1 /*- 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if.c 8.5 (Berkeley) 1/9/95 30 * $FreeBSD$ 31 */ 32 33 #include "opt_compat.h" 34 #include "opt_inet6.h" 35 #include "opt_inet.h" 36 37 #include <sys/param.h> 38 #include <sys/types.h> 39 #include <sys/conf.h> 40 #include <sys/malloc.h> 41 #include <sys/sbuf.h> 42 #include <sys/bus.h> 43 #include <sys/mbuf.h> 44 #include <sys/systm.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/protosw.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/refcount.h> 53 #include <sys/module.h> 54 #include <sys/rwlock.h> 55 #include <sys/sockio.h> 56 #include <sys/syslog.h> 57 #include <sys/sysctl.h> 58 #include <sys/taskqueue.h> 59 #include <sys/domain.h> 60 #include <sys/jail.h> 61 #include <sys/priv.h> 62 63 #include <machine/stdarg.h> 64 #include <vm/uma.h> 65 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/if.h> 69 #include <net/if_arp.h> 70 #include <net/if_clone.h> 71 #include <net/if_dl.h> 72 #include <net/if_types.h> 73 #include <net/if_var.h> 74 #include <net/if_media.h> 75 #include <net/if_vlan_var.h> 76 #include <net/radix.h> 77 #include <net/route.h> 78 #include <net/vnet.h> 79 80 #if defined(INET) || defined(INET6) 81 #include <net/ethernet.h> 82 #include <netinet/in.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_carp.h> 86 #ifdef INET 87 #include <netinet/if_ether.h> 88 #endif /* INET */ 89 #ifdef INET6 90 #include <netinet6/in6_var.h> 91 #include <netinet6/in6_ifattach.h> 92 #endif /* INET6 */ 93 #endif /* INET || INET6 */ 94 95 #include <security/mac/mac_framework.h> 96 97 #ifdef COMPAT_FREEBSD32 98 #include <sys/mount.h> 99 #include <compat/freebsd32/freebsd32.h> 100 #endif 101 102 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 103 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 104 105 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 106 &ifqmaxlen, 0, "max send queue size"); 107 108 /* Log link state change events */ 109 static int log_link_state_change = 1; 110 111 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 112 &log_link_state_change, 0, 113 "log interface link state change events"); 114 115 /* Interface description */ 116 static unsigned int ifdescr_maxlen = 1024; 117 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 118 &ifdescr_maxlen, 0, 119 "administrative maximum length for interface description"); 120 121 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 122 123 /* global sx for non-critical path ifdescr */ 124 static struct sx ifdescr_sx; 125 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 126 127 void (*bridge_linkstate_p)(struct ifnet *ifp); 128 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 129 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 130 /* These are external hooks for CARP. */ 131 void (*carp_linkstate_p)(struct ifnet *ifp); 132 void (*carp_demote_adj_p)(int, char *); 133 int (*carp_master_p)(struct ifaddr *); 134 #if defined(INET) || defined(INET6) 135 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 136 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 137 const struct sockaddr *sa); 138 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 139 int (*carp_attach_p)(struct ifaddr *, int); 140 void (*carp_detach_p)(struct ifaddr *); 141 #endif 142 #ifdef INET 143 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 144 #endif 145 #ifdef INET6 146 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 147 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 148 const struct in6_addr *taddr); 149 #endif 150 151 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 152 153 /* 154 * XXX: Style; these should be sorted alphabetically, and unprototyped 155 * static functions should be prototyped. Currently they are sorted by 156 * declaration order. 157 */ 158 static void if_attachdomain(void *); 159 static void if_attachdomain1(struct ifnet *); 160 static int ifconf(u_long, caddr_t); 161 static void if_freemulti(struct ifmultiaddr *); 162 static void if_grow(void); 163 static void if_input_default(struct ifnet *, struct mbuf *); 164 static int if_requestencap_default(struct ifnet *, struct if_encap_req *); 165 static void if_route(struct ifnet *, int flag, int fam); 166 static int if_setflag(struct ifnet *, int, int, int *, int); 167 static int if_transmit(struct ifnet *ifp, struct mbuf *m); 168 static void if_unroute(struct ifnet *, int flag, int fam); 169 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 170 static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *); 171 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 172 static void do_link_state_change(void *, int); 173 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 174 static int if_getgroupmembers(struct ifgroupreq *); 175 static void if_delgroups(struct ifnet *); 176 static void if_attach_internal(struct ifnet *, int, struct if_clone *); 177 static int if_detach_internal(struct ifnet *, int, struct if_clone **); 178 179 #ifdef INET6 180 /* 181 * XXX: declare here to avoid to include many inet6 related files.. 182 * should be more generalized? 183 */ 184 extern void nd6_setmtu(struct ifnet *); 185 #endif 186 187 /* ipsec helper hooks */ 188 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); 189 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); 190 191 VNET_DEFINE(int, if_index); 192 int ifqmaxlen = IFQ_MAXLEN; 193 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 194 VNET_DEFINE(struct ifgrouphead, ifg_head); 195 196 static VNET_DEFINE(int, if_indexlim) = 8; 197 198 /* Table of ifnet by index. */ 199 VNET_DEFINE(struct ifnet **, ifindex_table); 200 201 #define V_if_indexlim VNET(if_indexlim) 202 #define V_ifindex_table VNET(ifindex_table) 203 204 /* 205 * The global network interface list (V_ifnet) and related state (such as 206 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and 207 * an rwlock. Either may be acquired shared to stablize the list, but both 208 * must be acquired writable to modify the list. This model allows us to 209 * both stablize the interface list during interrupt thread processing, but 210 * also to stablize it over long-running ioctls, without introducing priority 211 * inversions and deadlocks. 212 */ 213 struct rwlock ifnet_rwlock; 214 RW_SYSINIT_FLAGS(ifnet_rw, &ifnet_rwlock, "ifnet_rw", RW_RECURSE); 215 struct sx ifnet_sxlock; 216 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 217 218 /* 219 * The allocation of network interfaces is a rather non-atomic affair; we 220 * need to select an index before we are ready to expose the interface for 221 * use, so will use this pointer value to indicate reservation. 222 */ 223 #define IFNET_HOLD (void *)(uintptr_t)(-1) 224 225 static if_com_alloc_t *if_com_alloc[256]; 226 static if_com_free_t *if_com_free[256]; 227 228 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 229 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 230 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 231 232 struct ifnet * 233 ifnet_byindex_locked(u_short idx) 234 { 235 236 if (idx > V_if_index) 237 return (NULL); 238 if (V_ifindex_table[idx] == IFNET_HOLD) 239 return (NULL); 240 return (V_ifindex_table[idx]); 241 } 242 243 struct ifnet * 244 ifnet_byindex(u_short idx) 245 { 246 struct ifnet *ifp; 247 248 IFNET_RLOCK_NOSLEEP(); 249 ifp = ifnet_byindex_locked(idx); 250 IFNET_RUNLOCK_NOSLEEP(); 251 return (ifp); 252 } 253 254 struct ifnet * 255 ifnet_byindex_ref(u_short idx) 256 { 257 struct ifnet *ifp; 258 259 IFNET_RLOCK_NOSLEEP(); 260 ifp = ifnet_byindex_locked(idx); 261 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) { 262 IFNET_RUNLOCK_NOSLEEP(); 263 return (NULL); 264 } 265 if_ref(ifp); 266 IFNET_RUNLOCK_NOSLEEP(); 267 return (ifp); 268 } 269 270 /* 271 * Allocate an ifindex array entry; return 0 on success or an error on 272 * failure. 273 */ 274 static u_short 275 ifindex_alloc(void) 276 { 277 u_short idx; 278 279 IFNET_WLOCK_ASSERT(); 280 retry: 281 /* 282 * Try to find an empty slot below V_if_index. If we fail, take the 283 * next slot. 284 */ 285 for (idx = 1; idx <= V_if_index; idx++) { 286 if (V_ifindex_table[idx] == NULL) 287 break; 288 } 289 290 /* Catch if_index overflow. */ 291 if (idx >= V_if_indexlim) { 292 if_grow(); 293 goto retry; 294 } 295 if (idx > V_if_index) 296 V_if_index = idx; 297 return (idx); 298 } 299 300 static void 301 ifindex_free_locked(u_short idx) 302 { 303 304 IFNET_WLOCK_ASSERT(); 305 306 V_ifindex_table[idx] = NULL; 307 while (V_if_index > 0 && 308 V_ifindex_table[V_if_index] == NULL) 309 V_if_index--; 310 } 311 312 static void 313 ifindex_free(u_short idx) 314 { 315 316 IFNET_WLOCK(); 317 ifindex_free_locked(idx); 318 IFNET_WUNLOCK(); 319 } 320 321 static void 322 ifnet_setbyindex_locked(u_short idx, struct ifnet *ifp) 323 { 324 325 IFNET_WLOCK_ASSERT(); 326 327 V_ifindex_table[idx] = ifp; 328 } 329 330 static void 331 ifnet_setbyindex(u_short idx, struct ifnet *ifp) 332 { 333 334 IFNET_WLOCK(); 335 ifnet_setbyindex_locked(idx, ifp); 336 IFNET_WUNLOCK(); 337 } 338 339 struct ifaddr * 340 ifaddr_byindex(u_short idx) 341 { 342 struct ifnet *ifp; 343 struct ifaddr *ifa = NULL; 344 345 IFNET_RLOCK_NOSLEEP(); 346 ifp = ifnet_byindex_locked(idx); 347 if (ifp != NULL && (ifa = ifp->if_addr) != NULL) 348 ifa_ref(ifa); 349 IFNET_RUNLOCK_NOSLEEP(); 350 return (ifa); 351 } 352 353 /* 354 * Network interface utility routines. 355 * 356 * Routines with ifa_ifwith* names take sockaddr *'s as 357 * parameters. 358 */ 359 360 static void 361 vnet_if_init(const void *unused __unused) 362 { 363 364 TAILQ_INIT(&V_ifnet); 365 TAILQ_INIT(&V_ifg_head); 366 IFNET_WLOCK(); 367 if_grow(); /* create initial table */ 368 IFNET_WUNLOCK(); 369 vnet_if_clone_init(); 370 } 371 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 372 NULL); 373 374 #ifdef VIMAGE 375 static void 376 vnet_if_uninit(const void *unused __unused) 377 { 378 379 VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " 380 "not empty", __func__, __LINE__, &V_ifnet)); 381 VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " 382 "not empty", __func__, __LINE__, &V_ifg_head)); 383 384 free((caddr_t)V_ifindex_table, M_IFNET); 385 } 386 VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, 387 vnet_if_uninit, NULL); 388 #endif 389 390 static void 391 if_grow(void) 392 { 393 int oldlim; 394 u_int n; 395 struct ifnet **e; 396 397 IFNET_WLOCK_ASSERT(); 398 oldlim = V_if_indexlim; 399 IFNET_WUNLOCK(); 400 n = (oldlim << 1) * sizeof(*e); 401 e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); 402 IFNET_WLOCK(); 403 if (V_if_indexlim != oldlim) { 404 free(e, M_IFNET); 405 return; 406 } 407 if (V_ifindex_table != NULL) { 408 memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); 409 free((caddr_t)V_ifindex_table, M_IFNET); 410 } 411 V_if_indexlim <<= 1; 412 V_ifindex_table = e; 413 } 414 415 /* 416 * Allocate a struct ifnet and an index for an interface. A layer 2 417 * common structure will also be allocated if an allocation routine is 418 * registered for the passed type. 419 */ 420 struct ifnet * 421 if_alloc(u_char type) 422 { 423 struct ifnet *ifp; 424 u_short idx; 425 426 ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO); 427 IFNET_WLOCK(); 428 idx = ifindex_alloc(); 429 ifnet_setbyindex_locked(idx, IFNET_HOLD); 430 IFNET_WUNLOCK(); 431 ifp->if_index = idx; 432 ifp->if_type = type; 433 ifp->if_alloctype = type; 434 if (if_com_alloc[type] != NULL) { 435 ifp->if_l2com = if_com_alloc[type](type, ifp); 436 if (ifp->if_l2com == NULL) { 437 free(ifp, M_IFNET); 438 ifindex_free(idx); 439 return (NULL); 440 } 441 } 442 443 IF_ADDR_LOCK_INIT(ifp); 444 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 445 ifp->if_afdata_initialized = 0; 446 IF_AFDATA_LOCK_INIT(ifp); 447 TAILQ_INIT(&ifp->if_addrhead); 448 TAILQ_INIT(&ifp->if_multiaddrs); 449 TAILQ_INIT(&ifp->if_groups); 450 #ifdef MAC 451 mac_ifnet_init(ifp); 452 #endif 453 ifq_init(&ifp->if_snd, ifp); 454 455 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 456 for (int i = 0; i < IFCOUNTERS; i++) 457 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 458 ifp->if_get_counter = if_get_counter_default; 459 ifnet_setbyindex(ifp->if_index, ifp); 460 return (ifp); 461 } 462 463 /* 464 * Do the actual work of freeing a struct ifnet, and layer 2 common 465 * structure. This call is made when the last reference to an 466 * interface is released. 467 */ 468 static void 469 if_free_internal(struct ifnet *ifp) 470 { 471 472 KASSERT((ifp->if_flags & IFF_DYING), 473 ("if_free_internal: interface not dying")); 474 475 if (if_com_free[ifp->if_alloctype] != NULL) 476 if_com_free[ifp->if_alloctype](ifp->if_l2com, 477 ifp->if_alloctype); 478 479 #ifdef MAC 480 mac_ifnet_destroy(ifp); 481 #endif /* MAC */ 482 if (ifp->if_description != NULL) 483 free(ifp->if_description, M_IFDESCR); 484 IF_AFDATA_DESTROY(ifp); 485 IF_ADDR_LOCK_DESTROY(ifp); 486 ifq_delete(&ifp->if_snd); 487 488 for (int i = 0; i < IFCOUNTERS; i++) 489 counter_u64_free(ifp->if_counters[i]); 490 491 free(ifp, M_IFNET); 492 } 493 494 /* 495 * Deregister an interface and free the associated storage. 