (ifa); 1767 } 1768 1769 /* 1770 * Locate the point to point interface with a given destination address. 1771 */ 1772 /*ARGSUSED*/ 1773 struct ifaddr * 1774 ifa_ifwithdstaddr(struct sockaddr *addr, int fibnum) 1775 { 1776 struct ifnet *ifp; 1777 struct ifaddr *ifa; 1778 1779 IFNET_RLOCK_NOSLEEP(); 1780 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1781 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1782 continue; 1783 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1784 continue; 1785 IF_ADDR_RLOCK(ifp); 1786 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1787 if (ifa->ifa_addr->sa_family != addr->sa_family) 1788 continue; 1789 if (ifa->ifa_dstaddr != NULL && 1790 sa_equal(addr, ifa->ifa_dstaddr)) { 1791 ifa_ref(ifa); 1792 IF_ADDR_RUNLOCK(ifp); 1793 goto done; 1794 } 1795 } 1796 IF_ADDR_RUNLOCK(ifp); 1797 } 1798 ifa = NULL; 1799 done: 1800 IFNET_RUNLOCK_NOSLEEP(); 1801 return (ifa); 1802 } 1803 1804 /* 1805 * Find an interface on a specific network. If many, choice 1806 * is most specific found. 1807 */ 1808 struct ifaddr * 1809 ifa_ifwithnet(struct sockaddr *addr, int ignore_ptp, int fibnum) 1810 { 1811 struct ifnet *ifp; 1812 struct ifaddr *ifa; 1813 struct ifaddr *ifa_maybe = NULL; 1814 u_int af = addr->sa_family; 1815 char *addr_data = addr->sa_data, *cplim; 1816 1817 /* 1818 * AF_LINK addresses can be looked up directly by their index number, 1819 * so do that if we can. 1820 */ 1821 if (af == AF_LINK) { 1822 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1823 if (sdl->sdl_index && sdl->sdl_index <= V_if_index) 1824 return (ifaddr_byindex(sdl->sdl_index)); 1825 } 1826 1827 /* 1828 * Scan though each interface, looking for ones that have addresses 1829 * in this address family and the requested fib. Maintain a reference 1830 * on ifa_maybe once we find one, as we release the IF_ADDR_RLOCK() that 1831 * kept it stable when we move onto the next interface. 1832 */ 1833 IFNET_RLOCK_NOSLEEP(); 1834 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1835 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1836 continue; 1837 IF_ADDR_RLOCK(ifp); 1838 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1839 char *cp, *cp2, *cp3; 1840 1841 if (ifa->ifa_addr->sa_family != af) 1842 next: continue; 1843 if (af == AF_INET && 1844 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1845 /* 1846 * This is a bit broken as it doesn't 1847 * take into account that the remote end may 1848 * be a single node in the network we are 1849 * looking for. 1850 * The trouble is that we don't know the 1851 * netmask for the remote end. 1852 */ 1853 if (ifa->ifa_dstaddr != NULL && 1854 sa_equal(addr, ifa->ifa_dstaddr)) { 1855 ifa_ref(ifa); 1856 IF_ADDR_RUNLOCK(ifp); 1857 goto done; 1858 } 1859 } else { 1860 /* 1861 * Scan all the bits in the ifa's address. 1862 * If a bit dissagrees with what we are 1863 * looking for, mask it with the netmask 1864 * to see if it really matters. 1865 * (A byte at a time) 1866 */ 1867 if (ifa->ifa_netmask == 0) 1868 continue; 1869 cp = addr_data; 1870 cp2 = ifa->ifa_addr->sa_data; 1871 cp3 = ifa->ifa_netmask->sa_data; 1872 cplim = ifa->ifa_netmask->sa_len 1873 + (char *)ifa->ifa_netmask; 1874 while (cp3 < cplim) 1875 if ((*cp++ ^ *cp2++) & *cp3++) 1876 goto next; /* next address! */ 1877 /* 1878 * If the netmask of what we just found 1879 * is more specific than what we had before 1880 * (if we had one), or if the virtual status 1881 * of new prefix is better than of the old one, 1882 * then remember the new one before continuing 1883 * to search for an even better one. 1884 */ 1885 if (ifa_maybe == NULL || 1886 ifa_preferred(ifa_maybe, ifa) || 1887 rn_refines((caddr_t)ifa->ifa_netmask, 1888 (caddr_t)ifa_maybe->ifa_netmask)) { 1889 if (ifa_maybe != NULL) 1890 ifa_free(ifa_maybe); 1891 ifa_maybe = ifa; 1892 ifa_ref(ifa_maybe); 1893 } 1894 } 1895 } 1896 IF_ADDR_RUNLOCK(ifp); 1897 } 1898 ifa = ifa_maybe; 1899 ifa_maybe = NULL; 1900 done: 1901 IFNET_RUNLOCK_NOSLEEP(); 1902 if (ifa_maybe != NULL) 1903 ifa_free(ifa_maybe); 1904 return (ifa); 1905 } 1906 1907 /* 1908 * Find an interface address specific to an interface best matching 1909 * a given address. 1910 */ 1911 struct ifaddr * 1912 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1913 { 1914 struct ifaddr *ifa; 1915 char *cp, *cp2, *cp3; 1916 char *cplim; 1917 struct ifaddr *ifa_maybe = NULL; 1918 u_int af = addr->sa_family; 1919 1920 if (af >= AF_MAX) 1921 return (NULL); 1922 IF_ADDR_RLOCK(ifp); 1923 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1924 if (ifa->ifa_addr->sa_family != af) 1925 continue; 1926 if (ifa_maybe == NULL) 1927 ifa_maybe = ifa; 1928 if (ifa->ifa_netmask == 0) { 1929 if (sa_equal(addr, ifa->ifa_addr) || 1930 (ifa->ifa_dstaddr && 1931 sa_equal(addr, ifa->ifa_dstaddr))) 1932 goto done; 1933 continue; 1934 } 1935 if (ifp->if_flags & IFF_POINTOPOINT) { 1936 if (sa_equal(addr, ifa->ifa_dstaddr)) 1937 goto done; 1938 } else { 1939 cp = addr->sa_data; 1940 cp2 = ifa->ifa_addr->sa_data; 1941 cp3 = ifa->ifa_netmask->sa_data; 1942 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1943 for (; cp3 < cplim; cp3++) 1944 if ((*cp++ ^ *cp2++) & *cp3) 1945 break; 1946 if (cp3 == cplim) 1947 goto done; 1948 } 1949 } 1950 ifa = ifa_maybe; 1951 done: 1952 if (ifa != NULL) 1953 ifa_ref(ifa); 1954 IF_ADDR_RUNLOCK(ifp); 1955 return (ifa); 1956 } 1957 1958 /* 1959 * See whether new ifa is better than current one: 1960 * 1) A non-virtual one is preferred over virtual. 1961 * 2) A virtual in master state preferred over any other state. 1962 * 1963 * Used in several address selecting functions. 1964 */ 1965 int 1966 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 1967 { 1968 1969 return (cur->ifa_carp && (!next->ifa_carp || 1970 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 1971 } 1972 1973 #include <net/if_llatbl.h> 1974 1975 /* 1976 * Default action when installing a route with a Link Level gateway. 1977 * Lookup an appropriate real ifa to point to. 1978 * This should be moved to /sys/net/link.c eventually. 1979 */ 1980 static void 1981 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 1982 { 1983 struct ifaddr *ifa, *oifa; 1984 struct sockaddr *dst; 1985 struct ifnet *ifp; 1986 1987 if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || 1988 ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) 1989 return; 1990 ifa = ifaof_ifpforaddr(dst, ifp); 1991 if (ifa) { 1992 oifa = rt->rt_ifa; 1993 rt->rt_ifa = ifa; 1994 ifa_free(oifa); 1995 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1996 ifa->ifa_rtrequest(cmd, rt, info); 1997 } 1998 } 1999 2000 struct sockaddr_dl * 2001 link_alloc_sdl(size_t size, int flags) 2002 { 2003 2004 return (malloc(size, M_TEMP, flags)); 2005 } 2006 2007 void 2008 link_free_sdl(struct sockaddr *sa) 2009 { 2010 free(sa, M_TEMP); 2011 } 2012 2013 /* 2014 * Fills in given sdl with interface basic info. 2015 * Returns pointer to filled sdl. 2016 */ 2017 struct sockaddr_dl * 2018 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2019 { 2020 struct sockaddr_dl *sdl; 2021 2022 sdl = (struct sockaddr_dl *)paddr; 2023 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2024 sdl->sdl_len = sizeof(struct sockaddr_dl); 2025 sdl->sdl_family = AF_LINK; 2026 sdl->sdl_index = ifp->if_index; 2027 sdl->sdl_type = iftype; 2028 2029 return (sdl); 2030 } 2031 2032 /* 2033 * Mark an interface down and notify protocols of 2034 * the transition. 