xref: /freebsd/sys/net/if.c (revision 53bb5613a8a15363718b6e6de8d965bf9a2c5469)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org>
5  * Copyright (c) 1980, 1986, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_bpf.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ddb.h"
37 
38 #include <sys/param.h>
39 #include <sys/capsicum.h>
40 #include <sys/conf.h>
41 #include <sys/eventhandler.h>
42 #include <sys/malloc.h>
43 #include <sys/domainset.h>
44 #include <sys/sbuf.h>
45 #include <sys/bus.h>
46 #include <sys/epoch.h>
47 #include <sys/mbuf.h>
48 #include <sys/systm.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/protosw.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/refcount.h>
57 #include <sys/module.h>
58 #include <sys/nv.h>
59 #include <sys/rwlock.h>
60 #include <sys/sockio.h>
61 #include <sys/syslog.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #include <sys/taskqueue.h>
65 #include <sys/domain.h>
66 #include <sys/jail.h>
67 #include <sys/priv.h>
68 
69 #ifdef DDB
70 #include <ddb/ddb.h>
71 #endif
72 
73 #include <machine/stdarg.h>
74 #include <vm/uma.h>
75 
76 #include <net/bpf.h>
77 #include <net/ethernet.h>
78 #include <net/if.h>
79 #include <net/if_arp.h>
80 #include <net/if_clone.h>
81 #include <net/if_dl.h>
82 #include <net/if_strings.h>
83 #include <net/if_types.h>
84 #include <net/if_var.h>
85 #include <net/if_media.h>
86 #include <net/if_mib.h>
87 #include <net/if_private.h>
88 #include <net/if_vlan_var.h>
89 #include <net/radix.h>
90 #include <net/route.h>
91 #include <net/route/route_ctl.h>
92 #include <net/vnet.h>
93 
94 #if defined(INET) || defined(INET6)
95 #include <net/ethernet.h>
96 #include <netinet/in.h>
97 #include <netinet/in_var.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_carp.h>
100 #ifdef INET
101 #include <net/debugnet.h>
102 #include <netinet/if_ether.h>
103 #endif /* INET */
104 #ifdef INET6
105 #include <netinet6/in6_var.h>
106 #include <netinet6/in6_ifattach.h>
107 #endif /* INET6 */
108 #endif /* INET || INET6 */
109 
110 #include <security/mac/mac_framework.h>
111 
112 /*
113  * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name
114  * and ifr_ifru when it is used in SIOCGIFCONF.
115  */
116 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) ==
117     offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru");
118 
119 __read_mostly epoch_t net_epoch_preempt;
120 #ifdef COMPAT_FREEBSD32
121 #include <sys/mount.h>
122 #include <compat/freebsd32/freebsd32.h>
123 
124 struct ifreq_buffer32 {
125 	uint32_t	length;		/* (size_t) */
126 	uint32_t	buffer;		/* (void *) */
127 };
128 
129 /*
130  * Interface request structure used for socket
131  * ioctl's.  All interface ioctl's must have parameter
132  * definitions which begin with ifr_name.  The
133  * remainder may be interface specific.
134  */
135 struct ifreq32 {
136 	char	ifr_name[IFNAMSIZ];		/* if name, e.g. "en0" */
137 	union {
138 		struct sockaddr	ifru_addr;
139 		struct sockaddr	ifru_dstaddr;
140 		struct sockaddr	ifru_broadaddr;
141 		struct ifreq_buffer32 ifru_buffer;
142 		short		ifru_flags[2];
143 		short		ifru_index;
144 		int		ifru_jid;
145 		int		ifru_metric;
146 		int		ifru_mtu;
147 		int		ifru_phys;
148 		int		ifru_media;
149 		uint32_t	ifru_data;
150 		int		ifru_cap[2];
151 		u_int		ifru_fib;
152 		u_char		ifru_vlan_pcp;
153 	} ifr_ifru;
154 };
155 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32));
156 CTASSERT(__offsetof(struct ifreq, ifr_ifru) ==
157     __offsetof(struct ifreq32, ifr_ifru));
158 
159 struct ifconf32 {
160 	int32_t	ifc_len;
161 	union {
162 		uint32_t	ifcu_buf;
163 		uint32_t	ifcu_req;
164 	} ifc_ifcu;
165 };
166 #define	SIOCGIFCONF32	_IOWR('i', 36, struct ifconf32)
167 
168 struct ifdrv32 {
169 	char		ifd_name[IFNAMSIZ];
170 	uint32_t	ifd_cmd;
171 	uint32_t	ifd_len;
172 	uint32_t	ifd_data;
173 };
174 #define SIOCSDRVSPEC32	_IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32)
175 #define SIOCGDRVSPEC32	_IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32)
176 
177 struct ifgroupreq32 {
178 	char	ifgr_name[IFNAMSIZ];
179 	u_int	ifgr_len;
180 	union {
181 		char		ifgru_group[IFNAMSIZ];
182 		uint32_t	ifgru_groups;
183 	} ifgr_ifgru;
184 };
185 #define	SIOCAIFGROUP32	_IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32)
186 #define	SIOCGIFGROUP32	_IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32)
187 #define	SIOCDIFGROUP32	_IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32)
188 #define	SIOCGIFGMEMB32	_IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32)
189 
190 struct ifmediareq32 {
191 	char		ifm_name[IFNAMSIZ];
192 	int		ifm_current;
193 	int		ifm_mask;
194 	int		ifm_status;
195 	int		ifm_active;
196 	int		ifm_count;
197 	uint32_t	ifm_ulist;	/* (int *) */
198 };
199 #define	SIOCGIFMEDIA32	_IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32)
200 #define	SIOCGIFXMEDIA32	_IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32)
201 #endif /* COMPAT_FREEBSD32 */
202 
203 union ifreq_union {
204 	struct ifreq	ifr;
205 #ifdef COMPAT_FREEBSD32
206 	struct ifreq32	ifr32;
207 #endif
208 };
209 
210 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
211     "Link layers");
212 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
213     "Generic link-management");
214 
215 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN,
216     &ifqmaxlen, 0, "max send queue size");
217 
218 /* Log link state change events */
219 static int log_link_state_change = 1;
220 
221 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW,
222 	&log_link_state_change, 0,
223 	"log interface link state change events");
224 
225 /* Log promiscuous mode change events */
226 static int log_promisc_mode_change = 1;
227 
228 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN,
229 	&log_promisc_mode_change, 1,
230 	"log promiscuous mode change events");
231 
232 /* Interface description */
233 static unsigned int ifdescr_maxlen = 1024;
234 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW,
235 	&ifdescr_maxlen, 0,
236 	"administrative maximum length for interface description");
237 
238 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions");
239 
240 /* global sx for non-critical path ifdescr */
241 static struct sx ifdescr_sx;
242 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr");
243 
244 void	(*ng_ether_link_state_p)(struct ifnet *ifp, int state);
245 void	(*lagg_linkstate_p)(struct ifnet *ifp, int state);
246 /* These are external hooks for CARP. */
247 void	(*carp_linkstate_p)(struct ifnet *ifp);
248 void	(*carp_demote_adj_p)(int, char *);
249 int	(*carp_master_p)(struct ifaddr *);
250 #if defined(INET) || defined(INET6)
251 int	(*carp_forus_p)(struct ifnet *ifp, u_char *dhost);
252 int	(*carp_output_p)(struct ifnet *ifp, struct mbuf *m,
253     const struct sockaddr *sa);
254 int	(*carp_ioctl_p)(struct ifreq *, u_long, struct thread *);
255 int	(*carp_attach_p)(struct ifaddr *, int);
256 void	(*carp_detach_p)(struct ifaddr *, bool);
257 #endif
258 #ifdef INET
259 int	(*carp_iamatch_p)(struct ifaddr *, uint8_t **);
260 #endif
261 #ifdef INET6
262 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6);
263 caddr_t	(*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m,
264     const struct in6_addr *taddr);
265 #endif
266 
267 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL;
268 
269 /*
270  * XXX: Style; these should be sorted alphabetically, and unprototyped
271  * static functions should be prototyped. Currently they are sorted by
272  * declaration order.
273  */
274 static void	if_attachdomain(void *);
275 static void	if_attachdomain1(struct ifnet *);
276 static int	ifconf(u_long, caddr_t);
277 static void	if_input_default(struct ifnet *, struct mbuf *);
278 static int	if_requestencap_default(struct ifnet *, struct if_encap_req *);
279 static int	if_setflag(struct ifnet *, int, int, int *, int);
280 static int	if_transmit_default(struct ifnet *ifp, struct mbuf *m);
281 static void	if_unroute(struct ifnet *, int flag, int fam);
282 static int	if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int);
283 static void	do_link_state_change(void *, int);
284 static int	if_getgroup(struct ifgroupreq *, struct ifnet *);
285 static int	if_getgroupmembers(struct ifgroupreq *);
286 static void	if_delgroups(struct ifnet *);
287 static void	if_attach_internal(struct ifnet *, bool);
288 static int	if_detach_internal(struct ifnet *, bool);
289 static void	if_siocaddmulti(void *, int);
290 static void	if_link_ifnet(struct ifnet *);
291 static bool	if_unlink_ifnet(struct ifnet *, bool);
292 #ifdef VIMAGE
293 static int	if_vmove(struct ifnet *, struct vnet *);
294 #endif
295 
296 #ifdef INET6
297 /*
298  * XXX: declare here to avoid to include many inet6 related files..
299  * should be more generalized?
300  */
301 extern void	nd6_setmtu(struct ifnet *);
302 #endif
303 
304 /* ipsec helper hooks */
305 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]);
306 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]);
307 
308 int	ifqmaxlen = IFQ_MAXLEN;
309 VNET_DEFINE(struct ifnethead, ifnet);	/* depend on static init XXX */
310 VNET_DEFINE(struct ifgrouphead, ifg_head);
311 
312 /* Table of ifnet by index. */
313 static int if_index;
314 static int if_indexlim = 8;
315 static struct ifindex_entry {
316 	struct ifnet	*ife_ifnet;
317 	uint16_t	ife_gencnt;
318 } *ifindex_table;
319 
320 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system,
321     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
322     "Variables global to all interfaces");
323 static int
324 sysctl_ifcount(SYSCTL_HANDLER_ARGS)
325 {
326 	int rv = 0;
327 
328 	IFNET_RLOCK();
329 	for (int i = 1; i <= if_index; i++)
330 		if (ifindex_table[i].ife_ifnet != NULL &&
331 		    ifindex_table[i].ife_ifnet->if_vnet == curvnet)
332 			rv = i;
333 	IFNET_RUNLOCK();
334 
335 	return (sysctl_handle_int(oidp, &rv, 0, req));
336 }
337 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount,
338     CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I",
339     "Maximum known interface index");
340 
341 /*
342  * The global network interface list (V_ifnet) and related state (such as
343  * if_index, if_indexlim, and ifindex_table) are protected by an sxlock.
344  * This may be acquired to stabilise the list, or we may rely on NET_EPOCH.