496 */ 497 void 498 if_free(struct ifnet *ifp) 499 { 500 501 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 502 503 CURVNET_SET_QUIET(ifp->if_vnet); 504 IFNET_WLOCK(); 505 KASSERT(ifp == ifnet_byindex_locked(ifp->if_index), 506 ("%s: freeing unallocated ifnet", ifp->if_xname)); 507 508 ifindex_free_locked(ifp->if_index); 509 IFNET_WUNLOCK(); 510 511 if (refcount_release(&ifp->if_refcount)) 512 if_free_internal(ifp); 513 CURVNET_RESTORE(); 514 } 515 516 /* 517 * Interfaces to keep an ifnet type-stable despite the possibility of the 518 * driver calling if_free(). If there are additional references, we defer 519 * freeing the underlying data structure. 520 */ 521 void 522 if_ref(struct ifnet *ifp) 523 { 524 525 /* We don't assert the ifnet list lock here, but arguably should. */ 526 refcount_acquire(&ifp->if_refcount); 527 } 528 529 void 530 if_rele(struct ifnet *ifp) 531 { 532 533 if (!refcount_release(&ifp->if_refcount)) 534 return; 535 if_free_internal(ifp); 536 } 537 538 void 539 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 540 { 541 542 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 543 544 if (ifq->ifq_maxlen == 0) 545 ifq->ifq_maxlen = ifqmaxlen; 546 547 ifq->altq_type = 0; 548 ifq->altq_disc = NULL; 549 ifq->altq_flags &= ALTQF_CANTCHANGE; 550 ifq->altq_tbr = NULL; 551 ifq->altq_ifp = ifp; 552 } 553 554 void 555 ifq_delete(struct ifaltq *ifq) 556 { 557 mtx_destroy(&ifq->ifq_mtx); 558 } 559 560 /* 561 * Perform generic interface initalization tasks and attach the interface 562 * to the list of "active" interfaces. If vmove flag is set on entry 563 * to if_attach_internal(), perform only a limited subset of initialization 564 * tasks, given that we are moving from one vnet to another an ifnet which 565 * has already been fully initialized. 566 * 567 * Note that if_detach_internal() removes group membership unconditionally 568 * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. 569 * Thus, when if_vmove() is applied to a cloned interface, group membership 570 * is lost while a cloned one always joins a group whose name is 571 * ifc->ifc_name. To recover this after if_detach_internal() and 572 * if_attach_internal(), the cloner should be specified to 573 * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() 574 * attempts to join a group whose name is ifc->ifc_name. 575 * 576 * XXX: 577 * - The decision to return void and thus require this function to 578 * succeed is questionable. 579 * - We should probably do more sanity checking. For instance we don't 580 * do anything to insure if_xname is unique or non-empty. 581 */ 582 void 583 if_attach(struct ifnet *ifp) 584 { 585 586 if_attach_internal(ifp, 0, NULL); 587 } 588 589 /* 590 * Compute the least common TSO limit. 591 */ 592 void 593 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 594 { 595 /* 596 * 1) If there is no limit currently, take the limit from 597 * the network adapter. 598 * 599 * 2) If the network adapter has a limit below the current 600 * limit, apply it. 601 */ 602 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 603 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 604 pmax->tsomaxbytes = ifp->if_hw_tsomax; 605 } 606 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 607 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 608 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 609 } 610 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 611 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 612 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 613 } 614 } 615 616 /* 617 * Update TSO limit of a network adapter. 618 * 619 * Returns zero if no change. Else non-zero. 620 */ 621 int 622 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 623 { 624 int retval = 0; 625 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 626 ifp->if_hw_tsomax = pmax->tsomaxbytes; 627 retval++; 628 } 629 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 630 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 631 retval++; 632 } 633 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 634 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 635 retval++; 636 } 637 return (retval); 638 } 639 640 static void 641 if_attach_internal(struct ifnet *ifp, int vmove, struct if_clone *ifc) 642 { 643 unsigned socksize, ifasize; 644 int namelen, masklen; 645 struct sockaddr_dl *sdl; 646 struct ifaddr *ifa; 647 648 if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) 649 panic ("%s: BUG: if_attach called without if_alloc'd input()\n", 650 ifp->if_xname); 651 652 #ifdef VIMAGE 653 ifp->if_vnet = curvnet; 654 if (ifp->if_home_vnet == NULL) 655 ifp->if_home_vnet = curvnet; 656 #endif 657 658 if_addgroup(ifp, IFG_ALL); 659 660 /* Restore group membership for cloned interfaces. */ 661 if (vmove && ifc != NULL) 662 if_clone_addgroup(ifp, ifc); 663 664 getmicrotime(&ifp->if_lastchange); 665 ifp->if_epoch = time_uptime; 666 667 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 668 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 669 ("transmit and qflush must both either be set or both be NULL")); 670 if (ifp->if_transmit == NULL) { 671 ifp->if_transmit = if_transmit; 672 ifp->if_qflush = if_qflush; 673 } 674 if (ifp->if_input == NULL) 675 ifp->if_input = if_input_default; 676 677 if (ifp->if_requestencap == NULL) 678 ifp->if_requestencap = if_requestencap_default; 679 680 if (!vmove) { 681 #ifdef MAC 682 mac_ifnet_create(ifp); 683 #endif 684 685 /* 686 * Create a Link Level name for this device. 687 */ 688 namelen = strlen(ifp->if_xname); 689 /* 690 * Always save enough space for any possiable name so we 691 * can do a rename in place later. 692 */ 693 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 694 socksize = masklen + ifp->if_addrlen; 695 if (socksize < sizeof(*sdl)) 696 socksize = sizeof(*sdl); 697 socksize = roundup2(socksize, sizeof(long)); 698 ifasize = sizeof(*ifa) + 2 * socksize; 699 ifa = ifa_alloc(ifasize, M_WAITOK); 700 sdl = (struct sockaddr_dl *)(ifa + 1); 701 sdl->sdl_len = socksize; 702 sdl->sdl_family = AF_LINK; 703 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 704 sdl->sdl_nlen = namelen; 705 sdl->sdl_index = ifp->if_index; 706 sdl->sdl_type = ifp->if_type; 707 ifp->if_addr = ifa; 708 ifa->ifa_ifp = ifp; 709 ifa->ifa_rtrequest = link_rtrequest; 710 ifa->ifa_addr = (struct sockaddr *)sdl; 711 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 712 ifa->ifa_netmask = (struct sockaddr *)sdl; 713 sdl->sdl_len = masklen; 714 while (namelen != 0) 715 sdl->sdl_data[--namelen] = 0xff; 716 TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 717 /* Reliably crash if used uninitialized. */ 718 ifp->if_broadcastaddr = NULL; 719 720 #if defined(INET) || defined(INET6) 721 /* Use defaults for TSO, if nothing is set */ 722 if (ifp->if_hw_tsomax == 0 && 723 ifp->if_hw_tsomaxsegcount == 0 && 724 ifp->if_hw_tsomaxsegsize == 0) { 725 /* 726 * The TSO defaults needs to be such that an 727 * NFS mbuf list of 35 mbufs totalling just 728 * below 64K works and that a chain of mbufs 729 * can be defragged into at most 32 segments: 730 */ 731 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 732 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 733 ifp->if_hw_tsomaxsegcount = 35; 734 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 735 736 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 737 if (ifp->if_capabilities & IFCAP_TSO) { 738 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 739 ifp->if_hw_tsomax, 740 ifp->if_hw_tsomaxsegcount, 741 ifp->if_hw_tsomaxsegsize); 742 } 743 } 744 #endif 745 } 746 #ifdef VIMAGE 747 else { 748 /* 749 * Update the interface index in the link layer address 750 * of the interface. 751 */ 752 for (ifa = ifp->if_addr; ifa != NULL; 753 ifa = TAILQ_NEXT(ifa, ifa_link)) { 754 if (ifa->ifa_addr->sa_family == AF_LINK) { 755 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 756 sdl->sdl_index = ifp->if_index; 757 } 758 } 759 } 760 #endif 761 762 IFNET_WLOCK(); 763 TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 764 #ifdef VIMAGE 765 curvnet->vnet_ifcnt++; 766 #endif 767 IFNET_WUNLOCK(); 768 769 if (domain_init_status >= 2) 770 if_attachdomain1(ifp); 771 772 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 773 if (IS_DEFAULT_VNET(curvnet)) 774 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 775 776 /* Announce the interface. */ 777 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 778 } 779 780 static void 781 if_attachdomain(void *dummy) 782 { 783 struct ifnet *ifp; 784 785 TAILQ_FOREACH(ifp, &V_ifnet, if_link) 786 if_attachdomain1(ifp); 787 } 788 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 789 if_attachdomain, NULL); 790 791 static void 792 if_attachdomain1(struct ifnet *ifp) 793 { 794 struct domain *dp; 795 796 /* 797 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 798 * cannot lock ifp->if_afdata initialization, entirely. 799 */ 800 if (IF_AFDATA_TRYLOCK(ifp) == 0) 801 return; 802 if (ifp->if_afdata_initialized >= domain_init_status) { 803 IF_AFDATA_UNLOCK(ifp); 804 log(LOG_WARNING, "%s called more than once on %s\n", 805 __func__, ifp->if_xname); 806 return; 807 } 808 ifp->if_afdata_initialized = domain_init_status; 809 IF_AFDATA_UNLOCK(ifp); 810 811 /* address family dependent data region */ 812 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 813 for (dp = domains; dp; dp = dp->dom_next) { 814 if (dp->dom_ifattach) 815 ifp->if_afdata[dp->dom_family] = 816 (*dp->dom_ifattach)(ifp); 817 } 818 } 819 820 /* 821 * Remove any unicast or broadcast network addresses from an interface. 822 */ 823 void 824 if_purgeaddrs(struct ifnet *ifp) 825 { 826 struct ifaddr *ifa, *next; 827 828 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 829 if (ifa->ifa_addr->sa_family == AF_LINK) 830 continue; 831 #ifdef INET 832 /* XXX: Ugly!! ad hoc just for INET */ 833 if (ifa->ifa_addr->sa_family == AF_INET) { 834 struct ifaliasreq ifr; 835 836 bzero(&ifr, sizeof(ifr)); 837 ifr.ifra_addr = *ifa->ifa_addr; 838 if (ifa->ifa_dstaddr) 839 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 840 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 841 NULL) == 0) 842 continue; 843 } 844 #endif /* INET */ 845 #ifdef INET6 846 if (ifa->ifa_addr->sa_family == AF_INET6) { 847 in6_purgeaddr(ifa); 848 /* ifp_addrhead is already updated */ 849 continue; 850 } 851 #endif /* INET6 */ 852 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 853 ifa_free(ifa); 854 } 855 } 856 857 /* 858 * Remove any multicast network addresses from an interface when an ifnet 859 * is going away. 860 */ 861 static void 862 if_purgemaddrs(struct ifnet *ifp) 863 { 864 struct ifmultiaddr *ifma; 865 struct ifmultiaddr *next; 866 867 IF_ADDR_WLOCK(ifp); 868 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 869 if_delmulti_locked(ifp, ifma, 1); 870 IF_ADDR_WUNLOCK(ifp); 871 } 872 873 /* 874 * Detach an interface, removing it from the list of "active" interfaces. 875 * If vmove flag is set on entry to if_detach_internal(), perform only a 876 * limited subset of cleanup tasks, given that we are moving an ifnet from 877 * one vnet to another, where it must be fully operational. 878 * 879 * XXXRW: There are some significant questions about event ordering, and 880 * how to prevent things from starting to use the interface during detach. 881 */ 882 void 883 if_detach(struct ifnet *ifp) 884 { 885 886 CURVNET_SET_QUIET(ifp->if_vnet); 887 if_detach_internal(ifp, 0, NULL); 888 CURVNET_RESTORE(); 889 } 890 891 static int 892 if_detach_internal(struct ifnet *ifp, int vmove, struct if_clone **ifcp) 893 { 894 struct ifaddr *ifa; 895 int i; 896 struct domain *dp; 897 struct ifnet *iter; 898 int found = 0; 899 900 IFNET_WLOCK(); 901 TAILQ_FOREACH(iter, &V_ifnet, if_link) 902 if (iter == ifp) { 903 TAILQ_REMOVE(&V_ifnet, ifp, if_link); 904 found = 1; 905 break; 906 } 907 #ifdef VIMAGE 908 if (found) 909 curvnet->vnet_ifcnt--; 910 #endif 911 IFNET_WUNLOCK(); 912 if (!found) { 913 /* 914 * While we would want to panic here, we cannot 915 * guarantee that the interface is indeed still on 916 * the list given we don't hold locks all the way. 917 */ 918 return (ENOENT); 919 #if 0 920 if (vmove) 921 panic("%s: ifp=%p not on the ifnet tailq %p", 922 __func__, ifp, &V_ifnet); 923 else 924 return; /* XXX this should panic as well? */ 925 #endif 926 } 927 928 /* Check if this is a cloned interface or not. */ 929 if (vmove && ifcp != NULL) 930 *ifcp = if_clone_findifc(ifp); 931 932 /* 933 * Remove/wait for pending events. 934 */ 935 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 936 937 /* 938 * Remove routes and flush queues. 939 */ 940 if_down(ifp); 941 #ifdef ALTQ 942 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 943 altq_disable(&ifp->if_snd); 944 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 945 altq_detach(&ifp->if_snd); 946 #endif 947 948 if_purgeaddrs(ifp); 949 950 #ifdef INET 951 in_ifdetach(ifp); 952 #endif 953 954 #ifdef INET6 955 /* 956 * Remove all IPv6 kernel structs related to ifp. This should be done 957 * before removing routing entries below, since IPv6 interface direct 958 * routes are expected to be removed by the IPv6-specific kernel API. 959 * Otherwise, the kernel will detect some inconsistency and bark it. 960 */ 961 in6_ifdetach(ifp); 962 #endif 963 if_purgemaddrs(ifp); 964 965 /* Announce that the interface is gone. */ 966 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 967 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 968 if (IS_DEFAULT_VNET(curvnet)) 969 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 970 971 if (!vmove) { 972 /* 973 * Prevent further calls into the device driver via ifnet. 