2035 */ 2036 static void 2037 if_unroute(struct ifnet *ifp, int flag, int fam) 2038 { 2039 struct ifaddr *ifa; 2040 2041 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 2042 2043 ifp->if_flags &= ~flag; 2044 getmicrotime(&ifp->if_lastchange); 2045 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2046 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2047 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2048 ifp->if_qflush(ifp); 2049 2050 if (ifp->if_carp) 2051 (*carp_linkstate_p)(ifp); 2052 rt_ifmsg(ifp); 2053 } 2054 2055 /* 2056 * Mark an interface up and notify protocols of 2057 * the transition. 2058 */ 2059 static void 2060 if_route(struct ifnet *ifp, int flag, int fam) 2061 { 2062 struct ifaddr *ifa; 2063 2064 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 2065 2066 ifp->if_flags |= flag; 2067 getmicrotime(&ifp->if_lastchange); 2068 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2069 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2070 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2071 if (ifp->if_carp) 2072 (*carp_linkstate_p)(ifp); 2073 rt_ifmsg(ifp); 2074 #ifdef INET6 2075 in6_if_up(ifp); 2076 #endif 2077 } 2078 2079 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2080 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2081 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2082 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2083 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2084 int (*vlan_setcookie_p)(struct ifnet *, void *); 2085 void *(*vlan_cookie_p)(struct ifnet *); 2086 2087 /* 2088 * Handle a change in the interface link state. To avoid LORs 2089 * between driver lock and upper layer locks, as well as possible 2090 * recursions, we post event to taskqueue, and all job 2091 * is done in static do_link_state_change(). 2092 */ 2093 void 2094 if_link_state_change(struct ifnet *ifp, int link_state) 2095 { 2096 /* Return if state hasn't changed. */ 2097 if (ifp->if_link_state == link_state) 2098 return; 2099 2100 ifp->if_link_state = link_state; 2101 2102 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2103 } 2104 2105 static void 2106 do_link_state_change(void *arg, int pending) 2107 { 2108 struct ifnet *ifp = (struct ifnet *)arg; 2109 int link_state = ifp->if_link_state; 2110 CURVNET_SET(ifp->if_vnet); 2111 2112 /* Notify that the link state has changed. */ 2113 rt_ifmsg(ifp); 2114 if (ifp->if_vlantrunk != NULL) 2115 (*vlan_link_state_p)(ifp); 2116 2117 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2118 ifp->if_l2com != NULL) 2119 (*ng_ether_link_state_p)(ifp, link_state); 2120 if (ifp->if_carp) 2121 (*carp_linkstate_p)(ifp); 2122 if (ifp->if_bridge) 2123 (*bridge_linkstate_p)(ifp); 2124 if (ifp->if_lagg) 2125 (*lagg_linkstate_p)(ifp, link_state); 2126 2127 if (IS_DEFAULT_VNET(curvnet)) 2128 devctl_notify("IFNET", ifp->if_xname, 2129 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2130 NULL); 2131 if (pending > 1) 2132 if_printf(ifp, "%d link states coalesced\n", pending); 2133 if (log_link_state_change) 2134 log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname, 2135 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2136 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, ifp->if_link_state); 2137 CURVNET_RESTORE(); 2138 } 2139 2140 /* 2141 * Mark an interface down and notify protocols of 2142 * the transition. 2143 */ 2144 void 2145 if_down(struct ifnet *ifp) 2146 { 2147 2148 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2149 } 2150 2151 /* 2152 * Mark an interface up and notify protocols of 2153 * the transition. 2154 */ 2155 void 2156 if_up(struct ifnet *ifp) 2157 { 2158 2159 if_route(ifp, IFF_UP, AF_UNSPEC); 2160 } 2161 2162 /* 2163 * Flush an interface queue. 2164 */ 2165 void 2166 if_qflush(struct ifnet *ifp) 2167 { 2168 struct mbuf *m, *n; 2169 struct ifaltq *ifq; 2170 2171 ifq = &ifp->if_snd; 2172 IFQ_LOCK(ifq); 2173 #ifdef ALTQ 2174 if (ALTQ_IS_ENABLED(ifq)) 2175 ALTQ_PURGE(ifq); 2176 #endif 2177 n = ifq->ifq_head; 2178 while ((m = n) != 0) { 2179 n = m->m_nextpkt; 2180 m_freem(m); 2181 } 2182 ifq->ifq_head = 0; 2183 ifq->ifq_tail = 0; 2184 ifq->ifq_len = 0; 2185 IFQ_UNLOCK(ifq); 2186 } 2187 2188 /* 2189 * Map interface name to interface structure pointer, with or without 2190 * returning a reference. 2191 */ 2192 struct ifnet * 2193 ifunit_ref(const char *name) 2194 { 2195 struct ifnet *ifp; 2196 2197 IFNET_RLOCK_NOSLEEP(); 2198 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2199 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2200 !(ifp->if_flags & IFF_DYING)) 2201 break; 2202 } 2203 if (ifp != NULL) 2204 if_ref(ifp); 2205 IFNET_RUNLOCK_NOSLEEP(); 2206 return (ifp); 2207 } 2208 2209 struct ifnet * 2210 ifunit(const char *name) 2211 { 2212 struct ifnet *ifp; 2213 2214 IFNET_RLOCK_NOSLEEP(); 2215 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2216 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2217 break; 2218 } 2219 IFNET_RUNLOCK_NOSLEEP(); 2220 return (ifp); 2221 } 2222 2223 /* 2224 * Hardware specific interface ioctls. 2225 */ 2226 static int 2227 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2228 { 2229 struct ifreq *ifr; 2230 int error = 0; 2231 int new_flags, temp_flags; 2232 size_t namelen, onamelen; 2233 size_t descrlen; 2234 char *descrbuf, *odescrbuf; 2235 char new_name[IFNAMSIZ]; 2236 struct ifaddr *ifa; 2237 struct sockaddr_dl *sdl; 2238 2239 ifr = (struct ifreq *)data; 2240 switch (cmd) { 2241 case SIOCGIFINDEX: 2242 ifr->ifr_index = ifp->if_index; 2243 break; 2244 2245 case SIOCGIFFLAGS: 2246 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2247 ifr->ifr_flags = temp_flags & 0xffff; 2248 ifr->ifr_flagshigh = temp_flags >> 16; 2249 break; 2250 2251 case SIOCGIFCAP: 2252 ifr->ifr_reqcap = ifp->if_capabilities; 2253 ifr->ifr_curcap = ifp->if_capenable; 2254 break; 2255 2256 #ifdef MAC 2257 case SIOCGIFMAC: 2258 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2259 break; 2260 #endif 2261 2262 case SIOCGIFMETRIC: 2263 ifr->ifr_metric = ifp->if_metric; 2264 break; 2265 2266 case SIOCGIFMTU: 2267 ifr->ifr_mtu = ifp->if_mtu; 2268 break; 2269 2270 case SIOCGIFPHYS: 2271 /* XXXGL: did this ever worked? */ 2272 ifr->ifr_phys = 0; 2273 break; 2274 2275 case SIOCGIFDESCR: 2276 error = 0; 2277 sx_slock(&ifdescr_sx); 2278 if (ifp->if_description == NULL) 2279 error = ENOMSG; 2280 else { 2281 /* space for terminating nul */ 2282 descrlen = strlen(ifp->if_description) + 1; 2283 if (ifr->ifr_buffer.length < descrlen) 2284 ifr->ifr_buffer.buffer = NULL; 2285 else 2286 error = copyout(ifp->if_description, 2287 ifr->ifr_buffer.buffer, descrlen); 2288 ifr->ifr_buffer.length = descrlen; 2289 } 2290 sx_sunlock(&ifdescr_sx); 2291 break; 2292 2293 case SIOCSIFDESCR: 2294 error = priv_check(td, PRIV_NET_SETIFDESCR); 2295 if (error) 2296 return (error); 2297 2298 /* 2299 * Copy only (length-1) bytes to make sure that 2300 * if_description is always nul terminated. The 2301 * length parameter is supposed to count the 2302 * terminating nul in. 2303 */ 2304 if (ifr->ifr_buffer.length > ifdescr_maxlen) 2305 return (ENAMETOOLONG); 2306 else if (ifr->ifr_buffer.length == 0) 2307 descrbuf = NULL; 2308 else { 2309 descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR, 2310 M_WAITOK | M_ZERO); 2311 error = copyin(ifr->ifr_buffer.buffer, descrbuf, 2312 ifr->ifr_buffer.length - 1); 2313 if (error) { 2314 free(descrbuf, M_IFDESCR); 2315 break; 2316 } 2317 } 2318 2319 sx_xlock(&ifdescr_sx); 2320 odescrbuf = ifp->if_description; 2321 ifp->if_description = descrbuf; 2322 sx_xunlock(&ifdescr_sx); 2323 2324 getmicrotime(&ifp->if_lastchange); 2325 free(odescrbuf, M_IFDESCR); 2326 break; 2327 2328 case SIOCGIFFIB: 2329 ifr->ifr_fib = ifp->if_fib; 2330 break; 2331 2332 case SIOCSIFFIB: 2333 error = priv_check(td, PRIV_NET_SETIFFIB); 2334 if (error) 2335 return (error); 2336 if (ifr->ifr_fib >= rt_numfibs) 2337 return (EINVAL); 2338 2339 ifp->if_fib = ifr->ifr_fib; 2340 break; 2341 2342 case SIOCSIFFLAGS: 2343 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2344 if (error) 2345 return (error); 2346 /* 2347 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2348 * check, so we don't need special handling here yet. 2349 */ 2350 new_flags = (ifr->ifr_flags & 0xffff) | 2351 (ifr->ifr_flagshigh << 16); 2352 if (ifp->if_flags & IFF_UP && 2353 (new_flags & IFF_UP) == 0) { 2354 if_down(ifp); 2355 } else if (new_flags & IFF_UP && 2356 (ifp->if_flags & IFF_UP) == 0) { 2357 if_up(ifp); 2358 } 2359 /* See if permanently promiscuous mode bit is about to flip */ 2360 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2361 if (new_flags & IFF_PPROMISC) 2362 ifp->if_flags |= IFF_PROMISC; 2363 else if (ifp->if_pcount == 0) 2364 ifp->if_flags &= ~IFF_PROMISC; 2365 log(LOG_INFO, "%s: permanently promiscuous mode %s\n", 2366 ifp->if_xname, 2367 (new_flags & IFF_PPROMISC) ? "enabled" : "disabled"); 2368 } 2369 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2370 (new_flags &~ IFF_CANTCHANGE); 2371 if (ifp->if_ioctl) { 2372 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2373 } 2374 getmicrotime(&ifp->if_lastchange); 2375 break; 2376 2377 case SIOCSIFCAP: 2378 error = priv_check(td, PRIV_NET_SETIFCAP); 2379 if (error) 2380 return (error); 2381 if (ifp->if_ioctl == NULL) 2382 return (EOPNOTSUPP); 2383 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2384 return (EINVAL); 2385 error = (*ifp->if_ioctl)(ifp, cmd, data); 2386 if (error == 0) 2387 getmicrotime(&ifp->if_lastchange); 2388 break; 2389 2390 #ifdef MAC 2391 case SIOCSIFMAC: 2392 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2393 break; 2394 #endif 2395 2396 case SIOCSIFNAME: 2397 error = priv_check(td, PRIV_NET_SETIFNAME); 2398 if (error) 2399 return (error); 2400 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 2401 if (error != 0) 2402 return (error); 2403 if (new_name[0] == '\0') 2404 return (EINVAL); 2405 if (ifunit(new_name) != NULL) 2406 return (EEXIST); 2407 2408 /* 2409 * XXX: Locking. Nothing else seems to lock if_flags, 2410 * and there are numerous other races with the 2411 * ifunit() checks not being atomic with namespace 2412 * changes (renames, vmoves, if_attach, etc). 2413 */ 2414 ifp->if_flags |= IFF_RENAMING; 2415 2416 /* Announce the departure of the interface. */ 2417 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 2418 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 2419 2420 log(LOG_INFO, "%s: changing name to '%s'\n", 2421 ifp->if_xname, new_name); 2422 2423 IF_ADDR_WLOCK(ifp); 2424 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 2425 ifa = ifp->if_addr; 2426 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 2427 namelen = strlen(new_name); 2428 onamelen = sdl->sdl_nlen; 2429 /* 2430 * Move the address if needed. This is safe because we 2431 * allocate space for a name of length IFNAMSIZ when we 2432 * create this in if_attach(). 2433 */ 2434 if (namelen != onamelen) { 2435 bcopy(sdl->sdl_data + onamelen, 2436 sdl->sdl_data + namelen, sdl->sdl_alen); 2437 } 2438 bcopy(new_name, sdl->sdl_data, namelen); 2439 sdl->sdl_nlen = namelen; 2440 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 2441 bzero(sdl->sdl_data, onamelen); 2442 while (namelen != 0) 2443 sdl->sdl_data[--namelen] = 0xff; 2444 IF_ADDR_WUNLOCK(ifp); 2445 2446 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 2447 /* Announce the return of the interface. */ 2448 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 2449 2450 ifp->if_flags &= ~IFF_RENAMING; 2451 break; 2452 2453 #ifdef VIMAGE 2454 case SIOCSIFVNET: 2455 error = priv_check(td, PRIV_NET_SETIFVNET); 2456 if (error) 2457 return (error); 2458 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2459 break; 2460 #endif 2461 2462 case SIOCSIFMETRIC: 2463 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2464 if (error) 2465 return (error); 2466 ifp->if_metric = ifr->ifr_metric; 2467 getmicrotime(&ifp->if_lastchange); 2468 break; 2469 2470 case SIOCSIFPHYS: 2471 error = priv_check(td, PRIV_NET_SETIFPHYS); 2472 if (error) 2473 return (error); 2474 if (ifp->if_ioctl == NULL) 2475 return (EOPNOTSUPP); 2476 error = (*ifp->if_ioctl)(ifp, cmd, data); 2477 if (error == 0) 2478 getmicrotime(&ifp->if_lastchange); 2479 break; 2480 2481 case SIOCSIFMTU: 2482 { 2483 u_long oldmtu = ifp->if_mtu; 2484 2485 error = priv_check(td, PRIV_NET_SETIFMTU); 2486 if (error) 2487 return (error); 2488 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2489 return (EINVAL); 2490 if (ifp->if_ioctl == NULL) 2491 return (EOPNOTSUPP); 2492 error = (*ifp->if_ioctl)(ifp, cmd, data); 2493 if (error == 0) { 2494 getmicrotime(&ifp->if_lastchange); 2495 rt_ifmsg(ifp); 2496 } 2497 /* 2498 * If the link MTU changed, do network layer specific procedure. 2499 */ 2500 if (ifp->if_mtu != oldmtu) { 2501 #ifdef INET6 2502 nd6_setmtu(ifp); 2503 #endif 2504 } 2505 break; 2506 } 2507 2508 case SIOCADDMULTI: 2509 case SIOCDELMULTI: 2510 if (cmd == SIOCADDMULTI) 2511 error = priv_check(td, PRIV_NET_ADDMULTI); 2512 else 2513 error = priv_check(td, PRIV_NET_DELMULTI); 2514 if (error) 2515 return (error); 2516 2517 /* Don't allow group membership on non-multicast interfaces. */ 2518 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2519 return (EOPNOTSUPP); 2520 2521 /* Don't let users screw up protocols' entries. */ 2522 if (ifr->ifr_addr.sa_family != AF_LINK) 2523 return (EINVAL); 2524 2525 if (cmd == SIOCADDMULTI) { 2526 struct ifmultiaddr *ifma; 2527 2528 /* 2529 * Userland is only permitted to join groups once 2530 * via the if_addmulti() KPI, because it cannot hold 2531 * struct ifmultiaddr * between calls. It may also 2532 * lose a race while we check if the membership 2533 * already exists. 