1 /*- 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if.c 8.5 (Berkeley) 1/9/95 30 * $FreeBSD$ 31 */ 32 33 #include "opt_compat.h" 34 #include "opt_inet6.h" 35 #include "opt_inet.h" 36 37 #include <sys/param.h> 38 #include <sys/types.h> 39 #include <sys/conf.h> 40 #include <sys/malloc.h> 41 #include <sys/sbuf.h> 42 #include <sys/bus.h> 43 #include <sys/mbuf.h> 44 #include <sys/systm.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/protosw.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/refcount.h> 53 #include <sys/module.h> 54 #include <sys/rwlock.h> 55 #include <sys/sockio.h> 56 #include <sys/syslog.h> 57 #include <sys/sysctl.h> 58 #include <sys/taskqueue.h> 59 #include <sys/domain.h> 60 #include <sys/jail.h> 61 #include <sys/priv.h> 62 63 #include <machine/stdarg.h> 64 #include <vm/uma.h> 65 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/if.h> 69 #include <net/if_arp.h> 70 #include <net/if_clone.h> 71 #include <net/if_dl.h> 72 #include <net/if_types.h> 73 #include <net/if_var.h> 74 #include <net/if_media.h> 75 #include <net/if_vlan_var.h> 76 #include <net/radix.h> 77 #include <net/route.h> 78 #include <net/vnet.h> 79 80 #if defined(INET) || defined(INET6) 81 #include <net/ethernet.h> 82 #include <netinet/in.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_carp.h> 86 #ifdef INET 87 #include <netinet/if_ether.h> 88 #endif /* INET */ 89 #ifdef INET6 90 #include <netinet6/in6_var.h> 91 #include <netinet6/in6_ifattach.h> 92 #endif /* INET6 */ 93 #endif /* INET || INET6 */ 94 95 #include <security/mac/mac_framework.h> 96 97 #ifdef COMPAT_FREEBSD32 98 #include <sys/mount.h> 99 #include <compat/freebsd32/freebsd32.h> 100 #endif 101 102 struct ifindex_entry { 103 struct ifnet *ife_ifnet; 104 }; 105 106 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 107 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 108 109 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 110 &ifqmaxlen, 0, "max send queue size"); 111 112 /* Log link state change events */ 113 static int log_link_state_change = 1; 114 115 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 116 &log_link_state_change, 0, 117 "log interface link state change events"); 118 119 /* Interface description */ 120 static unsigned int ifdescr_maxlen = 1024; 121 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 122 &ifdescr_maxlen, 0, 123 "administrative maximum length for interface description"); 124 125 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 126 127 /* global sx for non-critical path ifdescr */ 128 static struct sx ifdescr_sx; 129 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 130 131 void (*bridge_linkstate_p)(struct ifnet *ifp); 132 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 133 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 134 /* These are external hooks for CARP. */ 135 void (*carp_linkstate_p)(struct ifnet *ifp); 136 void (*carp_demote_adj_p)(int, char *); 137 int (*carp_master_p)(struct ifaddr *); 138 #if defined(INET) || defined(INET6) 139 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 140 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 141 const struct sockaddr *sa); 142 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 143 int (*carp_attach_p)(struct ifaddr *, int); 144 void (*carp_detach_p)(struct ifaddr *); 145 #endif 146 #ifdef INET 147 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 148 #endif 149 #ifdef INET6 150 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 151 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 152 const struct in6_addr *taddr); 153 #endif 154 155 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 156 157 /* 158 * XXX: Style; these should be sorted alphabetically, and unprototyped 159 * static functions should be prototyped. Currently they are sorted by 160 * declaration order. 161 */ 162 static void if_attachdomain(void *); 163 static void if_attachdomain1(struct ifnet *); 164 static int ifconf(u_long, caddr_t); 165 static void if_freemulti(struct ifmultiaddr *); 166 static void if_init(void *); 167 static void if_grow(void); 168 static void if_route(struct ifnet *, int flag, int fam); 169 static int if_setflag(struct ifnet *, int, int, int *, int); 170 static int if_transmit(struct ifnet *ifp, struct mbuf *m); 171 static void if_unroute(struct ifnet *, int flag, int fam); 172 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 173 static int if_rtdel(struct radix_node *, void *); 174 static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *); 175 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 176 static void do_link_state_change(void *, int); 177 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 178 static int if_getgroupmembers(struct ifgroupreq *); 179 static void if_delgroups(struct ifnet *); 180 static void if_attach_internal(struct ifnet *, int); 181 static void if_detach_internal(struct ifnet *, int); 182 183 #ifdef INET6 184 /* 185 * XXX: declare here to avoid to include many inet6 related files.. 186 * should be more generalized? 187 */ 188 extern void nd6_setmtu(struct ifnet *); 189 #endif 190 191 VNET_DEFINE(int, if_index); 192 int ifqmaxlen = IFQ_MAXLEN; 193 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 194 VNET_DEFINE(struct ifgrouphead, ifg_head); 195 196 static VNET_DEFINE(int, if_indexlim) = 8; 197 198 /* Table of ifnet by index. */ 199 VNET_DEFINE(struct ifindex_entry *, ifindex_table); 200 201 #define V_if_indexlim VNET(if_indexlim) 202 #define V_ifindex_table VNET(ifindex_table) 203 204 /* 205 * The global network interface list (V_ifnet) and related state (such as 206 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and 207 * an rwlock. Either may be acquired shared to stablize the list, but both 208 * must be acquired writable to modify the list. This model allows us to 209 * both stablize the interface list during interrupt thread processing, but 210 * also to stablize it over long-running ioctls, without introducing priority 211 * inversions and deadlocks. 212 */ 213 struct rwlock ifnet_rwlock; 214 struct sx ifnet_sxlock; 215 216 /* 217 * The allocation of network interfaces is a rather non-atomic affair; we 218 * need to select an index before we are ready to expose the interface for 219 * use, so will use this pointer value to indicate reservation. 220 */ 221 #define IFNET_HOLD (void *)(uintptr_t)(-1) 222 223 static if_com_alloc_t *if_com_alloc[256]; 224 static if_com_free_t *if_com_free[256]; 225 226 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 227 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 228 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 229 230 struct ifnet * 231 ifnet_byindex_locked(u_short idx) 232 { 233 234 if (idx > V_if_index) 235 return (NULL); 236 if (V_ifindex_table[idx].ife_ifnet == IFNET_HOLD) 237 return (NULL); 238 return (V_ifindex_table[idx].ife_ifnet); 239 } 240 241 struct ifnet * 242 ifnet_byindex(u_short idx) 243 { 244 struct ifnet *ifp; 245 246 IFNET_RLOCK_NOSLEEP(); 247 ifp = ifnet_byindex_locked(idx); 248 IFNET_RUNLOCK_NOSLEEP(); 249 return (ifp); 250 } 251 252 struct ifnet * 253 ifnet_byindex_ref(u_short idx) 254 { 255 struct ifnet *ifp; 256 257 IFNET_RLOCK_NOSLEEP(); 258 ifp = ifnet_byindex_locked(idx); 259 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) { 260 IFNET_RUNLOCK_NOSLEEP(); 261 return (NULL); 262 } 263 if_ref(ifp); 264 IFNET_RUNLOCK_NOSLEEP(); 265 return (ifp); 266 } 267 268 /* 269 * Allocate an ifindex array entry; return 0 on success or an error on 270 * failure. 271 */ 272 static int 273 ifindex_alloc_locked(u_short *idxp) 274 { 275 u_short idx; 276 277 IFNET_WLOCK_ASSERT(); 278 279 retry: 280 /* 281 * Try to find an empty slot below V_if_index. If we fail, take the 282 * next slot. 283 */ 284 for (idx = 1; idx <= V_if_index; idx++) { 285 if (V_ifindex_table[idx].ife_ifnet == NULL) 286 break; 287 } 288 289 /* Catch if_index overflow. */ 290 if (idx >= V_if_indexlim) { 291 if_grow(); 292 goto retry; 293 } 294 if (idx > V_if_index) 295 V_if_index = idx; 296 *idxp = idx; 297 return (0); 298 } 299 300 static void 301 ifindex_free_locked(u_short idx) 302 { 303 304 IFNET_WLOCK_ASSERT(); 305 306 V_ifindex_table[idx].ife_ifnet = NULL; 307 while (V_if_index > 0 && 308 V_ifindex_table[V_if_index].ife_ifnet == NULL) 309 V_if_index--; 310 } 311 312 static void 313 ifindex_free(u_short idx) 314 { 315 316 IFNET_WLOCK(); 317 ifindex_free_locked(idx); 318 IFNET_WUNLOCK(); 319 } 320 321 static void 322 ifnet_setbyindex_locked(u_short idx, struct ifnet *ifp) 323 { 324 325 IFNET_WLOCK_ASSERT(); 326 327 V_ifindex_table[idx].ife_ifnet = ifp; 328 } 329 330 static void 331 ifnet_setbyindex(u_short idx, struct ifnet *ifp) 332 { 333 334 IFNET_WLOCK(); 335 ifnet_setbyindex_locked(idx, ifp); 336 IFNET_WUNLOCK(); 337 } 338 339 struct ifaddr * 340 ifaddr_byindex(u_short idx) 341 { 342 struct ifaddr *ifa; 343 344 IFNET_RLOCK_NOSLEEP(); 345 ifa = ifnet_byindex_locked(idx)->if_addr; 346 if (ifa != NULL) 347 ifa_ref(ifa); 348 IFNET_RUNLOCK_NOSLEEP(); 349 return (ifa); 350 } 351 352 /* 353 * Network interface utility routines. 354 * 355 * Routines with ifa_ifwith* names take sockaddr *'s as 356 * parameters. 357 */ 358 359 static void 360 vnet_if_init(const void *unused __unused) 361 { 362 363 TAILQ_INIT(&V_ifnet); 364 TAILQ_INIT(&V_ifg_head); 365 IFNET_WLOCK(); 366 if_grow(); /* create initial table */ 367 IFNET_WUNLOCK(); 368 vnet_if_clone_init(); 369 } 370 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 371 NULL); 372 373 /* ARGSUSED*/ 374 static void 375 if_init(void *dummy __unused) 376 { 377 378 IFNET_LOCK_INIT(); 379 if_clone_init(); 380 } 381 SYSINIT(interfaces, SI_SUB_INIT_IF, SI_ORDER_FIRST, if_init, NULL); 382 383 384 #ifdef VIMAGE 385 static void 386 vnet_if_uninit(const void *unused __unused) 387 { 388 389 VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " 390 "not empty", __func__, __LINE__, &V_ifnet)); 391 VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " 392 "not empty", __func__, __LINE__, &V_ifg_head)); 393 394 free((caddr_t)V_ifindex_table, M_IFNET); 395 } 396 VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, 397 vnet_if_uninit, NULL); 398 #endif 399 400 static void 401 if_grow(void) 402 { 403 int oldlim; 404 u_int n; 405 struct ifindex_entry *e; 406 407 IFNET_WLOCK_ASSERT(); 408 oldlim = V_if_indexlim; 409 IFNET_WUNLOCK(); 410 n = (oldlim << 1) * sizeof(*e); 411 e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); 412 IFNET_WLOCK(); 413 if (V_if_indexlim != oldlim) { 414 free(e, M_IFNET); 415 return; 416 } 417 if (V_ifindex_table != NULL) { 418 memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); 419 free((caddr_t)V_ifindex_table, M_IFNET); 420 } 421 V_if_indexlim <<= 1; 422 V_ifindex_table = e; 423 } 424 425 /* 426 * Allocate a struct ifnet and an index for an interface. A layer 2 427 * common structure will also be allocated if an allocation routine is 428 * registered for the passed type. 429 */ 430 struct ifnet * 431 if_alloc(u_char type) 432 { 433 struct ifnet *ifp; 434 u_short idx; 435 436 ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO); 437 IFNET_WLOCK(); 438 if (ifindex_alloc_locked(&idx) != 0) { 439 IFNET_WUNLOCK(); 440 free(ifp, M_IFNET); 441 return (NULL); 442 } 443 ifnet_setbyindex_locked(idx, IFNET_HOLD); 444 IFNET_WUNLOCK(); 445 ifp->if_index = idx; 446 ifp->if_type = type; 447 ifp->if_alloctype = type; 448 if (if_com_alloc[type] != NULL) { 449 ifp->if_l2com = if_com_alloc[type](type, ifp); 450 if (ifp->if_l2com == NULL) { 451 free(ifp, M_IFNET); 452 ifindex_free(idx); 453 return (NULL); 454 } 455 } 456 457 IF_ADDR_LOCK_INIT(ifp); 458 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 459 ifp->if_afdata_initialized = 0; 460 IF_AFDATA_LOCK_INIT(ifp); 461 TAILQ_INIT(&ifp->if_addrhead); 462 TAILQ_INIT(&ifp->if_multiaddrs); 463 TAILQ_INIT(&ifp->if_groups); 464 #ifdef MAC 465 mac_ifnet_init(ifp); 466 #endif 467 ifq_init(&ifp->if_snd, ifp); 468 469 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 470 ifnet_setbyindex(ifp->if_index, ifp); 471 return (ifp); 472 } 473 474 /* 475 * Do the actual work of freeing a struct ifnet, and layer 2 common 476 * structure. This call is made when the last reference to an 477 * interface is released. 478 */ 479 static void 480 if_free_internal(struct ifnet *ifp) 481 { 482 483 KASSERT((ifp->if_flags & IFF_DYING), 484 ("if_free_internal: interface not dying")); 485 486 if (if_com_free[ifp->if_alloctype] != NULL) 487 if_com_free[ifp->if_alloctype](ifp->if_l2com, 488 ifp->if_alloctype); 489 490 #ifdef MAC 491 mac_ifnet_destroy(ifp); 492 #endif /* MAC */ 493 if (ifp->if_description != NULL) 494 free(ifp->if_description, M_IFDESCR); 495 IF_AFDATA_DESTROY(ifp); 496 IF_ADDR_LOCK_DESTROY(ifp); 497 ifq_delete(&ifp->if_snd); 498 free(ifp, M_IFNET); 499 } 500 501 /* 502 * Deregister an interface and free the associated storage. 503 */ 504 void 505 if_free(struct ifnet *ifp) 506 { 507 508 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 509 510 CURVNET_SET_QUIET(ifp->if_vnet); 511 IFNET_WLOCK(); 512 KASSERT(ifp == ifnet_byindex_locked(ifp->if_index), 513 ("%s: freeing unallocated ifnet", ifp->if_xname)); 514 515 ifindex_free_locked(ifp->if_index); 516 IFNET_WUNLOCK(); 517 518 if (refcount_release(&ifp->if_refcount)) 519 if_free_internal(ifp); 520 CURVNET_RESTORE(); 521 } 522 523 /* 524 * Interfaces to keep an ifnet type-stable despite the possibility of the 525 * driver calling if_free(). If there are additional references, we defer 526 * freeing the underlying data structure. 