345  */
346 struct sx ifnet_sxlock;
347 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE);
348 
349 struct sx ifnet_detach_sxlock;
350 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx",
351     SX_RECURSE);
352 
353 #ifdef VIMAGE
354 #define	VNET_IS_SHUTTING_DOWN(_vnet)					\
355     ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE)
356 #endif
357 
358 static	if_com_alloc_t *if_com_alloc[256];
359 static	if_com_free_t *if_com_free[256];
360 
361 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals");
362 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
363 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
364 
365 struct ifnet *
366 ifnet_byindex(u_int idx)
367 {
368 	struct ifnet *ifp;
369 
370 	NET_EPOCH_ASSERT();
371 
372 	if (__predict_false(idx > if_index))
373 		return (NULL);
374 
375 	ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
376 
377 	if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet)
378 		ifp = NULL;
379 
380 	return (ifp);
381 }
382 
383 struct ifnet *
384 ifnet_byindex_ref(u_int idx)
385 {
386 	struct ifnet *ifp;
387 
388 	ifp = ifnet_byindex(idx);
389 	if (ifp == NULL || (ifp->if_flags & IFF_DYING))
390 		return (NULL);
391 	if (!if_try_ref(ifp))
392 		return (NULL);
393 	return (ifp);
394 }
395 
396 struct ifnet *
397 ifnet_byindexgen(uint16_t idx, uint16_t gen)
398 {
399 	struct ifnet *ifp;
400 
401 	NET_EPOCH_ASSERT();
402 
403 	if (__predict_false(idx > if_index))
404 		return (NULL);
405 
406 	ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet);
407 
408 	if (ifindex_table[idx].ife_gencnt == gen)
409 		return (ifp);
410 	else
411 		return (NULL);
412 }
413 
414 /*
415  * Network interface utility routines.
416  *
417  * Routines with ifa_ifwith* names take sockaddr *'s as
418  * parameters.
419  */
420 
421 static void
422 if_init_idxtable(void *arg __unused)
423 {
424 
425 	ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table),
426 	    M_IFNET, M_WAITOK | M_ZERO);
427 }
428 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init_idxtable, NULL);
429 
430 static void
431 vnet_if_init(const void *unused __unused)
432 {
433 
434 	CK_STAILQ_INIT(&V_ifnet);
435 	CK_STAILQ_INIT(&V_ifg_head);
436 	vnet_if_clone_init();
437 }
438 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init,
439     NULL);
440 
441 static void
442 if_link_ifnet(struct ifnet *ifp)
443 {
444 
445 	IFNET_WLOCK();
446 	CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link);
447 #ifdef VIMAGE
448 	curvnet->vnet_ifcnt++;
449 #endif
450 	IFNET_WUNLOCK();
451 }
452 
453 static bool
454 if_unlink_ifnet(struct ifnet *ifp, bool vmove)
455 {
456 	struct ifnet *iter;
457 	int found = 0;
458 
459 	IFNET_WLOCK();
460 	CK_STAILQ_FOREACH(iter, &V_ifnet, if_link)
461 		if (iter == ifp) {
462 			CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link);
463 			if (!vmove)
464 				ifp->if_flags |= IFF_DYING;
465 			found = 1;
466 			break;
467 		}
468 #ifdef VIMAGE
469 	curvnet->vnet_ifcnt--;
470 #endif
471 	IFNET_WUNLOCK();
472 
473 	return (found);
474 }
475 
476 #ifdef VIMAGE
477 static void
478 vnet_if_return(const void *unused __unused)
479 {
480 	struct ifnet *ifp, *nifp;
481 	struct ifnet **pending;
482 	int found __diagused;
483 	int i;
484 
485 	i = 0;
486 
487 	/*
488 	 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd
489 	 * enter NET_EPOCH, but that's not possible, because if_vmove() calls
490 	 * if_detach_internal(), which waits for NET_EPOCH callbacks to
491 	 * complete. We can't do that from within NET_EPOCH.
492 	 *
493 	 * However, we can also use the IFNET_xLOCK, which is the V_ifnet
494 	 * read/write lock. We cannot hold the lock as we call if_vmove()
495 	 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib
496 	 * ctx lock.
497 	 */
498 	IFNET_WLOCK();
499 
500 	pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt,
501 	    M_IFNET, M_WAITOK | M_ZERO);
502 
503 	/* Return all inherited interfaces to their parent vnets. */
504 	CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) {
505 		if (ifp->if_home_vnet != ifp->if_vnet) {
506 			found = if_unlink_ifnet(ifp, true);
507 			MPASS(found);
508 
509 			pending[i++] = ifp;
510 		}
511 	}
512 	IFNET_WUNLOCK();
513 
514 	for (int j = 0; j < i; j++) {
515 		sx_xlock(&ifnet_detach_sxlock);
516 		if_vmove(pending[j], pending[j]->if_home_vnet);
517 		sx_xunlock(&ifnet_detach_sxlock);
518 	}
519 
520 	free(pending, M_IFNET);
521 }
522 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY,
523     vnet_if_return, NULL);
524 #endif
525 
526 /*
527  * Allocate a struct ifnet and an index for an interface.  A layer 2
528  * common structure will also be allocated if an allocation routine is
529  * registered for the passed type.
530  */
531 static struct ifnet *
532 if_alloc_domain(u_char type, int numa_domain)
533 {
534 	struct ifnet *ifp;
535 	u_short idx;
536 
537 	KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large"));
538 	if (numa_domain == IF_NODOM)
539 		ifp = malloc(sizeof(struct ifnet), M_IFNET,
540 		    M_WAITOK | M_ZERO);
541 	else
542 		ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET,
543 		    DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO);
544 	ifp->if_type = type;
545 	ifp->if_alloctype = type;
546 	ifp->if_numa_domain = numa_domain;
547 #ifdef VIMAGE
548 	ifp->if_vnet = curvnet;
549 #endif
550 	if (if_com_alloc[type] != NULL) {
551 		ifp->if_l2com = if_com_alloc[type](type, ifp);
552 		KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__,
553 		    type));
554 	}
555 
556 	IF_ADDR_LOCK_INIT(ifp);
557 	TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp);
558 	TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp);
559 	ifp->if_afdata_initialized = 0;
560 	IF_AFDATA_LOCK_INIT(ifp);
561 	CK_STAILQ_INIT(&ifp->if_addrhead);
562 	CK_STAILQ_INIT(&ifp->if_multiaddrs);
563 	CK_STAILQ_INIT(&ifp->if_groups);
564 #ifdef MAC
565 	mac_ifnet_init(ifp);
566 #endif
567 	ifq_init(&ifp->if_snd, ifp);
568 
569 	refcount_init(&ifp->if_refcount, 1);	/* Index reference. */
570 	for (int i = 0; i < IFCOUNTERS; i++)
571 		ifp->if_counters[i] = counter_u64_alloc(M_WAITOK);
572 	ifp->if_get_counter = if_get_counter_default;
573 	ifp->if_pcp = IFNET_PCP_NONE;
574 
575 	/* Allocate an ifindex array entry. */
576 	IFNET_WLOCK();
577 	/*
578 	 * Try to find an empty slot below if_index.  If we fail, take the
579 	 * next slot.
580 	 */
581 	for (idx = 1; idx <= if_index; idx++) {
582 		if (ifindex_table[idx].ife_ifnet == NULL)
583 			break;
584 	}
585 
586 	/* Catch if_index overflow. */
587 	if (idx >= if_indexlim) {
588 		struct ifindex_entry *new, *old;
589 		int newlim;
590 
591 		newlim = if_indexlim * 2;
592 		new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO);
593 		memcpy(new, ifindex_table, if_indexlim * sizeof(*new));
594 		old = ifindex_table;
595 		ck_pr_store_ptr(&ifindex_table, new);
596 		if_indexlim = newlim;
597 		NET_EPOCH_WAIT();
598 		free(old, M_IFNET);
599 	}
600 	if (idx > if_index)
601 		if_index = idx;
602 
603 	ifp->if_index = idx;
604 	ifp->if_idxgen = ifindex_table[idx].ife_gencnt;
605 	ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp);
606 	IFNET_WUNLOCK();
607 
608 	return (ifp);
609 }
610 
611 struct ifnet *
612 if_alloc_dev(u_char type, device_t dev)
613 {
614 	int numa_domain;
615 
616 	if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0)
617 		return (if_alloc_domain(type, IF_NODOM));
618 	return (if_alloc_domain(type, numa_domain));
619 }
620 
621 struct ifnet *
622 if_alloc(u_char type)
623 {
624 
625 	return (if_alloc_domain(type, IF_NODOM));
626 }
627 /*
628  * Do the actual work of freeing a struct ifnet, and layer 2 common
629  * structure.  This call is made when the network epoch guarantees
630  * us that nobody holds a pointer to the interface.
631  */
632 static void
633 if_free_deferred(epoch_context_t ctx)
634 {
635 	struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx);
636 
637 	KASSERT((ifp->if_flags & IFF_DYING),
638 	    ("%s: interface not dying", __func__));
639 
640 	if (if_com_free[ifp->if_alloctype] != NULL)
641 		if_com_free[ifp->if_alloctype](ifp->if_l2com,
642 		    ifp->if_alloctype);
643 
644 #ifdef MAC
645 	mac_ifnet_destroy(ifp);
646 #endif /* MAC */
647 	IF_AFDATA_DESTROY(ifp);
648 	IF_ADDR_LOCK_DESTROY(ifp);
649 	ifq_delete(&ifp->if_snd);
650 
651 	for (int i = 0; i < IFCOUNTERS; i++)
652 		counter_u64_free(ifp->if_counters[i]);
653 
654 	if_freedescr(ifp->if_description);
655 	free(ifp->if_hw_addr, M_IFADDR);
656 	free(ifp, M_IFNET);
657 }
658 
659 /*
660  * Deregister an interface and free the associated storage.
661  */
662 void
663 if_free(struct ifnet *ifp)
664 {
665 
666 	ifp->if_flags |= IFF_DYING;			/* XXX: Locking */
667 
668 	/*
669 	 * XXXGL: An interface index is really an alias to ifp pointer.
670 	 * Why would we clear the alias now, and not in the deferred
671 	 * context?  Indeed there is nothing wrong with some network
672 	 * thread obtaining ifp via ifnet_byindex() inside the network
673 	 * epoch and then dereferencing ifp while we perform if_free(),
674 	 * and after if_free() finished, too.
675 	 *
676 	 * This early index freeing was important back when ifindex was
677 	 * virtualized and interface would outlive the vnet.
678 	 */
679 	IFNET_WLOCK();
680 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
681 	ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL);
682 	ifindex_table[ifp->if_index].ife_gencnt++;
683 	while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL)
684 		if_index--;
685 	IFNET_WUNLOCK();
686 
687 	if (refcount_release(&ifp->if_refcount))
688 		NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
689 }
690 
691 /*
692  * Interfaces to keep an ifnet type-stable despite the possibility of the
693  * driver calling if_free().  If there are additional references, we defer
694  * freeing the underlying data structure.
695  */
696 void
697 if_ref(struct ifnet *ifp)
698 {
699 	u_int old __diagused;
700 
701 	/* We don't assert the ifnet list lock here, but arguably should. */
702 	old = refcount_acquire(&ifp->if_refcount);
703 	KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp));
704 }
705 
706 bool
707 if_try_ref(struct ifnet *ifp)
708 {
709 	NET_EPOCH_ASSERT();
710 	return (refcount_acquire_if_not_zero(&ifp->if_refcount));
711 }
712 
713 void
714 if_rele(struct ifnet *ifp)
715 {
716 
717 	if (!refcount_release(&ifp->if_refcount))
718 		return;
719 	NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx);
720 }
721 
722 void
723 ifq_init(struct ifaltq *ifq, struct ifnet *ifp)
724 {
725 
726 	mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF);
727 
728 	if (ifq->ifq_maxlen == 0)
729 		ifq->ifq_maxlen = ifqmaxlen;
730 
731 	ifq->altq_type = 0;
732 	ifq->altq_disc = NULL;
733 	ifq->altq_flags &= ALTQF_CANTCHANGE;
734 	ifq->altq_tbr  = NULL;
735 	ifq->altq_ifp  = ifp;
736 }
737 
738 void
739 ifq_delete(struct ifaltq *ifq)
740 {
741 	mtx_destroy(&ifq->ifq_mtx);
742 }
743 
744 /*
745  * Perform generic interface initialization tasks and attach the interface
746  * to the list of "active" interfaces.  If vmove flag is set on entry
747  * to if_attach_internal(), perform only a limited subset of initialization
748  * tasks, given that we are moving from one vnet to another an ifnet which
749  * has already been fully initialized.