974 */ 975 if_dead(ifp); 976 977 /* 978 * Remove link ifaddr pointer and maybe decrement if_index. 979 * Clean up all addresses. 980 */ 981 ifp->if_addr = NULL; 982 983 /* We can now free link ifaddr. */ 984 if (!TAILQ_EMPTY(&ifp->if_addrhead)) { 985 ifa = TAILQ_FIRST(&ifp->if_addrhead); 986 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 987 ifa_free(ifa); 988 } 989 } 990 991 rt_flushifroutes(ifp); 992 if_delgroups(ifp); 993 994 /* 995 * We cannot hold the lock over dom_ifdetach calls as they might 996 * sleep, for example trying to drain a callout, thus open up the 997 * theoretical race with re-attaching. 998 */ 999 IF_AFDATA_LOCK(ifp); 1000 i = ifp->if_afdata_initialized; 1001 ifp->if_afdata_initialized = 0; 1002 IF_AFDATA_UNLOCK(ifp); 1003 for (dp = domains; i > 0 && dp; dp = dp->dom_next) { 1004 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 1005 (*dp->dom_ifdetach)(ifp, 1006 ifp->if_afdata[dp->dom_family]); 1007 } 1008 1009 return (0); 1010 } 1011 1012 #ifdef VIMAGE 1013 /* 1014 * if_vmove() performs a limited version of if_detach() in current 1015 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1016 * An attempt is made to shrink if_index in current vnet, find an 1017 * unused if_index in target vnet and calls if_grow() if necessary, 1018 * and finally find an unused if_xname for the target vnet. 1019 */ 1020 void 1021 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1022 { 1023 struct if_clone *ifc; 1024 u_int bif_dlt, bif_hdrlen; 1025 int rc; 1026 1027 /* 1028 * if_detach_internal() will call the eventhandler to notify 1029 * interface departure. That will detach if_bpf. We need to 1030 * safe the dlt and hdrlen so we can re-attach it later. 1031 */ 1032 bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen); 1033 1034 /* 1035 * Detach from current vnet, but preserve LLADDR info, do not 1036 * mark as dead etc. so that the ifnet can be reattached later. 1037 * If we cannot find it, we lost the race to someone else. 1038 */ 1039 rc = if_detach_internal(ifp, 1, &ifc); 1040 if (rc != 0) 1041 return; 1042 1043 /* 1044 * Unlink the ifnet from ifindex_table[] in current vnet, and shrink 1045 * the if_index for that vnet if possible. 1046 * 1047 * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, 1048 * or we'd lock on one vnet and unlock on another. 1049 */ 1050 IFNET_WLOCK(); 1051 ifindex_free_locked(ifp->if_index); 1052 IFNET_WUNLOCK(); 1053 1054 /* 1055 * Perform interface-specific reassignment tasks, if provided by 1056 * the driver. 1057 */ 1058 if (ifp->if_reassign != NULL) 1059 ifp->if_reassign(ifp, new_vnet, NULL); 1060 1061 /* 1062 * Switch to the context of the target vnet. 1063 */ 1064 CURVNET_SET_QUIET(new_vnet); 1065 1066 IFNET_WLOCK(); 1067 ifp->if_index = ifindex_alloc(); 1068 ifnet_setbyindex_locked(ifp->if_index, ifp); 1069 IFNET_WUNLOCK(); 1070 1071 if_attach_internal(ifp, 1, ifc); 1072 1073 if (ifp->if_bpf == NULL) 1074 bpfattach(ifp, bif_dlt, bif_hdrlen); 1075 1076 CURVNET_RESTORE(); 1077 } 1078 1079 /* 1080 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1081 */ 1082 static int 1083 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1084 { 1085 struct prison *pr; 1086 struct ifnet *difp; 1087 1088 /* Try to find the prison within our visibility. */ 1089 sx_slock(&allprison_lock); 1090 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1091 sx_sunlock(&allprison_lock); 1092 if (pr == NULL) 1093 return (ENXIO); 1094 prison_hold_locked(pr); 1095 mtx_unlock(&pr->pr_mtx); 1096 1097 /* Do not try to move the iface from and to the same prison. */ 1098 if (pr->pr_vnet == ifp->if_vnet) { 1099 prison_free(pr); 1100 return (EEXIST); 1101 } 1102 1103 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1104 /* XXX Lock interfaces to avoid races. */ 1105 CURVNET_SET_QUIET(pr->pr_vnet); 1106 difp = ifunit(ifname); 1107 CURVNET_RESTORE(); 1108 if (difp != NULL) { 1109 prison_free(pr); 1110 return (EEXIST); 1111 } 1112 1113 /* Move the interface into the child jail/vnet. */ 1114 if_vmove(ifp, pr->pr_vnet); 1115 1116 /* Report the new if_xname back to the userland. */ 1117 sprintf(ifname, "%s", ifp->if_xname); 1118 1119 prison_free(pr); 1120 return (0); 1121 } 1122 1123 static int 1124 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1125 { 1126 struct prison *pr; 1127 struct vnet *vnet_dst; 1128 struct ifnet *ifp; 1129 1130 /* Try to find the prison within our visibility. */ 1131 sx_slock(&allprison_lock); 1132 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1133 sx_sunlock(&allprison_lock); 1134 if (pr == NULL) 1135 return (ENXIO); 1136 prison_hold_locked(pr); 1137 mtx_unlock(&pr->pr_mtx); 1138 1139 /* Make sure the named iface exists in the source prison/vnet. */ 1140 CURVNET_SET(pr->pr_vnet); 1141 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1142 if (ifp == NULL) { 1143 CURVNET_RESTORE(); 1144 prison_free(pr); 1145 return (ENXIO); 1146 } 1147 1148 /* Do not try to move the iface from and to the same prison. */ 1149 vnet_dst = TD_TO_VNET(td); 1150 if (vnet_dst == ifp->if_vnet) { 1151 CURVNET_RESTORE(); 1152 prison_free(pr); 1153 return (EEXIST); 1154 } 1155 1156 /* Get interface back from child jail/vnet. */ 1157 if_vmove(ifp, vnet_dst); 1158 CURVNET_RESTORE(); 1159 1160 /* Report the new if_xname back to the userland. */ 1161 sprintf(ifname, "%s", ifp->if_xname); 1162 1163 prison_free(pr); 1164 return (0); 1165 } 1166 #endif /* VIMAGE */ 1167 1168 /* 1169 * Add a group to an interface 1170 */ 1171 int 1172 if_addgroup(struct ifnet *ifp, const char *groupname) 1173 { 1174 struct ifg_list *ifgl; 1175 struct ifg_group *ifg = NULL; 1176 struct ifg_member *ifgm; 1177 int new = 0; 1178 1179 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1180 groupname[strlen(groupname) - 1] <= '9') 1181 return (EINVAL); 1182 1183 IFNET_WLOCK(); 1184 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1185 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1186 IFNET_WUNLOCK(); 1187 return (EEXIST); 1188 } 1189 1190 if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP, 1191 M_NOWAIT)) == NULL) { 1192 IFNET_WUNLOCK(); 1193 return (ENOMEM); 1194 } 1195 1196 if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member), 1197 M_TEMP, M_NOWAIT)) == NULL) { 1198 free(ifgl, M_TEMP); 1199 IFNET_WUNLOCK(); 1200 return (ENOMEM); 1201 } 1202 1203 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1204 if (!strcmp(ifg->ifg_group, groupname)) 1205 break; 1206 1207 if (ifg == NULL) { 1208 if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group), 1209 M_TEMP, M_NOWAIT)) == NULL) { 1210 free(ifgl, M_TEMP); 1211 free(ifgm, M_TEMP); 1212 IFNET_WUNLOCK(); 1213 return (ENOMEM); 1214 } 1215 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1216 ifg->ifg_refcnt = 0; 1217 TAILQ_INIT(&ifg->ifg_members); 1218 TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1219 new = 1; 1220 } 1221 1222 ifg->ifg_refcnt++; 1223 ifgl->ifgl_group = ifg; 1224 ifgm->ifgm_ifp = ifp; 1225 1226 IF_ADDR_WLOCK(ifp); 1227 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1228 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1229 IF_ADDR_WUNLOCK(ifp); 1230 1231 IFNET_WUNLOCK(); 1232 1233 if (new) 1234 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1235 EVENTHANDLER_INVOKE(group_change_event, groupname); 1236 1237 return (0); 1238 } 1239 1240 /* 1241 * Remove a group from an interface 1242 */ 1243 int 1244 if_delgroup(struct ifnet *ifp, const char *groupname) 1245 { 1246 struct ifg_list *ifgl; 1247 struct ifg_member *ifgm; 1248 1249 IFNET_WLOCK(); 1250 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1251 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 1252 break; 1253 if (ifgl == NULL) { 1254 IFNET_WUNLOCK(); 1255 return (ENOENT); 1256 } 1257 1258 IF_ADDR_WLOCK(ifp); 1259 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1260 IF_ADDR_WUNLOCK(ifp); 1261 1262 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1263 if (ifgm->ifgm_ifp == ifp) 1264 break; 1265 1266 if (ifgm != NULL) { 1267 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 1268 free(ifgm, M_TEMP); 1269 } 1270 1271 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1272 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1273 IFNET_WUNLOCK(); 1274 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1275 free(ifgl->ifgl_group, M_TEMP); 1276 } else 1277 IFNET_WUNLOCK(); 1278 1279 free(ifgl, M_TEMP); 1280 1281 EVENTHANDLER_INVOKE(group_change_event, groupname); 1282 1283 return (0); 1284 } 1285 1286 /* 1287 * Remove an interface from all groups 1288 */ 1289 static void 1290 if_delgroups(struct ifnet *ifp) 1291 { 1292 struct ifg_list *ifgl; 1293 struct ifg_member *ifgm; 1294 char groupname[IFNAMSIZ]; 1295 1296 IFNET_WLOCK(); 1297 while (!TAILQ_EMPTY(&ifp->if_groups)) { 1298 ifgl = TAILQ_FIRST(&ifp->if_groups); 1299 1300 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1301 1302 IF_ADDR_WLOCK(ifp); 1303 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1304 IF_ADDR_WUNLOCK(ifp); 1305 1306 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1307 if (ifgm->ifgm_ifp == ifp) 1308 break; 1309 1310 if (ifgm != NULL) { 1311 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1312 ifgm_next); 1313 free(ifgm, M_TEMP); 1314 } 1315 1316 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1317 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1318 IFNET_WUNLOCK(); 1319 EVENTHANDLER_INVOKE(group_detach_event, 1320 ifgl->ifgl_group); 1321 free(ifgl->ifgl_group, M_TEMP); 1322 } else 1323 IFNET_WUNLOCK(); 1324 1325 free(ifgl, M_TEMP); 1326 1327 EVENTHANDLER_INVOKE(group_change_event, groupname); 1328 1329 IFNET_WLOCK(); 1330 } 1331 IFNET_WUNLOCK(); 1332 } 1333 1334 /* 1335 * Stores all groups from an interface in memory pointed 1336 * to by data 1337 */ 1338 static int 1339 if_getgroup(struct ifgroupreq *data, struct ifnet *ifp) 1340 { 1341 int len, error; 1342 struct ifg_list *ifgl; 1343 struct ifg_req ifgrq, *ifgp; 1344 struct ifgroupreq *ifgr = data; 1345 1346 if (ifgr->ifgr_len == 0) { 1347 IF_ADDR_RLOCK(ifp); 1348 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1349 ifgr->ifgr_len += sizeof(struct ifg_req); 1350 IF_ADDR_RUNLOCK(ifp); 1351 return (0); 1352 } 1353 1354 len = ifgr->ifgr_len; 1355 ifgp = ifgr->ifgr_groups; 1356 /* XXX: wire */ 1357 IF_ADDR_RLOCK(ifp); 1358 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1359 if (len < sizeof(ifgrq)) { 1360 IF_ADDR_RUNLOCK(ifp); 1361 return (EINVAL); 1362 } 1363 bzero(&ifgrq, sizeof ifgrq); 1364 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1365 sizeof(ifgrq.ifgrq_group)); 1366 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1367 IF_ADDR_RUNLOCK(ifp); 1368 return (error); 1369 } 1370 len -= sizeof(ifgrq); 1371 ifgp++; 1372 } 1373 IF_ADDR_RUNLOCK(ifp); 1374 1375 return (0); 1376 } 1377 1378 /* 1379 * Stores all members of a group in memory pointed to by data 1380 */ 1381 static int 1382 if_getgroupmembers(struct ifgroupreq *data) 1383 { 1384 struct ifgroupreq *ifgr = data; 1385 struct ifg_group *ifg; 1386 struct ifg_member *ifgm; 1387 struct ifg_req ifgrq, *ifgp; 1388 int len, error; 1389 1390 IFNET_RLOCK(); 1391 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1392 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1393 break; 1394 if (ifg == NULL) { 1395 IFNET_RUNLOCK(); 1396 return (ENOENT); 1397 } 1398 1399 if (ifgr->ifgr_len == 0) { 1400 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1401 ifgr->ifgr_len += sizeof(ifgrq); 1402 IFNET_RUNLOCK(); 1403 return (0); 1404 } 1405 1406 len = ifgr->ifgr_len; 1407 ifgp = ifgr->ifgr_groups; 1408 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1409 if (len < sizeof(ifgrq)) { 1410 IFNET_RUNLOCK(); 1411 return (EINVAL); 1412 } 1413 bzero(&ifgrq, sizeof ifgrq); 1414 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1415 sizeof(ifgrq.ifgrq_member)); 1416 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1417 IFNET_RUNLOCK(); 1418 return (error); 1419 } 1420 len -= sizeof(ifgrq); 1421 ifgp++; 1422 } 1423 IFNET_RUNLOCK(); 1424 1425 return (0); 1426 } 1427 1428 /* 1429 * Return counter values from counter(9)s stored in ifnet. 