527 */ 528 void 529 if_ref(struct ifnet *ifp) 530 { 531 532 /* We don't assert the ifnet list lock here, but arguably should. */ 533 refcount_acquire(&ifp->if_refcount); 534 } 535 536 void 537 if_rele(struct ifnet *ifp) 538 { 539 540 if (!refcount_release(&ifp->if_refcount)) 541 return; 542 if_free_internal(ifp); 543 } 544 545 void 546 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 547 { 548 549 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 550 551 if (ifq->ifq_maxlen == 0) 552 ifq->ifq_maxlen = ifqmaxlen; 553 554 ifq->altq_type = 0; 555 ifq->altq_disc = NULL; 556 ifq->altq_flags &= ALTQF_CANTCHANGE; 557 ifq->altq_tbr = NULL; 558 ifq->altq_ifp = ifp; 559 } 560 561 void 562 ifq_delete(struct ifaltq *ifq) 563 { 564 mtx_destroy(&ifq->ifq_mtx); 565 } 566 567 /* 568 * Perform generic interface initalization tasks and attach the interface 569 * to the list of "active" interfaces. If vmove flag is set on entry 570 * to if_attach_internal(), perform only a limited subset of initialization 571 * tasks, given that we are moving from one vnet to another an ifnet which 572 * has already been fully initialized. 573 * 574 * XXX: 575 * - The decision to return void and thus require this function to 576 * succeed is questionable. 577 * - We should probably do more sanity checking. For instance we don't 578 * do anything to insure if_xname is unique or non-empty. 579 */ 580 void 581 if_attach(struct ifnet *ifp) 582 { 583 584 if_attach_internal(ifp, 0); 585 } 586 587 static void 588 if_attach_internal(struct ifnet *ifp, int vmove) 589 { 590 unsigned socksize, ifasize; 591 int namelen, masklen; 592 struct sockaddr_dl *sdl; 593 struct ifaddr *ifa; 594 595 if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) 596 panic ("%s: BUG: if_attach called without if_alloc'd input()\n", 597 ifp->if_xname); 598 599 #ifdef VIMAGE 600 ifp->if_vnet = curvnet; 601 if (ifp->if_home_vnet == NULL) 602 ifp->if_home_vnet = curvnet; 603 #endif 604 605 if_addgroup(ifp, IFG_ALL); 606 607 getmicrotime(&ifp->if_lastchange); 608 ifp->if_data.ifi_epoch = time_uptime; 609 ifp->if_data.ifi_datalen = sizeof(struct if_data); 610 611 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 612 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 613 ("transmit and qflush must both either be set or both be NULL")); 614 if (ifp->if_transmit == NULL) { 615 ifp->if_transmit = if_transmit; 616 ifp->if_qflush = if_qflush; 617 } 618 619 if (!vmove) { 620 #ifdef MAC 621 mac_ifnet_create(ifp); 622 #endif 623 624 /* 625 * Create a Link Level name for this device. 626 */ 627 namelen = strlen(ifp->if_xname); 628 /* 629 * Always save enough space for any possiable name so we 630 * can do a rename in place later. 631 */ 632 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 633 socksize = masklen + ifp->if_addrlen; 634 if (socksize < sizeof(*sdl)) 635 socksize = sizeof(*sdl); 636 socksize = roundup2(socksize, sizeof(long)); 637 ifasize = sizeof(*ifa) + 2 * socksize; 638 ifa = ifa_alloc(ifasize, M_WAITOK); 639 sdl = (struct sockaddr_dl *)(ifa + 1); 640 sdl->sdl_len = socksize; 641 sdl->sdl_family = AF_LINK; 642 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 643 sdl->sdl_nlen = namelen; 644 sdl->sdl_index = ifp->if_index; 645 sdl->sdl_type = ifp->if_type; 646 ifp->if_addr = ifa; 647 ifa->ifa_ifp = ifp; 648 ifa->ifa_rtrequest = link_rtrequest; 649 ifa->ifa_addr = (struct sockaddr *)sdl; 650 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 651 ifa->ifa_netmask = (struct sockaddr *)sdl; 652 sdl->sdl_len = masklen; 653 while (namelen != 0) 654 sdl->sdl_data[--namelen] = 0xff; 655 TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 656 /* Reliably crash if used uninitialized. */ 657 ifp->if_broadcastaddr = NULL; 658 659 #if defined(INET) || defined(INET6) 660 /* Initialize to max value. */ 661 if (ifp->if_hw_tsomax == 0) 662 ifp->if_hw_tsomax = min(IP_MAXPACKET, 32 * MCLBYTES - 663 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 664 KASSERT(ifp->if_hw_tsomax <= IP_MAXPACKET && 665 ifp->if_hw_tsomax >= IP_MAXPACKET / 8, 666 ("%s: tsomax outside of range", __func__)); 667 #endif 668 } 669 #ifdef VIMAGE 670 else { 671 /* 672 * Update the interface index in the link layer address 673 * of the interface. 674 */ 675 for (ifa = ifp->if_addr; ifa != NULL; 676 ifa = TAILQ_NEXT(ifa, ifa_link)) { 677 if (ifa->ifa_addr->sa_family == AF_LINK) { 678 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 679 sdl->sdl_index = ifp->if_index; 680 } 681 } 682 } 683 #endif 684 685 IFNET_WLOCK(); 686 TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 687 #ifdef VIMAGE 688 curvnet->vnet_ifcnt++; 689 #endif 690 IFNET_WUNLOCK(); 691 692 if (domain_init_status >= 2) 693 if_attachdomain1(ifp); 694 695 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 696 if (IS_DEFAULT_VNET(curvnet)) 697 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 698 699 /* Announce the interface. */ 700 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 701 } 702 703 static void 704 if_attachdomain(void *dummy) 705 { 706 struct ifnet *ifp; 707 708 TAILQ_FOREACH(ifp, &V_ifnet, if_link) 709 if_attachdomain1(ifp); 710 } 711 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 712 if_attachdomain, NULL); 713 714 static void 715 if_attachdomain1(struct ifnet *ifp) 716 { 717 struct domain *dp; 718 719 /* 720 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 721 * cannot lock ifp->if_afdata initialization, entirely. 722 */ 723 if (IF_AFDATA_TRYLOCK(ifp) == 0) 724 return; 725 if (ifp->if_afdata_initialized >= domain_init_status) { 726 IF_AFDATA_UNLOCK(ifp); 727 log(LOG_WARNING, "%s called more than once on %s\n", 728 __func__, ifp->if_xname); 729 return; 730 } 731 ifp->if_afdata_initialized = domain_init_status; 732 IF_AFDATA_UNLOCK(ifp); 733 734 /* address family dependent data region */ 735 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 736 for (dp = domains; dp; dp = dp->dom_next) { 737 if (dp->dom_ifattach) 738 ifp->if_afdata[dp->dom_family] = 739 (*dp->dom_ifattach)(ifp); 740 } 741 } 742 743 /* 744 * Remove any unicast or broadcast network addresses from an interface. 745 */ 746 void 747 if_purgeaddrs(struct ifnet *ifp) 748 { 749 struct ifaddr *ifa, *next; 750 751 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 752 if (ifa->ifa_addr->sa_family == AF_LINK) 753 continue; 754 #ifdef INET 755 /* XXX: Ugly!! ad hoc just for INET */ 756 if (ifa->ifa_addr->sa_family == AF_INET) { 757 struct ifaliasreq ifr; 758 759 bzero(&ifr, sizeof(ifr)); 760 ifr.ifra_addr = *ifa->ifa_addr; 761 if (ifa->ifa_dstaddr) 762 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 763 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 764 NULL) == 0) 765 continue; 766 } 767 #endif /* INET */ 768 #ifdef INET6 769 if (ifa->ifa_addr->sa_family == AF_INET6) { 770 in6_purgeaddr(ifa); 771 /* ifp_addrhead is already updated */ 772 continue; 773 } 774 #endif /* INET6 */ 775 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 776 ifa_free(ifa); 777 } 778 } 779 780 /* 781 * Remove any multicast network addresses from an interface when an ifnet 782 * is going away. 783 */ 784 static void 785 if_purgemaddrs(struct ifnet *ifp) 786 { 787 struct ifmultiaddr *ifma; 788 struct ifmultiaddr *next; 789 790 IF_ADDR_WLOCK(ifp); 791 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 792 if_delmulti_locked(ifp, ifma, 1); 793 IF_ADDR_WUNLOCK(ifp); 794 } 795 796 /* 797 * Detach an interface, removing it from the list of "active" interfaces. 798 * If vmove flag is set on entry to if_detach_internal(), perform only a 799 * limited subset of cleanup tasks, given that we are moving an ifnet from 800 * one vnet to another, where it must be fully operational. 801 * 802 * XXXRW: There are some significant questions about event ordering, and 803 * how to prevent things from starting to use the interface during detach. 804 */ 805 void 806 if_detach(struct ifnet *ifp) 807 { 808 809 CURVNET_SET_QUIET(ifp->if_vnet); 810 if_detach_internal(ifp, 0); 811 CURVNET_RESTORE(); 812 } 813 814 static void 815 if_detach_internal(struct ifnet *ifp, int vmove) 816 { 817 struct ifaddr *ifa; 818 struct radix_node_head *rnh; 819 int i, j; 820 struct domain *dp; 821 struct ifnet *iter; 822 int found = 0; 823 824 IFNET_WLOCK(); 825 TAILQ_FOREACH(iter, &V_ifnet, if_link) 826 if (iter == ifp) { 827 TAILQ_REMOVE(&V_ifnet, ifp, if_link); 828 found = 1; 829 break; 830 } 831 #ifdef VIMAGE 832 if (found) 833 curvnet->vnet_ifcnt--; 834 #endif 835 IFNET_WUNLOCK(); 836 if (!found) { 837 if (vmove) 838 panic("%s: ifp=%p not on the ifnet tailq %p", 839 __func__, ifp, &V_ifnet); 840 else 841 return; /* XXX this should panic as well? */ 842 } 843 844 /* 845 * Remove/wait for pending events. 846 */ 847 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 848 849 /* 850 * Remove routes and flush queues. 851 */ 852 if_down(ifp); 853 #ifdef ALTQ 854 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 855 altq_disable(&ifp->if_snd); 856 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 857 altq_detach(&ifp->if_snd); 858 #endif 859 860 if_purgeaddrs(ifp); 861 862 #ifdef INET 863 in_ifdetach(ifp); 864 #endif 865 866 #ifdef INET6 867 /* 868 * Remove all IPv6 kernel structs related to ifp. This should be done 869 * before removing routing entries below, since IPv6 interface direct 870 * routes are expected to be removed by the IPv6-specific kernel API. 871 * Otherwise, the kernel will detect some inconsistency and bark it. 872 */ 873 in6_ifdetach(ifp); 874 #endif 875 if_purgemaddrs(ifp); 876 877 /* Announce that the interface is gone. */ 878 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 879 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 880 if (IS_DEFAULT_VNET(curvnet)) 881 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 882 883 if (!vmove) { 884 /* 885 * Prevent further calls into the device driver via ifnet. 886 */ 887 if_dead(ifp); 888 889 /* 890 * Remove link ifaddr pointer and maybe decrement if_index. 891 * Clean up all addresses. 892 */ 893 ifp->if_addr = NULL; 894 895 /* We can now free link ifaddr. */ 896 if (!TAILQ_EMPTY(&ifp->if_addrhead)) { 897 ifa = TAILQ_FIRST(&ifp->if_addrhead); 898 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 899 ifa_free(ifa); 900 } 901 } 902 903 /* 904 * Delete all remaining routes using this interface 905 * Unfortuneatly the only way to do this is to slog through 906 * the entire routing table looking for routes which point 907 * to this interface...oh well... 908 */ 909 for (i = 1; i <= AF_MAX; i++) { 910 for (j = 0; j < rt_numfibs; j++) { 911 rnh = rt_tables_get_rnh(j, i); 912 if (rnh == NULL) 913 continue; 914 RADIX_NODE_HEAD_LOCK(rnh); 915 (void) rnh->rnh_walktree(rnh, if_rtdel, ifp); 916 RADIX_NODE_HEAD_UNLOCK(rnh); 917 } 918 } 919 920 if_delgroups(ifp); 921 922 /* 923 * We cannot hold the lock over dom_ifdetach calls as they might 924 * sleep, for example trying to drain a callout, thus open up the 925 * theoretical race with re-attaching. 926 */ 927 IF_AFDATA_LOCK(ifp); 928 i = ifp->if_afdata_initialized; 929 ifp->if_afdata_initialized = 0; 930 IF_AFDATA_UNLOCK(ifp); 931 for (dp = domains; i > 0 && dp; dp = dp->dom_next) { 932 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 933 (*dp->dom_ifdetach)(ifp, 934 ifp->if_afdata[dp->dom_family]); 935 } 936 } 937 938 #ifdef VIMAGE 939 /* 940 * if_vmove() performs a limited version of if_detach() in current 941 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 942 * An attempt is made to shrink if_index in current vnet, find an 943 * unused if_index in target vnet and calls if_grow() if necessary, 944 * and finally find an unused if_xname for the target vnet. 945 */ 946 void 947 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 948 { 949 u_short idx; 950 951 /* 952 * Detach from current vnet, but preserve LLADDR info, do not 953 * mark as dead etc. so that the ifnet can be reattached later. 954 */ 955 if_detach_internal(ifp, 1); 956 957 /* 958 * Unlink the ifnet from ifindex_table[] in current vnet, and shrink 959 * the if_index for that vnet if possible. 960 * 961 * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, 962 * or we'd lock on one vnet and unlock on another. 963 */ 964 IFNET_WLOCK(); 965 ifindex_free_locked(ifp->if_index); 966 IFNET_WUNLOCK(); 967 968 /* 969 * Perform interface-specific reassignment tasks, if provided by 970 * the driver. 