750  *
751  * Note that if_detach_internal() removes group membership unconditionally
752  * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL.
753  * Thus, when if_vmove() is applied to a cloned interface, group membership
754  * is lost while a cloned one always joins a group whose name is
755  * ifc->ifc_name.  To recover this after if_detach_internal() and
756  * if_attach_internal(), the cloner should be specified to
757  * if_attach_internal() via ifc.  If it is non-NULL, if_attach_internal()
758  * attempts to join a group whose name is ifc->ifc_name.
759  *
760  * XXX:
761  *  - The decision to return void and thus require this function to
762  *    succeed is questionable.
763  *  - We should probably do more sanity checking.  For instance we don't
764  *    do anything to insure if_xname is unique or non-empty.
765  */
766 void
767 if_attach(struct ifnet *ifp)
768 {
769 
770 	if_attach_internal(ifp, false);
771 }
772 
773 /*
774  * Compute the least common TSO limit.
775  */
776 void
777 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax)
778 {
779 	/*
780 	 * 1) If there is no limit currently, take the limit from
781 	 * the network adapter.
782 	 *
783 	 * 2) If the network adapter has a limit below the current
784 	 * limit, apply it.
785 	 */
786 	if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 &&
787 	    ifp->if_hw_tsomax < pmax->tsomaxbytes)) {
788 		pmax->tsomaxbytes = ifp->if_hw_tsomax;
789 	}
790 	if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 &&
791 	    ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) {
792 		pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
793 	}
794 	if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 &&
795 	    ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) {
796 		pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
797 	}
798 }
799 
800 /*
801  * Update TSO limit of a network adapter.
802  *
803  * Returns zero if no change. Else non-zero.
804  */
805 int
806 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax)
807 {
808 	int retval = 0;
809 	if (ifp->if_hw_tsomax != pmax->tsomaxbytes) {
810 		ifp->if_hw_tsomax = pmax->tsomaxbytes;
811 		retval++;
812 	}
813 	if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) {
814 		ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize;
815 		retval++;
816 	}
817 	if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) {
818 		ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount;
819 		retval++;
820 	}
821 	return (retval);
822 }
823 
824 static void
825 if_attach_internal(struct ifnet *ifp, bool vmove)
826 {
827 	unsigned socksize, ifasize;
828 	int namelen, masklen;
829 	struct sockaddr_dl *sdl;
830 	struct ifaddr *ifa;
831 
832 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
833 
834 #ifdef VIMAGE
835 	ifp->if_vnet = curvnet;
836 	if (ifp->if_home_vnet == NULL)
837 		ifp->if_home_vnet = curvnet;
838 #endif
839 
840 	if_addgroup(ifp, IFG_ALL);
841 
842 #ifdef VIMAGE
843 	/* Restore group membership for cloned interface. */
844 	if (vmove)
845 		if_clone_restoregroup(ifp);
846 #endif
847 
848 	getmicrotime(&ifp->if_lastchange);
849 	ifp->if_epoch = time_uptime;
850 
851 	KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) ||
852 	    (ifp->if_transmit != NULL && ifp->if_qflush != NULL),
853 	    ("transmit and qflush must both either be set or both be NULL"));
854 	if (ifp->if_transmit == NULL) {
855 		ifp->if_transmit = if_transmit_default;
856 		ifp->if_qflush = if_qflush;
857 	}
858 	if (ifp->if_input == NULL)
859 		ifp->if_input = if_input_default;
860 
861 	if (ifp->if_requestencap == NULL)
862 		ifp->if_requestencap = if_requestencap_default;
863 
864 	if (!vmove) {
865 #ifdef MAC
866 		mac_ifnet_create(ifp);
867 #endif
868 
869 		/*
870 		 * Create a Link Level name for this device.
871 		 */
872 		namelen = strlen(ifp->if_xname);
873 		/*
874 		 * Always save enough space for any possiable name so we
875 		 * can do a rename in place later.
876 		 */
877 		masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ;
878 		socksize = masklen + ifp->if_addrlen;
879 		if (socksize < sizeof(*sdl))
880 			socksize = sizeof(*sdl);
881 		socksize = roundup2(socksize, sizeof(long));
882 		ifasize = sizeof(*ifa) + 2 * socksize;
883 		ifa = ifa_alloc(ifasize, M_WAITOK);
884 		sdl = (struct sockaddr_dl *)(ifa + 1);
885 		sdl->sdl_len = socksize;
886 		sdl->sdl_family = AF_LINK;
887 		bcopy(ifp->if_xname, sdl->sdl_data, namelen);
888 		sdl->sdl_nlen = namelen;
889 		sdl->sdl_index = ifp->if_index;
890 		sdl->sdl_type = ifp->if_type;
891 		ifp->if_addr = ifa;
892 		ifa->ifa_ifp = ifp;
893 		ifa->ifa_addr = (struct sockaddr *)sdl;
894 		sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
895 		ifa->ifa_netmask = (struct sockaddr *)sdl;
896 		sdl->sdl_len = masklen;
897 		while (namelen != 0)
898 			sdl->sdl_data[--namelen] = 0xff;
899 		CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
900 		/* Reliably crash if used uninitialized. */
901 		ifp->if_broadcastaddr = NULL;
902 
903 		if (ifp->if_type == IFT_ETHER) {
904 			ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR,
905 			    M_WAITOK | M_ZERO);
906 		}
907 
908 #if defined(INET) || defined(INET6)
909 		/* Use defaults for TSO, if nothing is set */
910 		if (ifp->if_hw_tsomax == 0 &&
911 		    ifp->if_hw_tsomaxsegcount == 0 &&
912 		    ifp->if_hw_tsomaxsegsize == 0) {
913 			/*
914 			 * The TSO defaults needs to be such that an
915 			 * NFS mbuf list of 35 mbufs totalling just
916 			 * below 64K works and that a chain of mbufs
917 			 * can be defragged into at most 32 segments:
918 			 */
919 			ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) -
920 			    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN));
921 			ifp->if_hw_tsomaxsegcount = 35;
922 			ifp->if_hw_tsomaxsegsize = 2048;	/* 2K */
923 
924 			/* XXX some drivers set IFCAP_TSO after ethernet attach */
925 			if (ifp->if_capabilities & IFCAP_TSO) {
926 				if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n",
927 				    ifp->if_hw_tsomax,
928 				    ifp->if_hw_tsomaxsegcount,
929 				    ifp->if_hw_tsomaxsegsize);
930 			}
931 		}
932 #endif
933 	}
934 #ifdef VIMAGE
935 	else {
936 		/*
937 		 * Update the interface index in the link layer address
938 		 * of the interface.
939 		 */
940 		for (ifa = ifp->if_addr; ifa != NULL;
941 		    ifa = CK_STAILQ_NEXT(ifa, ifa_link)) {
942 			if (ifa->ifa_addr->sa_family == AF_LINK) {
943 				sdl = (struct sockaddr_dl *)ifa->ifa_addr;
944 				sdl->sdl_index = ifp->if_index;
945 			}
946 		}
947 	}
948 #endif
949 
950 	if_link_ifnet(ifp);
951 
952 	if (domain_init_status >= 2)
953 		if_attachdomain1(ifp);
954 
955 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
956 	if (IS_DEFAULT_VNET(curvnet))
957 		devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
958 }
959 
960 static void
961 if_epochalloc(void *dummy __unused)
962 {
963 
964 	net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT);
965 }
966 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL);
967 
968 static void
969 if_attachdomain(void *dummy)
970 {
971 	struct ifnet *ifp;
972 
973 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link)
974 		if_attachdomain1(ifp);
975 }
976 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND,
977     if_attachdomain, NULL);
978 
979 static void
980 if_attachdomain1(struct ifnet *ifp)
981 {
982 	struct domain *dp;
983 
984 	/*
985 	 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we
986 	 * cannot lock ifp->if_afdata initialization, entirely.
987 	 */
988 	IF_AFDATA_LOCK(ifp);
989 	if (ifp->if_afdata_initialized >= domain_init_status) {
990 		IF_AFDATA_UNLOCK(ifp);
991 		log(LOG_WARNING, "%s called more than once on %s\n",
992 		    __func__, ifp->if_xname);
993 		return;
994 	}
995 	ifp->if_afdata_initialized = domain_init_status;
996 	IF_AFDATA_UNLOCK(ifp);
997 
998 	/* address family dependent data region */
999 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
1000 	SLIST_FOREACH(dp, &domains, dom_next) {
1001 		if (dp->dom_ifattach)
1002 			ifp->if_afdata[dp->dom_family] =
1003 			    (*dp->dom_ifattach)(ifp);
1004 	}
1005 }
1006 
1007 /*
1008  * Remove any unicast or broadcast network addresses from an interface.
1009  */
1010 void
1011 if_purgeaddrs(struct ifnet *ifp)
1012 {
1013 	struct ifaddr *ifa;
1014 
1015 #ifdef INET6
1016 	/*
1017 	 * Need to leave multicast addresses of proxy NDP llentries
1018 	 * before in6_purgeifaddr() because the llentries are keys
1019 	 * for in6_multi objects of proxy NDP entries.
1020 	 * in6_purgeifaddr()s clean up llentries including proxy NDPs
1021 	 * then we would lose the keys if they are called earlier.
1022 	 */
1023 	in6_purge_proxy_ndp(ifp);
1024 #endif
1025 	while (1) {
1026 		struct epoch_tracker et;
1027 
1028 		NET_EPOCH_ENTER(et);
1029 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1030 			if (ifa->ifa_addr->sa_family != AF_LINK)
1031 				break;
1032 		}
1033 		NET_EPOCH_EXIT(et);
1034 
1035 		if (ifa == NULL)
1036 			break;
1037 #ifdef INET
1038 		/* XXX: Ugly!! ad hoc just for INET */
1039 		if (ifa->ifa_addr->sa_family == AF_INET) {
1040 			struct ifreq ifr;
1041 
1042 			bzero(&ifr, sizeof(ifr));
1043 			ifr.ifr_addr = *ifa->ifa_addr;
1044 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
1045 			    NULL) == 0)
1046 				continue;
1047 		}
1048 #endif /* INET */
1049 #ifdef INET6
1050 		if (ifa->ifa_addr->sa_family == AF_INET6) {
1051 			in6_purgeifaddr((struct in6_ifaddr *)ifa);
1052 			/* ifp_addrhead is already updated */
1053 			continue;
1054 		}
1055 #endif /* INET6 */
1056 		IF_ADDR_WLOCK(ifp);
1057 		CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1058 		IF_ADDR_WUNLOCK(ifp);
1059 		ifa_free(ifa);
1060 	}
1061 }
1062 
1063 /*
1064  * Remove any multicast network addresses from an interface when an ifnet
1065  * is going away.
1066  */
1067 static void
1068 if_purgemaddrs(struct ifnet *ifp)
1069 {
1070 	struct ifmultiaddr *ifma;
1071 
1072 	IF_ADDR_WLOCK(ifp);
1073 	while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) {
1074 		ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs);
1075 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
1076 		if_delmulti_locked(ifp, ifma, 1);
1077 	}
1078 	IF_ADDR_WUNLOCK(ifp);
1079 }
1080 
1081 /*
1082  * Detach an interface, removing it from the list of "active" interfaces.
1083  * If vmove flag is set on entry to if_detach_internal(), perform only a
1084  * limited subset of cleanup tasks, given that we are moving an ifnet from
1085  * one vnet to another, where it must be fully operational.
1086  *
1087  * XXXRW: There are some significant questions about event ordering, and
1088  * how to prevent things from starting to use the interface during detach.