2534 */ 2535 IF_ADDR_RLOCK(ifp); 2536 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2537 IF_ADDR_RUNLOCK(ifp); 2538 if (ifma != NULL) 2539 error = EADDRINUSE; 2540 else 2541 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2542 } else { 2543 error = if_delmulti(ifp, &ifr->ifr_addr); 2544 } 2545 if (error == 0) 2546 getmicrotime(&ifp->if_lastchange); 2547 break; 2548 2549 case SIOCSIFPHYADDR: 2550 case SIOCDIFPHYADDR: 2551 #ifdef INET6 2552 case SIOCSIFPHYADDR_IN6: 2553 #endif 2554 case SIOCSIFMEDIA: 2555 case SIOCSIFGENERIC: 2556 error = priv_check(td, PRIV_NET_HWIOCTL); 2557 if (error) 2558 return (error); 2559 if (ifp->if_ioctl == NULL) 2560 return (EOPNOTSUPP); 2561 error = (*ifp->if_ioctl)(ifp, cmd, data); 2562 if (error == 0) 2563 getmicrotime(&ifp->if_lastchange); 2564 break; 2565 2566 case SIOCGIFSTATUS: 2567 case SIOCGIFPSRCADDR: 2568 case SIOCGIFPDSTADDR: 2569 case SIOCGIFMEDIA: 2570 case SIOCGIFGENERIC: 2571 if (ifp->if_ioctl == NULL) 2572 return (EOPNOTSUPP); 2573 error = (*ifp->if_ioctl)(ifp, cmd, data); 2574 break; 2575 2576 case SIOCSIFLLADDR: 2577 error = priv_check(td, PRIV_NET_SETLLADDR); 2578 if (error) 2579 return (error); 2580 error = if_setlladdr(ifp, 2581 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2582 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 2583 break; 2584 2585 case SIOCAIFGROUP: 2586 { 2587 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2588 2589 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2590 if (error) 2591 return (error); 2592 if ((error = if_addgroup(ifp, ifgr->ifgr_group))) 2593 return (error); 2594 break; 2595 } 2596 2597 case SIOCGIFGROUP: 2598 if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp))) 2599 return (error); 2600 break; 2601 2602 case SIOCDIFGROUP: 2603 { 2604 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2605 2606 error = priv_check(td, PRIV_NET_DELIFGROUP); 2607 if (error) 2608 return (error); 2609 if ((error = if_delgroup(ifp, ifgr->ifgr_group))) 2610 return (error); 2611 break; 2612 } 2613 2614 default: 2615 error = ENOIOCTL; 2616 break; 2617 } 2618 return (error); 2619 } 2620 2621 #ifdef COMPAT_FREEBSD32 2622 struct ifconf32 { 2623 int32_t ifc_len; 2624 union { 2625 uint32_t ifcu_buf; 2626 uint32_t ifcu_req; 2627 } ifc_ifcu; 2628 }; 2629 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 2630 #endif 2631 2632 /* 2633 * Interface ioctls. 2634 */ 2635 int 2636 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2637 { 2638 struct ifnet *ifp; 2639 struct ifreq *ifr; 2640 int error; 2641 int oif_flags; 2642 2643 CURVNET_SET(so->so_vnet); 2644 switch (cmd) { 2645 case SIOCGIFCONF: 2646 error = ifconf(cmd, data); 2647 CURVNET_RESTORE(); 2648 return (error); 2649 2650 #ifdef COMPAT_FREEBSD32 2651 case SIOCGIFCONF32: 2652 { 2653 struct ifconf32 *ifc32; 2654 struct ifconf ifc; 2655 2656 ifc32 = (struct ifconf32 *)data; 2657 ifc.ifc_len = ifc32->ifc_len; 2658 ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2659 2660 error = ifconf(SIOCGIFCONF, (void *)&ifc); 2661 CURVNET_RESTORE(); 2662 if (error == 0) 2663 ifc32->ifc_len = ifc.ifc_len; 2664 return (error); 2665 } 2666 #endif 2667 } 2668 ifr = (struct ifreq *)data; 2669 2670 switch (cmd) { 2671 #ifdef VIMAGE 2672 case SIOCSIFRVNET: 2673 error = priv_check(td, PRIV_NET_SETIFVNET); 2674 if (error == 0) 2675 error = if_vmove_reclaim(td, ifr->ifr_name, 2676 ifr->ifr_jid); 2677 CURVNET_RESTORE(); 2678 return (error); 2679 #endif 2680 case SIOCIFCREATE: 2681 case SIOCIFCREATE2: 2682 error = priv_check(td, PRIV_NET_IFCREATE); 2683 if (error == 0) 2684 error = if_clone_create(ifr->ifr_name, 2685 sizeof(ifr->ifr_name), 2686 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL); 2687 CURVNET_RESTORE(); 2688 return (error); 2689 case SIOCIFDESTROY: 2690 error = priv_check(td, PRIV_NET_IFDESTROY); 2691 if (error == 0) 2692 error = if_clone_destroy(ifr->ifr_name); 2693 CURVNET_RESTORE(); 2694 return (error); 2695 2696 case SIOCIFGCLONERS: 2697 error = if_clone_list((struct if_clonereq *)data); 2698 CURVNET_RESTORE(); 2699 return (error); 2700 case SIOCGIFGMEMB: 2701 error = if_getgroupmembers((struct ifgroupreq *)data); 2702 CURVNET_RESTORE(); 2703 return (error); 2704 #if defined(INET) || defined(INET6) 2705 case SIOCSVH: 2706 case SIOCGVH: 2707 if (carp_ioctl_p == NULL) 2708 error = EPROTONOSUPPORT; 2709 else 2710 error = (*carp_ioctl_p)(ifr, cmd, td); 2711 CURVNET_RESTORE(); 2712 return (error); 2713 #endif 2714 } 2715 2716 ifp = ifunit_ref(ifr->ifr_name); 2717 if (ifp == NULL) { 2718 CURVNET_RESTORE(); 2719 return (ENXIO); 2720 } 2721 2722 error = ifhwioctl(cmd, ifp, data, td); 2723 if (error != ENOIOCTL) { 2724 if_rele(ifp); 2725 CURVNET_RESTORE(); 2726 return (error); 2727 } 2728 2729 oif_flags = ifp->if_flags; 2730 if (so->so_proto == NULL) { 2731 if_rele(ifp); 2732 CURVNET_RESTORE(); 2733 return (EOPNOTSUPP); 2734 } 2735 2736 /* 2737 * Pass the request on to the socket control method, and if the 2738 * latter returns EOPNOTSUPP, directly to the interface. 2739 * 2740 * Make an exception for the legacy SIOCSIF* requests. Drivers 2741 * trust SIOCSIFADDR et al to come from an already privileged 2742 * layer, and do not perform any credentials checks or input 2743 * validation. 2744 */ 2745 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, 2746 ifp, td)); 2747 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 2748 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 2749 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 2750 error = (*ifp->if_ioctl)(ifp, cmd, data); 2751 2752 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 2753 #ifdef INET6 2754 if (ifp->if_flags & IFF_UP) 2755 in6_if_up(ifp); 2756 #endif 2757 } 2758 if_rele(ifp); 2759 CURVNET_RESTORE(); 2760 return (error); 2761 } 2762 2763 /* 2764 * The code common to handling reference counted flags, 2765 * e.g., in ifpromisc() and if_allmulti(). 2766 * The "pflag" argument can specify a permanent mode flag to check, 2767 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 2768 * 2769 * Only to be used on stack-owned flags, not driver-owned flags. 2770 */ 2771 static int 2772 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 2773 { 2774 struct ifreq ifr; 2775 int error; 2776 int oldflags, oldcount; 2777 2778 /* Sanity checks to catch programming errors */ 2779 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 2780 ("%s: setting driver-owned flag %d", __func__, flag)); 2781 2782 if (onswitch) 2783 KASSERT(*refcount >= 0, 2784 ("%s: increment negative refcount %d for flag %d", 2785 __func__, *refcount, flag)); 2786 else 2787 KASSERT(*refcount > 0, 2788 ("%s: decrement non-positive refcount %d for flag %d", 2789 __func__, *refcount, flag)); 2790 2791 /* In case this mode is permanent, just touch refcount */ 2792 if (ifp->if_flags & pflag) { 2793 *refcount += onswitch ? 1 : -1; 2794 return (0); 2795 } 2796 2797 /* Save ifnet parameters for if_ioctl() may fail */ 2798 oldcount = *refcount; 2799 oldflags = ifp->if_flags; 2800 2801 /* 2802 * See if we aren't the only and touching refcount is enough. 2803 * Actually toggle interface flag if we are the first or last. 2804 */ 2805 if (onswitch) { 2806 if ((*refcount)++) 2807 return (0); 2808 ifp->if_flags |= flag; 2809 } else { 2810 if (--(*refcount)) 2811 return (0); 2812 ifp->if_flags &= ~flag; 2813 } 2814 2815 /* Call down the driver since we've changed interface flags */ 2816 if (ifp->if_ioctl == NULL) { 2817 error = EOPNOTSUPP; 2818 goto recover; 2819 } 2820 ifr.ifr_flags = ifp->if_flags & 0xffff; 2821 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2822 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 2823 if (error) 2824 goto recover; 2825 /* Notify userland that interface flags have changed */ 2826 rt_ifmsg(ifp); 2827 return (0); 2828 2829 recover: 2830 /* Recover after driver error */ 2831 *refcount = oldcount; 2832 ifp->if_flags = oldflags; 2833 return (error); 2834 } 2835 2836 /* 2837 * Set/clear promiscuous mode on interface ifp based on the truth value 2838 * of pswitch. The calls are reference counted so that only the first 2839 * "on" request actually has an effect, as does the final "off" request. 