971 */ 972 if (ifp->if_reassign != NULL) 973 ifp->if_reassign(ifp, new_vnet, NULL); 974 975 /* 976 * Switch to the context of the target vnet. 977 */ 978 CURVNET_SET_QUIET(new_vnet); 979 980 IFNET_WLOCK(); 981 if (ifindex_alloc_locked(&idx) != 0) { 982 IFNET_WUNLOCK(); 983 panic("if_index overflow"); 984 } 985 ifp->if_index = idx; 986 ifnet_setbyindex_locked(ifp->if_index, ifp); 987 IFNET_WUNLOCK(); 988 989 if_attach_internal(ifp, 1); 990 991 CURVNET_RESTORE(); 992 } 993 994 /* 995 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 996 */ 997 static int 998 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 999 { 1000 struct prison *pr; 1001 struct ifnet *difp; 1002 1003 /* Try to find the prison within our visibility. */ 1004 sx_slock(&allprison_lock); 1005 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1006 sx_sunlock(&allprison_lock); 1007 if (pr == NULL) 1008 return (ENXIO); 1009 prison_hold_locked(pr); 1010 mtx_unlock(&pr->pr_mtx); 1011 1012 /* Do not try to move the iface from and to the same prison. */ 1013 if (pr->pr_vnet == ifp->if_vnet) { 1014 prison_free(pr); 1015 return (EEXIST); 1016 } 1017 1018 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1019 /* XXX Lock interfaces to avoid races. */ 1020 CURVNET_SET_QUIET(pr->pr_vnet); 1021 difp = ifunit(ifname); 1022 CURVNET_RESTORE(); 1023 if (difp != NULL) { 1024 prison_free(pr); 1025 return (EEXIST); 1026 } 1027 1028 /* Move the interface into the child jail/vnet. */ 1029 if_vmove(ifp, pr->pr_vnet); 1030 1031 /* Report the new if_xname back to the userland. */ 1032 sprintf(ifname, "%s", ifp->if_xname); 1033 1034 prison_free(pr); 1035 return (0); 1036 } 1037 1038 static int 1039 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1040 { 1041 struct prison *pr; 1042 struct vnet *vnet_dst; 1043 struct ifnet *ifp; 1044 1045 /* Try to find the prison within our visibility. */ 1046 sx_slock(&allprison_lock); 1047 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1048 sx_sunlock(&allprison_lock); 1049 if (pr == NULL) 1050 return (ENXIO); 1051 prison_hold_locked(pr); 1052 mtx_unlock(&pr->pr_mtx); 1053 1054 /* Make sure the named iface exists in the source prison/vnet. */ 1055 CURVNET_SET(pr->pr_vnet); 1056 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1057 if (ifp == NULL) { 1058 CURVNET_RESTORE(); 1059 prison_free(pr); 1060 return (ENXIO); 1061 } 1062 1063 /* Do not try to move the iface from and to the same prison. */ 1064 vnet_dst = TD_TO_VNET(td); 1065 if (vnet_dst == ifp->if_vnet) { 1066 CURVNET_RESTORE(); 1067 prison_free(pr); 1068 return (EEXIST); 1069 } 1070 1071 /* Get interface back from child jail/vnet. */ 1072 if_vmove(ifp, vnet_dst); 1073 CURVNET_RESTORE(); 1074 1075 /* Report the new if_xname back to the userland. */ 1076 sprintf(ifname, "%s", ifp->if_xname); 1077 1078 prison_free(pr); 1079 return (0); 1080 } 1081 #endif /* VIMAGE */ 1082 1083 /* 1084 * Add a group to an interface 1085 */ 1086 int 1087 if_addgroup(struct ifnet *ifp, const char *groupname) 1088 { 1089 struct ifg_list *ifgl; 1090 struct ifg_group *ifg = NULL; 1091 struct ifg_member *ifgm; 1092 int new = 0; 1093 1094 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1095 groupname[strlen(groupname) - 1] <= '9') 1096 return (EINVAL); 1097 1098 IFNET_WLOCK(); 1099 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1100 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1101 IFNET_WUNLOCK(); 1102 return (EEXIST); 1103 } 1104 1105 if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP, 1106 M_NOWAIT)) == NULL) { 1107 IFNET_WUNLOCK(); 1108 return (ENOMEM); 1109 } 1110 1111 if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member), 1112 M_TEMP, M_NOWAIT)) == NULL) { 1113 free(ifgl, M_TEMP); 1114 IFNET_WUNLOCK(); 1115 return (ENOMEM); 1116 } 1117 1118 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1119 if (!strcmp(ifg->ifg_group, groupname)) 1120 break; 1121 1122 if (ifg == NULL) { 1123 if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group), 1124 M_TEMP, M_NOWAIT)) == NULL) { 1125 free(ifgl, M_TEMP); 1126 free(ifgm, M_TEMP); 1127 IFNET_WUNLOCK(); 1128 return (ENOMEM); 1129 } 1130 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1131 ifg->ifg_refcnt = 0; 1132 TAILQ_INIT(&ifg->ifg_members); 1133 TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1134 new = 1; 1135 } 1136 1137 ifg->ifg_refcnt++; 1138 ifgl->ifgl_group = ifg; 1139 ifgm->ifgm_ifp = ifp; 1140 1141 IF_ADDR_WLOCK(ifp); 1142 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1143 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1144 IF_ADDR_WUNLOCK(ifp); 1145 1146 IFNET_WUNLOCK(); 1147 1148 if (new) 1149 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1150 EVENTHANDLER_INVOKE(group_change_event, groupname); 1151 1152 return (0); 1153 } 1154 1155 /* 1156 * Remove a group from an interface 1157 */ 1158 int 1159 if_delgroup(struct ifnet *ifp, const char *groupname) 1160 { 1161 struct ifg_list *ifgl; 1162 struct ifg_member *ifgm; 1163 1164 IFNET_WLOCK(); 1165 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1166 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 1167 break; 1168 if (ifgl == NULL) { 1169 IFNET_WUNLOCK(); 1170 return (ENOENT); 1171 } 1172 1173 IF_ADDR_WLOCK(ifp); 1174 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1175 IF_ADDR_WUNLOCK(ifp); 1176 1177 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1178 if (ifgm->ifgm_ifp == ifp) 1179 break; 1180 1181 if (ifgm != NULL) { 1182 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 1183 free(ifgm, M_TEMP); 1184 } 1185 1186 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1187 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1188 IFNET_WUNLOCK(); 1189 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1190 free(ifgl->ifgl_group, M_TEMP); 1191 } else 1192 IFNET_WUNLOCK(); 1193 1194 free(ifgl, M_TEMP); 1195 1196 EVENTHANDLER_INVOKE(group_change_event, groupname); 1197 1198 return (0); 1199 } 1200 1201 /* 1202 * Remove an interface from all groups 1203 */ 1204 static void 1205 if_delgroups(struct ifnet *ifp) 1206 { 1207 struct ifg_list *ifgl; 1208 struct ifg_member *ifgm; 1209 char groupname[IFNAMSIZ]; 1210 1211 IFNET_WLOCK(); 1212 while (!TAILQ_EMPTY(&ifp->if_groups)) { 1213 ifgl = TAILQ_FIRST(&ifp->if_groups); 1214 1215 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1216 1217 IF_ADDR_WLOCK(ifp); 1218 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1219 IF_ADDR_WUNLOCK(ifp); 1220 1221 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1222 if (ifgm->ifgm_ifp == ifp) 1223 break; 1224 1225 if (ifgm != NULL) { 1226 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1227 ifgm_next); 1228 free(ifgm, M_TEMP); 1229 } 1230 1231 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1232 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1233 IFNET_WUNLOCK(); 1234 EVENTHANDLER_INVOKE(group_detach_event, 1235 ifgl->ifgl_group); 1236 free(ifgl->ifgl_group, M_TEMP); 1237 } else 1238 IFNET_WUNLOCK(); 1239 1240 free(ifgl, M_TEMP); 1241 1242 EVENTHANDLER_INVOKE(group_change_event, groupname); 1243 1244 IFNET_WLOCK(); 1245 } 1246 IFNET_WUNLOCK(); 1247 } 1248 1249 /* 1250 * Stores all groups from an interface in memory pointed 1251 * to by data 1252 */ 1253 static int 1254 if_getgroup(struct ifgroupreq *data, struct ifnet *ifp) 1255 { 1256 int len, error; 1257 struct ifg_list *ifgl; 1258 struct ifg_req ifgrq, *ifgp; 1259 struct ifgroupreq *ifgr = data; 1260 1261 if (ifgr->ifgr_len == 0) { 1262 IF_ADDR_RLOCK(ifp); 1263 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1264 ifgr->ifgr_len += sizeof(struct ifg_req); 1265 IF_ADDR_RUNLOCK(ifp); 1266 return (0); 1267 } 1268 1269 len = ifgr->ifgr_len; 1270 ifgp = ifgr->ifgr_groups; 1271 /* XXX: wire */ 1272 IF_ADDR_RLOCK(ifp); 1273 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1274 if (len < sizeof(ifgrq)) { 1275 IF_ADDR_RUNLOCK(ifp); 1276 return (EINVAL); 1277 } 1278 bzero(&ifgrq, sizeof ifgrq); 1279 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1280 sizeof(ifgrq.ifgrq_group)); 1281 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1282 IF_ADDR_RUNLOCK(ifp); 1283 return (error); 1284 } 1285 len -= sizeof(ifgrq); 1286 ifgp++; 1287 } 1288 IF_ADDR_RUNLOCK(ifp); 1289 1290 return (0); 1291 } 1292 1293 /* 1294 * Stores all members of a group in memory pointed to by data 1295 */ 1296 static int 1297 if_getgroupmembers(struct ifgroupreq *data) 1298 { 1299 struct ifgroupreq *ifgr = data; 1300 struct ifg_group *ifg; 1301 struct ifg_member *ifgm; 1302 struct ifg_req ifgrq, *ifgp; 1303 int len, error; 1304 1305 IFNET_RLOCK(); 1306 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1307 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1308 break; 1309 if (ifg == NULL) { 1310 IFNET_RUNLOCK(); 1311 return (ENOENT); 1312 } 1313 1314 if (ifgr->ifgr_len == 0) { 1315 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1316 ifgr->ifgr_len += sizeof(ifgrq); 1317 IFNET_RUNLOCK(); 1318 return (0); 1319 } 1320 1321 len = ifgr->ifgr_len; 1322 ifgp = ifgr->ifgr_groups; 1323 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1324 if (len < sizeof(ifgrq)) { 1325 IFNET_RUNLOCK(); 1326 return (EINVAL); 1327 } 1328 bzero(&ifgrq, sizeof ifgrq); 1329 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1330 sizeof(ifgrq.ifgrq_member)); 1331 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1332 IFNET_RUNLOCK(); 1333 return (error); 1334 } 1335 len -= sizeof(ifgrq); 1336 ifgp++; 1337 } 1338 IFNET_RUNLOCK(); 1339 1340 return (0); 1341 } 1342 1343 /* 1344 * Delete Routes for a Network Interface 1345 * 1346 * Called for each routing entry via the rnh->rnh_walktree() call above 1347 * to delete all route entries referencing a detaching network interface. 1348 * 1349 * Arguments: 1350 * rn pointer to node in the routing table 1351 * arg argument passed to rnh->rnh_walktree() - detaching interface 1352 * 1353 * Returns: 1354 * 0 successful 1355 * errno failed - reason indicated 1356 * 1357 */ 1358 static int 1359 if_rtdel(struct radix_node *rn, void *arg) 1360 { 1361 struct rtentry *rt = (struct rtentry *)rn; 1362 struct ifnet *ifp = arg; 1363 int err; 1364 1365 if (rt->rt_ifp == ifp) { 1366 1367 /* 1368 * Protect (sorta) against walktree recursion problems 1369 * with cloned routes 1370 */ 1371 if ((rt->rt_flags & RTF_UP) == 0) 1372 return (0); 1373 1374 err = rtrequest_fib(RTM_DELETE, rt_key(rt), rt->rt_gateway, 1375 rt_mask(rt), 1376 rt->rt_flags|RTF_RNH_LOCKED|RTF_PINNED, 1377 (struct rtentry **) NULL, rt->rt_fibnum); 1378 if (err) { 1379 log(LOG_WARNING, "if_rtdel: error %d\n", err); 1380 } 1381 } 1382 1383 return (0); 1384 } 1385 1386 /* 1387 * Wrapper functions for struct ifnet address list locking macros. These are 1388 * used by kernel modules to avoid encoding programming interface or binary 1389 * interface assumptions that may be violated when kernel-internal locking 1390 * approaches change. 1391 */ 1392 void 1393 if_addr_rlock(struct ifnet *ifp) 1394 { 1395 1396 IF_ADDR_RLOCK(ifp); 1397 } 1398 1399 void 1400 if_addr_runlock(struct ifnet *ifp) 1401 { 1402 1403 IF_ADDR_RUNLOCK(ifp); 1404 } 1405 1406 void 1407 if_maddr_rlock(if_t ifp) 1408 { 1409 1410 IF_ADDR_RLOCK((struct ifnet *)ifp); 1411 } 1412 1413 void 1414 if_maddr_runlock(if_t ifp) 1415 { 1416 1417 IF_ADDR_RUNLOCK((struct ifnet *)ifp); 1418 } 1419 1420 /* 1421 * Initialization, destruction and refcounting functions for ifaddrs. 1422 */ 1423 struct ifaddr * 1424 ifa_alloc(size_t size, int flags) 1425 { 1426 struct ifaddr *ifa; 1427 1428 KASSERT(size >= sizeof(struct ifaddr), 1429 ("%s: invalid size %zu", __func__, size)); 1430 1431 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1432 if (ifa == NULL) 1433 return (NULL); 1434 1435 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1436 goto fail; 1437 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1438 goto fail; 1439 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1440 goto fail; 1441 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1442 goto fail; 1443 1444 refcount_init(&ifa->ifa_refcnt, 1); 1445 1446 return (ifa); 1447 1448 fail: 1449 /* free(NULL) is okay */ 1450 counter_u64_free(ifa->ifa_opackets); 1451 counter_u64_free(ifa->ifa_ipackets); 1452 counter_u64_free(ifa->ifa_obytes); 1453 counter_u64_free(ifa->ifa_ibytes); 1454 free(ifa, M_IFADDR); 1455 1456 return (NULL); 1457 } 1458 1459 void 1460 ifa_ref(struct ifaddr *ifa) 1461 { 1462 1463 refcount_acquire(&ifa->ifa_refcnt); 1464 } 1465 1466 void 1467 ifa_free(struct ifaddr *ifa) 1468 { 1469 1470 if (refcount_release(&ifa->ifa_refcnt)) { 1471 counter_u64_free(ifa->ifa_opackets); 1472 counter_u64_free(ifa->ifa_ipackets); 1473 counter_u64_free(ifa->ifa_obytes); 1474 counter_u64_free(ifa->ifa_ibytes); 1475 free(ifa, M_IFADDR); 1476 } 1477 } 1478 1479 int 1480 ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1481 { 1482 int error = 0; 1483 struct rtentry *rt = NULL; 1484 struct rt_addrinfo info; 1485 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1486 1487 bzero(&info, sizeof(info)); 1488 info.rti_ifp = V_loif; 1489 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1490 info.rti_info[RTAX_DST] = ia; 1491 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1492 error = rtrequest1_fib(RTM_ADD, &info, &rt, ifa->ifa_ifp->if_fib); 1493 1494 if (error == 0 && rt != NULL) { 1495 RT_LOCK(rt); 1496 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 1497 ifa->ifa_ifp->if_type; 1498 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 1499 ifa->ifa_ifp->if_index; 1500 RT_REMREF(rt); 1501 RT_UNLOCK(rt); 1502 } else if (error != 0) 1503 log(LOG_DEBUG, "%s: insertion failed: %u\n", __func__, error); 1504 1505 return (error); 1506 } 1507 1508 int 1509 ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1510 { 1511 int error = 0; 1512 struct rt_addrinfo info; 1513 struct sockaddr_dl null_sdl; 1514 1515 bzero(&null_sdl, sizeof(null_sdl)); 1516 null_sdl.sdl_len = sizeof(null_sdl); 1517 null_sdl.sdl_family = AF_LINK; 1518 null_sdl.sdl_type = ifa->ifa_ifp->if_type; 1519 null_sdl.sdl_index = ifa->ifa_ifp->if_index; 1520 bzero(&info, sizeof(info)); 1521 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1522 info.rti_info[RTAX_DST] = ia; 1523 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1524 error = rtrequest1_fib(RTM_DELETE, &info, NULL, ifa->ifa_ifp->if_fib); 1525 1526 if (error != 0) 1527 log(LOG_DEBUG, "%s: deletion failed: %u\n", __func__, error); 1528 1529 return (error); 1530 } 1531 1532 int 1533 ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *sa, int fib) 1534 { 1535 struct rtentry *rt; 1536 1537 rt = rtalloc1_fib(sa, 0, 0, fib); 1538 if (rt == NULL) { 1539 log(LOG_DEBUG, "%s: fail", __func__); 1540 return (EHOSTUNREACH); 1541 } 1542 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 1543 ifa->ifa_ifp->if_type; 1544 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 1545 ifa->ifa_ifp->if_index; 1546 RTFREE_LOCKED(rt); 1547 1548 return (0); 1549 } 1550 1551 /* 1552 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1553 * structs used to represent other address families, it is necessary 1554 * to perform a different comparison. 