1430 */ 1431 uint64_t 1432 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1433 { 1434 1435 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1436 1437 return (counter_u64_fetch(ifp->if_counters[cnt])); 1438 } 1439 1440 /* 1441 * Increase an ifnet counter. Usually used for counters shared 1442 * between the stack and a driver, but function supports them all. 1443 */ 1444 void 1445 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1446 { 1447 1448 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1449 1450 counter_u64_add(ifp->if_counters[cnt], inc); 1451 } 1452 1453 /* 1454 * Copy data from ifnet to userland API structure if_data. 1455 */ 1456 void 1457 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1458 { 1459 1460 ifd->ifi_type = ifp->if_type; 1461 ifd->ifi_physical = 0; 1462 ifd->ifi_addrlen = ifp->if_addrlen; 1463 ifd->ifi_hdrlen = ifp->if_hdrlen; 1464 ifd->ifi_link_state = ifp->if_link_state; 1465 ifd->ifi_vhid = 0; 1466 ifd->ifi_datalen = sizeof(struct if_data); 1467 ifd->ifi_mtu = ifp->if_mtu; 1468 ifd->ifi_metric = ifp->if_metric; 1469 ifd->ifi_baudrate = ifp->if_baudrate; 1470 ifd->ifi_hwassist = ifp->if_hwassist; 1471 ifd->ifi_epoch = ifp->if_epoch; 1472 ifd->ifi_lastchange = ifp->if_lastchange; 1473 1474 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1475 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1476 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1477 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1478 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1479 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1480 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1481 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1482 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1483 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1484 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1485 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1486 } 1487 1488 /* 1489 * Wrapper functions for struct ifnet address list locking macros. These are 1490 * used by kernel modules to avoid encoding programming interface or binary 1491 * interface assumptions that may be violated when kernel-internal locking 1492 * approaches change. 1493 */ 1494 void 1495 if_addr_rlock(struct ifnet *ifp) 1496 { 1497 1498 IF_ADDR_RLOCK(ifp); 1499 } 1500 1501 void 1502 if_addr_runlock(struct ifnet *ifp) 1503 { 1504 1505 IF_ADDR_RUNLOCK(ifp); 1506 } 1507 1508 void 1509 if_maddr_rlock(if_t ifp) 1510 { 1511 1512 IF_ADDR_RLOCK((struct ifnet *)ifp); 1513 } 1514 1515 void 1516 if_maddr_runlock(if_t ifp) 1517 { 1518 1519 IF_ADDR_RUNLOCK((struct ifnet *)ifp); 1520 } 1521 1522 /* 1523 * Initialization, destruction and refcounting functions for ifaddrs. 1524 */ 1525 struct ifaddr * 1526 ifa_alloc(size_t size, int flags) 1527 { 1528 struct ifaddr *ifa; 1529 1530 KASSERT(size >= sizeof(struct ifaddr), 1531 ("%s: invalid size %zu", __func__, size)); 1532 1533 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1534 if (ifa == NULL) 1535 return (NULL); 1536 1537 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1538 goto fail; 1539 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1540 goto fail; 1541 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1542 goto fail; 1543 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1544 goto fail; 1545 1546 refcount_init(&ifa->ifa_refcnt, 1); 1547 1548 return (ifa); 1549 1550 fail: 1551 /* free(NULL) is okay */ 1552 counter_u64_free(ifa->ifa_opackets); 1553 counter_u64_free(ifa->ifa_ipackets); 1554 counter_u64_free(ifa->ifa_obytes); 1555 counter_u64_free(ifa->ifa_ibytes); 1556 free(ifa, M_IFADDR); 1557 1558 return (NULL); 1559 } 1560 1561 void 1562 ifa_ref(struct ifaddr *ifa) 1563 { 1564 1565 refcount_acquire(&ifa->ifa_refcnt); 1566 } 1567 1568 void 1569 ifa_free(struct ifaddr *ifa) 1570 { 1571 1572 if (refcount_release(&ifa->ifa_refcnt)) { 1573 counter_u64_free(ifa->ifa_opackets); 1574 counter_u64_free(ifa->ifa_ipackets); 1575 counter_u64_free(ifa->ifa_obytes); 1576 counter_u64_free(ifa->ifa_ibytes); 1577 free(ifa, M_IFADDR); 1578 } 1579 } 1580 1581 static int 1582 ifa_maintain_loopback_route(int cmd, const char *otype, struct ifaddr *ifa, 1583 struct sockaddr *ia) 1584 { 1585 int error; 1586 struct rt_addrinfo info; 1587 struct sockaddr_dl null_sdl; 1588 struct ifnet *ifp; 1589 1590 ifp = ifa->ifa_ifp; 1591 1592 bzero(&info, sizeof(info)); 1593 if (cmd != RTM_DELETE) 1594 info.rti_ifp = V_loif; 1595 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1596 info.rti_info[RTAX_DST] = ia; 1597 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1598 link_init_sdl(ifp, (struct sockaddr *)&null_sdl, ifp->if_type); 1599 1600 error = rtrequest1_fib(cmd, &info, NULL, ifp->if_fib); 1601 1602 if (error != 0) 1603 log(LOG_DEBUG, "%s: %s failed for interface %s: %u\n", 1604 __func__, otype, if_name(ifp), error); 1605 1606 return (error); 1607 } 1608 1609 int 1610 ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1611 { 1612 1613 return (ifa_maintain_loopback_route(RTM_ADD, "insertion", ifa, ia)); 1614 } 1615 1616 int 1617 ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1618 { 1619 1620 return (ifa_maintain_loopback_route(RTM_DELETE, "deletion", ifa, ia)); 1621 } 1622 1623 int 1624 ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1625 { 1626 1627 return (ifa_maintain_loopback_route(RTM_CHANGE, "switch", ifa, ia)); 1628 } 1629 1630 /* 1631 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1632 * structs used to represent other address families, it is necessary 1633 * to perform a different comparison. 1634 */ 1635 1636 #define sa_dl_equal(a1, a2) \ 1637 ((((const struct sockaddr_dl *)(a1))->sdl_len == \ 1638 ((const struct sockaddr_dl *)(a2))->sdl_len) && \ 1639 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \ 1640 CLLADDR((const struct sockaddr_dl *)(a2)), \ 1641 ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1642 1643 /* 1644 * Locate an interface based on a complete address. 1645 */ 1646 /*ARGSUSED*/ 1647 static struct ifaddr * 1648 ifa_ifwithaddr_internal(const struct sockaddr *addr, int getref) 1649 { 1650 struct ifnet *ifp; 1651 struct ifaddr *ifa; 1652 1653 IFNET_RLOCK_NOSLEEP(); 1654 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1655 IF_ADDR_RLOCK(ifp); 1656 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1657 if (ifa->ifa_addr->sa_family != addr->sa_family) 1658 continue; 1659 if (sa_equal(addr, ifa->ifa_addr)) { 1660 if (getref) 1661 ifa_ref(ifa); 1662 IF_ADDR_RUNLOCK(ifp); 1663 goto done; 1664 } 1665 /* IP6 doesn't have broadcast */ 1666 if ((ifp->if_flags & IFF_BROADCAST) && 1667 ifa->ifa_broadaddr && 1668 ifa->ifa_broadaddr->sa_len != 0 && 1669 sa_equal(ifa->ifa_broadaddr, addr)) { 1670 if (getref) 1671 ifa_ref(ifa); 1672 IF_ADDR_RUNLOCK(ifp); 1673 goto done; 1674 } 1675 } 1676 IF_ADDR_RUNLOCK(ifp); 1677 } 1678 ifa = NULL; 1679 done: 1680 IFNET_RUNLOCK_NOSLEEP(); 1681 return (ifa); 1682 } 1683 1684 struct ifaddr * 1685 ifa_ifwithaddr(const struct sockaddr *addr) 1686 { 1687 1688 return (ifa_ifwithaddr_internal(addr, 1)); 1689 } 1690 1691 int 1692 ifa_ifwithaddr_check(const struct sockaddr *addr) 1693 { 1694 1695 return (ifa_ifwithaddr_internal(addr, 0) != NULL); 1696 } 1697 1698 /* 1699 * Locate an interface based on the broadcast address. 1700 */ 1701 /* ARGSUSED */ 1702 struct ifaddr * 1703 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) 1704 { 1705 struct ifnet *ifp; 1706 struct ifaddr *ifa; 1707 1708 IFNET_RLOCK_NOSLEEP(); 1709 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1710 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1711 continue; 1712 IF_ADDR_RLOCK(ifp); 1713 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1714 if (ifa->ifa_addr->sa_family != addr->sa_family) 1715 continue; 1716 if ((ifp->if_flags & IFF_BROADCAST) && 1717 ifa->ifa_broadaddr && 1718 ifa->ifa_broadaddr->sa_len != 0 && 1719 sa_equal(ifa->ifa_broadaddr, addr)) { 1720 ifa_ref(ifa); 1721 IF_ADDR_RUNLOCK(ifp); 1722 goto done; 1723 } 1724 } 1725 IF_ADDR_RUNLOCK(ifp); 1726 } 1727 ifa = NULL; 1728 done: 1729 IFNET_RUNLOCK_NOSLEEP(); 1730 return (ifa); 1731 } 1732 1733 /* 1734 * Locate the point to point interface with a given destination address. 1735 */ 1736 /*ARGSUSED*/ 1737 struct ifaddr * 1738 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) 1739 { 1740 struct ifnet *ifp; 1741 struct ifaddr *ifa; 1742 1743 IFNET_RLOCK_NOSLEEP(); 1744 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1745 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1746 continue; 1747 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1748 continue; 1749 IF_ADDR_RLOCK(ifp); 1750 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1751 if (ifa->ifa_addr->sa_family != addr->sa_family) 1752 continue; 1753 if (ifa->ifa_dstaddr != NULL && 1754 sa_equal(addr, ifa->ifa_dstaddr)) { 1755 ifa_ref(ifa); 1756 IF_ADDR_RUNLOCK(ifp); 1757 goto done; 1758 } 1759 } 1760 IF_ADDR_RUNLOCK(ifp); 1761 } 1762 ifa = NULL; 1763 done: 1764 IFNET_RUNLOCK_NOSLEEP(); 1765 return (ifa); 1766 } 1767 1768 /* 1769 * Find an interface on a specific network. If many, choice 1770 * is most specific found. 1771 */ 1772 struct ifaddr * 1773 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) 1774 { 1775 struct ifnet *ifp; 1776 struct ifaddr *ifa; 1777 struct ifaddr *ifa_maybe = NULL; 1778 u_int af = addr->sa_family; 1779 const char *addr_data = addr->sa_data, *cplim; 1780 1781 /* 1782 * AF_LINK addresses can be looked up directly by their index number, 1783 * so do that if we can. 1784 */ 1785 if (af == AF_LINK) { 1786 const struct sockaddr_dl *sdl = (const struct sockaddr_dl *)addr; 1787 if (sdl->sdl_index && sdl->sdl_index <= V_if_index) 1788 return (ifaddr_byindex(sdl->sdl_index)); 1789 } 1790 1791 /* 1792 * Scan though each interface, looking for ones that have addresses 1793 * in this address family and the requested fib. Maintain a reference 1794 * on ifa_maybe once we find one, as we release the IF_ADDR_RLOCK() that 1795 * kept it stable when we move onto the next interface. 1796 */ 1797 IFNET_RLOCK_NOSLEEP(); 1798 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1799 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1800 continue; 1801 IF_ADDR_RLOCK(ifp); 1802 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1803 const char *cp, *cp2, *cp3; 1804 1805 if (ifa->ifa_addr->sa_family != af) 1806 next: continue; 1807 if (af == AF_INET && 1808 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1809 /* 1810 * This is a bit broken as it doesn't 1811 * take into account that the remote end may 1812 * be a single node in the network we are 1813 * looking for. 1814 * The trouble is that we don't know the 1815 * netmask for the remote end. 1816 */ 1817 if (ifa->ifa_dstaddr != NULL && 1818 sa_equal(addr, ifa->ifa_dstaddr)) { 1819 ifa_ref(ifa); 1820 IF_ADDR_RUNLOCK(ifp); 1821 goto done; 1822 } 1823 } else { 1824 /* 1825 * Scan all the bits in the ifa's address. 1826 * If a bit dissagrees with what we are 1827 * looking for, mask it with the netmask 1828 * to see if it really matters. 1829 * (A byte at a time) 1830 */ 1831 if (ifa->ifa_netmask == 0) 1832 continue; 1833 cp = addr_data; 1834 cp2 = ifa->ifa_addr->sa_data; 1835 cp3 = ifa->ifa_netmask->sa_data; 1836 cplim = ifa->ifa_netmask->sa_len 1837 + (char *)ifa->ifa_netmask; 1838 while (cp3 < cplim) 1839 if ((*cp++ ^ *cp2++) & *cp3++) 1840 goto next; /* next address! */ 1841 /* 1842 * If the netmask of what we just found 1843 * is more specific than what we had before 1844 * (if we had one), or if the virtual status 1845 * of new prefix is better than of the old one, 1846 * then remember the new one before continuing 1847 * to search for an even better one. 1848 */ 1849 if (ifa_maybe == NULL || 1850 ifa_preferred(ifa_maybe, ifa) || 1851 rn_refines((caddr_t)ifa->ifa_netmask, 1852 (caddr_t)ifa_maybe->ifa_netmask)) { 1853 if (ifa_maybe != NULL) 1854 ifa_free(ifa_maybe); 1855 ifa_maybe = ifa; 1856 ifa_ref(ifa_maybe); 1857 } 1858 } 1859 } 1860 IF_ADDR_RUNLOCK(ifp); 1861 } 1862 ifa = ifa_maybe; 1863 ifa_maybe = NULL; 1864 done: 1865 IFNET_RUNLOCK_NOSLEEP(); 1866 if (ifa_maybe != NULL) 1867 ifa_free(ifa_maybe); 1868 return (ifa); 1869 } 1870 1871 /* 1872 * Find an interface address specific to an interface best matching 1873 * a given address. 1874 */ 1875 struct ifaddr * 1876 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 1877 { 1878 struct ifaddr *ifa; 1879 const char *cp, *cp2, *cp3; 1880 char *cplim; 1881 struct ifaddr *ifa_maybe = NULL; 1882 u_int af = addr->sa_family; 1883 1884 if (af >= AF_MAX) 1885 return (NULL); 1886 IF_ADDR_RLOCK(ifp); 1887 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1888 if (ifa->ifa_addr->sa_family != af) 1889 continue; 1890 if (ifa_maybe == NULL) 1891 ifa_maybe = ifa; 1892 if (ifa->ifa_netmask == 0) { 1893 if (sa_equal(addr, ifa->ifa_addr) || 1894 (ifa->ifa_dstaddr && 1895 sa_equal(addr, ifa->ifa_dstaddr))) 1896 goto done; 1897 continue; 1898 } 1899 if (ifp->if_flags & IFF_POINTOPOINT) { 1900 if (sa_equal(addr, ifa->ifa_dstaddr)) 1901 goto done; 1902 } else { 1903 cp = addr->sa_data; 1904 cp2 = ifa->ifa_addr->sa_data; 1905 cp3 = ifa->ifa_netmask->sa_data; 1906 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1907 for (; cp3 < cplim; cp3++) 1908 if ((*cp++ ^ *cp2++) & *cp3) 1909 break; 1910 if (cp3 == cplim) 1911 goto done; 1912 } 1913 } 1914 ifa = ifa_maybe; 1915 done: 1916 if (ifa != NULL) 1917 ifa_ref(ifa); 1918 IF_ADDR_RUNLOCK(ifp); 1919 return (ifa); 1920 } 1921 1922 /* 1923 * See whether new ifa is better than current one: 1924 * 1) A non-virtual one is preferred over virtual. 1925 * 2) A virtual in master state preferred over any other state. 1926 * 1927 * Used in several address selecting functions. 1928 */ 1929 int 1930 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 1931 { 1932 1933 return (cur->ifa_carp && (!next->ifa_carp || 1934 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 1935 } 1936 1937 #include <net/if_llatbl.h> 1938 1939 /* 1940 * Default action when installing a route with a Link Level gateway. 1941 * Lookup an appropriate real ifa to point to. 1942 * This should be moved to /sys/net/link.c eventually. 