2840 * Results are undefined if the "off" and "on" requests are not matched. 2841 */ 2842 int 2843 ifpromisc(struct ifnet *ifp, int pswitch) 2844 { 2845 int error; 2846 int oldflags = ifp->if_flags; 2847 2848 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 2849 &ifp->if_pcount, pswitch); 2850 /* If promiscuous mode status has changed, log a message */ 2851 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC)) 2852 log(LOG_INFO, "%s: promiscuous mode %s\n", 2853 ifp->if_xname, 2854 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 2855 return (error); 2856 } 2857 2858 /* 2859 * Return interface configuration 2860 * of system. List may be used 2861 * in later ioctl's (above) to get 2862 * other information. 2863 */ 2864 /*ARGSUSED*/ 2865 static int 2866 ifconf(u_long cmd, caddr_t data) 2867 { 2868 struct ifconf *ifc = (struct ifconf *)data; 2869 struct ifnet *ifp; 2870 struct ifaddr *ifa; 2871 struct ifreq ifr; 2872 struct sbuf *sb; 2873 int error, full = 0, valid_len, max_len; 2874 2875 /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ 2876 max_len = MAXPHYS - 1; 2877 2878 /* Prevent hostile input from being able to crash the system */ 2879 if (ifc->ifc_len <= 0) 2880 return (EINVAL); 2881 2882 again: 2883 if (ifc->ifc_len <= max_len) { 2884 max_len = ifc->ifc_len; 2885 full = 1; 2886 } 2887 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 2888 max_len = 0; 2889 valid_len = 0; 2890 2891 IFNET_RLOCK(); 2892 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2893 int addrs; 2894 2895 /* 2896 * Zero the ifr_name buffer to make sure we don't 2897 * disclose the contents of the stack. 2898 */ 2899 memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name)); 2900 2901 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 2902 >= sizeof(ifr.ifr_name)) { 2903 sbuf_delete(sb); 2904 IFNET_RUNLOCK(); 2905 return (ENAMETOOLONG); 2906 } 2907 2908 addrs = 0; 2909 IF_ADDR_RLOCK(ifp); 2910 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2911 struct sockaddr *sa = ifa->ifa_addr; 2912 2913 if (prison_if(curthread->td_ucred, sa) != 0) 2914 continue; 2915 addrs++; 2916 if (sa->sa_len <= sizeof(*sa)) { 2917 ifr.ifr_addr = *sa; 2918 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2919 max_len += sizeof(ifr); 2920 } else { 2921 sbuf_bcat(sb, &ifr, 2922 offsetof(struct ifreq, ifr_addr)); 2923 max_len += offsetof(struct ifreq, ifr_addr); 2924 sbuf_bcat(sb, sa, sa->sa_len); 2925 max_len += sa->sa_len; 2926 } 2927 2928 if (sbuf_error(sb) == 0) 2929 valid_len = sbuf_len(sb); 2930 } 2931 IF_ADDR_RUNLOCK(ifp); 2932 if (addrs == 0) { 2933 bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); 2934 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2935 max_len += sizeof(ifr); 2936 2937 if (sbuf_error(sb) == 0) 2938 valid_len = sbuf_len(sb); 2939 } 2940 } 2941 IFNET_RUNLOCK(); 2942 2943 /* 2944 * If we didn't allocate enough space (uncommon), try again. If 2945 * we have already allocated as much space as we are allowed, 2946 * return what we've got. 2947 */ 2948 if (valid_len != max_len && !full) { 2949 sbuf_delete(sb); 2950 goto again; 2951 } 2952 2953 ifc->ifc_len = valid_len; 2954 sbuf_finish(sb); 2955 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 2956 sbuf_delete(sb); 2957 return (error); 2958 } 2959 2960 /* 2961 * Just like ifpromisc(), but for all-multicast-reception mode. 2962 */ 2963 int 2964 if_allmulti(struct ifnet *ifp, int onswitch) 2965 { 2966 2967 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 2968 } 2969 2970 struct ifmultiaddr * 2971 if_findmulti(struct ifnet *ifp, struct sockaddr *sa) 2972 { 2973 struct ifmultiaddr *ifma; 2974 2975 IF_ADDR_LOCK_ASSERT(ifp); 2976 2977 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2978 if (sa->sa_family == AF_LINK) { 2979 if (sa_dl_equal(ifma->ifma_addr, sa)) 2980 break; 2981 } else { 2982 if (sa_equal(ifma->ifma_addr, sa)) 2983 break; 2984 } 2985 } 2986 2987 return ifma; 2988 } 2989 2990 /* 2991 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 2992 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 2993 * the ifnet multicast address list here, so the caller must do that and 2994 * other setup work (such as notifying the device driver). The reference 2995 * count is initialized to 1. 2996 */ 2997 static struct ifmultiaddr * 2998 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 2999 int mflags) 3000 { 3001 struct ifmultiaddr *ifma; 3002 struct sockaddr *dupsa; 3003 3004 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3005 M_ZERO); 3006 if (ifma == NULL) 3007 return (NULL); 3008 3009 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3010 if (dupsa == NULL) { 3011 free(ifma, M_IFMADDR); 3012 return (NULL); 3013 } 3014 bcopy(sa, dupsa, sa->sa_len); 3015 ifma->ifma_addr = dupsa; 3016 3017 ifma->ifma_ifp = ifp; 3018 ifma->ifma_refcount = 1; 3019 ifma->ifma_protospec = NULL; 3020 3021 if (llsa == NULL) { 3022 ifma->ifma_lladdr = NULL; 3023 return (ifma); 3024 } 3025 3026 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3027 if (dupsa == NULL) { 3028 free(ifma->ifma_addr, M_IFMADDR); 3029 free(ifma, M_IFMADDR); 3030 return (NULL); 3031 } 3032 bcopy(llsa, dupsa, llsa->sa_len); 3033 ifma->ifma_lladdr = dupsa; 3034 3035 return (ifma); 3036 } 3037 3038 /* 3039 * if_freemulti: free ifmultiaddr structure and possibly attached related 3040 * addresses. The caller is responsible for implementing reference 3041 * counting, notifying the driver, handling routing messages, and releasing 3042 * any dependent link layer state. 3043 */ 3044 static void 3045 if_freemulti(struct ifmultiaddr *ifma) 3046 { 3047 3048 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3049 ifma->ifma_refcount)); 3050 3051 if (ifma->ifma_lladdr != NULL) 3052 free(ifma->ifma_lladdr, M_IFMADDR); 3053 free(ifma->ifma_addr, M_IFMADDR); 3054 free(ifma, M_IFMADDR); 3055 } 3056 3057 /* 3058 * Register an additional multicast address with a network interface. 3059 * 3060 * - If the address is already present, bump the reference count on the 3061 * address and return. 3062 * - If the address is not link-layer, look up a link layer address. 3063 * - Allocate address structures for one or both addresses, and attach to the 3064 * multicast address list on the interface. If automatically adding a link 3065 * layer address, the protocol address will own a reference to the link 3066 * layer address, to be freed when it is freed. 3067 * - Notify the network device driver of an addition to the multicast address 3068 * list. 3069 * 3070 * 'sa' points to caller-owned memory with the desired multicast address. 3071 * 3072 * 'retifma' will be used to return a pointer to the resulting multicast 3073 * address reference, if desired. 3074 */ 3075 int 3076 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3077 struct ifmultiaddr **retifma) 3078 { 3079 struct ifmultiaddr *ifma, *ll_ifma; 3080 struct sockaddr *llsa; 3081 struct sockaddr_dl sdl; 3082 int error; 3083 3084 /* 3085 * If the address is already present, return a new reference to it; 3086 * otherwise, allocate storage and set up a new address. 