1555 */ 1556 1557 #define sa_dl_equal(a1, a2) \ 1558 ((((struct sockaddr_dl *)(a1))->sdl_len == \ 1559 ((struct sockaddr_dl *)(a2))->sdl_len) && \ 1560 (bcmp(LLADDR((struct sockaddr_dl *)(a1)), \ 1561 LLADDR((struct sockaddr_dl *)(a2)), \ 1562 ((struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1563 1564 /* 1565 * Locate an interface based on a complete address. 1566 */ 1567 /*ARGSUSED*/ 1568 static struct ifaddr * 1569 ifa_ifwithaddr_internal(struct sockaddr *addr, int getref) 1570 { 1571 struct ifnet *ifp; 1572 struct ifaddr *ifa; 1573 1574 IFNET_RLOCK_NOSLEEP(); 1575 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1576 IF_ADDR_RLOCK(ifp); 1577 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1578 if (ifa->ifa_addr->sa_family != addr->sa_family) 1579 continue; 1580 if (sa_equal(addr, ifa->ifa_addr)) { 1581 if (getref) 1582 ifa_ref(ifa); 1583 IF_ADDR_RUNLOCK(ifp); 1584 goto done; 1585 } 1586 /* IP6 doesn't have broadcast */ 1587 if ((ifp->if_flags & IFF_BROADCAST) && 1588 ifa->ifa_broadaddr && 1589 ifa->ifa_broadaddr->sa_len != 0 && 1590 sa_equal(ifa->ifa_broadaddr, addr)) { 1591 if (getref) 1592 ifa_ref(ifa); 1593 IF_ADDR_RUNLOCK(ifp); 1594 goto done; 1595 } 1596 } 1597 IF_ADDR_RUNLOCK(ifp); 1598 } 1599 ifa = NULL; 1600 done: 1601 IFNET_RUNLOCK_NOSLEEP(); 1602 return (ifa); 1603 } 1604 1605 struct ifaddr * 1606 ifa_ifwithaddr(struct sockaddr *addr) 1607 { 1608 1609 return (ifa_ifwithaddr_internal(addr, 1)); 1610 } 1611 1612 int 1613 ifa_ifwithaddr_check(struct sockaddr *addr) 1614 { 1615 1616 return (ifa_ifwithaddr_internal(addr, 0) != NULL); 1617 } 1618 1619 /* 1620 * Locate an interface based on the broadcast address. 1621 */ 1622 /* ARGSUSED */ 1623 struct ifaddr * 1624 ifa_ifwithbroadaddr(struct sockaddr *addr) 1625 { 1626 struct ifnet *ifp; 1627 struct ifaddr *ifa; 1628 1629 IFNET_RLOCK_NOSLEEP(); 1630 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1631 IF_ADDR_RLOCK(ifp); 1632 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1633 if (ifa->ifa_addr->sa_family != addr->sa_family) 1634 continue; 1635 if ((ifp->if_flags & IFF_BROADCAST) && 1636 ifa->ifa_broadaddr && 1637 ifa->ifa_broadaddr->sa_len != 0 && 1638 sa_equal(ifa->ifa_broadaddr, addr)) { 1639 ifa_ref(ifa); 1640 IF_ADDR_RUNLOCK(ifp); 1641 goto done; 1642 } 1643 } 1644 IF_ADDR_RUNLOCK(ifp); 1645 } 1646 ifa = NULL; 1647 done: 1648 IFNET_RUNLOCK_NOSLEEP(); 1649 return (ifa); 1650 } 1651 1652 /* 1653 * Locate the point to point interface with a given destination address. 1654 */ 1655 /*ARGSUSED*/ 1656 struct ifaddr * 1657 ifa_ifwithdstaddr_fib(struct sockaddr *addr, int fibnum) 1658 { 1659 struct ifnet *ifp; 1660 struct ifaddr *ifa; 1661 1662 IFNET_RLOCK_NOSLEEP(); 1663 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1664 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1665 continue; 1666 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1667 continue; 1668 IF_ADDR_RLOCK(ifp); 1669 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1670 if (ifa->ifa_addr->sa_family != addr->sa_family) 1671 continue; 1672 if (ifa->ifa_dstaddr != NULL && 1673 sa_equal(addr, ifa->ifa_dstaddr)) { 1674 ifa_ref(ifa); 1675 IF_ADDR_RUNLOCK(ifp); 1676 goto done; 1677 } 1678 } 1679 IF_ADDR_RUNLOCK(ifp); 1680 } 1681 ifa = NULL; 1682 done: 1683 IFNET_RUNLOCK_NOSLEEP(); 1684 return (ifa); 1685 } 1686 1687 struct ifaddr * 1688 ifa_ifwithdstaddr(struct sockaddr *addr) 1689 { 1690 1691 return (ifa_ifwithdstaddr_fib(addr, RT_ALL_FIBS)); 1692 } 1693 1694 /* 1695 * Find an interface on a specific network. If many, choice 1696 * is most specific found. 1697 */ 1698 struct ifaddr * 1699 ifa_ifwithnet_fib(struct sockaddr *addr, int ignore_ptp, int fibnum) 1700 { 1701 struct ifnet *ifp; 1702 struct ifaddr *ifa; 1703 struct ifaddr *ifa_maybe = NULL; 1704 u_int af = addr->sa_family; 1705 char *addr_data = addr->sa_data, *cplim; 1706 1707 /* 1708 * AF_LINK addresses can be looked up directly by their index number, 1709 * so do that if we can. 1710 */ 1711 if (af == AF_LINK) { 1712 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1713 if (sdl->sdl_index && sdl->sdl_index <= V_if_index) 1714 return (ifaddr_byindex(sdl->sdl_index)); 1715 } 1716 1717 /* 1718 * Scan though each interface, looking for ones that have addresses 1719 * in this address family and the requested fib. Maintain a reference 1720 * on ifa_maybe once we find one, as we release the IF_ADDR_RLOCK() that 1721 * kept it stable when we move onto the next interface. 1722 */ 1723 IFNET_RLOCK_NOSLEEP(); 1724 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1725 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1726 continue; 1727 IF_ADDR_RLOCK(ifp); 1728 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1729 char *cp, *cp2, *cp3; 1730 1731 if (ifa->ifa_addr->sa_family != af) 1732 next: continue; 1733 if (af == AF_INET && 1734 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1735 /* 1736 * This is a bit broken as it doesn't 1737 * take into account that the remote end may 1738 * be a single node in the network we are 1739 * looking for. 1740 * The trouble is that we don't know the 1741 * netmask for the remote end. 1742 */ 1743 if (ifa->ifa_dstaddr != NULL && 1744 sa_equal(addr, ifa->ifa_dstaddr)) { 1745 ifa_ref(ifa); 1746 IF_ADDR_RUNLOCK(ifp); 1747 goto done; 1748 } 1749 } else { 1750 /* 1751 * Scan all the bits in the ifa's address. 1752 * If a bit dissagrees with what we are 1753 * looking for, mask it with the netmask 1754 * to see if it really matters. 1755 * (A byte at a time) 1756 */ 1757 if (ifa->ifa_netmask == 0) 1758 continue; 1759 cp = addr_data; 1760 cp2 = ifa->ifa_addr->sa_data; 1761 cp3 = ifa->ifa_netmask->sa_data; 1762 cplim = ifa->ifa_netmask->sa_len 1763 + (char *)ifa->ifa_netmask; 1764 while (cp3 < cplim) 1765 if ((*cp++ ^ *cp2++) & *cp3++) 1766 goto next; /* next address! */ 1767 /* 1768 * If the netmask of what we just found 1769 * is more specific than what we had before 1770 * (if we had one), or if the virtual status 1771 * of new prefix is better than of the old one, 1772 * then remember the new one before continuing 1773 * to search for an even better one. 1774 */ 1775 if (ifa_maybe == NULL || 1776 ifa_preferred(ifa_maybe, ifa) || 1777 rn_refines((caddr_t)ifa->ifa_netmask, 1778 (caddr_t)ifa_maybe->ifa_netmask)) { 1779 if (ifa_maybe != NULL) 1780 ifa_free(ifa_maybe); 1781 ifa_maybe = ifa; 1782 ifa_ref(ifa_maybe); 1783 } 1784 } 1785 } 1786 IF_ADDR_RUNLOCK(ifp); 1787 } 1788 ifa = ifa_maybe; 1789 ifa_maybe = NULL; 1790 done: 1791 IFNET_RUNLOCK_NOSLEEP(); 1792 if (ifa_maybe != NULL) 1793 ifa_free(ifa_maybe); 1794 return (ifa); 1795 } 1796 1797 struct ifaddr * 1798 ifa_ifwithnet(struct sockaddr *addr, int ignore_ptp) 1799 { 1800 1801 return (ifa_ifwithnet_fib(addr, ignore_ptp, RT_ALL_FIBS)); 1802 } 1803 1804 /* 1805 * Find an interface address specific to an interface best matching 1806 * a given address. 1807 */ 1808 struct ifaddr * 1809 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1810 { 1811 struct ifaddr *ifa; 1812 char *cp, *cp2, *cp3; 1813 char *cplim; 1814 struct ifaddr *ifa_maybe = NULL; 1815 u_int af = addr->sa_family; 1816 1817 if (af >= AF_MAX) 1818 return (NULL); 1819 IF_ADDR_RLOCK(ifp); 1820 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1821 if (ifa->ifa_addr->sa_family != af) 1822 continue; 1823 if (ifa_maybe == NULL) 1824 ifa_maybe = ifa; 1825 if (ifa->ifa_netmask == 0) { 1826 if (sa_equal(addr, ifa->ifa_addr) || 1827 (ifa->ifa_dstaddr && 1828 sa_equal(addr, ifa->ifa_dstaddr))) 1829 goto done; 1830 continue; 1831 } 1832 if (ifp->if_flags & IFF_POINTOPOINT) { 1833 if (sa_equal(addr, ifa->ifa_dstaddr)) 1834 goto done; 1835 } else { 1836 cp = addr->sa_data; 1837 cp2 = ifa->ifa_addr->sa_data; 1838 cp3 = ifa->ifa_netmask->sa_data; 1839 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1840 for (; cp3 < cplim; cp3++) 1841 if ((*cp++ ^ *cp2++) & *cp3) 1842 break; 1843 if (cp3 == cplim) 1844 goto done; 1845 } 1846 } 1847 ifa = ifa_maybe; 1848 done: 1849 if (ifa != NULL) 1850 ifa_ref(ifa); 1851 IF_ADDR_RUNLOCK(ifp); 1852 return (ifa); 1853 } 1854 1855 /* 1856 * See whether new ifa is better than current one: 1857 * 1) A non-virtual one is preferred over virtual. 1858 * 2) A virtual in master state preferred over any other state. 1859 * 1860 * Used in several address selecting functions. 1861 */ 1862 int 1863 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 1864 { 1865 1866 return (cur->ifa_carp && (!next->ifa_carp || 1867 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 1868 } 1869 1870 #include <net/if_llatbl.h> 1871 1872 /* 1873 * Default action when installing a route with a Link Level gateway. 1874 * Lookup an appropriate real ifa to point to. 1875 * This should be moved to /sys/net/link.c eventually. 1876 */ 1877 static void 1878 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 1879 { 1880 struct ifaddr *ifa, *oifa; 1881 struct sockaddr *dst; 1882 struct ifnet *ifp; 1883 1884 RT_LOCK_ASSERT(rt); 1885 1886 if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || 1887 ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) 1888 return; 1889 ifa = ifaof_ifpforaddr(dst, ifp); 1890 if (ifa) { 1891 oifa = rt->rt_ifa; 1892 rt->rt_ifa = ifa; 1893 ifa_free(oifa); 1894 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1895 ifa->ifa_rtrequest(cmd, rt, info); 1896 } 1897 } 1898 1899 struct sockaddr_dl * 1900 link_alloc_sdl(size_t size, int flags) 1901 { 1902 1903 return (malloc(size, M_TEMP, flags)); 1904 } 1905 1906 void 1907 link_free_sdl(struct sockaddr *sa) 1908 { 1909 free(sa, M_TEMP); 1910 } 1911 1912 /* 1913 * Fills in given sdl with interface basic info. 1914 * Returns pointer to filled sdl. 1915 */ 1916 struct sockaddr_dl * 1917 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 1918 { 1919 struct sockaddr_dl *sdl; 1920 1921 sdl = (struct sockaddr_dl *)paddr; 1922 memset(sdl, 0, sizeof(struct sockaddr_dl)); 1923 sdl->sdl_len = sizeof(struct sockaddr_dl); 1924 sdl->sdl_family = AF_LINK; 1925 sdl->sdl_index = ifp->if_index; 1926 sdl->sdl_type = iftype; 1927 1928 return (sdl); 1929 } 1930 1931 /* 1932 * Mark an interface down and notify protocols of 1933 * the transition. 1934 */ 1935 static void 1936 if_unroute(struct ifnet *ifp, int flag, int fam) 1937 { 1938 struct ifaddr *ifa; 1939 1940 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 1941 1942 ifp->if_flags &= ~flag; 1943 getmicrotime(&ifp->if_lastchange); 1944 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 1945 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1946 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1947 ifp->if_qflush(ifp); 1948 1949 if (ifp->if_carp) 1950 (*carp_linkstate_p)(ifp); 1951 rt_ifmsg(ifp); 1952 } 1953 1954 /* 1955 * Mark an interface up and notify protocols of 1956 * the transition. 1957 */ 1958 static void 1959 if_route(struct ifnet *ifp, int flag, int fam) 1960 { 1961 struct ifaddr *ifa; 1962 1963 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 1964 1965 ifp->if_flags |= flag; 1966 getmicrotime(&ifp->if_lastchange); 1967 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 1968 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1969 pfctlinput(PRC_IFUP, ifa->ifa_addr); 1970 if (ifp->if_carp) 1971 (*carp_linkstate_p)(ifp); 1972 rt_ifmsg(ifp); 1973 #ifdef INET6 1974 in6_if_up(ifp); 1975 #endif 1976 } 1977 1978 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 1979 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 1980 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 1981 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 1982 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 1983 int (*vlan_setcookie_p)(struct ifnet *, void *); 1984 void *(*vlan_cookie_p)(struct ifnet *); 1985 1986 /* 1987 * Handle a change in the interface link state. To avoid LORs 1988 * between driver lock and upper layer locks, as well as possible 1989 * recursions, we post event to taskqueue, and all job 1990 * is done in static do_link_state_change(). 