1943 */ 1944 static void 1945 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 1946 { 1947 struct ifaddr *ifa, *oifa; 1948 struct sockaddr *dst; 1949 struct ifnet *ifp; 1950 1951 if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || 1952 ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) 1953 return; 1954 ifa = ifaof_ifpforaddr(dst, ifp); 1955 if (ifa) { 1956 oifa = rt->rt_ifa; 1957 rt->rt_ifa = ifa; 1958 ifa_free(oifa); 1959 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1960 ifa->ifa_rtrequest(cmd, rt, info); 1961 } 1962 } 1963 1964 struct sockaddr_dl * 1965 link_alloc_sdl(size_t size, int flags) 1966 { 1967 1968 return (malloc(size, M_TEMP, flags)); 1969 } 1970 1971 void 1972 link_free_sdl(struct sockaddr *sa) 1973 { 1974 free(sa, M_TEMP); 1975 } 1976 1977 /* 1978 * Fills in given sdl with interface basic info. 1979 * Returns pointer to filled sdl. 1980 */ 1981 struct sockaddr_dl * 1982 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 1983 { 1984 struct sockaddr_dl *sdl; 1985 1986 sdl = (struct sockaddr_dl *)paddr; 1987 memset(sdl, 0, sizeof(struct sockaddr_dl)); 1988 sdl->sdl_len = sizeof(struct sockaddr_dl); 1989 sdl->sdl_family = AF_LINK; 1990 sdl->sdl_index = ifp->if_index; 1991 sdl->sdl_type = iftype; 1992 1993 return (sdl); 1994 } 1995 1996 /* 1997 * Mark an interface down and notify protocols of 1998 * the transition. 1999 */ 2000 static void 2001 if_unroute(struct ifnet *ifp, int flag, int fam) 2002 { 2003 struct ifaddr *ifa; 2004 2005 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 2006 2007 ifp->if_flags &= ~flag; 2008 getmicrotime(&ifp->if_lastchange); 2009 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2010 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2011 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2012 ifp->if_qflush(ifp); 2013 2014 if (ifp->if_carp) 2015 (*carp_linkstate_p)(ifp); 2016 rt_ifmsg(ifp); 2017 } 2018 2019 /* 2020 * Mark an interface up and notify protocols of 2021 * the transition. 2022 */ 2023 static void 2024 if_route(struct ifnet *ifp, int flag, int fam) 2025 { 2026 struct ifaddr *ifa; 2027 2028 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 2029 2030 ifp->if_flags |= flag; 2031 getmicrotime(&ifp->if_lastchange); 2032 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2033 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2034 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2035 if (ifp->if_carp) 2036 (*carp_linkstate_p)(ifp); 2037 rt_ifmsg(ifp); 2038 #ifdef INET6 2039 in6_if_up(ifp); 2040 #endif 2041 } 2042 2043 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2044 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2045 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2046 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2047 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2048 int (*vlan_setcookie_p)(struct ifnet *, void *); 2049 void *(*vlan_cookie_p)(struct ifnet *); 2050 2051 /* 2052 * Handle a change in the interface link state. To avoid LORs 2053 * between driver lock and upper layer locks, as well as possible 2054 * recursions, we post event to taskqueue, and all job 2055 * is done in static do_link_state_change(). 2056 */ 2057 void 2058 if_link_state_change(struct ifnet *ifp, int link_state) 2059 { 2060 /* Return if state hasn't changed. */ 2061 if (ifp->if_link_state == link_state) 2062 return; 2063 2064 ifp->if_link_state = link_state; 2065 2066 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2067 } 2068 2069 static void 2070 do_link_state_change(void *arg, int pending) 2071 { 2072 struct ifnet *ifp = (struct ifnet *)arg; 2073 int link_state = ifp->if_link_state; 2074 CURVNET_SET(ifp->if_vnet); 2075 2076 /* Notify that the link state has changed. */ 2077 rt_ifmsg(ifp); 2078 if (ifp->if_vlantrunk != NULL) 2079 (*vlan_link_state_p)(ifp); 2080 2081 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2082 ifp->if_l2com != NULL) 2083 (*ng_ether_link_state_p)(ifp, link_state); 2084 if (ifp->if_carp) 2085 (*carp_linkstate_p)(ifp); 2086 if (ifp->if_bridge) 2087 (*bridge_linkstate_p)(ifp); 2088 if (ifp->if_lagg) 2089 (*lagg_linkstate_p)(ifp, link_state); 2090 2091 if (IS_DEFAULT_VNET(curvnet)) 2092 devctl_notify("IFNET", ifp->if_xname, 2093 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2094 NULL); 2095 if (pending > 1) 2096 if_printf(ifp, "%d link states coalesced\n", pending); 2097 if (log_link_state_change) 2098 log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname, 2099 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2100 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, ifp->if_link_state); 2101 CURVNET_RESTORE(); 2102 } 2103 2104 /* 2105 * Mark an interface down and notify protocols of 2106 * the transition. 2107 */ 2108 void 2109 if_down(struct ifnet *ifp) 2110 { 2111 2112 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2113 } 2114 2115 /* 2116 * Mark an interface up and notify protocols of 2117 * the transition. 2118 */ 2119 void 2120 if_up(struct ifnet *ifp) 2121 { 2122 2123 if_route(ifp, IFF_UP, AF_UNSPEC); 2124 } 2125 2126 /* 2127 * Flush an interface queue. 2128 */ 2129 void 2130 if_qflush(struct ifnet *ifp) 2131 { 2132 struct mbuf *m, *n; 2133 struct ifaltq *ifq; 2134 2135 ifq = &ifp->if_snd; 2136 IFQ_LOCK(ifq); 2137 #ifdef ALTQ 2138 if (ALTQ_IS_ENABLED(ifq)) 2139 ALTQ_PURGE(ifq); 2140 #endif 2141 n = ifq->ifq_head; 2142 while ((m = n) != 0) { 2143 n = m->m_nextpkt; 2144 m_freem(m); 2145 } 2146 ifq->ifq_head = 0; 2147 ifq->ifq_tail = 0; 2148 ifq->ifq_len = 0; 2149 IFQ_UNLOCK(ifq); 2150 } 2151 2152 /* 2153 * Map interface name to interface structure pointer, with or without 2154 * returning a reference. 2155 */ 2156 struct ifnet * 2157 ifunit_ref(const char *name) 2158 { 2159 struct ifnet *ifp; 2160 2161 IFNET_RLOCK_NOSLEEP(); 2162 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2163 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2164 !(ifp->if_flags & IFF_DYING)) 2165 break; 2166 } 2167 if (ifp != NULL) 2168 if_ref(ifp); 2169 IFNET_RUNLOCK_NOSLEEP(); 2170 return (ifp); 2171 } 2172 2173 struct ifnet * 2174 ifunit(const char *name) 2175 { 2176 struct ifnet *ifp; 2177 2178 IFNET_RLOCK_NOSLEEP(); 2179 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2180 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2181 break; 2182 } 2183 IFNET_RUNLOCK_NOSLEEP(); 2184 return (ifp); 2185 } 2186 2187 /* 2188 * Hardware specific interface ioctls. 2189 */ 2190 static int 2191 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2192 { 2193 struct ifreq *ifr; 2194 int error = 0; 2195 int new_flags, temp_flags; 2196 size_t namelen, onamelen; 2197 size_t descrlen; 2198 char *descrbuf, *odescrbuf; 2199 char new_name[IFNAMSIZ]; 2200 struct ifaddr *ifa; 2201 struct sockaddr_dl *sdl; 2202 2203 ifr = (struct ifreq *)data; 2204 switch (cmd) { 2205 case SIOCGIFINDEX: 2206 ifr->ifr_index = ifp->if_index; 2207 break; 2208 2209 case SIOCGIFFLAGS: 2210 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2211 ifr->ifr_flags = temp_flags & 0xffff; 2212 ifr->ifr_flagshigh = temp_flags >> 16; 2213 break; 2214 2215 case SIOCGIFCAP: 2216 ifr->ifr_reqcap = ifp->if_capabilities; 2217 ifr->ifr_curcap = ifp->if_capenable; 2218 break; 2219 2220 #ifdef MAC 2221 case SIOCGIFMAC: 2222 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2223 break; 2224 #endif 2225 2226 case SIOCGIFMETRIC: 2227 ifr->ifr_metric = ifp->if_metric; 2228 break; 2229 2230 case SIOCGIFMTU: 2231 ifr->ifr_mtu = ifp->if_mtu; 2232 break; 2233 2234 case SIOCGIFPHYS: 2235 /* XXXGL: did this ever worked? */ 2236 ifr->ifr_phys = 0; 2237 break; 2238 2239 case SIOCGIFDESCR: 2240 error = 0; 2241 sx_slock(&ifdescr_sx); 2242 if (ifp->if_description == NULL) 2243 error = ENOMSG; 2244 else { 2245 /* space for terminating nul */ 2246 descrlen = strlen(ifp->if_description) + 1; 2247 if (ifr->ifr_buffer.length < descrlen) 2248 ifr->ifr_buffer.buffer = NULL; 2249 else 2250 error = copyout(ifp->if_description, 2251 ifr->ifr_buffer.buffer, descrlen); 2252 ifr->ifr_buffer.length = descrlen; 2253 } 2254 sx_sunlock(&ifdescr_sx); 2255 break; 2256 2257 case SIOCSIFDESCR: 2258 error = priv_check(td, PRIV_NET_SETIFDESCR); 2259 if (error) 2260 return (error); 2261 2262 /* 2263 * Copy only (length-1) bytes to make sure that 2264 * if_description is always nul terminated. The 2265 * length parameter is supposed to count the 2266 * terminating nul in. 2267 */ 2268 if (ifr->ifr_buffer.length > ifdescr_maxlen) 2269 return (ENAMETOOLONG); 2270 else if (ifr->ifr_buffer.length == 0) 2271 descrbuf = NULL; 2272 else { 2273 descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR, 2274 M_WAITOK | M_ZERO); 2275 error = copyin(ifr->ifr_buffer.buffer, descrbuf, 2276 ifr->ifr_buffer.length - 1); 2277 if (error) { 2278 free(descrbuf, M_IFDESCR); 2279 break; 2280 } 2281 } 2282 2283 sx_xlock(&ifdescr_sx); 2284 odescrbuf = ifp->if_description; 2285 ifp->if_description = descrbuf; 2286 sx_xunlock(&ifdescr_sx); 2287 2288 getmicrotime(&ifp->if_lastchange); 2289 free(odescrbuf, M_IFDESCR); 2290 break; 2291 2292 case SIOCGIFFIB: 2293 ifr->ifr_fib = ifp->if_fib; 2294 break; 2295 2296 case SIOCSIFFIB: 2297 error = priv_check(td, PRIV_NET_SETIFFIB); 2298 if (error) 2299 return (error); 2300 if (ifr->ifr_fib >= rt_numfibs) 2301 return (EINVAL); 2302 2303 ifp->if_fib = ifr->ifr_fib; 2304 break; 2305 2306 case SIOCSIFFLAGS: 2307 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2308 if (error) 2309 return (error); 2310 /* 2311 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2312 * check, so we don't need special handling here yet. 2313 */ 2314 new_flags = (ifr->ifr_flags & 0xffff) | 2315 (ifr->ifr_flagshigh << 16); 2316 if (ifp->if_flags & IFF_UP && 2317 (new_flags & IFF_UP) == 0) { 2318 if_down(ifp); 2319 } else if (new_flags & IFF_UP && 2320 (ifp->if_flags & IFF_UP) == 0) { 2321 if_up(ifp); 2322 } 2323 /* See if permanently promiscuous mode bit is about to flip */ 2324 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2325 if (new_flags & IFF_PPROMISC) 2326 ifp->if_flags |= IFF_PROMISC; 2327 else if (ifp->if_pcount == 0) 2328 ifp->if_flags &= ~IFF_PROMISC; 2329 log(LOG_INFO, "%s: permanently promiscuous mode %s\n", 2330 ifp->if_xname, 2331 (new_flags & IFF_PPROMISC) ? "enabled" : "disabled"); 2332 } 2333 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2334 (new_flags &~ IFF_CANTCHANGE); 2335 if (ifp->if_ioctl) { 2336 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2337 } 2338 getmicrotime(&ifp->if_lastchange); 2339 break; 2340 2341 case SIOCSIFCAP: 2342 error = priv_check(td, PRIV_NET_SETIFCAP); 2343 if (error) 2344 return (error); 2345 if (ifp->if_ioctl == NULL) 2346 return (EOPNOTSUPP); 2347 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2348 return (EINVAL); 2349 error = (*ifp->if_ioctl)(ifp, cmd, data); 2350 if (error == 0) 2351 getmicrotime(&ifp->if_lastchange); 2352 break; 2353 2354 #ifdef MAC 2355 case SIOCSIFMAC: 2356 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2357 break; 2358 #endif 2359 2360 case SIOCSIFNAME: 2361 error = priv_check(td, PRIV_NET_SETIFNAME); 2362 if (error) 2363 return (error); 2364 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 2365 if (error != 0) 2366 return (error); 2367 if (new_name[0] == '\0') 2368 return (EINVAL); 2369 if (ifunit(new_name) != NULL) 2370 return (EEXIST); 2371 2372 /* 2373 * XXX: Locking. Nothing else seems to lock if_flags, 2374 * and there are numerous other races with the 2375 * ifunit() checks not being atomic with namespace 2376 * changes (renames, vmoves, if_attach, etc). 2377 */ 2378 ifp->if_flags |= IFF_RENAMING; 2379 2380 /* Announce the departure of the interface. */ 2381 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 2382 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 2383 2384 log(LOG_INFO, "%s: changing name to '%s'\n", 2385 ifp->if_xname, new_name); 2386 2387 IF_ADDR_WLOCK(ifp); 2388 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 2389 ifa = ifp->if_addr; 2390 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 2391 namelen = strlen(new_name); 2392 onamelen = sdl->sdl_nlen; 2393 /* 2394 * Move the address if needed. This is safe because we 2395 * allocate space for a name of length IFNAMSIZ when we 2396 * create this in if_attach(). 2397 */ 2398 if (namelen != onamelen) { 2399 bcopy(sdl->sdl_data + onamelen, 2400 sdl->sdl_data + namelen, sdl->sdl_alen); 2401 } 2402 bcopy(new_name, sdl->sdl_data, namelen); 2403 sdl->sdl_nlen = namelen; 2404 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 2405 bzero(sdl->sdl_data, onamelen); 2406 while (namelen != 0) 2407 sdl->sdl_data[--namelen] = 0xff; 2408 IF_ADDR_WUNLOCK(ifp); 2409 2410 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 2411 /* Announce the return of the interface. */ 2412 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 2413 2414 ifp->if_flags &= ~IFF_RENAMING; 2415 break; 2416 2417 #ifdef VIMAGE 2418 case SIOCSIFVNET: 2419 error = priv_check(td, PRIV_NET_SETIFVNET); 2420 if (error) 2421 return (error); 2422 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2423 break; 2424 #endif 2425 2426 case SIOCSIFMETRIC: 2427 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2428 if (error) 2429 return (error); 2430 ifp->if_metric = ifr->ifr_metric; 2431 getmicrotime(&ifp->if_lastchange); 2432 break; 2433 2434 case SIOCSIFPHYS: 2435 error = priv_check(td, PRIV_NET_SETIFPHYS); 2436 if (error) 2437 return (error); 2438 if (ifp->if_ioctl == NULL) 2439 return (EOPNOTSUPP); 2440 error = (*ifp->if_ioctl)(ifp, cmd, data); 2441 if (error == 0) 2442 getmicrotime(&ifp->if_lastchange); 2443 break; 2444 2445 case SIOCSIFMTU: 2446 { 2447 u_long oldmtu = ifp->if_mtu; 2448 2449 error = priv_check(td, PRIV_NET_SETIFMTU); 2450 if (error) 2451 return (error); 2452 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2453 return (EINVAL); 2454 if (ifp->if_ioctl == NULL) 2455 return (EOPNOTSUPP); 2456 error = (*ifp->if_ioctl)(ifp, cmd, data); 2457 if (error == 0) { 2458 getmicrotime(&ifp->if_lastchange); 2459 rt_ifmsg(ifp); 2460 } 2461 /* 2462 * If the link MTU changed, do network layer specific procedure. 