1089  */
1090 void
1091 if_detach(struct ifnet *ifp)
1092 {
1093 	bool found;
1094 
1095 	CURVNET_SET_QUIET(ifp->if_vnet);
1096 	found = if_unlink_ifnet(ifp, false);
1097 	if (found) {
1098 		sx_xlock(&ifnet_detach_sxlock);
1099 		if_detach_internal(ifp, false);
1100 		sx_xunlock(&ifnet_detach_sxlock);
1101 	}
1102 	CURVNET_RESTORE();
1103 }
1104 
1105 /*
1106  * The vmove flag, if set, indicates that we are called from a callpath
1107  * that is moving an interface to a different vnet instance.
1108  *
1109  * The shutdown flag, if set, indicates that we are called in the
1110  * process of shutting down a vnet instance.  Currently only the
1111  * vnet_if_return SYSUNINIT function sets it.  Note: we can be called
1112  * on a vnet instance shutdown without this flag being set, e.g., when
1113  * the cloned interfaces are destoyed as first thing of teardown.
1114  */
1115 static int
1116 if_detach_internal(struct ifnet *ifp, bool vmove)
1117 {
1118 	struct ifaddr *ifa;
1119 	int i;
1120 	struct domain *dp;
1121 #ifdef VIMAGE
1122 	bool shutdown;
1123 
1124 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1125 #endif
1126 
1127 	sx_assert(&ifnet_detach_sxlock, SX_XLOCKED);
1128 
1129 	/*
1130 	 * At this point we know the interface still was on the ifnet list
1131 	 * and we removed it so we are in a stable state.
1132 	 */
1133 	NET_EPOCH_WAIT();
1134 
1135 	/*
1136 	 * Ensure all pending EPOCH(9) callbacks have been executed. This
1137 	 * fixes issues about late destruction of multicast options
1138 	 * which lead to leave group calls, which in turn access the
1139 	 * belonging ifnet structure:
1140 	 */
1141 	NET_EPOCH_DRAIN_CALLBACKS();
1142 
1143 	/*
1144 	 * In any case (destroy or vmove) detach us from the groups
1145 	 * and remove/wait for pending events on the taskq.
1146 	 * XXX-BZ in theory an interface could still enqueue a taskq change?
1147 	 */
1148 	if_delgroups(ifp);
1149 
1150 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
1151 	taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask);
1152 
1153 	if_down(ifp);
1154 
1155 #ifdef VIMAGE
1156 	/*
1157 	 * On VNET shutdown abort here as the stack teardown will do all
1158 	 * the work top-down for us.
1159 	 */
1160 	if (shutdown) {
1161 		/* Give interface users the chance to clean up. */
1162 		EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1163 
1164 		/*
1165 		 * In case of a vmove we are done here without error.
1166 		 * If we would signal an error it would lead to the same
1167 		 * abort as if we did not find the ifnet anymore.
1168 		 * if_detach() calls us in void context and does not care
1169 		 * about an early abort notification, so life is splendid :)
1170 		 */
1171 		goto finish_vnet_shutdown;
1172 	}
1173 #endif
1174 
1175 	/*
1176 	 * At this point we are not tearing down a VNET and are either
1177 	 * going to destroy or vmove the interface and have to cleanup
1178 	 * accordingly.
1179 	 */
1180 
1181 	/*
1182 	 * Remove routes and flush queues.
1183 	 */
1184 #ifdef ALTQ
1185 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
1186 		altq_disable(&ifp->if_snd);
1187 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1188 		altq_detach(&ifp->if_snd);
1189 #endif
1190 
1191 	if_purgeaddrs(ifp);
1192 
1193 #ifdef INET
1194 	in_ifdetach(ifp);
1195 #endif
1196 
1197 #ifdef INET6
1198 	/*
1199 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
1200 	 * before removing routing entries below, since IPv6 interface direct
1201 	 * routes are expected to be removed by the IPv6-specific kernel API.
1202 	 * Otherwise, the kernel will detect some inconsistency and bark it.
1203 	 */
1204 	in6_ifdetach(ifp);
1205 #endif
1206 	if_purgemaddrs(ifp);
1207 
1208 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
1209 	if (IS_DEFAULT_VNET(curvnet))
1210 		devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
1211 
1212 	if (!vmove) {
1213 		/*
1214 		 * Prevent further calls into the device driver via ifnet.
1215 		 */
1216 		if_dead(ifp);
1217 
1218 		/*
1219 		 * Clean up all addresses.
1220 		 */
1221 		IF_ADDR_WLOCK(ifp);
1222 		if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) {
1223 			ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
1224 			CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link);
1225 			IF_ADDR_WUNLOCK(ifp);
1226 			ifa_free(ifa);
1227 		} else
1228 			IF_ADDR_WUNLOCK(ifp);
1229 	}
1230 
1231 	rt_flushifroutes(ifp);
1232 
1233 #ifdef VIMAGE
1234 finish_vnet_shutdown:
1235 #endif
1236 	/*
1237 	 * We cannot hold the lock over dom_ifdetach calls as they might
1238 	 * sleep, for example trying to drain a callout, thus open up the
1239 	 * theoretical race with re-attaching.
1240 	 */
1241 	IF_AFDATA_LOCK(ifp);
1242 	i = ifp->if_afdata_initialized;
1243 	ifp->if_afdata_initialized = 0;
1244 	IF_AFDATA_UNLOCK(ifp);
1245 	if (i == 0)
1246 		return (0);
1247 	SLIST_FOREACH(dp, &domains, dom_next) {
1248 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) {
1249 			(*dp->dom_ifdetach)(ifp,
1250 			    ifp->if_afdata[dp->dom_family]);
1251 			ifp->if_afdata[dp->dom_family] = NULL;
1252 		}
1253 	}
1254 
1255 	return (0);
1256 }
1257 
1258 #ifdef VIMAGE
1259 /*
1260  * if_vmove() performs a limited version of if_detach() in current
1261  * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg.
1262  */
1263 static int
1264 if_vmove(struct ifnet *ifp, struct vnet *new_vnet)
1265 {
1266 	int rc;
1267 
1268 	/*
1269 	 * Detach from current vnet, but preserve LLADDR info, do not
1270 	 * mark as dead etc. so that the ifnet can be reattached later.
1271 	 * If we cannot find it, we lost the race to someone else.
1272 	 */
1273 	rc = if_detach_internal(ifp, true);
1274 	if (rc != 0)
1275 		return (rc);
1276 
1277 	/*
1278 	 * Perform interface-specific reassignment tasks, if provided by
1279 	 * the driver.
1280 	 */
1281 	if (ifp->if_reassign != NULL)
1282 		ifp->if_reassign(ifp, new_vnet, NULL);
1283 
1284 	/*
1285 	 * Switch to the context of the target vnet.
1286 	 */
1287 	CURVNET_SET_QUIET(new_vnet);
1288 	if_attach_internal(ifp, true);
1289 	CURVNET_RESTORE();
1290 	return (0);
1291 }
1292 
1293 /*
1294  * Move an ifnet to or from another child prison/vnet, specified by the jail id.
1295  */
1296 static int
1297 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid)
1298 {
1299 	struct prison *pr;
1300 	struct ifnet *difp;
1301 	int error;
1302 	bool found __diagused;
1303 	bool shutdown;
1304 
1305 	MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
1306 
1307 	/* Try to find the prison within our visibility. */
1308 	sx_slock(&allprison_lock);
1309 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1310 	sx_sunlock(&allprison_lock);
1311 	if (pr == NULL)
1312 		return (ENXIO);
1313 	prison_hold_locked(pr);
1314 	mtx_unlock(&pr->pr_mtx);
1315 
1316 	/* Do not try to move the iface from and to the same prison. */
1317 	if (pr->pr_vnet == ifp->if_vnet) {
1318 		prison_free(pr);
1319 		return (EEXIST);
1320 	}
1321 
1322 	/* Make sure the named iface does not exists in the dst. prison/vnet. */
1323 	/* XXX Lock interfaces to avoid races. */
1324 	CURVNET_SET_QUIET(pr->pr_vnet);
1325 	difp = ifunit(ifname);
1326 	CURVNET_RESTORE();
1327 	if (difp != NULL) {
1328 		prison_free(pr);
1329 		return (EEXIST);
1330 	}
1331 	sx_xlock(&ifnet_detach_sxlock);
1332 
1333 	/* Make sure the VNET is stable. */
1334 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1335 	if (shutdown) {
1336 		sx_xunlock(&ifnet_detach_sxlock);
1337 		prison_free(pr);
1338 		return (EBUSY);
1339 	}
1340 
1341 	found = if_unlink_ifnet(ifp, true);
1342 	if (! found) {
1343 		sx_xunlock(&ifnet_detach_sxlock);
1344 		prison_free(pr);
1345 		return (ENODEV);
1346 	}
1347 
1348 	/* Move the interface into the child jail/vnet. */
1349 	error = if_vmove(ifp, pr->pr_vnet);
1350 
1351 	/* Report the new if_xname back to the userland on success. */
1352 	if (error == 0)
1353 		sprintf(ifname, "%s", ifp->if_xname);
1354 
1355 	sx_xunlock(&ifnet_detach_sxlock);
1356 
1357 	prison_free(pr);
1358 	return (error);
1359 }
1360 
1361 static int
1362 if_vmove_reclaim(struct thread *td, char *ifname, int jid)
1363 {
1364 	struct prison *pr;
1365 	struct vnet *vnet_dst;
1366 	struct ifnet *ifp;
1367 	int error, found __diagused;
1368  	bool shutdown;
1369 
1370 	/* Try to find the prison within our visibility. */
1371 	sx_slock(&allprison_lock);
1372 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
1373 	sx_sunlock(&allprison_lock);
1374 	if (pr == NULL)
1375 		return (ENXIO);
1376 	prison_hold_locked(pr);
1377 	mtx_unlock(&pr->pr_mtx);
1378 
1379 	/* Make sure the named iface exists in the source prison/vnet. */
1380 	CURVNET_SET(pr->pr_vnet);
1381 	ifp = ifunit(ifname);		/* XXX Lock to avoid races. */
1382 	if (ifp == NULL) {
1383 		CURVNET_RESTORE();
1384 		prison_free(pr);
1385 		return (ENXIO);
1386 	}
1387 
1388 	/* Do not try to move the iface from and to the same prison. */
1389 	vnet_dst = TD_TO_VNET(td);
1390 	if (vnet_dst == ifp->if_vnet) {
1391 		CURVNET_RESTORE();
1392 		prison_free(pr);
1393 		return (EEXIST);
1394 	}
1395 
1396 	/* Make sure the VNET is stable. */
1397 	shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet);
1398 	if (shutdown) {
1399 		CURVNET_RESTORE();
1400 		prison_free(pr);
1401 		return (EBUSY);
1402 	}
1403 
1404 	/* Get interface back from child jail/vnet. */
1405 	found = if_unlink_ifnet(ifp, true);
1406 	MPASS(found);
1407 	sx_xlock(&ifnet_detach_sxlock);
1408 	error = if_vmove(ifp, vnet_dst);
1409 	sx_xunlock(&ifnet_detach_sxlock);
1410 	CURVNET_RESTORE();
1411 
1412 	/* Report the new if_xname back to the userland on success. */
1413 	if (error == 0)
1414 		sprintf(ifname, "%s", ifp->if_xname);
1415 
1416 	prison_free(pr);
1417 	return (error);
1418 }
1419 #endif /* VIMAGE */
1420 
1421 /*
1422  * Add a group to an interface
1423  */
1424 int
1425 if_addgroup(struct ifnet *ifp, const char *groupname)
1426 {
1427 	struct ifg_list		*ifgl;
1428 	struct ifg_group	*ifg = NULL;
1429 	struct ifg_member	*ifgm;
1430 	int 			 new = 0;
1431 
1432 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1433 	    groupname[strlen(groupname) - 1] <= '9')
1434 		return (EINVAL);
1435 
1436 	IFNET_WLOCK();
1437 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1438 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) {
1439 			IFNET_WUNLOCK();
1440 			return (EEXIST);
1441 		}
1442 
1443 	if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) {
1444 	    	IFNET_WUNLOCK();
1445 		return (ENOMEM);
1446 	}
1447 
1448 	if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1449 		free(ifgl, M_TEMP);
1450 		IFNET_WUNLOCK();
1451 		return (ENOMEM);
1452 	}
1453 
1454 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1455 		if (!strcmp(ifg->ifg_group, groupname))
1456 			break;
1457 
1458 	if (ifg == NULL) {
1459 		if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) {
1460 			free(ifgl, M_TEMP);
1461 			free(ifgm, M_TEMP);
1462 			IFNET_WUNLOCK();
1463 			return (ENOMEM);
1464 		}
1465 		strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1466 		ifg->ifg_refcnt = 0;
1467 		CK_STAILQ_INIT(&ifg->ifg_members);
1468 		CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next);
1469 		new = 1;
1470 	}
1471 
1472 	ifg->ifg_refcnt++;
1473 	ifgl->ifgl_group = ifg;
1474 	ifgm->ifgm_ifp = ifp;
1475 
1476 	IF_ADDR_WLOCK(ifp);
1477 	CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1478 	CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1479 	IF_ADDR_WUNLOCK(ifp);
1480 
1481 	IFNET_WUNLOCK();
1482 
1483 	if (new)
1484 		EVENTHANDLER_INVOKE(group_attach_event, ifg);
1485 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1486 
1487 	return (0);
1488 }
1489 
1490 /*
1491  * Helper function to remove a group out of an interface.  Expects the global
1492  * ifnet lock to be write-locked, and drops it before returning.