1991 */ 1992 void 1993 if_link_state_change(struct ifnet *ifp, int link_state) 1994 { 1995 /* Return if state hasn't changed. */ 1996 if (ifp->if_link_state == link_state) 1997 return; 1998 1999 ifp->if_link_state = link_state; 2000 2001 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2002 } 2003 2004 static void 2005 do_link_state_change(void *arg, int pending) 2006 { 2007 struct ifnet *ifp = (struct ifnet *)arg; 2008 int link_state = ifp->if_link_state; 2009 CURVNET_SET(ifp->if_vnet); 2010 2011 /* Notify that the link state has changed. */ 2012 rt_ifmsg(ifp); 2013 if (ifp->if_vlantrunk != NULL) 2014 (*vlan_link_state_p)(ifp); 2015 2016 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2017 IFP2AC(ifp)->ac_netgraph != NULL) 2018 (*ng_ether_link_state_p)(ifp, link_state); 2019 if (ifp->if_carp) 2020 (*carp_linkstate_p)(ifp); 2021 if (ifp->if_bridge) 2022 (*bridge_linkstate_p)(ifp); 2023 if (ifp->if_lagg) 2024 (*lagg_linkstate_p)(ifp, link_state); 2025 2026 if (IS_DEFAULT_VNET(curvnet)) 2027 devctl_notify("IFNET", ifp->if_xname, 2028 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2029 NULL); 2030 if (pending > 1) 2031 if_printf(ifp, "%d link states coalesced\n", pending); 2032 if (log_link_state_change) 2033 log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname, 2034 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2035 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, ifp->if_link_state); 2036 CURVNET_RESTORE(); 2037 } 2038 2039 /* 2040 * Mark an interface down and notify protocols of 2041 * the transition. 2042 */ 2043 void 2044 if_down(struct ifnet *ifp) 2045 { 2046 2047 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2048 } 2049 2050 /* 2051 * Mark an interface up and notify protocols of 2052 * the transition. 2053 */ 2054 void 2055 if_up(struct ifnet *ifp) 2056 { 2057 2058 if_route(ifp, IFF_UP, AF_UNSPEC); 2059 } 2060 2061 /* 2062 * Flush an interface queue. 2063 */ 2064 void 2065 if_qflush(struct ifnet *ifp) 2066 { 2067 struct mbuf *m, *n; 2068 struct ifaltq *ifq; 2069 2070 ifq = &ifp->if_snd; 2071 IFQ_LOCK(ifq); 2072 #ifdef ALTQ 2073 if (ALTQ_IS_ENABLED(ifq)) 2074 ALTQ_PURGE(ifq); 2075 #endif 2076 n = ifq->ifq_head; 2077 while ((m = n) != 0) { 2078 n = m->m_nextpkt; 2079 m_freem(m); 2080 } 2081 ifq->ifq_head = 0; 2082 ifq->ifq_tail = 0; 2083 ifq->ifq_len = 0; 2084 IFQ_UNLOCK(ifq); 2085 } 2086 2087 /* 2088 * Map interface name to interface structure pointer, with or without 2089 * returning a reference. 2090 */ 2091 struct ifnet * 2092 ifunit_ref(const char *name) 2093 { 2094 struct ifnet *ifp; 2095 2096 IFNET_RLOCK_NOSLEEP(); 2097 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2098 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2099 !(ifp->if_flags & IFF_DYING)) 2100 break; 2101 } 2102 if (ifp != NULL) 2103 if_ref(ifp); 2104 IFNET_RUNLOCK_NOSLEEP(); 2105 return (ifp); 2106 } 2107 2108 struct ifnet * 2109 ifunit(const char *name) 2110 { 2111 struct ifnet *ifp; 2112 2113 IFNET_RLOCK_NOSLEEP(); 2114 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2115 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2116 break; 2117 } 2118 IFNET_RUNLOCK_NOSLEEP(); 2119 return (ifp); 2120 } 2121 2122 /* 2123 * Hardware specific interface ioctls. 2124 */ 2125 static int 2126 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2127 { 2128 struct ifreq *ifr; 2129 int error = 0; 2130 int new_flags, temp_flags; 2131 size_t namelen, onamelen; 2132 size_t descrlen; 2133 char *descrbuf, *odescrbuf; 2134 char new_name[IFNAMSIZ]; 2135 struct ifaddr *ifa; 2136 struct sockaddr_dl *sdl; 2137 2138 ifr = (struct ifreq *)data; 2139 switch (cmd) { 2140 case SIOCGIFINDEX: 2141 ifr->ifr_index = ifp->if_index; 2142 break; 2143 2144 case SIOCGIFFLAGS: 2145 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2146 ifr->ifr_flags = temp_flags & 0xffff; 2147 ifr->ifr_flagshigh = temp_flags >> 16; 2148 break; 2149 2150 case SIOCGIFCAP: 2151 ifr->ifr_reqcap = ifp->if_capabilities; 2152 ifr->ifr_curcap = ifp->if_capenable; 2153 break; 2154 2155 #ifdef MAC 2156 case SIOCGIFMAC: 2157 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2158 break; 2159 #endif 2160 2161 case SIOCGIFMETRIC: 2162 ifr->ifr_metric = ifp->if_metric; 2163 break; 2164 2165 case SIOCGIFMTU: 2166 ifr->ifr_mtu = ifp->if_mtu; 2167 break; 2168 2169 case SIOCGIFPHYS: 2170 ifr->ifr_phys = ifp->if_physical; 2171 break; 2172 2173 case SIOCGIFDESCR: 2174 error = 0; 2175 sx_slock(&ifdescr_sx); 2176 if (ifp->if_description == NULL) 2177 error = ENOMSG; 2178 else { 2179 /* space for terminating nul */ 2180 descrlen = strlen(ifp->if_description) + 1; 2181 if (ifr->ifr_buffer.length < descrlen) 2182 ifr->ifr_buffer.buffer = NULL; 2183 else 2184 error = copyout(ifp->if_description, 2185 ifr->ifr_buffer.buffer, descrlen); 2186 ifr->ifr_buffer.length = descrlen; 2187 } 2188 sx_sunlock(&ifdescr_sx); 2189 break; 2190 2191 case SIOCSIFDESCR: 2192 error = priv_check(td, PRIV_NET_SETIFDESCR); 2193 if (error) 2194 return (error); 2195 2196 /* 2197 * Copy only (length-1) bytes to make sure that 2198 * if_description is always nul terminated. The 2199 * length parameter is supposed to count the 2200 * terminating nul in. 2201 */ 2202 if (ifr->ifr_buffer.length > ifdescr_maxlen) 2203 return (ENAMETOOLONG); 2204 else if (ifr->ifr_buffer.length == 0) 2205 descrbuf = NULL; 2206 else { 2207 descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR, 2208 M_WAITOK | M_ZERO); 2209 error = copyin(ifr->ifr_buffer.buffer, descrbuf, 2210 ifr->ifr_buffer.length - 1); 2211 if (error) { 2212 free(descrbuf, M_IFDESCR); 2213 break; 2214 } 2215 } 2216 2217 sx_xlock(&ifdescr_sx); 2218 odescrbuf = ifp->if_description; 2219 ifp->if_description = descrbuf; 2220 sx_xunlock(&ifdescr_sx); 2221 2222 getmicrotime(&ifp->if_lastchange); 2223 free(odescrbuf, M_IFDESCR); 2224 break; 2225 2226 case SIOCGIFFIB: 2227 ifr->ifr_fib = ifp->if_fib; 2228 break; 2229 2230 case SIOCSIFFIB: 2231 error = priv_check(td, PRIV_NET_SETIFFIB); 2232 if (error) 2233 return (error); 2234 if (ifr->ifr_fib >= rt_numfibs) 2235 return (EINVAL); 2236 2237 ifp->if_fib = ifr->ifr_fib; 2238 break; 2239 2240 case SIOCSIFFLAGS: 2241 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2242 if (error) 2243 return (error); 2244 /* 2245 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2246 * check, so we don't need special handling here yet. 2247 */ 2248 new_flags = (ifr->ifr_flags & 0xffff) | 2249 (ifr->ifr_flagshigh << 16); 2250 if (ifp->if_flags & IFF_UP && 2251 (new_flags & IFF_UP) == 0) { 2252 if_down(ifp); 2253 } else if (new_flags & IFF_UP && 2254 (ifp->if_flags & IFF_UP) == 0) { 2255 if_up(ifp); 2256 } 2257 /* See if permanently promiscuous mode bit is about to flip */ 2258 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2259 if (new_flags & IFF_PPROMISC) 2260 ifp->if_flags |= IFF_PROMISC; 2261 else if (ifp->if_pcount == 0) 2262 ifp->if_flags &= ~IFF_PROMISC; 2263 log(LOG_INFO, "%s: permanently promiscuous mode %s\n", 2264 ifp->if_xname, 2265 (new_flags & IFF_PPROMISC) ? "enabled" : "disabled"); 2266 } 2267 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2268 (new_flags &~ IFF_CANTCHANGE); 2269 if (ifp->if_ioctl) { 2270 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2271 } 2272 getmicrotime(&ifp->if_lastchange); 2273 break; 2274 2275 case SIOCSIFCAP: 2276 error = priv_check(td, PRIV_NET_SETIFCAP); 2277 if (error) 2278 return (error); 2279 if (ifp->if_ioctl == NULL) 2280 return (EOPNOTSUPP); 2281 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2282 return (EINVAL); 2283 error = (*ifp->if_ioctl)(ifp, cmd, data); 2284 if (error == 0) 2285 getmicrotime(&ifp->if_lastchange); 2286 break; 2287 2288 #ifdef MAC 2289 case SIOCSIFMAC: 2290 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2291 break; 2292 #endif 2293 2294 case SIOCSIFNAME: 2295 error = priv_check(td, PRIV_NET_SETIFNAME); 2296 if (error) 2297 return (error); 2298 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 2299 if (error != 0) 2300 return (error); 2301 if (new_name[0] == '\0') 2302 return (EINVAL); 2303 if (ifunit(new_name) != NULL) 2304 return (EEXIST); 2305 2306 /* 2307 * XXX: Locking. Nothing else seems to lock if_flags, 2308 * and there are numerous other races with the 2309 * ifunit() checks not being atomic with namespace 2310 * changes (renames, vmoves, if_attach, etc). 2311 */ 2312 ifp->if_flags |= IFF_RENAMING; 2313 2314 /* Announce the departure of the interface. */ 2315 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 2316 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 2317 2318 log(LOG_INFO, "%s: changing name to '%s'\n", 2319 ifp->if_xname, new_name); 2320 2321 IF_ADDR_WLOCK(ifp); 2322 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 2323 ifa = ifp->if_addr; 2324 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 2325 namelen = strlen(new_name); 2326 onamelen = sdl->sdl_nlen; 2327 /* 2328 * Move the address if needed. This is safe because we 2329 * allocate space for a name of length IFNAMSIZ when we 2330 * create this in if_attach(). 2331 */ 2332 if (namelen != onamelen) { 2333 bcopy(sdl->sdl_data + onamelen, 2334 sdl->sdl_data + namelen, sdl->sdl_alen); 2335 } 2336 bcopy(new_name, sdl->sdl_data, namelen); 2337 sdl->sdl_nlen = namelen; 2338 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 2339 bzero(sdl->sdl_data, onamelen); 2340 while (namelen != 0) 2341 sdl->sdl_data[--namelen] = 0xff; 2342 IF_ADDR_WUNLOCK(ifp); 2343 2344 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 2345 /* Announce the return of the interface. */ 2346 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 2347 2348 ifp->if_flags &= ~IFF_RENAMING; 2349 break; 2350 2351 #ifdef VIMAGE 2352 case SIOCSIFVNET: 2353 error = priv_check(td, PRIV_NET_SETIFVNET); 2354 if (error) 2355 return (error); 2356 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2357 break; 2358 #endif 2359 2360 case SIOCSIFMETRIC: 2361 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2362 if (error) 2363 return (error); 2364 ifp->if_metric = ifr->ifr_metric; 2365 getmicrotime(&ifp->if_lastchange); 2366 break; 2367 2368 case SIOCSIFPHYS: 2369 error = priv_check(td, PRIV_NET_SETIFPHYS); 2370 if (error) 2371 return (error); 2372 if (ifp->if_ioctl == NULL) 2373 return (EOPNOTSUPP); 2374 error = (*ifp->if_ioctl)(ifp, cmd, data); 2375 if (error == 0) 2376 getmicrotime(&ifp->if_lastchange); 2377 break; 2378 2379 case SIOCSIFMTU: 2380 { 2381 u_long oldmtu = ifp->if_mtu; 2382 2383 error = priv_check(td, PRIV_NET_SETIFMTU); 2384 if (error) 2385 return (error); 2386 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2387 return (EINVAL); 2388 if (ifp->if_ioctl == NULL) 2389 return (EOPNOTSUPP); 2390 error = (*ifp->if_ioctl)(ifp, cmd, data); 2391 if (error == 0) { 2392 getmicrotime(&ifp->if_lastchange); 2393 rt_ifmsg(ifp); 2394 } 2395 /* 2396 * If the link MTU changed, do network layer specific procedure. 2397 */ 2398 if (ifp->if_mtu != oldmtu) { 2399 #ifdef INET6 2400 nd6_setmtu(ifp); 2401 #endif 2402 } 2403 break; 2404 } 2405 2406 case SIOCADDMULTI: 2407 case SIOCDELMULTI: 2408 if (cmd == SIOCADDMULTI) 2409 error = priv_check(td, PRIV_NET_ADDMULTI); 2410 else 2411 error = priv_check(td, PRIV_NET_DELMULTI); 2412 if (error) 2413 return (error); 2414 2415 /* Don't allow group membership on non-multicast interfaces. */ 2416 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2417 return (EOPNOTSUPP); 2418 2419 /* Don't let users screw up protocols' entries. */ 2420 if (ifr->ifr_addr.sa_family != AF_LINK) 2421 return (EINVAL); 2422 2423 if (cmd == SIOCADDMULTI) { 2424 struct ifmultiaddr *ifma; 2425 2426 /* 2427 * Userland is only permitted to join groups once 2428 * via the if_addmulti() KPI, because it cannot hold 2429 * struct ifmultiaddr * between calls. It may also 2430 * lose a race while we check if the membership 2431 * already exists. 2432 */ 2433 IF_ADDR_RLOCK(ifp); 2434 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2435 IF_ADDR_RUNLOCK(ifp); 2436 if (ifma != NULL) 2437 error = EADDRINUSE; 2438 else 2439 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2440 } else { 2441 error = if_delmulti(ifp, &ifr->ifr_addr); 2442 } 2443 if (error == 0) 2444 getmicrotime(&ifp->if_lastchange); 2445 break; 2446 2447 case SIOCSIFPHYADDR: 2448 case SIOCDIFPHYADDR: 2449 #ifdef INET6 2450 case SIOCSIFPHYADDR_IN6: 2451 #endif 2452 case SIOCSIFMEDIA: 2453 case SIOCSIFGENERIC: 2454 error = priv_check(td, PRIV_NET_HWIOCTL); 2455 if (error) 2456 return (error); 2457 if (ifp->if_ioctl == NULL) 2458 return (EOPNOTSUPP); 2459 error = (*ifp->if_ioctl)(ifp, cmd, data); 2460 if (error == 0) 2461 getmicrotime(&ifp->if_lastchange); 2462 break; 2463 2464 case SIOCGIFSTATUS: 2465 case SIOCGIFPSRCADDR: 2466 case SIOCGIFPDSTADDR: 2467 case SIOCGIFMEDIA: 2468 case SIOCGIFGENERIC: 2469 if (ifp->if_ioctl == NULL) 2470 return (EOPNOTSUPP); 2471 error = (*ifp->if_ioctl)(ifp, cmd, data); 2472 break; 2473 2474 case SIOCSIFLLADDR: 2475 error = priv_check(td, PRIV_NET_SETLLADDR); 2476 if (error) 2477 return (error); 2478 error = if_setlladdr(ifp, 2479 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2480 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 2481 break; 2482 2483 case SIOCAIFGROUP: 2484 { 2485 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2486 2487 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2488 if (error) 2489 return (error); 2490 if ((error = if_addgroup(ifp, ifgr->ifgr_group))) 2491 return (error); 2492 break; 2493 } 2494 2495 case SIOCGIFGROUP: 2496 if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp))) 2497 return (error); 2498 break; 2499 2500 case SIOCDIFGROUP: 2501 { 2502 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2503 2504 error = priv_check(td, PRIV_NET_DELIFGROUP); 2505 if (error) 2506 return (error); 2507 if ((error = if_delgroup(ifp, ifgr->ifgr_group))) 2508 return (error); 2509 break; 2510 } 2511 2512 default: 2513 error = ENOIOCTL; 2514 break; 2515 } 2516 return (error); 2517 } 2518 2519 #ifdef COMPAT_FREEBSD32 2520 struct ifconf32 { 2521 int32_t ifc_len; 2522 union { 2523 uint32_t ifcu_buf; 2524 uint32_t ifcu_req; 2525 } ifc_ifcu; 2526 }; 2527 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 2528 #endif 2529 2530 /* 2531 * Interface ioctls. 