3087 */ 3088 IF_ADDR_WLOCK(ifp); 3089 ifma = if_findmulti(ifp, sa); 3090 if (ifma != NULL) { 3091 ifma->ifma_refcount++; 3092 if (retifma != NULL) 3093 *retifma = ifma; 3094 IF_ADDR_WUNLOCK(ifp); 3095 return (0); 3096 } 3097 3098 /* 3099 * The address isn't already present; resolve the protocol address 3100 * into a link layer address, and then look that up, bump its 3101 * refcount or allocate an ifma for that also. 3102 * Most link layer resolving functions returns address data which 3103 * fits inside default sockaddr_dl structure. However callback 3104 * can allocate another sockaddr structure, in that case we need to 3105 * free it later. 3106 */ 3107 llsa = NULL; 3108 ll_ifma = NULL; 3109 if (ifp->if_resolvemulti != NULL) { 3110 /* Provide called function with buffer size information */ 3111 sdl.sdl_len = sizeof(sdl); 3112 llsa = (struct sockaddr *)&sdl; 3113 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3114 if (error) 3115 goto unlock_out; 3116 } 3117 3118 /* 3119 * Allocate the new address. Don't hook it up yet, as we may also 3120 * need to allocate a link layer multicast address. 3121 */ 3122 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3123 if (ifma == NULL) { 3124 error = ENOMEM; 3125 goto free_llsa_out; 3126 } 3127 3128 /* 3129 * If a link layer address is found, we'll need to see if it's 3130 * already present in the address list, or allocate is as well. 3131 * When this block finishes, the link layer address will be on the 3132 * list. 3133 */ 3134 if (llsa != NULL) { 3135 ll_ifma = if_findmulti(ifp, llsa); 3136 if (ll_ifma == NULL) { 3137 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3138 if (ll_ifma == NULL) { 3139 --ifma->ifma_refcount; 3140 if_freemulti(ifma); 3141 error = ENOMEM; 3142 goto free_llsa_out; 3143 } 3144 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3145 ifma_link); 3146 } else 3147 ll_ifma->ifma_refcount++; 3148 ifma->ifma_llifma = ll_ifma; 3149 } 3150 3151 /* 3152 * We now have a new multicast address, ifma, and possibly a new or 3153 * referenced link layer address. Add the primary address to the 3154 * ifnet address list. 3155 */ 3156 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3157 3158 if (retifma != NULL) 3159 *retifma = ifma; 3160 3161 /* 3162 * Must generate the message while holding the lock so that 'ifma' 3163 * pointer is still valid. 3164 */ 3165 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3166 IF_ADDR_WUNLOCK(ifp); 3167 3168 /* 3169 * We are certain we have added something, so call down to the 3170 * interface to let them know about it. 3171 */ 3172 if (ifp->if_ioctl != NULL) { 3173 (void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3174 } 3175 3176 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3177 link_free_sdl(llsa); 3178 3179 return (0); 3180 3181 free_llsa_out: 3182 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3183 link_free_sdl(llsa); 3184 3185 unlock_out: 3186 IF_ADDR_WUNLOCK(ifp); 3187 return (error); 3188 } 3189 3190 /* 3191 * Delete a multicast group membership by network-layer group address. 3192 * 3193 * Returns ENOENT if the entry could not be found. If ifp no longer 3194 * exists, results are undefined. This entry point should only be used 3195 * from subsystems which do appropriate locking to hold ifp for the 3196 * duration of the call. 3197 * Network-layer protocol domains must use if_delmulti_ifma(). 3198 */ 3199 int 3200 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3201 { 3202 struct ifmultiaddr *ifma; 3203 int lastref; 3204 #ifdef INVARIANTS 3205 struct ifnet *oifp; 3206 3207 IFNET_RLOCK_NOSLEEP(); 3208 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3209 if (ifp == oifp) 3210 break; 3211 if (ifp != oifp) 3212 ifp = NULL; 3213 IFNET_RUNLOCK_NOSLEEP(); 3214 3215 KASSERT(ifp != NULL, ("%s: ifnet went away", __func__)); 3216 #endif 3217 if (ifp == NULL) 3218 return (ENOENT); 3219 3220 IF_ADDR_WLOCK(ifp); 3221 lastref = 0; 3222 ifma = if_findmulti(ifp, sa); 3223 if (ifma != NULL) 3224 lastref = if_delmulti_locked(ifp, ifma, 0); 3225 IF_ADDR_WUNLOCK(ifp); 3226 3227 if (ifma == NULL) 3228 return (ENOENT); 3229 3230 if (lastref && ifp->if_ioctl != NULL) { 3231 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3232 } 3233 3234 return (0); 3235 } 3236 3237 /* 3238 * Delete all multicast group membership for an interface. 3239 * Should be used to quickly flush all multicast filters. 3240 */ 3241 void 3242 if_delallmulti(struct ifnet *ifp) 3243 { 3244 struct ifmultiaddr *ifma; 3245 struct ifmultiaddr *next; 3246 3247 IF_ADDR_WLOCK(ifp); 3248 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3249 if_delmulti_locked(ifp, ifma, 0); 3250 IF_ADDR_WUNLOCK(ifp); 3251 } 3252 3253 /* 3254 * Delete a multicast group membership by group membership pointer. 3255 * Network-layer protocol domains must use this routine. 3256 * 3257 * It is safe to call this routine if the ifp disappeared. 3258 */ 3259 void 3260 if_delmulti_ifma(struct ifmultiaddr *ifma) 3261 { 3262 struct ifnet *ifp; 3263 int lastref; 3264 3265 ifp = ifma->ifma_ifp; 3266 #ifdef DIAGNOSTIC 3267 if (ifp == NULL) { 3268 printf("%s: ifma_ifp seems to be detached\n", __func__); 3269 } else { 3270 struct ifnet *oifp; 3271 3272 IFNET_RLOCK_NOSLEEP(); 3273 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3274 if (ifp == oifp) 3275 break; 3276 if (ifp != oifp) { 3277 printf("%s: ifnet %p disappeared\n", __func__, ifp); 3278 ifp = NULL; 3279 } 3280 IFNET_RUNLOCK_NOSLEEP(); 3281 } 3282 #endif 3283 /* 3284 * If and only if the ifnet instance exists: Acquire the address lock. 3285 */ 3286 if (ifp != NULL) 3287 IF_ADDR_WLOCK(ifp); 3288 3289 lastref = if_delmulti_locked(ifp, ifma, 0); 3290 3291 if (ifp != NULL) { 3292 /* 3293 * If and only if the ifnet instance exists: 3294 * Release the address lock. 3295 * If the group was left: update the hardware hash filter. 3296 */ 3297 IF_ADDR_WUNLOCK(ifp); 3298 if (lastref && ifp->if_ioctl != NULL) { 3299 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3300 } 3301 } 3302 } 3303 3304 /* 3305 * Perform deletion of network-layer and/or link-layer multicast address. 3306 * 3307 * Return 0 if the reference count was decremented. 3308 * Return 1 if the final reference was released, indicating that the 3309 * hardware hash filter should be reprogrammed. 3310 */ 3311 static int 3312 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3313 { 3314 struct ifmultiaddr *ll_ifma; 3315 3316 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3317 KASSERT(ifma->ifma_ifp == ifp, 3318 ("%s: inconsistent ifp %p", __func__, ifp)); 3319 IF_ADDR_WLOCK_ASSERT(ifp); 3320 } 3321 3322 ifp = ifma->ifma_ifp; 3323 3324 /* 3325 * If the ifnet is detaching, null out references to ifnet, 3326 * so that upper protocol layers will notice, and not attempt 3327 * to obtain locks for an ifnet which no longer exists. The 3328 * routing socket announcement must happen before the ifnet 3329 * instance is detached from the system. 