1493  */
1494 static void
1495 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl,
1496     const char *groupname)
1497 {
1498 	struct ifg_member *ifgm;
1499 	bool freeifgl;
1500 
1501 	IFNET_WLOCK_ASSERT();
1502 
1503 	IF_ADDR_WLOCK(ifp);
1504 	CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next);
1505 	IF_ADDR_WUNLOCK(ifp);
1506 
1507 	CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) {
1508 		if (ifgm->ifgm_ifp == ifp) {
1509 			CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm,
1510 			    ifg_member, ifgm_next);
1511 			break;
1512 		}
1513 	}
1514 
1515 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1516 		CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group,
1517 		    ifg_next);
1518 		freeifgl = true;
1519 	} else {
1520 		freeifgl = false;
1521 	}
1522 	IFNET_WUNLOCK();
1523 
1524 	NET_EPOCH_WAIT();
1525 	EVENTHANDLER_INVOKE(group_change_event, groupname);
1526 	if (freeifgl) {
1527 		EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group);
1528 		free(ifgl->ifgl_group, M_TEMP);
1529 	}
1530 	free(ifgm, M_TEMP);
1531 	free(ifgl, M_TEMP);
1532 }
1533 
1534 /*
1535  * Remove a group from an interface
1536  */
1537 int
1538 if_delgroup(struct ifnet *ifp, const char *groupname)
1539 {
1540 	struct ifg_list *ifgl;
1541 
1542 	IFNET_WLOCK();
1543 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1544 		if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0)
1545 			break;
1546 	if (ifgl == NULL) {
1547 		IFNET_WUNLOCK();
1548 		return (ENOENT);
1549 	}
1550 
1551 	_if_delgroup_locked(ifp, ifgl, groupname);
1552 
1553 	return (0);
1554 }
1555 
1556 /*
1557  * Remove an interface from all groups
1558  */
1559 static void
1560 if_delgroups(struct ifnet *ifp)
1561 {
1562 	struct ifg_list *ifgl;
1563 	char groupname[IFNAMSIZ];
1564 
1565 	IFNET_WLOCK();
1566 	while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) {
1567 		strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ);
1568 		_if_delgroup_locked(ifp, ifgl, groupname);
1569 		IFNET_WLOCK();
1570 	}
1571 	IFNET_WUNLOCK();
1572 }
1573 
1574 /*
1575  * Stores all groups from an interface in memory pointed to by ifgr.
1576  */
1577 static int
1578 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp)
1579 {
1580 	int			 len, error;
1581 	struct ifg_list		*ifgl;
1582 	struct ifg_req		 ifgrq, *ifgp;
1583 
1584 	NET_EPOCH_ASSERT();
1585 
1586 	if (ifgr->ifgr_len == 0) {
1587 		CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1588 			ifgr->ifgr_len += sizeof(struct ifg_req);
1589 		return (0);
1590 	}
1591 
1592 	len = ifgr->ifgr_len;
1593 	ifgp = ifgr->ifgr_groups;
1594 	/* XXX: wire */
1595 	CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1596 		if (len < sizeof(ifgrq))
1597 			return (EINVAL);
1598 		bzero(&ifgrq, sizeof ifgrq);
1599 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1600 		    sizeof(ifgrq.ifgrq_group));
1601 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req))))
1602 			return (error);
1603 		len -= sizeof(ifgrq);
1604 		ifgp++;
1605 	}
1606 
1607 	return (0);
1608 }
1609 
1610 /*
1611  * Stores all members of a group in memory pointed to by igfr
1612  */
1613 static int
1614 if_getgroupmembers(struct ifgroupreq *ifgr)
1615 {
1616 	struct ifg_group	*ifg;
1617 	struct ifg_member	*ifgm;
1618 	struct ifg_req		 ifgrq, *ifgp;
1619 	int			 len, error;
1620 
1621 	IFNET_RLOCK();
1622 	CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
1623 		if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0)
1624 			break;
1625 	if (ifg == NULL) {
1626 		IFNET_RUNLOCK();
1627 		return (ENOENT);
1628 	}
1629 
1630 	if (ifgr->ifgr_len == 0) {
1631 		CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1632 			ifgr->ifgr_len += sizeof(ifgrq);
1633 		IFNET_RUNLOCK();
1634 		return (0);
1635 	}
1636 
1637 	len = ifgr->ifgr_len;
1638 	ifgp = ifgr->ifgr_groups;
1639 	CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1640 		if (len < sizeof(ifgrq)) {
1641 			IFNET_RUNLOCK();
1642 			return (EINVAL);
1643 		}
1644 		bzero(&ifgrq, sizeof ifgrq);
1645 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1646 		    sizeof(ifgrq.ifgrq_member));
1647 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
1648 			IFNET_RUNLOCK();
1649 			return (error);
1650 		}
1651 		len -= sizeof(ifgrq);
1652 		ifgp++;
1653 	}
1654 	IFNET_RUNLOCK();
1655 
1656 	return (0);
1657 }
1658 
1659 /*
1660  * Return counter values from counter(9)s stored in ifnet.
1661  */
1662 uint64_t
1663 if_get_counter_default(struct ifnet *ifp, ift_counter cnt)
1664 {
1665 
1666 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1667 
1668 	return (counter_u64_fetch(ifp->if_counters[cnt]));
1669 }
1670 
1671 /*
1672  * Increase an ifnet counter. Usually used for counters shared
1673  * between the stack and a driver, but function supports them all.
1674  */
1675 void
1676 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc)
1677 {
1678 
1679 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
1680 
1681 	counter_u64_add(ifp->if_counters[cnt], inc);
1682 }
1683 
1684 /*
1685  * Copy data from ifnet to userland API structure if_data.
1686  */
1687 void
1688 if_data_copy(struct ifnet *ifp, struct if_data *ifd)
1689 {
1690 
1691 	ifd->ifi_type = ifp->if_type;
1692 	ifd->ifi_physical = 0;
1693 	ifd->ifi_addrlen = ifp->if_addrlen;
1694 	ifd->ifi_hdrlen = ifp->if_hdrlen;
1695 	ifd->ifi_link_state = ifp->if_link_state;
1696 	ifd->ifi_vhid = 0;
1697 	ifd->ifi_datalen = sizeof(struct if_data);
1698 	ifd->ifi_mtu = ifp->if_mtu;
1699 	ifd->ifi_metric = ifp->if_metric;
1700 	ifd->ifi_baudrate = ifp->if_baudrate;
1701 	ifd->ifi_hwassist = ifp->if_hwassist;
1702 	ifd->ifi_epoch = ifp->if_epoch;
1703 	ifd->ifi_lastchange = ifp->if_lastchange;
1704 
1705 	ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
1706 	ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS);
1707 	ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
1708 	ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS);
1709 	ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS);
1710 	ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES);
1711 	ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES);
1712 	ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS);
1713 	ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS);
1714 	ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS);
1715 	ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS);
1716 	ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO);
1717 }
1718 
1719 /*
1720  * Initialization, destruction and refcounting functions for ifaddrs.
1721  */
1722 struct ifaddr *
1723 ifa_alloc(size_t size, int flags)
1724 {
1725 	struct ifaddr *ifa;
1726 
1727 	KASSERT(size >= sizeof(struct ifaddr),
1728 	    ("%s: invalid size %zu", __func__, size));
1729 
1730 	ifa = malloc(size, M_IFADDR, M_ZERO | flags);
1731 	if (ifa == NULL)
1732 		return (NULL);
1733 
1734 	if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL)
1735 		goto fail;
1736 	if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL)
1737 		goto fail;
1738 	if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL)
1739 		goto fail;
1740 	if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL)
1741 		goto fail;
1742 
1743 	refcount_init(&ifa->ifa_refcnt, 1);
1744 
1745 	return (ifa);
1746 
1747 fail:
1748 	/* free(NULL) is okay */
1749 	counter_u64_free(ifa->ifa_opackets);
1750 	counter_u64_free(ifa->ifa_ipackets);
1751 	counter_u64_free(ifa->ifa_obytes);
1752 	counter_u64_free(ifa->ifa_ibytes);
1753 	free(ifa, M_IFADDR);
1754 
1755 	return (NULL);
1756 }
1757 
1758 void
1759 ifa_ref(struct ifaddr *ifa)
1760 {
1761 	u_int old __diagused;
1762 
1763 	old = refcount_acquire(&ifa->ifa_refcnt);
1764 	KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa));
1765 }
1766 
1767 int
1768 ifa_try_ref(struct ifaddr *ifa)
1769 {
1770 
1771 	NET_EPOCH_ASSERT();
1772 	return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt));
1773 }
1774 
1775 static void
1776 ifa_destroy(epoch_context_t ctx)
1777 {
1778 	struct ifaddr *ifa;
1779 
1780 	ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx);
1781 	counter_u64_free(ifa->ifa_opackets);
1782 	counter_u64_free(ifa->ifa_ipackets);
1783 	counter_u64_free(ifa->ifa_obytes);
1784 	counter_u64_free(ifa->ifa_ibytes);
1785 	free(ifa, M_IFADDR);
1786 }
1787 
1788 void
1789 ifa_free(struct ifaddr *ifa)
1790 {
1791 
1792 	if (refcount_release(&ifa->ifa_refcnt))
1793 		NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx);
1794 }
1795 
1796 /*
1797  * XXX: Because sockaddr_dl has deeper structure than the sockaddr
1798  * structs used to represent other address families, it is necessary
1799  * to perform a different comparison.
1800  */
1801 
1802 #define	sa_dl_equal(a1, a2)	\
1803 	((((const struct sockaddr_dl *)(a1))->sdl_len ==		\
1804 	 ((const struct sockaddr_dl *)(a2))->sdl_len) &&		\
1805 	 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)),		\
1806 	       CLLADDR((const struct sockaddr_dl *)(a2)),		\
1807 	       ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0))
1808 
1809 /*
1810  * Locate an interface based on a complete address.