2532 */ 2533 int 2534 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2535 { 2536 struct ifnet *ifp; 2537 struct ifreq *ifr; 2538 int error; 2539 int oif_flags; 2540 2541 CURVNET_SET(so->so_vnet); 2542 switch (cmd) { 2543 case SIOCGIFCONF: 2544 error = ifconf(cmd, data); 2545 CURVNET_RESTORE(); 2546 return (error); 2547 2548 #ifdef COMPAT_FREEBSD32 2549 case SIOCGIFCONF32: 2550 { 2551 struct ifconf32 *ifc32; 2552 struct ifconf ifc; 2553 2554 ifc32 = (struct ifconf32 *)data; 2555 ifc.ifc_len = ifc32->ifc_len; 2556 ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2557 2558 error = ifconf(SIOCGIFCONF, (void *)&ifc); 2559 CURVNET_RESTORE(); 2560 if (error == 0) 2561 ifc32->ifc_len = ifc.ifc_len; 2562 return (error); 2563 } 2564 #endif 2565 } 2566 ifr = (struct ifreq *)data; 2567 2568 switch (cmd) { 2569 #ifdef VIMAGE 2570 case SIOCSIFRVNET: 2571 error = priv_check(td, PRIV_NET_SETIFVNET); 2572 if (error == 0) 2573 error = if_vmove_reclaim(td, ifr->ifr_name, 2574 ifr->ifr_jid); 2575 CURVNET_RESTORE(); 2576 return (error); 2577 #endif 2578 case SIOCIFCREATE: 2579 case SIOCIFCREATE2: 2580 error = priv_check(td, PRIV_NET_IFCREATE); 2581 if (error == 0) 2582 error = if_clone_create(ifr->ifr_name, 2583 sizeof(ifr->ifr_name), 2584 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL); 2585 CURVNET_RESTORE(); 2586 return (error); 2587 case SIOCIFDESTROY: 2588 error = priv_check(td, PRIV_NET_IFDESTROY); 2589 if (error == 0) 2590 error = if_clone_destroy(ifr->ifr_name); 2591 CURVNET_RESTORE(); 2592 return (error); 2593 2594 case SIOCIFGCLONERS: 2595 error = if_clone_list((struct if_clonereq *)data); 2596 CURVNET_RESTORE(); 2597 return (error); 2598 case SIOCGIFGMEMB: 2599 error = if_getgroupmembers((struct ifgroupreq *)data); 2600 CURVNET_RESTORE(); 2601 return (error); 2602 #if defined(INET) || defined(INET6) 2603 case SIOCSVH: 2604 case SIOCGVH: 2605 if (carp_ioctl_p == NULL) 2606 error = EPROTONOSUPPORT; 2607 else 2608 error = (*carp_ioctl_p)(ifr, cmd, td); 2609 CURVNET_RESTORE(); 2610 return (error); 2611 #endif 2612 } 2613 2614 ifp = ifunit_ref(ifr->ifr_name); 2615 if (ifp == NULL) { 2616 CURVNET_RESTORE(); 2617 return (ENXIO); 2618 } 2619 2620 error = ifhwioctl(cmd, ifp, data, td); 2621 if (error != ENOIOCTL) { 2622 if_rele(ifp); 2623 CURVNET_RESTORE(); 2624 return (error); 2625 } 2626 2627 oif_flags = ifp->if_flags; 2628 if (so->so_proto == NULL) { 2629 if_rele(ifp); 2630 CURVNET_RESTORE(); 2631 return (EOPNOTSUPP); 2632 } 2633 2634 /* 2635 * Pass the request on to the socket control method, and if the 2636 * latter returns EOPNOTSUPP, directly to the interface. 2637 * 2638 * Make an exception for the legacy SIOCSIF* requests. Drivers 2639 * trust SIOCSIFADDR et al to come from an already privileged 2640 * layer, and do not perform any credentials checks or input 2641 * validation. 2642 */ 2643 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, 2644 ifp, td)); 2645 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 2646 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 2647 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 2648 error = (*ifp->if_ioctl)(ifp, cmd, data); 2649 2650 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 2651 #ifdef INET6 2652 if (ifp->if_flags & IFF_UP) 2653 in6_if_up(ifp); 2654 #endif 2655 } 2656 if_rele(ifp); 2657 CURVNET_RESTORE(); 2658 return (error); 2659 } 2660 2661 /* 2662 * The code common to handling reference counted flags, 2663 * e.g., in ifpromisc() and if_allmulti(). 2664 * The "pflag" argument can specify a permanent mode flag to check, 2665 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 2666 * 2667 * Only to be used on stack-owned flags, not driver-owned flags. 2668 */ 2669 static int 2670 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 2671 { 2672 struct ifreq ifr; 2673 int error; 2674 int oldflags, oldcount; 2675 2676 /* Sanity checks to catch programming errors */ 2677 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 2678 ("%s: setting driver-owned flag %d", __func__, flag)); 2679 2680 if (onswitch) 2681 KASSERT(*refcount >= 0, 2682 ("%s: increment negative refcount %d for flag %d", 2683 __func__, *refcount, flag)); 2684 else 2685 KASSERT(*refcount > 0, 2686 ("%s: decrement non-positive refcount %d for flag %d", 2687 __func__, *refcount, flag)); 2688 2689 /* In case this mode is permanent, just touch refcount */ 2690 if (ifp->if_flags & pflag) { 2691 *refcount += onswitch ? 1 : -1; 2692 return (0); 2693 } 2694 2695 /* Save ifnet parameters for if_ioctl() may fail */ 2696 oldcount = *refcount; 2697 oldflags = ifp->if_flags; 2698 2699 /* 2700 * See if we aren't the only and touching refcount is enough. 2701 * Actually toggle interface flag if we are the first or last. 2702 */ 2703 if (onswitch) { 2704 if ((*refcount)++) 2705 return (0); 2706 ifp->if_flags |= flag; 2707 } else { 2708 if (--(*refcount)) 2709 return (0); 2710 ifp->if_flags &= ~flag; 2711 } 2712 2713 /* Call down the driver since we've changed interface flags */ 2714 if (ifp->if_ioctl == NULL) { 2715 error = EOPNOTSUPP; 2716 goto recover; 2717 } 2718 ifr.ifr_flags = ifp->if_flags & 0xffff; 2719 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2720 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 2721 if (error) 2722 goto recover; 2723 /* Notify userland that interface flags have changed */ 2724 rt_ifmsg(ifp); 2725 return (0); 2726 2727 recover: 2728 /* Recover after driver error */ 2729 *refcount = oldcount; 2730 ifp->if_flags = oldflags; 2731 return (error); 2732 } 2733 2734 /* 2735 * Set/clear promiscuous mode on interface ifp based on the truth value 2736 * of pswitch. The calls are reference counted so that only the first 2737 * "on" request actually has an effect, as does the final "off" request. 2738 * Results are undefined if the "off" and "on" requests are not matched. 2739 */ 2740 int 2741 ifpromisc(struct ifnet *ifp, int pswitch) 2742 { 2743 int error; 2744 int oldflags = ifp->if_flags; 2745 2746 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 2747 &ifp->if_pcount, pswitch); 2748 /* If promiscuous mode status has changed, log a message */ 2749 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC)) 2750 log(LOG_INFO, "%s: promiscuous mode %s\n", 2751 ifp->if_xname, 2752 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 2753 return (error); 2754 } 2755 2756 /* 2757 * Return interface configuration 2758 * of system. List may be used 2759 * in later ioctl's (above) to get 2760 * other information. 2761 */ 2762 /*ARGSUSED*/ 2763 static int 2764 ifconf(u_long cmd, caddr_t data) 2765 { 2766 struct ifconf *ifc = (struct ifconf *)data; 2767 struct ifnet *ifp; 2768 struct ifaddr *ifa; 2769 struct ifreq ifr; 2770 struct sbuf *sb; 2771 int error, full = 0, valid_len, max_len; 2772 2773 /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ 2774 max_len = MAXPHYS - 1; 2775 2776 /* Prevent hostile input from being able to crash the system */ 2777 if (ifc->ifc_len <= 0) 2778 return (EINVAL); 2779 2780 again: 2781 if (ifc->ifc_len <= max_len) { 2782 max_len = ifc->ifc_len; 2783 full = 1; 2784 } 2785 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 2786 max_len = 0; 2787 valid_len = 0; 2788 2789 IFNET_RLOCK(); 2790 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2791 int addrs; 2792 2793 /* 2794 * Zero the ifr_name buffer to make sure we don't 2795 * disclose the contents of the stack. 2796 */ 2797 memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name)); 2798 2799 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 2800 >= sizeof(ifr.ifr_name)) { 2801 sbuf_delete(sb); 2802 IFNET_RUNLOCK(); 2803 return (ENAMETOOLONG); 2804 } 2805 2806 addrs = 0; 2807 IF_ADDR_RLOCK(ifp); 2808 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2809 struct sockaddr *sa = ifa->ifa_addr; 2810 2811 if (prison_if(curthread->td_ucred, sa) != 0) 2812 continue; 2813 addrs++; 2814 if (sa->sa_len <= sizeof(*sa)) { 2815 ifr.ifr_addr = *sa; 2816 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2817 max_len += sizeof(ifr); 2818 } else { 2819 sbuf_bcat(sb, &ifr, 2820 offsetof(struct ifreq, ifr_addr)); 2821 max_len += offsetof(struct ifreq, ifr_addr); 2822 sbuf_bcat(sb, sa, sa->sa_len); 2823 max_len += sa->sa_len; 2824 } 2825 2826 if (sbuf_error(sb) == 0) 2827 valid_len = sbuf_len(sb); 2828 } 2829 IF_ADDR_RUNLOCK(ifp); 2830 if (addrs == 0) { 2831 bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); 2832 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2833 max_len += sizeof(ifr); 2834 2835 if (sbuf_error(sb) == 0) 2836 valid_len = sbuf_len(sb); 2837 } 2838 } 2839 IFNET_RUNLOCK(); 2840 2841 /* 2842 * If we didn't allocate enough space (uncommon), try again. If 2843 * we have already allocated as much space as we are allowed, 2844 * return what we've got. 2845 */ 2846 if (valid_len != max_len && !full) { 2847 sbuf_delete(sb); 2848 goto again; 2849 } 2850 2851 ifc->ifc_len = valid_len; 2852 sbuf_finish(sb); 2853 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 2854 sbuf_delete(sb); 2855 return (error); 2856 } 2857 2858 /* 2859 * Just like ifpromisc(), but for all-multicast-reception mode. 2860 */ 2861 int 2862 if_allmulti(struct ifnet *ifp, int onswitch) 2863 { 2864 2865 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 2866 } 2867 2868 struct ifmultiaddr * 2869 if_findmulti(struct ifnet *ifp, struct sockaddr *sa) 2870 { 2871 struct ifmultiaddr *ifma; 2872 2873 IF_ADDR_LOCK_ASSERT(ifp); 2874 2875 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2876 if (sa->sa_family == AF_LINK) { 2877 if (sa_dl_equal(ifma->ifma_addr, sa)) 2878 break; 2879 } else { 2880 if (sa_equal(ifma->ifma_addr, sa)) 2881 break; 2882 } 2883 } 2884 2885 return ifma; 2886 } 2887 2888 /* 2889 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 2890 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 2891 * the ifnet multicast address list here, so the caller must do that and 2892 * other setup work (such as notifying the device driver). The reference 2893 * count is initialized to 1. 2894 */ 2895 static struct ifmultiaddr * 2896 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 2897 int mflags) 2898 { 2899 struct ifmultiaddr *ifma; 2900 struct sockaddr *dupsa; 2901 2902 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 2903 M_ZERO); 2904 if (ifma == NULL) 2905 return (NULL); 2906 2907 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 2908 if (dupsa == NULL) { 2909 free(ifma, M_IFMADDR); 2910 return (NULL); 2911 } 2912 bcopy(sa, dupsa, sa->sa_len); 2913 ifma->ifma_addr = dupsa; 2914 2915 ifma->ifma_ifp = ifp; 2916 ifma->ifma_refcount = 1; 2917 ifma->ifma_protospec = NULL; 2918 2919 if (llsa == NULL) { 2920 ifma->ifma_lladdr = NULL; 2921 return (ifma); 2922 } 2923 2924 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 2925 if (dupsa == NULL) { 2926 free(ifma->ifma_addr, M_IFMADDR); 2927 free(ifma, M_IFMADDR); 2928 return (NULL); 2929 } 2930 bcopy(llsa, dupsa, llsa->sa_len); 2931 ifma->ifma_lladdr = dupsa; 2932 2933 return (ifma); 2934 } 2935 2936 /* 2937 * if_freemulti: free ifmultiaddr structure and possibly attached related 2938 * addresses. The caller is responsible for implementing reference 2939 * counting, notifying the driver, handling routing messages, and releasing 2940 * any dependent link layer state. 2941 */ 2942 static void 2943 if_freemulti(struct ifmultiaddr *ifma) 2944 { 2945 2946 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 2947 ifma->ifma_refcount)); 2948 2949 if (ifma->ifma_lladdr != NULL) 2950 free(ifma->ifma_lladdr, M_IFMADDR); 2951 free(ifma->ifma_addr, M_IFMADDR); 2952 free(ifma, M_IFMADDR); 2953 } 2954 2955 /* 2956 * Register an additional multicast address with a network interface. 2957 * 2958 * - If the address is already present, bump the reference count on the 2959 * address and return. 2960 * - If the address is not link-layer, look up a link layer address. 2961 * - Allocate address structures for one or both addresses, and attach to the 2962 * multicast address list on the interface. If automatically adding a link 2963 * layer address, the protocol address will own a reference to the link 2964 * layer address, to be freed when it is freed. 2965 * - Notify the network device driver of an addition to the multicast address 2966 * list. 2967 * 2968 * 'sa' points to caller-owned memory with the desired multicast address. 