2463 */ 2464 if (ifp->if_mtu != oldmtu) { 2465 #ifdef INET6 2466 nd6_setmtu(ifp); 2467 #endif 2468 rt_updatemtu(ifp); 2469 } 2470 break; 2471 } 2472 2473 case SIOCADDMULTI: 2474 case SIOCDELMULTI: 2475 if (cmd == SIOCADDMULTI) 2476 error = priv_check(td, PRIV_NET_ADDMULTI); 2477 else 2478 error = priv_check(td, PRIV_NET_DELMULTI); 2479 if (error) 2480 return (error); 2481 2482 /* Don't allow group membership on non-multicast interfaces. */ 2483 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2484 return (EOPNOTSUPP); 2485 2486 /* Don't let users screw up protocols' entries. */ 2487 if (ifr->ifr_addr.sa_family != AF_LINK) 2488 return (EINVAL); 2489 2490 if (cmd == SIOCADDMULTI) { 2491 struct ifmultiaddr *ifma; 2492 2493 /* 2494 * Userland is only permitted to join groups once 2495 * via the if_addmulti() KPI, because it cannot hold 2496 * struct ifmultiaddr * between calls. It may also 2497 * lose a race while we check if the membership 2498 * already exists. 2499 */ 2500 IF_ADDR_RLOCK(ifp); 2501 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2502 IF_ADDR_RUNLOCK(ifp); 2503 if (ifma != NULL) 2504 error = EADDRINUSE; 2505 else 2506 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2507 } else { 2508 error = if_delmulti(ifp, &ifr->ifr_addr); 2509 } 2510 if (error == 0) 2511 getmicrotime(&ifp->if_lastchange); 2512 break; 2513 2514 case SIOCSIFPHYADDR: 2515 case SIOCDIFPHYADDR: 2516 #ifdef INET6 2517 case SIOCSIFPHYADDR_IN6: 2518 #endif 2519 case SIOCSIFMEDIA: 2520 case SIOCSIFGENERIC: 2521 error = priv_check(td, PRIV_NET_HWIOCTL); 2522 if (error) 2523 return (error); 2524 if (ifp->if_ioctl == NULL) 2525 return (EOPNOTSUPP); 2526 error = (*ifp->if_ioctl)(ifp, cmd, data); 2527 if (error == 0) 2528 getmicrotime(&ifp->if_lastchange); 2529 break; 2530 2531 case SIOCGIFSTATUS: 2532 case SIOCGIFPSRCADDR: 2533 case SIOCGIFPDSTADDR: 2534 case SIOCGIFMEDIA: 2535 case SIOCGIFXMEDIA: 2536 case SIOCGIFGENERIC: 2537 if (ifp->if_ioctl == NULL) 2538 return (EOPNOTSUPP); 2539 error = (*ifp->if_ioctl)(ifp, cmd, data); 2540 break; 2541 2542 case SIOCSIFLLADDR: 2543 error = priv_check(td, PRIV_NET_SETLLADDR); 2544 if (error) 2545 return (error); 2546 error = if_setlladdr(ifp, 2547 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2548 break; 2549 2550 case SIOCAIFGROUP: 2551 { 2552 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2553 2554 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2555 if (error) 2556 return (error); 2557 if ((error = if_addgroup(ifp, ifgr->ifgr_group))) 2558 return (error); 2559 break; 2560 } 2561 2562 case SIOCGIFGROUP: 2563 if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp))) 2564 return (error); 2565 break; 2566 2567 case SIOCDIFGROUP: 2568 { 2569 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2570 2571 error = priv_check(td, PRIV_NET_DELIFGROUP); 2572 if (error) 2573 return (error); 2574 if ((error = if_delgroup(ifp, ifgr->ifgr_group))) 2575 return (error); 2576 break; 2577 } 2578 2579 default: 2580 error = ENOIOCTL; 2581 break; 2582 } 2583 return (error); 2584 } 2585 2586 #ifdef COMPAT_FREEBSD32 2587 struct ifconf32 { 2588 int32_t ifc_len; 2589 union { 2590 uint32_t ifcu_buf; 2591 uint32_t ifcu_req; 2592 } ifc_ifcu; 2593 }; 2594 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 2595 #endif 2596 2597 /* 2598 * Interface ioctls. 2599 */ 2600 int 2601 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2602 { 2603 struct ifnet *ifp; 2604 struct ifreq *ifr; 2605 int error; 2606 int oif_flags; 2607 2608 CURVNET_SET(so->so_vnet); 2609 switch (cmd) { 2610 case SIOCGIFCONF: 2611 error = ifconf(cmd, data); 2612 CURVNET_RESTORE(); 2613 return (error); 2614 2615 #ifdef COMPAT_FREEBSD32 2616 case SIOCGIFCONF32: 2617 { 2618 struct ifconf32 *ifc32; 2619 struct ifconf ifc; 2620 2621 ifc32 = (struct ifconf32 *)data; 2622 ifc.ifc_len = ifc32->ifc_len; 2623 ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2624 2625 error = ifconf(SIOCGIFCONF, (void *)&ifc); 2626 CURVNET_RESTORE(); 2627 if (error == 0) 2628 ifc32->ifc_len = ifc.ifc_len; 2629 return (error); 2630 } 2631 #endif 2632 } 2633 ifr = (struct ifreq *)data; 2634 2635 switch (cmd) { 2636 #ifdef VIMAGE 2637 case SIOCSIFRVNET: 2638 error = priv_check(td, PRIV_NET_SETIFVNET); 2639 if (error == 0) 2640 error = if_vmove_reclaim(td, ifr->ifr_name, 2641 ifr->ifr_jid); 2642 CURVNET_RESTORE(); 2643 return (error); 2644 #endif 2645 case SIOCIFCREATE: 2646 case SIOCIFCREATE2: 2647 error = priv_check(td, PRIV_NET_IFCREATE); 2648 if (error == 0) 2649 error = if_clone_create(ifr->ifr_name, 2650 sizeof(ifr->ifr_name), 2651 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL); 2652 CURVNET_RESTORE(); 2653 return (error); 2654 case SIOCIFDESTROY: 2655 error = priv_check(td, PRIV_NET_IFDESTROY); 2656 if (error == 0) 2657 error = if_clone_destroy(ifr->ifr_name); 2658 CURVNET_RESTORE(); 2659 return (error); 2660 2661 case SIOCIFGCLONERS: 2662 error = if_clone_list((struct if_clonereq *)data); 2663 CURVNET_RESTORE(); 2664 return (error); 2665 case SIOCGIFGMEMB: 2666 error = if_getgroupmembers((struct ifgroupreq *)data); 2667 CURVNET_RESTORE(); 2668 return (error); 2669 #if defined(INET) || defined(INET6) 2670 case SIOCSVH: 2671 case SIOCGVH: 2672 if (carp_ioctl_p == NULL) 2673 error = EPROTONOSUPPORT; 2674 else 2675 error = (*carp_ioctl_p)(ifr, cmd, td); 2676 CURVNET_RESTORE(); 2677 return (error); 2678 #endif 2679 } 2680 2681 ifp = ifunit_ref(ifr->ifr_name); 2682 if (ifp == NULL) { 2683 CURVNET_RESTORE(); 2684 return (ENXIO); 2685 } 2686 2687 error = ifhwioctl(cmd, ifp, data, td); 2688 if (error != ENOIOCTL) { 2689 if_rele(ifp); 2690 CURVNET_RESTORE(); 2691 return (error); 2692 } 2693 2694 oif_flags = ifp->if_flags; 2695 if (so->so_proto == NULL) { 2696 if_rele(ifp); 2697 CURVNET_RESTORE(); 2698 return (EOPNOTSUPP); 2699 } 2700 2701 /* 2702 * Pass the request on to the socket control method, and if the 2703 * latter returns EOPNOTSUPP, directly to the interface. 2704 * 2705 * Make an exception for the legacy SIOCSIF* requests. Drivers 2706 * trust SIOCSIFADDR et al to come from an already privileged 2707 * layer, and do not perform any credentials checks or input 2708 * validation. 2709 */ 2710 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, 2711 ifp, td)); 2712 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 2713 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 2714 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 2715 error = (*ifp->if_ioctl)(ifp, cmd, data); 2716 2717 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 2718 #ifdef INET6 2719 if (ifp->if_flags & IFF_UP) 2720 in6_if_up(ifp); 2721 #endif 2722 } 2723 if_rele(ifp); 2724 CURVNET_RESTORE(); 2725 return (error); 2726 } 2727 2728 /* 2729 * The code common to handling reference counted flags, 2730 * e.g., in ifpromisc() and if_allmulti(). 2731 * The "pflag" argument can specify a permanent mode flag to check, 2732 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 2733 * 2734 * Only to be used on stack-owned flags, not driver-owned flags. 2735 */ 2736 static int 2737 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 2738 { 2739 struct ifreq ifr; 2740 int error; 2741 int oldflags, oldcount; 2742 2743 /* Sanity checks to catch programming errors */ 2744 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 2745 ("%s: setting driver-owned flag %d", __func__, flag)); 2746 2747 if (onswitch) 2748 KASSERT(*refcount >= 0, 2749 ("%s: increment negative refcount %d for flag %d", 2750 __func__, *refcount, flag)); 2751 else 2752 KASSERT(*refcount > 0, 2753 ("%s: decrement non-positive refcount %d for flag %d", 2754 __func__, *refcount, flag)); 2755 2756 /* In case this mode is permanent, just touch refcount */ 2757 if (ifp->if_flags & pflag) { 2758 *refcount += onswitch ? 1 : -1; 2759 return (0); 2760 } 2761 2762 /* Save ifnet parameters for if_ioctl() may fail */ 2763 oldcount = *refcount; 2764 oldflags = ifp->if_flags; 2765 2766 /* 2767 * See if we aren't the only and touching refcount is enough. 2768 * Actually toggle interface flag if we are the first or last. 2769 */ 2770 if (onswitch) { 2771 if ((*refcount)++) 2772 return (0); 2773 ifp->if_flags |= flag; 2774 } else { 2775 if (--(*refcount)) 2776 return (0); 2777 ifp->if_flags &= ~flag; 2778 } 2779 2780 /* Call down the driver since we've changed interface flags */ 2781 if (ifp->if_ioctl == NULL) { 2782 error = EOPNOTSUPP; 2783 goto recover; 2784 } 2785 ifr.ifr_flags = ifp->if_flags & 0xffff; 2786 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2787 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 2788 if (error) 2789 goto recover; 2790 /* Notify userland that interface flags have changed */ 2791 rt_ifmsg(ifp); 2792 return (0); 2793 2794 recover: 2795 /* Recover after driver error */ 2796 *refcount = oldcount; 2797 ifp->if_flags = oldflags; 2798 return (error); 2799 } 2800 2801 /* 2802 * Set/clear promiscuous mode on interface ifp based on the truth value 2803 * of pswitch. The calls are reference counted so that only the first 2804 * "on" request actually has an effect, as does the final "off" request. 2805 * Results are undefined if the "off" and "on" requests are not matched. 2806 */ 2807 int 2808 ifpromisc(struct ifnet *ifp, int pswitch) 2809 { 2810 int error; 2811 int oldflags = ifp->if_flags; 2812 2813 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 2814 &ifp->if_pcount, pswitch); 2815 /* If promiscuous mode status has changed, log a message */ 2816 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC)) 2817 log(LOG_INFO, "%s: promiscuous mode %s\n", 2818 ifp->if_xname, 2819 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 2820 return (error); 2821 } 2822 2823 /* 2824 * Return interface configuration 2825 * of system. List may be used 2826 * in later ioctl's (above) to get 2827 * other information. 2828 */ 2829 /*ARGSUSED*/ 2830 static int 2831 ifconf(u_long cmd, caddr_t data) 2832 { 2833 struct ifconf *ifc = (struct ifconf *)data; 2834 struct ifnet *ifp; 2835 struct ifaddr *ifa; 2836 struct ifreq ifr; 2837 struct sbuf *sb; 2838 int error, full = 0, valid_len, max_len; 2839 2840 /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ 2841 max_len = MAXPHYS - 1; 2842 2843 /* Prevent hostile input from being able to crash the system */ 2844 if (ifc->ifc_len <= 0) 2845 return (EINVAL); 2846 2847 again: 2848 if (ifc->ifc_len <= max_len) { 2849 max_len = ifc->ifc_len; 2850 full = 1; 2851 } 2852 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 2853 max_len = 0; 2854 valid_len = 0; 2855 2856 IFNET_RLOCK(); 2857 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2858 int addrs; 2859 2860 /* 2861 * Zero the ifr_name buffer to make sure we don't 2862 * disclose the contents of the stack. 2863 */ 2864 memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name)); 2865 2866 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 2867 >= sizeof(ifr.ifr_name)) { 2868 sbuf_delete(sb); 2869 IFNET_RUNLOCK(); 2870 return (ENAMETOOLONG); 2871 } 2872 2873 addrs = 0; 2874 IF_ADDR_RLOCK(ifp); 2875 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2876 struct sockaddr *sa = ifa->ifa_addr; 2877 2878 if (prison_if(curthread->td_ucred, sa) != 0) 2879 continue; 2880 addrs++; 2881 if (sa->sa_len <= sizeof(*sa)) { 2882 ifr.ifr_addr = *sa; 2883 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2884 max_len += sizeof(ifr); 2885 } else { 2886 sbuf_bcat(sb, &ifr, 2887 offsetof(struct ifreq, ifr_addr)); 2888 max_len += offsetof(struct ifreq, ifr_addr); 2889 sbuf_bcat(sb, sa, sa->sa_len); 2890 max_len += sa->sa_len; 2891 } 2892 2893 if (sbuf_error(sb) == 0) 2894 valid_len = sbuf_len(sb); 2895 } 2896 IF_ADDR_RUNLOCK(ifp); 2897 if (addrs == 0) { 2898 bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); 2899 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2900 max_len += sizeof(ifr); 2901 2902 if (sbuf_error(sb) == 0) 2903 valid_len = sbuf_len(sb); 2904 } 2905 } 2906 IFNET_RUNLOCK(); 2907 2908 /* 2909 * If we didn't allocate enough space (uncommon), try again. If 2910 * we have already allocated as much space as we are allowed, 2911 * return what we've got. 2912 */ 2913 if (valid_len != max_len && !full) { 2914 sbuf_delete(sb); 2915 goto again; 2916 } 2917 2918 ifc->ifc_len = valid_len; 2919 sbuf_finish(sb); 2920 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 2921 sbuf_delete(sb); 2922 return (error); 2923 } 2924 2925 /* 2926 * Just like ifpromisc(), but for all-multicast-reception mode. 2927 */ 2928 int 2929 if_allmulti(struct ifnet *ifp, int onswitch) 2930 { 2931 2932 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 2933 } 2934 2935 struct ifmultiaddr * 2936 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) 2937 { 2938 struct ifmultiaddr *ifma; 2939 2940 IF_ADDR_LOCK_ASSERT(ifp); 2941 2942 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2943 if (sa->sa_family == AF_LINK) { 2944 if (sa_dl_equal(ifma->ifma_addr, sa)) 2945 break; 2946 } else { 2947 if (sa_equal(ifma->ifma_addr, sa)) 2948 break; 2949 } 2950 } 2951 2952 return ifma; 2953 } 2954 2955 /* 2956 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 2957 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 2958 * the ifnet multicast address list here, so the caller must do that and 2959 * other setup work (such as notifying the device driver). The reference 2960 * count is initialized to 1. 