1811  */
1812 /*ARGSUSED*/
1813 struct ifaddr *
1814 ifa_ifwithaddr(const struct sockaddr *addr)
1815 {
1816 	struct ifnet *ifp;
1817 	struct ifaddr *ifa;
1818 
1819 	NET_EPOCH_ASSERT();
1820 
1821 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1822 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1823 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1824 				continue;
1825 			if (sa_equal(addr, ifa->ifa_addr)) {
1826 				goto done;
1827 			}
1828 			/* IP6 doesn't have broadcast */
1829 			if ((ifp->if_flags & IFF_BROADCAST) &&
1830 			    ifa->ifa_broadaddr &&
1831 			    ifa->ifa_broadaddr->sa_len != 0 &&
1832 			    sa_equal(ifa->ifa_broadaddr, addr)) {
1833 				goto done;
1834 			}
1835 		}
1836 	}
1837 	ifa = NULL;
1838 done:
1839 	return (ifa);
1840 }
1841 
1842 int
1843 ifa_ifwithaddr_check(const struct sockaddr *addr)
1844 {
1845 	struct epoch_tracker et;
1846 	int rc;
1847 
1848 	NET_EPOCH_ENTER(et);
1849 	rc = (ifa_ifwithaddr(addr) != NULL);
1850 	NET_EPOCH_EXIT(et);
1851 	return (rc);
1852 }
1853 
1854 /*
1855  * Locate an interface based on the broadcast address.
1856  */
1857 /* ARGSUSED */
1858 struct ifaddr *
1859 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum)
1860 {
1861 	struct ifnet *ifp;
1862 	struct ifaddr *ifa;
1863 
1864 	NET_EPOCH_ASSERT();
1865 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1866 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1867 			continue;
1868 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1869 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1870 				continue;
1871 			if ((ifp->if_flags & IFF_BROADCAST) &&
1872 			    ifa->ifa_broadaddr &&
1873 			    ifa->ifa_broadaddr->sa_len != 0 &&
1874 			    sa_equal(ifa->ifa_broadaddr, addr)) {
1875 				goto done;
1876 			}
1877 		}
1878 	}
1879 	ifa = NULL;
1880 done:
1881 	return (ifa);
1882 }
1883 
1884 /*
1885  * Locate the point to point interface with a given destination address.
1886  */
1887 /*ARGSUSED*/
1888 struct ifaddr *
1889 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum)
1890 {
1891 	struct ifnet *ifp;
1892 	struct ifaddr *ifa;
1893 
1894 	NET_EPOCH_ASSERT();
1895 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1896 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1897 			continue;
1898 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1899 			continue;
1900 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1901 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1902 				continue;
1903 			if (ifa->ifa_dstaddr != NULL &&
1904 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1905 				goto done;
1906 			}
1907 		}
1908 	}
1909 	ifa = NULL;
1910 done:
1911 	return (ifa);
1912 }
1913 
1914 /*
1915  * Find an interface on a specific network.  If many, choice
1916  * is most specific found.
1917  */
1918 struct ifaddr *
1919 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum)
1920 {
1921 	struct ifnet *ifp;
1922 	struct ifaddr *ifa;
1923 	struct ifaddr *ifa_maybe = NULL;
1924 	u_int af = addr->sa_family;
1925 	const char *addr_data = addr->sa_data, *cplim;
1926 
1927 	NET_EPOCH_ASSERT();
1928 	/*
1929 	 * AF_LINK addresses can be looked up directly by their index number,
1930 	 * so do that if we can.
1931 	 */
1932 	if (af == AF_LINK) {
1933 		ifp = ifnet_byindex(
1934 		    ((const struct sockaddr_dl *)addr)->sdl_index);
1935 		return (ifp ? ifp->if_addr : NULL);
1936 	}
1937 
1938 	/*
1939 	 * Scan though each interface, looking for ones that have addresses
1940 	 * in this address family and the requested fib.
1941 	 */
1942 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1943 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
1944 			continue;
1945 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1946 			const char *cp, *cp2, *cp3;
1947 
1948 			if (ifa->ifa_addr->sa_family != af)
1949 next:				continue;
1950 			if (af == AF_INET &&
1951 			    ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) {
1952 				/*
1953 				 * This is a bit broken as it doesn't
1954 				 * take into account that the remote end may
1955 				 * be a single node in the network we are
1956 				 * looking for.
1957 				 * The trouble is that we don't know the
1958 				 * netmask for the remote end.
1959 				 */
1960 				if (ifa->ifa_dstaddr != NULL &&
1961 				    sa_equal(addr, ifa->ifa_dstaddr)) {
1962 					goto done;
1963 				}
1964 			} else {
1965 				/*
1966 				 * Scan all the bits in the ifa's address.
1967 				 * If a bit dissagrees with what we are
1968 				 * looking for, mask it with the netmask
1969 				 * to see if it really matters.
1970 				 * (A byte at a time)
1971 				 */
1972 				if (ifa->ifa_netmask == 0)
1973 					continue;
1974 				cp = addr_data;
1975 				cp2 = ifa->ifa_addr->sa_data;
1976 				cp3 = ifa->ifa_netmask->sa_data;
1977 				cplim = ifa->ifa_netmask->sa_len
1978 					+ (char *)ifa->ifa_netmask;
1979 				while (cp3 < cplim)
1980 					if ((*cp++ ^ *cp2++) & *cp3++)
1981 						goto next; /* next address! */
1982 				/*
1983 				 * If the netmask of what we just found
1984 				 * is more specific than what we had before
1985 				 * (if we had one), or if the virtual status
1986 				 * of new prefix is better than of the old one,
1987 				 * then remember the new one before continuing
1988 				 * to search for an even better one.
1989 				 */
1990 				if (ifa_maybe == NULL ||
1991 				    ifa_preferred(ifa_maybe, ifa) ||
1992 				    rn_refines((caddr_t)ifa->ifa_netmask,
1993 				    (caddr_t)ifa_maybe->ifa_netmask)) {
1994 					ifa_maybe = ifa;
1995 				}
1996 			}
1997 		}
1998 	}
1999 	ifa = ifa_maybe;
2000 	ifa_maybe = NULL;
2001 done:
2002 	return (ifa);
2003 }
2004 
2005 /*
2006  * Find an interface address specific to an interface best matching
2007  * a given address.
2008  */
2009 struct ifaddr *
2010 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2011 {
2012 	struct ifaddr *ifa;
2013 	const char *cp, *cp2, *cp3;
2014 	char *cplim;
2015 	struct ifaddr *ifa_maybe = NULL;
2016 	u_int af = addr->sa_family;
2017 
2018 	if (af >= AF_MAX)
2019 		return (NULL);
2020 
2021 	NET_EPOCH_ASSERT();
2022 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
2023 		if (ifa->ifa_addr->sa_family != af)
2024 			continue;
2025 		if (ifa_maybe == NULL)
2026 			ifa_maybe = ifa;
2027 		if (ifa->ifa_netmask == 0) {
2028 			if (sa_equal(addr, ifa->ifa_addr) ||
2029 			    (ifa->ifa_dstaddr &&
2030 			    sa_equal(addr, ifa->ifa_dstaddr)))
2031 				goto done;
2032 			continue;
2033 		}
2034 		if (ifp->if_flags & IFF_POINTOPOINT) {
2035 			if (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))
2036 				goto done;
2037 		} else {
2038 			cp = addr->sa_data;
2039 			cp2 = ifa->ifa_addr->sa_data;
2040 			cp3 = ifa->ifa_netmask->sa_data;
2041 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2042 			for (; cp3 < cplim; cp3++)
2043 				if ((*cp++ ^ *cp2++) & *cp3)
2044 					break;
2045 			if (cp3 == cplim)
2046 				goto done;
2047 		}
2048 	}
2049 	ifa = ifa_maybe;
2050 done:
2051 	return (ifa);
2052 }
2053 
2054 /*
2055  * See whether new ifa is better than current one:
2056  * 1) A non-virtual one is preferred over virtual.
2057  * 2) A virtual in master state preferred over any other state.
2058  *
2059  * Used in several address selecting functions.
2060  */
2061 int
2062 ifa_preferred(struct ifaddr *cur, struct ifaddr *next)
2063 {
2064 
2065 	return (cur->ifa_carp && (!next->ifa_carp ||
2066 	    ((*carp_master_p)(next) && !(*carp_master_p)(cur))));
2067 }
2068 
2069 struct sockaddr_dl *
2070 link_alloc_sdl(size_t size, int flags)
2071 {
2072 
2073 	return (malloc(size, M_TEMP, flags));
2074 }
2075 
2076 void
2077 link_free_sdl(struct sockaddr *sa)
2078 {
2079 	free(sa, M_TEMP);
2080 }
2081 
2082 /*
2083  * Fills in given sdl with interface basic info.
2084  * Returns pointer to filled sdl.
2085  */
2086 struct sockaddr_dl *
2087 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype)
2088 {
2089 	struct sockaddr_dl *sdl;
2090 
2091 	sdl = (struct sockaddr_dl *)paddr;
2092 	memset(sdl, 0, sizeof(struct sockaddr_dl));
2093 	sdl->sdl_len = sizeof(struct sockaddr_dl);
2094 	sdl->sdl_family = AF_LINK;
2095 	sdl->sdl_index = ifp->if_index;
2096 	sdl->sdl_type = iftype;
2097 
2098 	return (sdl);
2099 }
2100 
2101 /*
2102  * Mark an interface down and notify protocols of
2103  * the transition.
2104  */
2105 static void
2106 if_unroute(struct ifnet *ifp, int flag, int fam)
2107 {
2108 
2109 	KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP"));
2110 
2111 	ifp->if_flags &= ~flag;
2112 	getmicrotime(&ifp->if_lastchange);
2113 	ifp->if_qflush(ifp);
2114 
2115 	if (ifp->if_carp)
2116 		(*carp_linkstate_p)(ifp);
2117 	rt_ifmsg(ifp, IFF_UP);
2118 }
2119 
2120 void	(*vlan_link_state_p)(struct ifnet *);	/* XXX: private from if_vlan */
2121 void	(*vlan_trunk_cap_p)(struct ifnet *);		/* XXX: private from if_vlan */
2122 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *);
2123 struct	ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t);
2124 int	(*vlan_tag_p)(struct ifnet *, uint16_t *);
2125 int	(*vlan_pcp_p)(struct ifnet *, uint16_t *);
2126 int	(*vlan_setcookie_p)(struct ifnet *, void *);
2127 void	*(*vlan_cookie_p)(struct ifnet *);
2128 
2129 /*
2130  * Handle a change in the interface link state. To avoid LORs
2131  * between driver lock and upper layer locks, as well as possible
2132  * recursions, we post event to taskqueue, and all job
2133  * is done in static do_link_state_change().
2134  */
2135 void
2136 if_link_state_change(struct ifnet *ifp, int link_state)
2137 {
2138 	/* Return if state hasn't changed. */
2139 	if (ifp->if_link_state == link_state)
2140 		return;
2141 
2142 	ifp->if_link_state = link_state;
2143 
2144 	/* XXXGL: reference ifp? */
2145 	taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask);
2146 }
2147 
2148 static void
2149 do_link_state_change(void *arg, int pending)
2150 {
2151 	struct ifnet *ifp;
2152 	int link_state;
2153 
2154 	ifp = arg;
2155 	link_state = ifp->if_link_state;
2156 
2157 	CURVNET_SET(ifp->if_vnet);
2158 	rt_ifmsg(ifp, 0);
2159 	if (ifp->if_vlantrunk != NULL)
2160 		(*vlan_link_state_p)(ifp);
2161 
2162 	if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) &&
2163 	    ifp->if_l2com != NULL)
2164 		(*ng_ether_link_state_p)(ifp, link_state);
2165 	if (ifp->if_carp)
2166 		(*carp_linkstate_p)(ifp);
2167 	if (ifp->if_bridge)
2168 		ifp->if_bridge_linkstate(ifp);
2169 	if (ifp->if_lagg)
2170 		(*lagg_linkstate_p)(ifp, link_state);
2171 
2172 	if (IS_DEFAULT_VNET(curvnet))
2173 		devctl_notify("IFNET", ifp->if_xname,
2174 		    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN",
2175 		    NULL);
2176 	if (pending > 1)
2177 		if_printf(ifp, "%d link states coalesced\n", pending);
2178 	if (log_link_state_change)
2179 		if_printf(ifp, "link state changed to %s\n",
2180 		    (link_state == LINK_STATE_UP) ? "UP" : "DOWN" );
2181 	EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
2182 	CURVNET_RESTORE();
2183 }
2184 
2185 /*
2186  * Mark an interface down and notify protocols of
2187  * the transition.