3330 */ 3331 if (detaching) { 3332 #ifdef DIAGNOSTIC 3333 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3334 #endif 3335 /* 3336 * ifp may already be nulled out if we are being reentered 3337 * to delete the ll_ifma. 3338 */ 3339 if (ifp != NULL) { 3340 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3341 ifma->ifma_ifp = NULL; 3342 } 3343 } 3344 3345 if (--ifma->ifma_refcount > 0) 3346 return 0; 3347 3348 /* 3349 * If this ifma is a network-layer ifma, a link-layer ifma may 3350 * have been associated with it. Release it first if so. 3351 */ 3352 ll_ifma = ifma->ifma_llifma; 3353 if (ll_ifma != NULL) { 3354 KASSERT(ifma->ifma_lladdr != NULL, 3355 ("%s: llifma w/o lladdr", __func__)); 3356 if (detaching) 3357 ll_ifma->ifma_ifp = NULL; /* XXX */ 3358 if (--ll_ifma->ifma_refcount == 0) { 3359 if (ifp != NULL) { 3360 TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, 3361 ifma_link); 3362 } 3363 if_freemulti(ll_ifma); 3364 } 3365 } 3366 3367 if (ifp != NULL) 3368 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 3369 3370 if_freemulti(ifma); 3371 3372 /* 3373 * The last reference to this instance of struct ifmultiaddr 3374 * was released; the hardware should be notified of this change. 3375 */ 3376 return 1; 3377 } 3378 3379 /* 3380 * Set the link layer address on an interface. 3381 * 3382 * At this time we only support certain types of interfaces, 3383 * and we don't allow the length of the address to change. 3384 */ 3385 int 3386 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3387 { 3388 struct sockaddr_dl *sdl; 3389 struct ifaddr *ifa; 3390 struct ifreq ifr; 3391 3392 IF_ADDR_RLOCK(ifp); 3393 ifa = ifp->if_addr; 3394 if (ifa == NULL) { 3395 IF_ADDR_RUNLOCK(ifp); 3396 return (EINVAL); 3397 } 3398 ifa_ref(ifa); 3399 IF_ADDR_RUNLOCK(ifp); 3400 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3401 if (sdl == NULL) { 3402 ifa_free(ifa); 3403 return (EINVAL); 3404 } 3405 if (len != sdl->sdl_alen) { /* don't allow length to change */ 3406 ifa_free(ifa); 3407 return (EINVAL); 3408 } 3409 switch (ifp->if_type) { 3410 case IFT_ETHER: 3411 case IFT_FDDI: 3412 case IFT_XETHER: 3413 case IFT_ISO88025: 3414 case IFT_L2VLAN: 3415 case IFT_BRIDGE: 3416 case IFT_ARCNET: 3417 case IFT_IEEE8023ADLAG: 3418 case IFT_IEEE80211: 3419 bcopy(lladdr, LLADDR(sdl), len); 3420 ifa_free(ifa); 3421 break; 3422 default: 3423 ifa_free(ifa); 3424 return (ENODEV); 3425 } 3426 3427 /* 3428 * If the interface is already up, we need 3429 * to re-init it in order to reprogram its 3430 * address filter. 3431 */ 3432 if ((ifp->if_flags & IFF_UP) != 0) { 3433 if (ifp->if_ioctl) { 3434 ifp->if_flags &= ~IFF_UP; 3435 ifr.ifr_flags = ifp->if_flags & 0xffff; 3436 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3437 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3438 ifp->if_flags |= IFF_UP; 3439 ifr.ifr_flags = ifp->if_flags & 0xffff; 3440 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3441 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3442 } 3443 #ifdef INET 3444 /* 3445 * Also send gratuitous ARPs to notify other nodes about 3446 * the address change. 3447 */ 3448 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3449 if (ifa->ifa_addr->sa_family == AF_INET) 3450 arp_ifinit(ifp, ifa); 3451 } 3452 #endif 3453 } 3454 return (0); 3455 } 3456 3457 /* 3458 * The name argument must be a pointer to storage which will last as 3459 * long as the interface does. For physical devices, the result of 3460 * device_get_name(dev) is a good choice and for pseudo-devices a 3461 * static string works well. 3462 */ 3463 void 3464 if_initname(struct ifnet *ifp, const char *name, int unit) 3465 { 3466 ifp->if_dname = name; 3467 ifp->if_dunit = unit; 3468 if (unit != IF_DUNIT_NONE) 3469 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 3470 else 3471 strlcpy(ifp->if_xname, name, IFNAMSIZ); 3472 } 3473 3474 int 3475 if_printf(struct ifnet *ifp, const char * fmt, ...) 3476 { 3477 va_list ap; 3478 int retval; 3479 3480 retval = printf("%s: ", ifp->if_xname); 3481 va_start(ap, fmt); 3482 retval += vprintf(fmt, ap); 3483 va_end(ap); 3484 return (retval); 3485 } 3486 3487 void 3488 if_start(struct ifnet *ifp) 3489 { 3490 3491 (*(ifp)->if_start)(ifp); 3492 } 3493 3494 /* 3495 * Backwards compatibility interface for drivers 3496 * that have not implemented it 3497 */ 3498 static int 3499 if_transmit(struct ifnet *ifp, struct mbuf *m) 3500 { 3501 int error; 3502 3503 IFQ_HANDOFF(ifp, m, error); 3504 return (error); 3505 } 3506 3507 int 3508 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 3509 { 3510 int active = 0; 3511 3512 IF_LOCK(ifq); 3513 if (_IF_QFULL(ifq)) { 3514 IF_UNLOCK(ifq); 3515 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 3516 m_freem(m); 3517 return (0); 3518 } 3519 if (ifp != NULL) { 3520 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 3521 if (m->m_flags & (M_BCAST|M_MCAST)) 3522 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3523 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 3524 } 3525 _IF_ENQUEUE(ifq, m); 3526 IF_UNLOCK(ifq); 3527 if (ifp != NULL && !active) 3528 (*(ifp)->if_start)(ifp); 3529 return (1); 3530 } 3531 3532 void 3533 if_register_com_alloc(u_char type, 3534 if_com_alloc_t *a, if_com_free_t *f) 3535 { 3536 3537 KASSERT(if_com_alloc[type] == NULL, 3538 ("if_register_com_alloc: %d already registered", type)); 3539 KASSERT(if_com_free[type] == NULL, 3540 ("if_register_com_alloc: %d free already registered", type)); 3541 3542 if_com_alloc[type] = a; 3543 if_com_free[type] = f; 3544 } 3545 3546 void 3547 if_deregister_com_alloc(u_char type) 3548 { 3549 3550 KASSERT(if_com_alloc[type] != NULL, 3551 ("if_deregister_com_alloc: %d not registered", type)); 3552 KASSERT(if_com_free[type] != NULL, 3553 ("if_deregister_com_alloc: %d free not registered", type)); 3554 if_com_alloc[type] = NULL; 3555 if_com_free[type] = NULL; 3556 } 3557 3558 /* API for driver access to network stack owned ifnet.*/ 3559 uint64_t 3560 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 3561 { 3562 uint64_t oldbrate; 3563 3564 oldbrate = ifp->if_baudrate; 3565 ifp->if_baudrate = baudrate; 3566 return (oldbrate); 3567 } 3568 3569 uint64_t 3570 if_getbaudrate(if_t ifp) 3571 { 3572 3573 return (((struct ifnet *)ifp)->if_baudrate); 3574 } 3575 3576 int 3577 if_setcapabilities(if_t ifp, int capabilities) 3578 { 3579 ((struct ifnet *)ifp)->if_capabilities = capabilities; 3580 return (0); 3581 } 3582 3583 int 3584 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 3585 { 3586 ((struct ifnet *)ifp)->if_capabilities |= setbit; 3587 ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; 3588 3589 return (0); 3590 } 3591 3592 int 3593 if_getcapabilities(if_t ifp) 3594 { 3595 return ((struct ifnet *)ifp)->if_capabilities; 3596 } 3597 3598 int 3599 if_setcapenable(if_t ifp, int capabilities) 3600 { 3601 ((struct ifnet *)ifp)->if_capenable = capabilities; 3602 return (0); 3603 } 3604 3605 int 3606 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 3607 { 3608 if(setcap) 3609 ((struct ifnet *)ifp)->if_capenable |= setcap; 3610 if(clearcap) 3611 ((struct ifnet *)ifp)->if_capenable &= ~clearcap; 3612 3613 return (0); 3614 } 3615 3616 const char * 3617 if_getdname(if_t ifp) 3618 { 3619 return ((struct ifnet *)ifp)->if_dname; 3620 } 3621 3622 int 3623 if_togglecapenable(if_t ifp, int togglecap) 3624 { 3625 ((struct ifnet *)ifp)->if_capenable ^= togglecap; 3626 return (0); 3627 } 3628 3629 int 3630 if_getcapenable(if_t ifp) 3631 { 3632 return ((struct ifnet *)ifp)->if_capenable; 3633 } 3634 3635 /* 3636 * This is largely undesirable because it ties ifnet to a device, but does 3637 * provide flexiblity for an embedded product vendor. Should be used with 3638 * the understanding that it violates the interface boundaries, and should be 3639 * a last resort only. 3640 */ 3641 int 3642 if_setdev(if_t ifp, void *dev) 3643 { 3644 return (0); 3645 } 3646 3647 