2961 */ 2962 static struct ifmultiaddr * 2963 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 2964 int mflags) 2965 { 2966 struct ifmultiaddr *ifma; 2967 struct sockaddr *dupsa; 2968 2969 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 2970 M_ZERO); 2971 if (ifma == NULL) 2972 return (NULL); 2973 2974 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 2975 if (dupsa == NULL) { 2976 free(ifma, M_IFMADDR); 2977 return (NULL); 2978 } 2979 bcopy(sa, dupsa, sa->sa_len); 2980 ifma->ifma_addr = dupsa; 2981 2982 ifma->ifma_ifp = ifp; 2983 ifma->ifma_refcount = 1; 2984 ifma->ifma_protospec = NULL; 2985 2986 if (llsa == NULL) { 2987 ifma->ifma_lladdr = NULL; 2988 return (ifma); 2989 } 2990 2991 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 2992 if (dupsa == NULL) { 2993 free(ifma->ifma_addr, M_IFMADDR); 2994 free(ifma, M_IFMADDR); 2995 return (NULL); 2996 } 2997 bcopy(llsa, dupsa, llsa->sa_len); 2998 ifma->ifma_lladdr = dupsa; 2999 3000 return (ifma); 3001 } 3002 3003 /* 3004 * if_freemulti: free ifmultiaddr structure and possibly attached related 3005 * addresses. The caller is responsible for implementing reference 3006 * counting, notifying the driver, handling routing messages, and releasing 3007 * any dependent link layer state. 3008 */ 3009 static void 3010 if_freemulti(struct ifmultiaddr *ifma) 3011 { 3012 3013 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3014 ifma->ifma_refcount)); 3015 3016 if (ifma->ifma_lladdr != NULL) 3017 free(ifma->ifma_lladdr, M_IFMADDR); 3018 free(ifma->ifma_addr, M_IFMADDR); 3019 free(ifma, M_IFMADDR); 3020 } 3021 3022 /* 3023 * Register an additional multicast address with a network interface. 3024 * 3025 * - If the address is already present, bump the reference count on the 3026 * address and return. 3027 * - If the address is not link-layer, look up a link layer address. 3028 * - Allocate address structures for one or both addresses, and attach to the 3029 * multicast address list on the interface. If automatically adding a link 3030 * layer address, the protocol address will own a reference to the link 3031 * layer address, to be freed when it is freed. 3032 * - Notify the network device driver of an addition to the multicast address 3033 * list. 3034 * 3035 * 'sa' points to caller-owned memory with the desired multicast address. 3036 * 3037 * 'retifma' will be used to return a pointer to the resulting multicast 3038 * address reference, if desired. 3039 */ 3040 int 3041 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3042 struct ifmultiaddr **retifma) 3043 { 3044 struct ifmultiaddr *ifma, *ll_ifma; 3045 struct sockaddr *llsa; 3046 struct sockaddr_dl sdl; 3047 int error; 3048 3049 /* 3050 * If the address is already present, return a new reference to it; 3051 * otherwise, allocate storage and set up a new address. 3052 */ 3053 IF_ADDR_WLOCK(ifp); 3054 ifma = if_findmulti(ifp, sa); 3055 if (ifma != NULL) { 3056 ifma->ifma_refcount++; 3057 if (retifma != NULL) 3058 *retifma = ifma; 3059 IF_ADDR_WUNLOCK(ifp); 3060 return (0); 3061 } 3062 3063 /* 3064 * The address isn't already present; resolve the protocol address 3065 * into a link layer address, and then look that up, bump its 3066 * refcount or allocate an ifma for that also. 3067 * Most link layer resolving functions returns address data which 3068 * fits inside default sockaddr_dl structure. However callback 3069 * can allocate another sockaddr structure, in that case we need to 3070 * free it later. 3071 */ 3072 llsa = NULL; 3073 ll_ifma = NULL; 3074 if (ifp->if_resolvemulti != NULL) { 3075 /* Provide called function with buffer size information */ 3076 sdl.sdl_len = sizeof(sdl); 3077 llsa = (struct sockaddr *)&sdl; 3078 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3079 if (error) 3080 goto unlock_out; 3081 } 3082 3083 /* 3084 * Allocate the new address. Don't hook it up yet, as we may also 3085 * need to allocate a link layer multicast address. 3086 */ 3087 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3088 if (ifma == NULL) { 3089 error = ENOMEM; 3090 goto free_llsa_out; 3091 } 3092 3093 /* 3094 * If a link layer address is found, we'll need to see if it's 3095 * already present in the address list, or allocate is as well. 3096 * When this block finishes, the link layer address will be on the 3097 * list. 3098 */ 3099 if (llsa != NULL) { 3100 ll_ifma = if_findmulti(ifp, llsa); 3101 if (ll_ifma == NULL) { 3102 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3103 if (ll_ifma == NULL) { 3104 --ifma->ifma_refcount; 3105 if_freemulti(ifma); 3106 error = ENOMEM; 3107 goto free_llsa_out; 3108 } 3109 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3110 ifma_link); 3111 } else 3112 ll_ifma->ifma_refcount++; 3113 ifma->ifma_llifma = ll_ifma; 3114 } 3115 3116 /* 3117 * We now have a new multicast address, ifma, and possibly a new or 3118 * referenced link layer address. Add the primary address to the 3119 * ifnet address list. 3120 */ 3121 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3122 3123 if (retifma != NULL) 3124 *retifma = ifma; 3125 3126 /* 3127 * Must generate the message while holding the lock so that 'ifma' 3128 * pointer is still valid. 3129 */ 3130 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3131 IF_ADDR_WUNLOCK(ifp); 3132 3133 /* 3134 * We are certain we have added something, so call down to the 3135 * interface to let them know about it. 3136 */ 3137 if (ifp->if_ioctl != NULL) { 3138 (void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3139 } 3140 3141 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3142 link_free_sdl(llsa); 3143 3144 return (0); 3145 3146 free_llsa_out: 3147 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3148 link_free_sdl(llsa); 3149 3150 unlock_out: 3151 IF_ADDR_WUNLOCK(ifp); 3152 return (error); 3153 } 3154 3155 /* 3156 * Delete a multicast group membership by network-layer group address. 3157 * 3158 * Returns ENOENT if the entry could not be found. If ifp no longer 3159 * exists, results are undefined. This entry point should only be used 3160 * from subsystems which do appropriate locking to hold ifp for the 3161 * duration of the call. 3162 * Network-layer protocol domains must use if_delmulti_ifma(). 3163 */ 3164 int 3165 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3166 { 3167 struct ifmultiaddr *ifma; 3168 int lastref; 3169 #ifdef INVARIANTS 3170 struct ifnet *oifp; 3171 3172 IFNET_RLOCK_NOSLEEP(); 3173 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3174 if (ifp == oifp) 3175 break; 3176 if (ifp != oifp) 3177 ifp = NULL; 3178 IFNET_RUNLOCK_NOSLEEP(); 3179 3180 KASSERT(ifp != NULL, ("%s: ifnet went away", __func__)); 3181 #endif 3182 if (ifp == NULL) 3183 return (ENOENT); 3184 3185 IF_ADDR_WLOCK(ifp); 3186 lastref = 0; 3187 ifma = if_findmulti(ifp, sa); 3188 if (ifma != NULL) 3189 lastref = if_delmulti_locked(ifp, ifma, 0); 3190 IF_ADDR_WUNLOCK(ifp); 3191 3192 if (ifma == NULL) 3193 return (ENOENT); 3194 3195 if (lastref && ifp->if_ioctl != NULL) { 3196 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3197 } 3198 3199 return (0); 3200 } 3201 3202 /* 3203 * Delete all multicast group membership for an interface. 3204 * Should be used to quickly flush all multicast filters. 3205 */ 3206 void 3207 if_delallmulti(struct ifnet *ifp) 3208 { 3209 struct ifmultiaddr *ifma; 3210 struct ifmultiaddr *next; 3211 3212 IF_ADDR_WLOCK(ifp); 3213 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3214 if_delmulti_locked(ifp, ifma, 0); 3215 IF_ADDR_WUNLOCK(ifp); 3216 } 3217 3218 /* 3219 * Delete a multicast group membership by group membership pointer. 3220 * Network-layer protocol domains must use this routine. 3221 * 3222 * It is safe to call this routine if the ifp disappeared. 3223 */ 3224 void 3225 if_delmulti_ifma(struct ifmultiaddr *ifma) 3226 { 3227 struct ifnet *ifp; 3228 int lastref; 3229 3230 ifp = ifma->ifma_ifp; 3231 #ifdef DIAGNOSTIC 3232 if (ifp == NULL) { 3233 printf("%s: ifma_ifp seems to be detached\n", __func__); 3234 } else { 3235 struct ifnet *oifp; 3236 3237 IFNET_RLOCK_NOSLEEP(); 3238 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3239 if (ifp == oifp) 3240 break; 3241 if (ifp != oifp) { 3242 printf("%s: ifnet %p disappeared\n", __func__, ifp); 3243 ifp = NULL; 3244 } 3245 IFNET_RUNLOCK_NOSLEEP(); 3246 } 3247 #endif 3248 /* 3249 * If and only if the ifnet instance exists: Acquire the address lock. 3250 */ 3251 if (ifp != NULL) 3252 IF_ADDR_WLOCK(ifp); 3253 3254 lastref = if_delmulti_locked(ifp, ifma, 0); 3255 3256 if (ifp != NULL) { 3257 /* 3258 * If and only if the ifnet instance exists: 3259 * Release the address lock. 3260 * If the group was left: update the hardware hash filter. 3261 */ 3262 IF_ADDR_WUNLOCK(ifp); 3263 if (lastref && ifp->if_ioctl != NULL) { 3264 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3265 } 3266 } 3267 } 3268 3269 /* 3270 * Perform deletion of network-layer and/or link-layer multicast address. 3271 * 3272 * Return 0 if the reference count was decremented. 3273 * Return 1 if the final reference was released, indicating that the 3274 * hardware hash filter should be reprogrammed. 3275 */ 3276 static int 3277 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3278 { 3279 struct ifmultiaddr *ll_ifma; 3280 3281 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3282 KASSERT(ifma->ifma_ifp == ifp, 3283 ("%s: inconsistent ifp %p", __func__, ifp)); 3284 IF_ADDR_WLOCK_ASSERT(ifp); 3285 } 3286 3287 ifp = ifma->ifma_ifp; 3288 3289 /* 3290 * If the ifnet is detaching, null out references to ifnet, 3291 * so that upper protocol layers will notice, and not attempt 3292 * to obtain locks for an ifnet which no longer exists. The 3293 * routing socket announcement must happen before the ifnet 3294 * instance is detached from the system. 3295 */ 3296 if (detaching) { 3297 #ifdef DIAGNOSTIC 3298 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3299 #endif 3300 /* 3301 * ifp may already be nulled out if we are being reentered 3302 * to delete the ll_ifma. 3303 */ 3304 if (ifp != NULL) { 3305 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3306 ifma->ifma_ifp = NULL; 3307 } 3308 } 3309 3310 if (--ifma->ifma_refcount > 0) 3311 return 0; 3312 3313 /* 3314 * If this ifma is a network-layer ifma, a link-layer ifma may 3315 * have been associated with it. Release it first if so. 3316 */ 3317 ll_ifma = ifma->ifma_llifma; 3318 if (ll_ifma != NULL) { 3319 KASSERT(ifma->ifma_lladdr != NULL, 3320 ("%s: llifma w/o lladdr", __func__)); 3321 if (detaching) 3322 ll_ifma->ifma_ifp = NULL; /* XXX */ 3323 if (--ll_ifma->ifma_refcount == 0) { 3324 if (ifp != NULL) { 3325 TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, 3326 ifma_link); 3327 } 3328 if_freemulti(ll_ifma); 3329 } 3330 } 3331 3332 if (ifp != NULL) 3333 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 3334 3335 if_freemulti(ifma); 3336 3337 /* 3338 * The last reference to this instance of struct ifmultiaddr 3339 * was released; the hardware should be notified of this change. 3340 */ 3341 return 1; 3342 } 3343 3344 /* 3345 * Set the link layer address on an interface. 3346 * 3347 * At this time we only support certain types of interfaces, 3348 * and we don't allow the length of the address to change. 3349 * 3350 * Set noinline to be dtrace-friendly 3351 */ 3352 __noinline int 3353 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3354 { 3355 struct sockaddr_dl *sdl; 3356 struct ifaddr *ifa; 3357 struct ifreq ifr; 3358 3359 IF_ADDR_RLOCK(ifp); 3360 ifa = ifp->if_addr; 3361 if (ifa == NULL) { 3362 IF_ADDR_RUNLOCK(ifp); 3363 return (EINVAL); 3364 } 3365 ifa_ref(ifa); 3366 IF_ADDR_RUNLOCK(ifp); 3367 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3368 if (sdl == NULL) { 3369 ifa_free(ifa); 3370 return (EINVAL); 3371 } 3372 if (len != sdl->sdl_alen) { /* don't allow length to change */ 3373 ifa_free(ifa); 3374 return (EINVAL); 3375 } 3376 switch (ifp->if_type) { 3377 case IFT_ETHER: 3378 case IFT_FDDI: 3379 case IFT_XETHER: 3380 case IFT_ISO88025: 3381 case IFT_L2VLAN: 3382 case IFT_BRIDGE: 3383 case IFT_ARCNET: 3384 case IFT_IEEE8023ADLAG: 3385 case IFT_IEEE80211: 3386 bcopy(lladdr, LLADDR(sdl), len); 3387 ifa_free(ifa); 3388 break; 3389 default: 3390 ifa_free(ifa); 3391 return (ENODEV); 3392 } 3393 3394 /* 3395 * If the interface is already up, we need 3396 * to re-init it in order to reprogram its 3397 * address filter. 3398 */ 3399 if ((ifp->if_flags & IFF_UP) != 0) { 3400 if (ifp->if_ioctl) { 3401 ifp->if_flags &= ~IFF_UP; 3402 ifr.ifr_flags = ifp->if_flags & 0xffff; 3403 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3404 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3405 ifp->if_flags |= IFF_UP; 3406 ifr.ifr_flags = ifp->if_flags & 0xffff; 3407 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3408 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3409 } 3410 } 3411 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 3412 return (0); 3413 } 3414 3415 /* 3416 * Compat function for handling basic encapsulation requests. 