2188  */
2189 void
2190 if_down(struct ifnet *ifp)
2191 {
2192 
2193 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN);
2194 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
2195 }
2196 
2197 /*
2198  * Mark an interface up and notify protocols of
2199  * the transition.
2200  */
2201 void
2202 if_up(struct ifnet *ifp)
2203 {
2204 
2205 	ifp->if_flags |= IFF_UP;
2206 	getmicrotime(&ifp->if_lastchange);
2207 	if (ifp->if_carp)
2208 		(*carp_linkstate_p)(ifp);
2209 	rt_ifmsg(ifp, IFF_UP);
2210 	EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP);
2211 }
2212 
2213 /*
2214  * Flush an interface queue.
2215  */
2216 void
2217 if_qflush(struct ifnet *ifp)
2218 {
2219 	struct mbuf *m, *n;
2220 	struct ifaltq *ifq;
2221 
2222 	ifq = &ifp->if_snd;
2223 	IFQ_LOCK(ifq);
2224 #ifdef ALTQ
2225 	if (ALTQ_IS_ENABLED(ifq))
2226 		ALTQ_PURGE(ifq);
2227 #endif
2228 	n = ifq->ifq_head;
2229 	while ((m = n) != NULL) {
2230 		n = m->m_nextpkt;
2231 		m_freem(m);
2232 	}
2233 	ifq->ifq_head = 0;
2234 	ifq->ifq_tail = 0;
2235 	ifq->ifq_len = 0;
2236 	IFQ_UNLOCK(ifq);
2237 }
2238 
2239 /*
2240  * Map interface name to interface structure pointer, with or without
2241  * returning a reference.
2242  */
2243 struct ifnet *
2244 ifunit_ref(const char *name)
2245 {
2246 	struct epoch_tracker et;
2247 	struct ifnet *ifp;
2248 
2249 	NET_EPOCH_ENTER(et);
2250 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2251 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 &&
2252 		    !(ifp->if_flags & IFF_DYING))
2253 			break;
2254 	}
2255 	if (ifp != NULL) {
2256 		if_ref(ifp);
2257 		MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp);
2258 	}
2259 
2260 	NET_EPOCH_EXIT(et);
2261 	return (ifp);
2262 }
2263 
2264 struct ifnet *
2265 ifunit(const char *name)
2266 {
2267 	struct epoch_tracker et;
2268 	struct ifnet *ifp;
2269 
2270 	NET_EPOCH_ENTER(et);
2271 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2272 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0)
2273 			break;
2274 	}
2275 	NET_EPOCH_EXIT(et);
2276 	return (ifp);
2277 }
2278 
2279 void *
2280 ifr_buffer_get_buffer(void *data)
2281 {
2282 	union ifreq_union *ifrup;
2283 
2284 	ifrup = data;
2285 #ifdef COMPAT_FREEBSD32
2286 	if (SV_CURPROC_FLAG(SV_ILP32))
2287 		return ((void *)(uintptr_t)
2288 		    ifrup->ifr32.ifr_ifru.ifru_buffer.buffer);
2289 #endif
2290 	return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer);
2291 }
2292 
2293 static void
2294 ifr_buffer_set_buffer_null(void *data)
2295 {
2296 	union ifreq_union *ifrup;
2297 
2298 	ifrup = data;
2299 #ifdef COMPAT_FREEBSD32
2300 	if (SV_CURPROC_FLAG(SV_ILP32))
2301 		ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0;
2302 	else
2303 #endif
2304 		ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL;
2305 }
2306 
2307 size_t
2308 ifr_buffer_get_length(void *data)
2309 {
2310 	union ifreq_union *ifrup;
2311 
2312 	ifrup = data;
2313 #ifdef COMPAT_FREEBSD32
2314 	if (SV_CURPROC_FLAG(SV_ILP32))
2315 		return (ifrup->ifr32.ifr_ifru.ifru_buffer.length);
2316 #endif
2317 	return (ifrup->ifr.ifr_ifru.ifru_buffer.length);
2318 }
2319 
2320 static void
2321 ifr_buffer_set_length(void *data, size_t len)
2322 {
2323 	union ifreq_union *ifrup;
2324 
2325 	ifrup = data;
2326 #ifdef COMPAT_FREEBSD32
2327 	if (SV_CURPROC_FLAG(SV_ILP32))
2328 		ifrup->ifr32.ifr_ifru.ifru_buffer.length = len;
2329 	else
2330 #endif
2331 		ifrup->ifr.ifr_ifru.ifru_buffer.length = len;
2332 }
2333 
2334 void *
2335 ifr_data_get_ptr(void *ifrp)
2336 {
2337 	union ifreq_union *ifrup;
2338 
2339 	ifrup = ifrp;
2340 #ifdef COMPAT_FREEBSD32
2341 	if (SV_CURPROC_FLAG(SV_ILP32))
2342 		return ((void *)(uintptr_t)
2343 		    ifrup->ifr32.ifr_ifru.ifru_data);
2344 #endif
2345 		return (ifrup->ifr.ifr_ifru.ifru_data);
2346 }
2347 
2348 struct ifcap_nv_bit_name {
2349 	uint64_t cap_bit;
2350 	const char *cap_name;
2351 };
2352 #define CAPNV(x) {.cap_bit = IFCAP_##x, \
2353     .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) }
2354 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = {
2355 	CAPNV(RXCSUM),
2356 	CAPNV(TXCSUM),
2357 	CAPNV(NETCONS),
2358 	CAPNV(VLAN_MTU),
2359 	CAPNV(VLAN_HWTAGGING),
2360 	CAPNV(JUMBO_MTU),
2361 	CAPNV(POLLING),
2362 	CAPNV(VLAN_HWCSUM),
2363 	CAPNV(TSO4),
2364 	CAPNV(TSO6),
2365 	CAPNV(LRO),
2366 	CAPNV(WOL_UCAST),
2367 	CAPNV(WOL_MCAST),
2368 	CAPNV(WOL_MAGIC),
2369 	CAPNV(TOE4),
2370 	CAPNV(TOE6),
2371 	CAPNV(VLAN_HWFILTER),
2372 	CAPNV(VLAN_HWTSO),
2373 	CAPNV(LINKSTATE),
2374 	CAPNV(NETMAP),
2375 	CAPNV(RXCSUM_IPV6),
2376 	CAPNV(TXCSUM_IPV6),
2377 	CAPNV(HWSTATS),
2378 	CAPNV(TXRTLMT),
2379 	CAPNV(HWRXTSTMP),
2380 	CAPNV(MEXTPG),
2381 	CAPNV(TXTLS4),
2382 	CAPNV(TXTLS6),
2383 	CAPNV(VXLAN_HWCSUM),
2384 	CAPNV(VXLAN_HWTSO),
2385 	CAPNV(TXTLS_RTLMT),
2386 	{0, NULL}
2387 };
2388 #define CAP2NV(x) {.cap_bit = IFCAP2_BIT(IFCAP2_##x), \
2389     .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) }
2390 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = {
2391 	CAP2NV(RXTLS4),
2392 	CAP2NV(RXTLS6),
2393 	CAP2NV(IPSEC_OFFLOAD),
2394 	{0, NULL}
2395 };
2396 #undef CAPNV
2397 #undef CAP2NV
2398 
2399 int
2400 if_capnv_to_capint(const nvlist_t *nv, int *old_cap,
2401     const struct ifcap_nv_bit_name *nn, bool all)
2402 {
2403 	int i, res;
2404 
2405 	res = 0;
2406 	for (i = 0; nn[i].cap_name != NULL; i++) {
2407 		if (nvlist_exists_bool(nv, nn[i].cap_name)) {
2408 			if (all || nvlist_get_bool(nv, nn[i].cap_name))
2409 				res |= nn[i].cap_bit;
2410 		} else {
2411 			res |= *old_cap & nn[i].cap_bit;
2412 		}
2413 	}
2414 	return (res);
2415 }
2416 
2417 void
2418 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn,
2419     int ifr_cap, int ifr_req)
2420 {
2421 	int i;
2422 
2423 	for (i = 0; nn[i].cap_name != NULL; i++) {
2424 		if ((nn[i].cap_bit & ifr_cap) != 0) {
2425 			nvlist_add_bool(nv, nn[i].cap_name,
2426 			    (nn[i].cap_bit & ifr_req) != 0);
2427 		}
2428 	}
2429 }
2430 
2431 /*
2432  * Hardware specific interface ioctls.
2433  */
2434 int
2435 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
2436 {
2437 	struct ifreq *ifr;
2438 	int error = 0, do_ifup = 0;
2439 	int new_flags, temp_flags;
2440 	size_t descrlen, nvbuflen;
2441 	char *descrbuf;
2442 	char new_name[IFNAMSIZ];
2443 	void *buf;
2444 	nvlist_t *nvcap;
2445 	struct siocsifcapnv_driver_data drv_ioctl_data;
2446 
2447 	ifr = (struct ifreq *)data;
2448 	switch (cmd) {
2449 	case SIOCGIFINDEX:
2450 		ifr->ifr_index = ifp->if_index;
2451 		break;
2452 
2453 	case SIOCGIFFLAGS:
2454 		temp_flags = ifp->if_flags | ifp->if_drv_flags;
2455 		ifr->ifr_flags = temp_flags & 0xffff;
2456 		ifr->ifr_flagshigh = temp_flags >> 16;
2457 		break;
2458 
2459 	case SIOCGIFCAP:
2460 		ifr->ifr_reqcap = ifp->if_capabilities;
2461 		ifr->ifr_curcap = ifp->if_capenable;
2462 		break;
2463 
2464 	case SIOCGIFCAPNV:
2465 		if ((ifp->if_capabilities & IFCAP_NV) == 0) {
2466 			error = EINVAL;
2467 			break;
2468 		}
2469 		buf = NULL;
2470 		nvcap = nvlist_create(0);
2471 		for (;;) {
2472 			if_capint_to_capnv(nvcap, ifcap_nv_bit_names,
2473 			    ifp->if_capabilities, ifp->if_capenable);
2474 			if_capint_to_capnv(nvcap, ifcap2_nv_bit_names,
2475 			    ifp->if_capabilities2, ifp->if_capenable2);
2476 			error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV,
2477 			    __DECONST(caddr_t, nvcap));
2478 			if (error != 0) {
2479 				if_printf(ifp,
2480 			    "SIOCGIFCAPNV driver mistake: nvlist error %d\n",
2481 				    error);
2482 				break;
2483 			}
2484 			buf = nvlist_pack(nvcap, &nvbuflen);
2485 			if (buf == NULL) {
2486 				error = nvlist_error(nvcap);
2487 				if (error == 0)
2488 					error = EDOOFUS;
2489 				break;
2490 			}
2491 			if (nvbuflen > ifr->ifr_cap_nv.buf_length) {
2492 				ifr->ifr_cap_nv.length = nvbuflen;
2493 				ifr->ifr_cap_nv.buffer = NULL;
2494 				error = EFBIG;
2495 				break;
2496 			}
2497 			ifr->ifr_cap_nv.length = nvbuflen;
2498 			error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen);
2499 			break;
2500 		}
2501 		free(buf, M_NVLIST);
2502 		nvlist_destroy(nvcap);
2503 		break;
2504 
2505 	case SIOCGIFDATA:
2506 	{
2507 		struct if_data ifd;
2508 
2509 		/* Ensure uninitialised padding is not leaked. */
2510 		memset(&ifd, 0, sizeof(ifd));
2511 
2512 		if_data_copy(ifp, &ifd);
2513 		error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd));
2514 		break;
2515 	}
2516 
2517 #ifdef MAC
2518 	case SIOCGIFMAC:
2519 		error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp);
2520 		break;
2521 #endif
2522 
2523 	case SIOCGIFMETRIC:
2524 		ifr->ifr_metric = ifp->if_metric;
2525 		break;
2526 
2527 	case SIOCGIFMTU:
2528 		ifr->ifr_mtu = ifp->if_mtu;
2529 		break;
2530 
2531 	case SIOCGIFPHYS:
2532 		/* XXXGL: did this ever worked? */
2533 		ifr->ifr_phys = 0;
2534 		break;
2535 
2536 	case SIOCGIFDESCR:
2537 		error = 0;
2538 		sx_slock(&ifdescr_sx);
2539 		if (ifp->if_description == NULL)
2540 			error = ENOMSG;
2541 		else {
2542 			/* space for terminating nul */
2543 			descrlen = strlen(ifp->if_description) + 1;
2544 			if (ifr_buffer_get_length(ifr) < descrlen)
2545 				ifr_buffer_set_buffer_null(ifr);
2546 			else
2547 				error = copyout(ifp->if_description,
2548 				    ifr_buffer_get_buffer(ifr), descrlen);
2549 			ifr_buffer_set_length(ifr, descrlen);
2550 		}
2551 		sx_sunlock(&ifdescr_sx);
2552 		break;
2553 
2554 	case SIOCSIFDESCR:
2555 		error = priv_check(td, PRIV_NET_SETIFDESCR);
2556 		if (error)
2557 			return (error);
2558 
2559 		/*
2560 		 * Copy only (length-1) bytes to make sure that
2561 		 * if_description is always nul terminated.  The
2562 		 * length parameter is supposed to count the
2563 		 * terminating nul in.