2969 * 2970 * 'retifma' will be used to return a pointer to the resulting multicast 2971 * address reference, if desired. 2972 */ 2973 int 2974 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 2975 struct ifmultiaddr **retifma) 2976 { 2977 struct ifmultiaddr *ifma, *ll_ifma; 2978 struct sockaddr *llsa; 2979 struct sockaddr_dl sdl; 2980 int error; 2981 2982 /* 2983 * If the address is already present, return a new reference to it; 2984 * otherwise, allocate storage and set up a new address. 2985 */ 2986 IF_ADDR_WLOCK(ifp); 2987 ifma = if_findmulti(ifp, sa); 2988 if (ifma != NULL) { 2989 ifma->ifma_refcount++; 2990 if (retifma != NULL) 2991 *retifma = ifma; 2992 IF_ADDR_WUNLOCK(ifp); 2993 return (0); 2994 } 2995 2996 /* 2997 * The address isn't already present; resolve the protocol address 2998 * into a link layer address, and then look that up, bump its 2999 * refcount or allocate an ifma for that also. 3000 * Most link layer resolving functions returns address data which 3001 * fits inside default sockaddr_dl structure. However callback 3002 * can allocate another sockaddr structure, in that case we need to 3003 * free it later. 3004 */ 3005 llsa = NULL; 3006 ll_ifma = NULL; 3007 if (ifp->if_resolvemulti != NULL) { 3008 /* Provide called function with buffer size information */ 3009 sdl.sdl_len = sizeof(sdl); 3010 llsa = (struct sockaddr *)&sdl; 3011 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3012 if (error) 3013 goto unlock_out; 3014 } 3015 3016 /* 3017 * Allocate the new address. Don't hook it up yet, as we may also 3018 * need to allocate a link layer multicast address. 3019 */ 3020 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3021 if (ifma == NULL) { 3022 error = ENOMEM; 3023 goto free_llsa_out; 3024 } 3025 3026 /* 3027 * If a link layer address is found, we'll need to see if it's 3028 * already present in the address list, or allocate is as well. 3029 * When this block finishes, the link layer address will be on the 3030 * list. 3031 */ 3032 if (llsa != NULL) { 3033 ll_ifma = if_findmulti(ifp, llsa); 3034 if (ll_ifma == NULL) { 3035 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3036 if (ll_ifma == NULL) { 3037 --ifma->ifma_refcount; 3038 if_freemulti(ifma); 3039 error = ENOMEM; 3040 goto free_llsa_out; 3041 } 3042 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3043 ifma_link); 3044 } else 3045 ll_ifma->ifma_refcount++; 3046 ifma->ifma_llifma = ll_ifma; 3047 } 3048 3049 /* 3050 * We now have a new multicast address, ifma, and possibly a new or 3051 * referenced link layer address. Add the primary address to the 3052 * ifnet address list. 3053 */ 3054 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3055 3056 if (retifma != NULL) 3057 *retifma = ifma; 3058 3059 /* 3060 * Must generate the message while holding the lock so that 'ifma' 3061 * pointer is still valid. 3062 */ 3063 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3064 IF_ADDR_WUNLOCK(ifp); 3065 3066 /* 3067 * We are certain we have added something, so call down to the 3068 * interface to let them know about it. 3069 */ 3070 if (ifp->if_ioctl != NULL) { 3071 (void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3072 } 3073 3074 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3075 link_free_sdl(llsa); 3076 3077 return (0); 3078 3079 free_llsa_out: 3080 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3081 link_free_sdl(llsa); 3082 3083 unlock_out: 3084 IF_ADDR_WUNLOCK(ifp); 3085 return (error); 3086 } 3087 3088 /* 3089 * Delete a multicast group membership by network-layer group address. 3090 * 3091 * Returns ENOENT if the entry could not be found. If ifp no longer 3092 * exists, results are undefined. This entry point should only be used 3093 * from subsystems which do appropriate locking to hold ifp for the 3094 * duration of the call. 3095 * Network-layer protocol domains must use if_delmulti_ifma(). 3096 */ 3097 int 3098 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3099 { 3100 struct ifmultiaddr *ifma; 3101 int lastref; 3102 #ifdef INVARIANTS 3103 struct ifnet *oifp; 3104 3105 IFNET_RLOCK_NOSLEEP(); 3106 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3107 if (ifp == oifp) 3108 break; 3109 if (ifp != oifp) 3110 ifp = NULL; 3111 IFNET_RUNLOCK_NOSLEEP(); 3112 3113 KASSERT(ifp != NULL, ("%s: ifnet went away", __func__)); 3114 #endif 3115 if (ifp == NULL) 3116 return (ENOENT); 3117 3118 IF_ADDR_WLOCK(ifp); 3119 lastref = 0; 3120 ifma = if_findmulti(ifp, sa); 3121 if (ifma != NULL) 3122 lastref = if_delmulti_locked(ifp, ifma, 0); 3123 IF_ADDR_WUNLOCK(ifp); 3124 3125 if (ifma == NULL) 3126 return (ENOENT); 3127 3128 if (lastref && ifp->if_ioctl != NULL) { 3129 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3130 } 3131 3132 return (0); 3133 } 3134 3135 /* 3136 * Delete all multicast group membership for an interface. 3137 * Should be used to quickly flush all multicast filters. 3138 */ 3139 void 3140 if_delallmulti(struct ifnet *ifp) 3141 { 3142 struct ifmultiaddr *ifma; 3143 struct ifmultiaddr *next; 3144 3145 IF_ADDR_WLOCK(ifp); 3146 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3147 if_delmulti_locked(ifp, ifma, 0); 3148 IF_ADDR_WUNLOCK(ifp); 3149 } 3150 3151 /* 3152 * Delete a multicast group membership by group membership pointer. 3153 * Network-layer protocol domains must use this routine. 3154 * 3155 * It is safe to call this routine if the ifp disappeared. 3156 */ 3157 void 3158 if_delmulti_ifma(struct ifmultiaddr *ifma) 3159 { 3160 struct ifnet *ifp; 3161 int lastref; 3162 3163 ifp = ifma->ifma_ifp; 3164 #ifdef DIAGNOSTIC 3165 if (ifp == NULL) { 3166 printf("%s: ifma_ifp seems to be detached\n", __func__); 3167 } else { 3168 struct ifnet *oifp; 3169 3170 IFNET_RLOCK_NOSLEEP(); 3171 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3172 if (ifp == oifp) 3173 break; 3174 if (ifp != oifp) { 3175 printf("%s: ifnet %p disappeared\n", __func__, ifp); 3176 ifp = NULL; 3177 } 3178 IFNET_RUNLOCK_NOSLEEP(); 3179 } 3180 #endif 3181 /* 3182 * If and only if the ifnet instance exists: Acquire the address lock. 3183 */ 3184 if (ifp != NULL) 3185 IF_ADDR_WLOCK(ifp); 3186 3187 lastref = if_delmulti_locked(ifp, ifma, 0); 3188 3189 if (ifp != NULL) { 3190 /* 3191 * If and only if the ifnet instance exists: 3192 * Release the address lock. 3193 * If the group was left: update the hardware hash filter. 3194 */ 3195 IF_ADDR_WUNLOCK(ifp); 3196 if (lastref && ifp->if_ioctl != NULL) { 3197 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3198 } 3199 } 3200 } 3201 3202 /* 3203 * Perform deletion of network-layer and/or link-layer multicast address. 3204 * 3205 * Return 0 if the reference count was decremented. 3206 * Return 1 if the final reference was released, indicating that the 3207 * hardware hash filter should be reprogrammed. 3208 */ 3209 static int 3210 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3211 { 3212 struct ifmultiaddr *ll_ifma; 3213 3214 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3215 KASSERT(ifma->ifma_ifp == ifp, 3216 ("%s: inconsistent ifp %p", __func__, ifp)); 3217 IF_ADDR_WLOCK_ASSERT(ifp); 3218 } 3219 3220 ifp = ifma->ifma_ifp; 3221 3222 /* 3223 * If the ifnet is detaching, null out references to ifnet, 3224 * so that upper protocol layers will notice, and not attempt 3225 * to obtain locks for an ifnet which no longer exists. The 3226 * routing socket announcement must happen before the ifnet 3227 * instance is detached from the system. 3228 */ 3229 if (detaching) { 3230 #ifdef DIAGNOSTIC 3231 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3232 #endif 3233 /* 3234 * ifp may already be nulled out if we are being reentered 3235 * to delete the ll_ifma. 3236 */ 3237 if (ifp != NULL) { 3238 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3239 ifma->ifma_ifp = NULL; 3240 } 3241 } 3242 3243 if (--ifma->ifma_refcount > 0) 3244 return 0; 3245 3246 /* 3247 * If this ifma is a network-layer ifma, a link-layer ifma may 3248 * have been associated with it. Release it first if so. 3249 */ 3250 ll_ifma = ifma->ifma_llifma; 3251 if (ll_ifma != NULL) { 3252 KASSERT(ifma->ifma_lladdr != NULL, 3253 ("%s: llifma w/o lladdr", __func__)); 3254 if (detaching) 3255 ll_ifma->ifma_ifp = NULL; /* XXX */ 3256 if (--ll_ifma->ifma_refcount == 0) { 3257 if (ifp != NULL) { 3258 TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, 3259 ifma_link); 3260 } 3261 if_freemulti(ll_ifma); 3262 } 3263 } 3264 3265 if (ifp != NULL) 3266 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 3267 3268 if_freemulti(ifma); 3269 3270 /* 3271 * The last reference to this instance of struct ifmultiaddr 3272 * was released; the hardware should be notified of this change. 3273 */ 3274 return 1; 3275 } 3276 3277 /* 3278 * Set the link layer address on an interface. 3279 * 3280 * At this time we only support certain types of interfaces, 3281 * and we don't allow the length of the address to change. 3282 */ 3283 int 3284 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3285 { 3286 struct sockaddr_dl *sdl; 3287 struct ifaddr *ifa; 3288 struct ifreq ifr; 3289 3290 IF_ADDR_RLOCK(ifp); 3291 ifa = ifp->if_addr; 3292 if (ifa == NULL) { 3293 IF_ADDR_RUNLOCK(ifp); 3294 return (EINVAL); 3295 } 3296 ifa_ref(ifa); 3297 IF_ADDR_RUNLOCK(ifp); 3298 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3299 if (sdl == NULL) { 3300 ifa_free(ifa); 3301 return (EINVAL); 3302 } 3303 if (len != sdl->sdl_alen) { /* don't allow length to change */ 3304 ifa_free(ifa); 3305 return (EINVAL); 3306 } 3307 switch (ifp->if_type) { 3308 case IFT_ETHER: 3309 case IFT_FDDI: 3310 case IFT_XETHER: 3311 case IFT_ISO88025: 3312 case IFT_L2VLAN: 3313 case IFT_BRIDGE: 3314 case IFT_ARCNET: 3315 case IFT_IEEE8023ADLAG: 3316 case IFT_IEEE80211: 3317 bcopy(lladdr, LLADDR(sdl), len); 3318 ifa_free(ifa); 3319 break; 3320 default: 3321 ifa_free(ifa); 3322 return (ENODEV); 3323 } 3324 3325 /* 3326 * If the interface is already up, we need 3327 * to re-init it in order to reprogram its 3328 * address filter. 3329 */ 3330 if ((ifp->if_flags & IFF_UP) != 0) { 3331 if (ifp->if_ioctl) { 3332 ifp->if_flags &= ~IFF_UP; 3333 ifr.ifr_flags = ifp->if_flags & 0xffff; 3334 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3335 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3336 ifp->if_flags |= IFF_UP; 3337 ifr.ifr_flags = ifp->if_flags & 0xffff; 3338 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3339 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3340 } 3341 #ifdef INET 3342 /* 3343 * Also send gratuitous ARPs to notify other nodes about 3344 * the address change. 3345 */ 3346 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3347 if (ifa->ifa_addr->sa_family == AF_INET) 3348 arp_ifinit(ifp, ifa); 3349 } 3350 #endif 3351 } 3352 return (0); 3353 } 3354 3355 /* 3356 * The name argument must be a pointer to storage which will last as 3357 * long as the interface does. For physical devices, the result of 3358 * device_get_name(dev) is a good choice and for pseudo-devices a 3359 * static string works well. 3360 */ 3361 void 3362 if_initname(struct ifnet *ifp, const char *name, int unit) 3363 { 3364 ifp->if_dname = name; 3365 ifp->if_dunit = unit; 3366 if (unit != IF_DUNIT_NONE) 3367 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 3368 else 3369 strlcpy(ifp->if_xname, name, IFNAMSIZ); 3370 } 3371 3372 int 3373 if_printf(struct ifnet *ifp, const char * fmt, ...) 3374 { 3375 va_list ap; 3376 int retval; 3377 3378 retval = printf("%s: ", ifp->if_xname); 3379 va_start(ap, fmt); 3380 retval += vprintf(fmt, ap); 3381 va_end(ap); 3382 return (retval); 3383 } 3384 3385 void 3386 if_start(struct ifnet *ifp) 3387 { 3388 3389 (*(ifp)->if_start)(ifp); 3390 } 3391 3392 /* 3393 * Backwards compatibility interface for drivers 3394 * that have not implemented it 3395 */ 3396 static int 3397 if_transmit(struct ifnet *ifp, struct mbuf *m) 3398 { 3399 int error; 3400 3401 IFQ_HANDOFF(ifp, m, error); 3402 return (error); 3403 } 3404 3405 int 3406 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 3407 { 3408 int active = 0; 3409 3410 IF_LOCK(ifq); 3411 if (_IF_QFULL(ifq)) { 3412 _IF_DROP(ifq); 3413 IF_UNLOCK(ifq); 3414 m_freem(m); 3415 return (0); 3416 } 3417 if (ifp != NULL) { 3418 ifp->if_obytes += m->m_pkthdr.len + adjust; 3419 if (m->m_flags & (M_BCAST|M_MCAST)) 3420 ifp->if_omcasts++; 3421 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 3422 } 3423 _IF_ENQUEUE(ifq, m); 3424 IF_UNLOCK(ifq); 3425 if (ifp != NULL && !active) 3426 (*(ifp)->if_start)(ifp); 3427 return (1); 3428 } 3429 3430 void 3431 if_register_com_alloc(u_char type, 3432 if_com_alloc_t *a, if_com_free_t *f) 3433 { 3434 3435 KASSERT(if_com_alloc[type] == NULL, 3436 ("if_register_com_alloc: %d already registered", type)); 3437 KASSERT(if_com_free[type] == NULL, 3438 ("if_register_com_alloc: %d free already registered", type)); 3439 3440 if_com_alloc[type] = a; 3441 if_com_free[type] = f; 3442 } 3443 3444 void 3445 if_deregister_com_alloc(u_char type) 3446 { 3447 3448 KASSERT(if_com_alloc[type] != NULL, 3449 ("if_deregister_com_alloc: %d not registered", type)); 3450 KASSERT(if_com_free[type] != NULL, 3451 ("if_deregister_com_alloc: %d free not registered", type)); 3452 if_com_alloc[type] = NULL; 3453 if_com_free[type] = NULL; 3454 } 3455 3456 /* API for driver access to network stack owned ifnet.