3417 * Not converted stacks (FDDI, IB, ..) supports traditional 3418 * output model: ARP (and other similar L2 protocols) are handled 3419 * inside output routine, arpresolve/nd6_resolve() returns MAC 3420 * address instead of full prepend. 3421 * 3422 * This function creates calculated header==MAC for IPv4/IPv6 and 3423 * returns EAFNOSUPPORT (which is then handled in ARP code) for other 3424 * address families. 3425 */ 3426 static int 3427 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) 3428 { 3429 3430 if (req->rtype != IFENCAP_LL) 3431 return (EOPNOTSUPP); 3432 3433 if (req->bufsize < req->lladdr_len) 3434 return (ENOMEM); 3435 3436 switch (req->family) { 3437 case AF_INET: 3438 case AF_INET6: 3439 break; 3440 default: 3441 return (EAFNOSUPPORT); 3442 } 3443 3444 /* Copy lladdr to storage as is */ 3445 memmove(req->buf, req->lladdr, req->lladdr_len); 3446 req->bufsize = req->lladdr_len; 3447 req->lladdr_off = 0; 3448 3449 return (0); 3450 } 3451 3452 /* 3453 * The name argument must be a pointer to storage which will last as 3454 * long as the interface does. For physical devices, the result of 3455 * device_get_name(dev) is a good choice and for pseudo-devices a 3456 * static string works well. 3457 */ 3458 void 3459 if_initname(struct ifnet *ifp, const char *name, int unit) 3460 { 3461 ifp->if_dname = name; 3462 ifp->if_dunit = unit; 3463 if (unit != IF_DUNIT_NONE) 3464 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 3465 else 3466 strlcpy(ifp->if_xname, name, IFNAMSIZ); 3467 } 3468 3469 int 3470 if_printf(struct ifnet *ifp, const char * fmt, ...) 3471 { 3472 va_list ap; 3473 int retval; 3474 3475 retval = printf("%s: ", ifp->if_xname); 3476 va_start(ap, fmt); 3477 retval += vprintf(fmt, ap); 3478 va_end(ap); 3479 return (retval); 3480 } 3481 3482 void 3483 if_start(struct ifnet *ifp) 3484 { 3485 3486 (*(ifp)->if_start)(ifp); 3487 } 3488 3489 /* 3490 * Backwards compatibility interface for drivers 3491 * that have not implemented it 3492 */ 3493 static int 3494 if_transmit(struct ifnet *ifp, struct mbuf *m) 3495 { 3496 int error; 3497 3498 IFQ_HANDOFF(ifp, m, error); 3499 return (error); 3500 } 3501 3502 static void 3503 if_input_default(struct ifnet *ifp __unused, struct mbuf *m) 3504 { 3505 3506 m_freem(m); 3507 } 3508 3509 int 3510 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 3511 { 3512 int active = 0; 3513 3514 IF_LOCK(ifq); 3515 if (_IF_QFULL(ifq)) { 3516 IF_UNLOCK(ifq); 3517 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 3518 m_freem(m); 3519 return (0); 3520 } 3521 if (ifp != NULL) { 3522 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 3523 if (m->m_flags & (M_BCAST|M_MCAST)) 3524 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3525 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 3526 } 3527 _IF_ENQUEUE(ifq, m); 3528 IF_UNLOCK(ifq); 3529 if (ifp != NULL && !active) 3530 (*(ifp)->if_start)(ifp); 3531 return (1); 3532 } 3533 3534 void 3535 if_register_com_alloc(u_char type, 3536 if_com_alloc_t *a, if_com_free_t *f) 3537 { 3538 3539 KASSERT(if_com_alloc[type] == NULL, 3540 ("if_register_com_alloc: %d already registered", type)); 3541 KASSERT(if_com_free[type] == NULL, 3542 ("if_register_com_alloc: %d free already registered", type)); 3543 3544 if_com_alloc[type] = a; 3545 if_com_free[type] = f; 3546 } 3547 3548 void 3549 if_deregister_com_alloc(u_char type) 3550 { 3551 3552 KASSERT(if_com_alloc[type] != NULL, 3553 ("if_deregister_com_alloc: %d not registered", type)); 3554 KASSERT(if_com_free[type] != NULL, 3555 ("if_deregister_com_alloc: %d free not registered", type)); 3556 if_com_alloc[type] = NULL; 3557 if_com_free[type] = NULL; 3558 } 3559 3560 /* API for driver access to network stack owned ifnet.*/ 3561 uint64_t 3562 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 3563 { 3564 uint64_t oldbrate; 3565 3566 oldbrate = ifp->if_baudrate; 3567 ifp->if_baudrate = baudrate; 3568 return (oldbrate); 3569 } 3570 3571 uint64_t 3572 if_getbaudrate(if_t ifp) 3573 { 3574 3575 return (((struct ifnet *)ifp)->if_baudrate); 3576 } 3577 3578 int 3579 if_setcapabilities(if_t ifp, int capabilities) 3580 { 3581 ((struct ifnet *)ifp)->if_capabilities = capabilities; 3582 return (0); 3583 } 3584 3585 int 3586 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 3587 { 3588 ((struct ifnet *)ifp)->if_capabilities |= setbit; 3589 ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; 3590 3591 return (0); 3592 } 3593 3594 int 3595 if_getcapabilities(if_t ifp) 3596 { 3597 return ((struct ifnet *)ifp)->if_capabilities; 3598 } 3599 3600 int 3601 if_setcapenable(if_t ifp, int capabilities) 3602 { 3603 ((struct ifnet *)ifp)->if_capenable = capabilities; 3604 return (0); 3605 } 3606 3607 int 3608 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 3609 { 3610 if(setcap) 3611 ((struct ifnet *)ifp)->if_capenable |= setcap; 3612 if(clearcap) 3613 ((struct ifnet *)ifp)->if_capenable &= ~clearcap; 3614 3615 return (0); 3616 } 3617 3618 const char * 3619 if_getdname(if_t ifp) 3620 { 3621 return ((struct ifnet *)ifp)->if_dname; 3622 } 3623 3624 int 3625 if_togglecapenable(if_t ifp, int togglecap) 3626 { 3627 ((struct ifnet *)ifp)->if_capenable ^= togglecap; 3628 return (0); 3629 } 3630 3631 int 3632 if_getcapenable(if_t ifp) 3633 { 3634 return ((struct ifnet *)ifp)->if_capenable; 3635 } 3636 3637 /* 3638 * This is largely undesirable because it ties ifnet to a device, but does 3639 * provide flexiblity for an embedded product vendor. Should be used with 3640 * the understanding that it violates the interface boundaries, and should be 3641 * a last resort only. 3642 */ 3643 int 3644 if_setdev(if_t ifp, void *dev) 3645 { 3646 return (0); 3647 } 3648 3649 int 3650 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 3651 { 3652 ((struct ifnet *)ifp)->if_drv_flags |= set_flags; 3653 ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; 3654 3655 return (0); 3656 } 3657 3658 int 3659 if_getdrvflags(if_t ifp) 3660 { 3661 return ((struct ifnet *)ifp)->if_drv_flags; 3662 } 3663 3664 int 3665 if_setdrvflags(if_t ifp, int flags) 3666 { 3667 ((struct ifnet *)ifp)->if_drv_flags = flags; 3668 return (0); 3669 } 3670 3671 3672 int 3673 if_setflags(if_t ifp, int flags) 3674 { 3675 ((struct ifnet *)ifp)->if_flags = flags; 3676 return (0); 3677 } 3678 3679 int 3680 if_setflagbits(if_t ifp, int set, int clear) 3681 { 3682 ((struct ifnet *)ifp)->if_flags |= set; 3683 ((struct ifnet *)ifp)->if_flags &= ~clear; 3684 3685 return (0); 3686 } 3687 3688 int 3689 if_getflags(if_t ifp) 3690 { 3691 return ((struct ifnet *)ifp)->if_flags; 3692 } 3693 3694 int 3695 if_clearhwassist(if_t ifp) 3696 { 3697 ((struct ifnet *)ifp)->if_hwassist = 0; 3698 return (0); 3699 } 3700 3701 int 3702 if_sethwassistbits(if_t ifp, int toset, int toclear) 3703 { 3704 ((struct ifnet *)ifp)->if_hwassist |= toset; 3705 ((struct ifnet *)ifp)->if_hwassist &= ~toclear; 3706 3707 return (0); 3708 } 3709 3710 int 3711 if_sethwassist(if_t ifp, int hwassist_bit) 3712 { 3713 ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; 3714 return (0); 3715 } 3716 3717 int 3718 if_gethwassist(if_t ifp) 3719 { 3720 return ((struct ifnet *)ifp)->if_hwassist; 3721 } 3722 3723 int 3724 if_setmtu(if_t ifp, int mtu) 3725 { 3726 ((struct ifnet *)ifp)->if_mtu = mtu; 3727 return (0); 3728 } 3729 3730 int 3731 if_getmtu(if_t ifp) 3732 { 3733 return ((struct ifnet *)ifp)->if_mtu; 3734 } 3735 3736 int 3737 if_getmtu_family(if_t ifp, int family) 3738 { 3739 struct domain *dp; 3740 3741 for (dp = domains; dp; dp = dp->dom_next) { 3742 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 3743 return (dp->dom_ifmtu((struct ifnet *)ifp)); 3744 } 3745 3746 return (((struct ifnet *)ifp)->if_mtu); 3747 } 3748 3749 int 3750 if_setsoftc(if_t ifp, void *softc) 3751 { 3752 ((struct ifnet *)ifp)->if_softc = softc; 3753 return (0); 3754 } 3755 3756 void * 3757 if_getsoftc(if_t ifp) 3758 { 3759 return ((struct ifnet *)ifp)->if_softc; 3760 } 3761 3762 void 3763 if_setrcvif(struct mbuf *m, if_t ifp) 3764 { 3765 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 3766 } 3767 3768 void 3769 if_setvtag(struct mbuf *m, uint16_t tag) 3770 { 3771 m->m_pkthdr.ether_vtag = tag; 3772 } 3773 3774 uint16_t 3775 if_getvtag(struct mbuf *m) 3776 { 3777 3778 return (m->m_pkthdr.ether_vtag); 3779 } 3780 3781 int 3782 if_sendq_empty(if_t ifp) 3783 { 3784 return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); 3785 } 3786 3787 struct ifaddr * 3788 if_getifaddr(if_t ifp) 3789 { 3790 return ((struct ifnet *)ifp)->if_addr; 3791 } 3792 3793 int 3794 if_getamcount(if_t ifp) 3795 { 3796 return ((struct ifnet *)ifp)->if_amcount; 3797 } 3798 3799 3800 int 3801 if_setsendqready(if_t ifp) 3802 { 3803 IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); 3804 return (0); 3805 } 3806 3807 int 3808 if_setsendqlen(if_t ifp, int tx_desc_count) 3809 { 3810 IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); 3811 ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; 3812 3813 return (0); 3814 } 3815 3816 int 3817 if_vlantrunkinuse(if_t ifp) 3818 { 3819 return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; 3820 } 3821 3822 int 3823 if_input(if_t ifp, struct mbuf* sendmp) 3824 { 3825 (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); 3826 return (0); 3827 3828 } 3829 3830 /* XXX */ 3831 #ifndef ETH_ADDR_LEN 3832 #define ETH_ADDR_LEN 6 3833 #endif 3834 3835 int 3836 if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max) 3837 { 3838 struct ifmultiaddr *ifma; 3839 uint8_t *lmta = (uint8_t *)mta; 3840 int mcnt = 0; 3841 3842 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3843 if (ifma->ifma_addr->sa_family != AF_LINK) 3844 continue; 3845 3846 if (mcnt == max) 3847 break; 3848 3849 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 3850 &lmta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); 3851 mcnt++; 3852 } 3853 *cnt = mcnt; 3854 3855 return (0); 3856 } 3857 3858 int 3859 if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max) 3860 { 3861 int error; 3862 3863 if_maddr_rlock(ifp); 3864 error = if_setupmultiaddr(ifp, mta, cnt, max); 3865 if_maddr_runlock(ifp); 3866 return (error); 3867 } 3868 3869 int 3870 if_multiaddr_count(if_t ifp, int max) 3871 { 3872 struct ifmultiaddr *ifma; 3873 int count; 3874 3875 count = 0; 3876 if_maddr_rlock(ifp); 3877 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3878 if (ifma->ifma_addr->sa_family != AF_LINK) 3879 continue; 3880 count++; 3881 if (count == max) 3882 break; 3883 } 3884 if_maddr_runlock(ifp); 3885 return (count); 3886 } 3887 3888 struct mbuf * 3889 if_dequeue(if_t ifp) 3890 { 3891 struct mbuf *m; 3892 IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); 3893 3894 return (m); 3895 } 3896 3897 int 3898 if_sendq_prepend(if_t ifp, struct mbuf *m) 3899 { 3900 IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); 3901 return (0); 3902 } 3903 3904 int 3905 if_setifheaderlen(if_t ifp, int len) 3906 { 3907 ((struct ifnet *)ifp)->if_hdrlen = len; 3908 return (0); 3909 } 3910 3911 caddr_t 3912 if_getlladdr(if_t ifp) 3913 { 3914 return (IF_LLADDR((struct ifnet *)ifp)); 3915 } 3916 3917 void * 3918 if_gethandle(u_char type) 3919 { 3920 return (if_alloc(type)); 3921 } 3922 3923 void 3924 if_bpfmtap(if_t ifh, struct mbuf *m) 3925 { 3926 struct ifnet *ifp = (struct ifnet *)ifh; 3927 3928 BPF_MTAP(ifp, m); 3929 } 3930 3931 void 3932 if_etherbpfmtap(if_t ifh, struct mbuf *m) 3933 { 3934 struct ifnet *ifp = (struct ifnet *)ifh; 3935 3936 ETHER_BPF_MTAP(ifp, m); 3937 } 3938 3939 void 3940 if_vlancap(if_t ifh) 3941 { 3942 struct ifnet *ifp = (struct ifnet *)ifh; 3943 VLAN_CAPABILITIES(ifp); 3944 } 3945 3946 void 3947 if_setinitfn(if_t ifp, void (*init_fn)(void *)) 3948 { 3949 ((struct ifnet *)ifp)->if_init = init_fn; 3950 } 3951 3952 void 3953 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) 3954 { 3955 ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; 3956 } 3957 3958 void 3959 if_setstartfn(if_t ifp, void (*start_fn)(if_t)) 3960 { 3961 ((struct ifnet *)ifp)->if_start = (void *)start_fn; 3962 } 3963 3964 void 3965 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 3966 { 3967 ((struct ifnet *)ifp)->if_transmit = start_fn; 3968 } 3969 3970 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 3971 { 3972 ((struct ifnet *)ifp)->if_qflush = flush_fn; 3973 3974 } 3975 3976 void 3977 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 3978 { 3979 3980 ifp->if_get_counter = fn; 3981 } 3982 3983 /* Revisit these - These are inline functions originally. */ 3984 int 3985 drbr_inuse_drv(if_t ifh, struct buf_ring *br) 3986 { 3987 return drbr_inuse(ifh, br); 3988 } 3989 3990 struct mbuf* 3991 drbr_dequeue_drv(if_t ifh, struct buf_ring *br) 3992 { 3993 return drbr_dequeue(ifh, br); 3994 } 3995 3996 int 3997 drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br) 3998 { 3999 return drbr_needs_enqueue(ifh, br); 4000 } 4001 4002 int 4003 drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m) 4004 { 4005 return drbr_enqueue(ifh, br, m); 4006 4007 } 4008