int 3648 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 3649 { 3650 ((struct ifnet *)ifp)->if_drv_flags |= set_flags; 3651 ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; 3652 3653 return (0); 3654 } 3655 3656 int 3657 if_getdrvflags(if_t ifp) 3658 { 3659 return ((struct ifnet *)ifp)->if_drv_flags; 3660 } 3661 3662 int 3663 if_setdrvflags(if_t ifp, int flags) 3664 { 3665 ((struct ifnet *)ifp)->if_drv_flags = flags; 3666 return (0); 3667 } 3668 3669 3670 int 3671 if_setflags(if_t ifp, int flags) 3672 { 3673 ((struct ifnet *)ifp)->if_flags = flags; 3674 return (0); 3675 } 3676 3677 int 3678 if_setflagbits(if_t ifp, int set, int clear) 3679 { 3680 ((struct ifnet *)ifp)->if_flags |= set; 3681 ((struct ifnet *)ifp)->if_flags &= ~clear; 3682 3683 return (0); 3684 } 3685 3686 int 3687 if_getflags(if_t ifp) 3688 { 3689 return ((struct ifnet *)ifp)->if_flags; 3690 } 3691 3692 int 3693 if_clearhwassist(if_t ifp) 3694 { 3695 ((struct ifnet *)ifp)->if_hwassist = 0; 3696 return (0); 3697 } 3698 3699 int 3700 if_sethwassistbits(if_t ifp, int toset, int toclear) 3701 { 3702 ((struct ifnet *)ifp)->if_hwassist |= toset; 3703 ((struct ifnet *)ifp)->if_hwassist &= ~toclear; 3704 3705 return (0); 3706 } 3707 3708 int 3709 if_sethwassist(if_t ifp, int hwassist_bit) 3710 { 3711 ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; 3712 return (0); 3713 } 3714 3715 int 3716 if_gethwassist(if_t ifp) 3717 { 3718 return ((struct ifnet *)ifp)->if_hwassist; 3719 } 3720 3721 int 3722 if_setmtu(if_t ifp, int mtu) 3723 { 3724 ((struct ifnet *)ifp)->if_mtu = mtu; 3725 return (0); 3726 } 3727 3728 int 3729 if_getmtu(if_t ifp) 3730 { 3731 return ((struct ifnet *)ifp)->if_mtu; 3732 } 3733 3734 int 3735 if_getmtu_family(if_t ifp, int family) 3736 { 3737 struct domain *dp; 3738 3739 for (dp = domains; dp; dp = dp->dom_next) { 3740 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 3741 return (dp->dom_ifmtu((struct ifnet *)ifp)); 3742 } 3743 3744 return (((struct ifnet *)ifp)->if_mtu); 3745 } 3746 3747 int 3748 if_setsoftc(if_t ifp, void *softc) 3749 { 3750 ((struct ifnet *)ifp)->if_softc = softc; 3751 return (0); 3752 } 3753 3754 void * 3755 if_getsoftc(if_t ifp) 3756 { 3757 return ((struct ifnet *)ifp)->if_softc; 3758 } 3759 3760 void 3761 if_setrcvif(struct mbuf *m, if_t ifp) 3762 { 3763 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 3764 } 3765 3766 void 3767 if_setvtag(struct mbuf *m, uint16_t tag) 3768 { 3769 m->m_pkthdr.ether_vtag = tag; 3770 } 3771 3772 uint16_t 3773 if_getvtag(struct mbuf *m) 3774 { 3775 3776 return (m->m_pkthdr.ether_vtag); 3777 } 3778 3779 int 3780 if_sendq_empty(if_t ifp) 3781 { 3782 return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); 3783 } 3784 3785 struct ifaddr * 3786 if_getifaddr(if_t ifp) 3787 { 3788 return ((struct ifnet *)ifp)->if_addr; 3789 } 3790 3791 int 3792 if_getamcount(if_t ifp) 3793 { 3794 return ((struct ifnet *)ifp)->if_amcount; 3795 } 3796 3797 3798 int 3799 if_setsendqready(if_t ifp) 3800 { 3801 IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); 3802 return (0); 3803 } 3804 3805 int 3806 if_setsendqlen(if_t ifp, int tx_desc_count) 3807 { 3808 IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); 3809 ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; 3810 3811 return (0); 3812 } 3813 3814 int 3815 if_vlantrunkinuse(if_t ifp) 3816 { 3817 return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; 3818 } 3819 3820 int 3821 if_input(if_t ifp, struct mbuf* sendmp) 3822 { 3823 (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); 3824 return (0); 3825 3826 } 3827 3828 /* XXX */ 3829 #ifndef ETH_ADDR_LEN 3830 #define ETH_ADDR_LEN 6 3831 #endif 3832 3833 int 3834 if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max) 3835 { 3836 struct ifmultiaddr *ifma; 3837 uint8_t *lmta = (uint8_t *)mta; 3838 int mcnt = 0; 3839 3840 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3841 if (ifma->ifma_addr->sa_family != AF_LINK) 3842 continue; 3843 3844 if (mcnt == max) 3845 break; 3846 3847 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 3848 &lmta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); 3849 mcnt++; 3850 } 3851 *cnt = mcnt; 3852 3853 return (0); 3854 } 3855 3856 int 3857 if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max) 3858 { 3859 int error; 3860 3861 if_maddr_rlock(ifp); 3862 error = if_setupmultiaddr(ifp, mta, cnt, max); 3863 if_maddr_runlock(ifp); 3864 return (error); 3865 } 3866 3867 int 3868 if_multiaddr_count(if_t ifp, int max) 3869 { 3870 struct ifmultiaddr *ifma; 3871 int count; 3872 3873 count = 0; 3874 if_maddr_rlock(ifp); 3875 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3876 if (ifma->ifma_addr->sa_family != AF_LINK) 3877 continue; 3878 count++; 3879 if (count == max) 3880 break; 3881 } 3882 if_maddr_runlock(ifp); 3883 return (count); 3884 } 3885 3886 struct mbuf * 3887 if_dequeue(if_t ifp) 3888 { 3889 struct mbuf *m; 3890 IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); 3891 3892 return (m); 3893 } 3894 3895 int 3896 if_sendq_prepend(if_t ifp, struct mbuf *m) 3897 { 3898 IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); 3899 return (0); 3900 } 3901 3902 int 3903 if_setifheaderlen(if_t ifp, int len) 3904 { 3905 ((struct ifnet *)ifp)->if_hdrlen = len; 3906 return (0); 3907 } 3908 3909 caddr_t 3910 if_getlladdr(if_t ifp) 3911 { 3912 return (IF_LLADDR((struct ifnet *)ifp)); 3913 } 3914 3915 void * 3916 if_gethandle(u_char type) 3917 { 3918 return (if_alloc(type)); 3919 } 3920 3921 void 3922 if_bpfmtap(if_t ifh, struct mbuf *m) 3923 { 3924 struct ifnet *ifp = (struct ifnet *)ifh; 3925 3926 BPF_MTAP(ifp, m); 3927 } 3928 3929 void 3930 if_etherbpfmtap(if_t ifh, struct mbuf *m) 3931 { 3932 struct ifnet *ifp = (struct ifnet *)ifh; 3933 3934 ETHER_BPF_MTAP(ifp, m); 3935 } 3936 3937 void 3938 if_vlancap(if_t ifh) 3939 { 3940 struct ifnet *ifp = (struct ifnet *)ifh; 3941 VLAN_CAPABILITIES(ifp); 3942 } 3943 3944 void 3945 if_setinitfn(if_t ifp, void (*init_fn)(void *)) 3946 { 3947 ((struct ifnet *)ifp)->if_init = init_fn; 3948 } 3949 3950 void 3951 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) 3952 { 3953 ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; 3954 } 3955 3956 void 3957 if_setstartfn(if_t ifp, void (*start_fn)(if_t)) 3958 { 3959 ((struct ifnet *)ifp)->if_start = (void *)start_fn; 3960 } 3961 3962 void 3963 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 3964 { 3965 ((struct ifnet *)ifp)->if_transmit = start_fn; 3966 } 3967 3968 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 3969 { 3970 ((struct ifnet *)ifp)->if_qflush = flush_fn; 3971 3972 } 3973 3974 void 3975 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 3976 { 3977 3978 ifp->if_get_counter = fn; 3979 } 3980 3981 /* Revisit these - These are inline functions originally. */ 3982 int 3983 drbr_inuse_drv(if_t ifh, struct buf_ring *br) 3984 { 3985 return drbr_inuse_drv(ifh, br); 3986 } 3987 3988 struct mbuf* 3989 drbr_dequeue_drv(if_t ifh, struct buf_ring *br) 3990 { 3991 return drbr_dequeue(ifh, br); 3992 } 3993 3994 int 3995 drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br) 3996 { 3997 return drbr_needs_enqueue(ifh, br); 3998 } 3999 4000 int 4001 drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m) 4002 { 4003 return drbr_enqueue(ifh, br, m); 4004 4005 } 4006