*/ 3457 uint64_t 3458 if_setbaudrate(void *arg, uint64_t baudrate) 3459 { 3460 struct ifnet *ifp = arg; 3461 uint64_t oldbrate; 3462 3463 oldbrate = ifp->if_baudrate; 3464 ifp->if_baudrate = baudrate; 3465 return (oldbrate); 3466 } 3467 3468 uint64_t 3469 if_getbaudrate(if_t ifp) 3470 { 3471 3472 return (((struct ifnet *)ifp)->if_baudrate); 3473 } 3474 3475 int 3476 if_setcapabilities(if_t ifp, int capabilities) 3477 { 3478 ((struct ifnet *)ifp)->if_capabilities = capabilities; 3479 return (0); 3480 } 3481 3482 int 3483 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 3484 { 3485 ((struct ifnet *)ifp)->if_capabilities |= setbit; 3486 ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; 3487 3488 return (0); 3489 } 3490 3491 int 3492 if_getcapabilities(if_t ifp) 3493 { 3494 return ((struct ifnet *)ifp)->if_capabilities; 3495 } 3496 3497 int 3498 if_setcapenable(if_t ifp, int capabilities) 3499 { 3500 ((struct ifnet *)ifp)->if_capenable = capabilities; 3501 return (0); 3502 } 3503 3504 int 3505 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 3506 { 3507 if(setcap) 3508 ((struct ifnet *)ifp)->if_capenable |= setcap; 3509 if(clearcap) 3510 ((struct ifnet *)ifp)->if_capenable &= ~clearcap; 3511 3512 return (0); 3513 } 3514 3515 const char * 3516 if_getdname(if_t ifp) 3517 { 3518 return ((struct ifnet *)ifp)->if_dname; 3519 } 3520 3521 int 3522 if_togglecapenable(if_t ifp, int togglecap) 3523 { 3524 ((struct ifnet *)ifp)->if_capenable ^= togglecap; 3525 return (0); 3526 } 3527 3528 int 3529 if_getcapenable(if_t ifp) 3530 { 3531 return ((struct ifnet *)ifp)->if_capenable; 3532 } 3533 3534 /* 3535 * This is largely undesirable because it ties ifnet to a device, but does 3536 * provide flexiblity for an embedded product vendor. Should be used with 3537 * the understanding that it violates the interface boundaries, and should be 3538 * a last resort only. 3539 */ 3540 int 3541 if_setdev(if_t ifp, void *dev) 3542 { 3543 return (0); 3544 } 3545 3546 int 3547 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 3548 { 3549 ((struct ifnet *)ifp)->if_drv_flags |= set_flags; 3550 ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; 3551 3552 return (0); 3553 } 3554 3555 int 3556 if_getdrvflags(if_t ifp) 3557 { 3558 return ((struct ifnet *)ifp)->if_drv_flags; 3559 } 3560 3561 int 3562 if_setdrvflags(if_t ifp, int flags) 3563 { 3564 ((struct ifnet *)ifp)->if_drv_flags = flags; 3565 return (0); 3566 } 3567 3568 3569 int 3570 if_setflags(if_t ifp, int flags) 3571 { 3572 ((struct ifnet *)ifp)->if_flags = flags; 3573 return (0); 3574 } 3575 3576 int 3577 if_setflagbits(if_t ifp, int set, int clear) 3578 { 3579 ((struct ifnet *)ifp)->if_flags |= set; 3580 ((struct ifnet *)ifp)->if_flags &= ~clear; 3581 3582 return (0); 3583 } 3584 3585 int 3586 if_getflags(if_t ifp) 3587 { 3588 return ((struct ifnet *)ifp)->if_flags; 3589 } 3590 3591 int 3592 if_clearhwassist(if_t ifp) 3593 { 3594 ((struct ifnet *)ifp)->if_hwassist = 0; 3595 return (0); 3596 } 3597 3598 int 3599 if_sethwassistbits(if_t ifp, int toset, int toclear) 3600 { 3601 ((struct ifnet *)ifp)->if_hwassist |= toset; 3602 ((struct ifnet *)ifp)->if_hwassist &= ~toclear; 3603 3604 return (0); 3605 } 3606 3607 int 3608 if_sethwassist(if_t ifp, int hwassist_bit) 3609 { 3610 ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; 3611 return (0); 3612 } 3613 3614 int 3615 if_gethwassist(if_t ifp) 3616 { 3617 return ((struct ifnet *)ifp)->if_hwassist; 3618 } 3619 3620 int 3621 if_setmtu(if_t ifp, int mtu) 3622 { 3623 ((struct ifnet *)ifp)->if_mtu = mtu; 3624 return (0); 3625 } 3626 3627 int 3628 if_getmtu(if_t ifp) 3629 { 3630 return ((struct ifnet *)ifp)->if_mtu; 3631 } 3632 3633 int 3634 if_setsoftc(if_t ifp, void *softc) 3635 { 3636 ((struct ifnet *)ifp)->if_softc = softc; 3637 return (0); 3638 } 3639 3640 void * 3641 if_getsoftc(if_t ifp) 3642 { 3643 return ((struct ifnet *)ifp)->if_softc; 3644 } 3645 3646 void 3647 if_setrcvif(struct mbuf *m, if_t ifp) 3648 { 3649 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 3650 } 3651 3652 void 3653 if_setvtag(struct mbuf *m, uint16_t tag) 3654 { 3655 m->m_pkthdr.ether_vtag = tag; 3656 } 3657 3658 uint16_t 3659 if_getvtag(struct mbuf *m) 3660 { 3661 3662 return (m->m_pkthdr.ether_vtag); 3663 } 3664 3665 /* Statistics */ 3666 int 3667 if_incipackets(if_t ifp, int pkts) 3668 { 3669 ((struct ifnet *)ifp)->if_ipackets += pkts; 3670 return (0); 3671 } 3672 3673 int 3674 if_incopackets(if_t ifp, int pkts) 3675 { 3676 ((struct ifnet *)ifp)->if_opackets += pkts; 3677 return (0); 3678 } 3679 3680 int 3681 if_incierrors(if_t ifp, int ierrors) 3682 { 3683 ((struct ifnet *)ifp)->if_ierrors += ierrors; 3684 return (0); 3685 } 3686 3687 3688 int 3689 if_setierrors(if_t ifp, int ierrors) 3690 { 3691 ((struct ifnet *)ifp)->if_ierrors = ierrors; 3692 return (0); 3693 } 3694 3695 int 3696 if_setoerrors(if_t ifp, int oerrors) 3697 { 3698 ((struct ifnet *)ifp)->if_oerrors = oerrors; 3699 return (0); 3700 } 3701 3702 int if_incoerrors(if_t ifp, int oerrors) 3703 { 3704 ((struct ifnet *)ifp)->if_oerrors += oerrors; 3705 return (0); 3706 } 3707 3708 int if_inciqdrops(if_t ifp, int val) 3709 { 3710 ((struct ifnet *)ifp)->if_iqdrops += val; 3711 return (0); 3712 } 3713 3714 int 3715 if_setcollisions(if_t ifp, int collisions) 3716 { 3717 ((struct ifnet *)ifp)->if_collisions = collisions; 3718 return (0); 3719 } 3720 3721 int 3722 if_inccollisions(if_t ifp, int collisions) 3723 { 3724 ((struct ifnet *)ifp)->if_collisions += collisions; 3725 return (0); 3726 } 3727 3728 int 3729 if_setipackets(if_t ifp, int pkts) 3730 { 3731 ((struct ifnet *)ifp)->if_ipackets = pkts; 3732 return (0); 3733 } 3734 3735 int 3736 if_setopackets(if_t ifp, int pkts) 3737 { 3738 ((struct ifnet *)ifp)->if_opackets = pkts; 3739 return (0); 3740 } 3741 3742 int 3743 if_incobytes(if_t ifp, int bytes) 3744 { 3745 ((struct ifnet *)ifp)->if_obytes += bytes; 3746 return (0); 3747 } 3748 3749 int 3750 if_setibytes(if_t ifp, int bytes) 3751 { 3752 ((struct ifnet *)ifp)->if_ibytes = bytes; 3753 return (0); 3754 } 3755 3756 int 3757 if_setobytes(if_t ifp, int bytes) 3758 { 3759 ((struct ifnet *)ifp)->if_obytes = bytes; 3760 return (0); 3761 } 3762 3763 3764 int 3765 if_sendq_empty(if_t ifp) 3766 { 3767 return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); 3768 } 3769 3770 int if_getiqdrops(if_t ifp) 3771 { 3772 return ((struct ifnet *)ifp)->if_iqdrops; 3773 } 3774 3775 int 3776 if_incimcasts(if_t ifp, int mcast) 3777 { 3778 ((struct ifnet *)ifp)->if_imcasts += mcast; 3779 return (0); 3780 } 3781 3782 3783 int 3784 if_incomcasts(if_t ifp, int mcast) 3785 { 3786 ((struct ifnet *)ifp)->if_omcasts += mcast; 3787 return (0); 3788 } 3789 3790 int 3791 if_setimcasts(if_t ifp, int mcast) 3792 { 3793 ((struct ifnet *)ifp)->if_imcasts = mcast; 3794 return (0); 3795 } 3796 3797 3798 struct ifaddr * 3799 if_getifaddr(if_t ifp) 3800 { 3801 return ((struct ifnet *)ifp)->if_addr; 3802 } 3803 3804 int 3805 if_getamcount(if_t ifp) 3806 { 3807 return ((struct ifnet *)ifp)->if_amcount; 3808 } 3809 3810 3811 int 3812 if_setsendqready(if_t ifp) 3813 { 3814 IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); 3815 return (0); 3816 } 3817 3818 int 3819 if_setsendqlen(if_t ifp, int tx_desc_count) 3820 { 3821 IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); 3822 ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; 3823 3824 return (0); 3825 } 3826 3827 int 3828 if_vlantrunkinuse(if_t ifp) 3829 { 3830 return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; 3831 } 3832 3833 int 3834 if_input(if_t ifp, struct mbuf* sendmp) 3835 { 3836 (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); 3837 return (0); 3838 3839 } 3840 3841 /* XXX */ 3842 #ifndef ETH_ADDR_LEN 3843 #define ETH_ADDR_LEN 6 3844 #endif 3845 3846 int 3847 if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max) 3848 { 3849 struct ifmultiaddr *ifma; 3850 uint8_t *lmta = (uint8_t *)mta; 3851 int mcnt = 0; 3852 3853 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3854 if (ifma->ifma_addr->sa_family != AF_LINK) 3855 continue; 3856 3857 if (mcnt == max) 3858 break; 3859 3860 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 3861 &lmta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); 3862 mcnt++; 3863 } 3864 *cnt = mcnt; 3865 3866 return (0); 3867 } 3868 3869 int 3870 if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max) 3871 { 3872 int error; 3873 3874 if_maddr_rlock(ifp); 3875 error = if_setupmultiaddr(ifp, mta, cnt, max); 3876 if_maddr_runlock(ifp); 3877 return (error); 3878 } 3879 3880 int 3881 if_multiaddr_count(if_t ifp, int max) 3882 { 3883 struct ifmultiaddr *ifma; 3884 int count; 3885 3886 count = 0; 3887 if_maddr_rlock(ifp); 3888 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3889 if (ifma->ifma_addr->sa_family != AF_LINK) 3890 continue; 3891 count++; 3892 if (count == max) 3893 break; 3894 } 3895 if_maddr_runlock(ifp); 3896 return (count); 3897 } 3898 3899 struct mbuf * 3900 if_dequeue(if_t ifp) 3901 { 3902 struct mbuf *m; 3903 IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); 3904 3905 return (m); 3906 } 3907 3908 int 3909 if_sendq_prepend(if_t ifp, struct mbuf *m) 3910 { 3911 IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); 3912 return (0); 3913 } 3914 3915 int 3916 if_setifheaderlen(if_t ifp, int len) 3917 { 3918 ((struct ifnet *)ifp)->if_data.ifi_hdrlen = len; 3919 return (0); 3920 } 3921 3922 caddr_t 3923 if_getlladdr(if_t ifp) 3924 { 3925 return (IF_LLADDR((struct ifnet *)ifp)); 3926 } 3927 3928 void * 3929 if_gethandle(u_char type) 3930 { 3931 return (if_alloc(type)); 3932 } 3933 3934 void 3935 if_bpfmtap(if_t ifh, struct mbuf *m) 3936 { 3937 struct ifnet *ifp = (struct ifnet *)ifh; 3938 3939 BPF_MTAP(ifp, m); 3940 } 3941 3942 void 3943 if_etherbpfmtap(if_t ifh, struct mbuf *m) 3944 { 3945 struct ifnet *ifp = (struct ifnet *)ifh; 3946 3947 ETHER_BPF_MTAP(ifp, m); 3948 } 3949 3950 void 3951 if_vlancap(if_t ifh) 3952 { 3953 struct ifnet *ifp = (struct ifnet *)ifh; 3954 VLAN_CAPABILITIES(ifp); 3955 } 3956 3957 void 3958 if_setinitfn(if_t ifp, void (*init_fn)(void *)) 3959 { 3960 ((struct ifnet *)ifp)->if_init = init_fn; 3961 } 3962 3963 void 3964 if_setioctlfn(if_t ifp, int (*ioctl_fn)(void *, u_long, caddr_t)) 3965 { 3966 ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; 3967 } 3968 3969 void 3970 if_setstartfn(if_t ifp, void (*start_fn)(void *)) 3971 { 3972 ((struct ifnet *)ifp)->if_start = (void *)start_fn; 3973 } 3974 3975 void 3976 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 3977 { 3978 ((struct ifnet *)ifp)->if_transmit = start_fn; 3979 } 3980 3981 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 3982 { 3983 ((struct ifnet *)ifp)->if_qflush = flush_fn; 3984 3985 } 3986 3987 /* These wrappers are hopefully temporary, till all drivers use drvapi */ 3988 #ifdef INET 3989 void 3990 arp_ifinit_drv(if_t ifh, struct ifaddr *ifa) 3991 { 3992 arp_ifinit((struct ifnet *)ifh, ifa); 3993 } 3994 #endif 3995 3996 void 3997 ether_ifattach_drv(if_t ifh, const u_int8_t *lla) 3998 { 3999 ether_ifattach((struct ifnet *)ifh, lla); 4000 } 4001 4002 void 4003 ether_ifdetach_drv(if_t ifh) 4004 { 4005 ether_ifdetach((struct ifnet *)ifh); 4006 } 4007 4008 int 4009 ether_ioctl_drv(if_t ifh, u_long cmd, caddr_t data) 4010 { 4011 struct ifnet *ifp = (struct ifnet *)ifh; 4012 4013 return (ether_ioctl(ifp, cmd, data)); 4014 } 4015 4016 int 4017 ifmedia_ioctl_drv(if_t ifh, struct ifreq *ifr, struct ifmedia *ifm, 4018 u_long cmd) 4019 { 4020 struct ifnet *ifp = (struct ifnet *)ifh; 4021 4022 return (ifmedia_ioctl(ifp, ifr, ifm, cmd)); 4023 } 4024 4025 void 4026 if_free_drv(if_t ifh) 4027 { 4028 if_free((struct ifnet *)ifh); 4029 } 4030 4031 void 4032 if_initname_drv(if_t ifh, const char *name, int unit) 4033 { 4034 if_initname((struct ifnet *)ifh, name, unit); 4035 } 4036 4037 void 4038 if_linkstate_change_drv(if_t ifh, int link_state) 4039 { 4040 if_link_state_change((struct ifnet *)ifh, link_state); 4041 } 4042 4043 void 4044 ifmedia_init_drv(struct ifmedia *ifm, int ncmask, int (*chg_cb)(void *), 4045 void (*sts_cb)(void *, struct ifmediareq *)) 4046 { 4047 ifmedia_init(ifm, ncmask, (ifm_change_cb_t)chg_cb, 4048 (ifm_stat_cb_t)sts_cb); 4049 } 4050 4051 void 4052 if_addr_rlock_drv(if_t ifh) 4053 { 4054 4055 if_addr_runlock((struct ifnet *)ifh); 4056 } 4057 4058 void 4059 if_addr_runlock_drv(if_t ifh) 4060 { 4061 if_addr_runlock((struct ifnet *)ifh); 4062 } 4063 4064 void 4065 if_qflush_drv(if_t ifh) 4066 { 4067 if_qflush((struct ifnet *)ifh); 4068 4069 } 4070 4071 /* Revisit these - These are inline functions originally. */ 4072 int 4073 drbr_inuse_drv(if_t ifh, struct buf_ring *br) 4074 { 4075 return drbr_inuse_drv(ifh, br); 4076 } 4077 4078 struct mbuf* 4079 drbr_dequeue_drv(if_t ifh, struct buf_ring *br) 4080 { 4081 return drbr_dequeue(ifh, br); 4082 } 4083 4084 int 4085 drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br) 4086 { 4087 return drbr_needs_enqueue(ifh, br); 4088 } 4089 4090 int 4091 drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m) 4092 { 4093 return drbr_enqueue(ifh, br, m); 4094 4095 } 4096