2564 		 */
2565 		if (ifr_buffer_get_length(ifr) > ifdescr_maxlen)
2566 			return (ENAMETOOLONG);
2567 		else if (ifr_buffer_get_length(ifr) == 0)
2568 			descrbuf = NULL;
2569 		else {
2570 			descrbuf = if_allocdescr(ifr_buffer_get_length(ifr), M_WAITOK);
2571 			error = copyin(ifr_buffer_get_buffer(ifr), descrbuf,
2572 			    ifr_buffer_get_length(ifr) - 1);
2573 			if (error) {
2574 				if_freedescr(descrbuf);
2575 				break;
2576 			}
2577 		}
2578 
2579 		if_setdescr(ifp, descrbuf);
2580 		getmicrotime(&ifp->if_lastchange);
2581 		break;
2582 
2583 	case SIOCGIFFIB:
2584 		ifr->ifr_fib = ifp->if_fib;
2585 		break;
2586 
2587 	case SIOCSIFFIB:
2588 		error = priv_check(td, PRIV_NET_SETIFFIB);
2589 		if (error)
2590 			return (error);
2591 		if (ifr->ifr_fib >= rt_numfibs)
2592 			return (EINVAL);
2593 
2594 		ifp->if_fib = ifr->ifr_fib;
2595 		break;
2596 
2597 	case SIOCSIFFLAGS:
2598 		error = priv_check(td, PRIV_NET_SETIFFLAGS);
2599 		if (error)
2600 			return (error);
2601 		/*
2602 		 * Currently, no driver owned flags pass the IFF_CANTCHANGE
2603 		 * check, so we don't need special handling here yet.
2604 		 */
2605 		new_flags = (ifr->ifr_flags & 0xffff) |
2606 		    (ifr->ifr_flagshigh << 16);
2607 		if (ifp->if_flags & IFF_UP &&
2608 		    (new_flags & IFF_UP) == 0) {
2609 			if_down(ifp);
2610 		} else if (new_flags & IFF_UP &&
2611 		    (ifp->if_flags & IFF_UP) == 0) {
2612 			do_ifup = 1;
2613 		}
2614 
2615 		/*
2616 		 * See if the promiscuous mode or allmulti bits are about to
2617 		 * flip.  They require special handling because in-kernel
2618 		 * consumers may indepdently toggle them.
2619 		 */
2620 		if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) {
2621 			if (new_flags & IFF_PPROMISC)
2622 				ifp->if_flags |= IFF_PROMISC;
2623 			else if (ifp->if_pcount == 0)
2624 				ifp->if_flags &= ~IFF_PROMISC;
2625 			if (log_promisc_mode_change)
2626                                 if_printf(ifp, "permanently promiscuous mode %s\n",
2627                                     ((new_flags & IFF_PPROMISC) ?
2628                                      "enabled" : "disabled"));
2629 		}
2630 		if ((ifp->if_flags ^ new_flags) & IFF_PALLMULTI) {
2631 			if (new_flags & IFF_PALLMULTI)
2632 				ifp->if_flags |= IFF_ALLMULTI;
2633 			else if (ifp->if_amcount == 0)
2634 				ifp->if_flags &= ~IFF_ALLMULTI;
2635 		}
2636 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2637 			(new_flags &~ IFF_CANTCHANGE);
2638 		if (ifp->if_ioctl) {
2639 			(void) (*ifp->if_ioctl)(ifp, cmd, data);
2640 		}
2641 		if (do_ifup)
2642 			if_up(ifp);
2643 		getmicrotime(&ifp->if_lastchange);
2644 		break;
2645 
2646 	case SIOCSIFCAP:
2647 		error = priv_check(td, PRIV_NET_SETIFCAP);
2648 		if (error != 0)
2649 			return (error);
2650 		if (ifp->if_ioctl == NULL)
2651 			return (EOPNOTSUPP);
2652 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
2653 			return (EINVAL);
2654 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2655 		if (error == 0)
2656 			getmicrotime(&ifp->if_lastchange);
2657 		break;
2658 
2659 	case SIOCSIFCAPNV:
2660 		error = priv_check(td, PRIV_NET_SETIFCAP);
2661 		if (error != 0)
2662 			return (error);
2663 		if (ifp->if_ioctl == NULL)
2664 			return (EOPNOTSUPP);
2665 		if ((ifp->if_capabilities & IFCAP_NV) == 0)
2666 			return (EINVAL);
2667 		if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE)
2668 			return (EINVAL);
2669 		nvcap = NULL;
2670 		buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK);
2671 		for (;;) {
2672 			error = copyin(ifr->ifr_cap_nv.buffer, buf,
2673 			    ifr->ifr_cap_nv.length);
2674 			if (error != 0)
2675 				break;
2676 			nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0);
2677 			if (nvcap == NULL) {
2678 				error = EINVAL;
2679 				break;
2680 			}
2681 			drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap,
2682 			    &ifp->if_capenable, ifcap_nv_bit_names, false);
2683 			if ((drv_ioctl_data.reqcap &
2684 			    ~ifp->if_capabilities) != 0) {
2685 				error = EINVAL;
2686 				break;
2687 			}
2688 			drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap,
2689 			    &ifp->if_capenable2, ifcap2_nv_bit_names, false);
2690 			if ((drv_ioctl_data.reqcap2 &
2691 			    ~ifp->if_capabilities2) != 0) {
2692 				error = EINVAL;
2693 				break;
2694 			}
2695 			drv_ioctl_data.nvcap = nvcap;
2696 			error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV,
2697 			    (caddr_t)&drv_ioctl_data);
2698 			break;
2699 		}
2700 		nvlist_destroy(nvcap);
2701 		free(buf, M_TEMP);
2702 		if (error == 0)
2703 			getmicrotime(&ifp->if_lastchange);
2704 		break;
2705 
2706 #ifdef MAC
2707 	case SIOCSIFMAC:
2708 		error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp);
2709 		break;
2710 #endif
2711 
2712 	case SIOCSIFNAME:
2713 		error = priv_check(td, PRIV_NET_SETIFNAME);
2714 		if (error)
2715 			return (error);
2716 		error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ,
2717 		    NULL);
2718 		if (error != 0)
2719 			return (error);
2720 		error = if_rename(ifp, new_name);
2721 		break;
2722 
2723 #ifdef VIMAGE
2724 	case SIOCSIFVNET:
2725 		error = priv_check(td, PRIV_NET_SETIFVNET);
2726 		if (error)
2727 			return (error);
2728 		error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid);
2729 		break;
2730 #endif
2731 
2732 	case SIOCSIFMETRIC:
2733 		error = priv_check(td, PRIV_NET_SETIFMETRIC);
2734 		if (error)
2735 			return (error);
2736 		ifp->if_metric = ifr->ifr_metric;
2737 		getmicrotime(&ifp->if_lastchange);
2738 		break;
2739 
2740 	case SIOCSIFPHYS:
2741 		error = priv_check(td, PRIV_NET_SETIFPHYS);
2742 		if (error)
2743 			return (error);
2744 		if (ifp->if_ioctl == NULL)
2745 			return (EOPNOTSUPP);
2746 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2747 		if (error == 0)
2748 			getmicrotime(&ifp->if_lastchange);
2749 		break;
2750 
2751 	case SIOCSIFMTU:
2752 	{
2753 		u_long oldmtu = ifp->if_mtu;
2754 
2755 		error = priv_check(td, PRIV_NET_SETIFMTU);
2756 		if (error)
2757 			return (error);
2758 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
2759 			return (EINVAL);
2760 		if (ifp->if_ioctl == NULL)
2761 			return (EOPNOTSUPP);
2762 		/* Disallow MTU changes on bridge member interfaces. */
2763 		if (ifp->if_bridge)
2764 			return (EOPNOTSUPP);
2765 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2766 		if (error == 0) {
2767 			getmicrotime(&ifp->if_lastchange);
2768 			rt_ifmsg(ifp, 0);
2769 #ifdef INET
2770 			DEBUGNET_NOTIFY_MTU(ifp);
2771 #endif
2772 		}
2773 		/*
2774 		 * If the link MTU changed, do network layer specific procedure.
2775 		 */
2776 		if (ifp->if_mtu != oldmtu)
2777 			if_notifymtu(ifp);
2778 		break;
2779 	}
2780 
2781 	case SIOCADDMULTI:
2782 	case SIOCDELMULTI:
2783 		if (cmd == SIOCADDMULTI)
2784 			error = priv_check(td, PRIV_NET_ADDMULTI);
2785 		else
2786 			error = priv_check(td, PRIV_NET_DELMULTI);
2787 		if (error)
2788 			return (error);
2789 
2790 		/* Don't allow group membership on non-multicast interfaces. */
2791 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
2792 			return (EOPNOTSUPP);
2793 
2794 		/* Don't let users screw up protocols' entries. */
2795 		if (ifr->ifr_addr.sa_family != AF_LINK)
2796 			return (EINVAL);
2797 
2798 		if (cmd == SIOCADDMULTI) {
2799 			struct epoch_tracker et;
2800 			struct ifmultiaddr *ifma;
2801 
2802 			/*
2803 			 * Userland is only permitted to join groups once
2804 			 * via the if_addmulti() KPI, because it cannot hold
2805 			 * struct ifmultiaddr * between calls. It may also
2806 			 * lose a race while we check if the membership
2807 			 * already exists.
2808 			 */
2809 			NET_EPOCH_ENTER(et);
2810 			ifma = if_findmulti(ifp, &ifr->ifr_addr);
2811 			NET_EPOCH_EXIT(et);
2812 			if (ifma != NULL)
2813 				error = EADDRINUSE;
2814 			else
2815 				error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2816 		} else {
2817 			error = if_delmulti(ifp, &ifr->ifr_addr);
2818 		}
2819 		if (error == 0)
2820 			getmicrotime(&ifp->if_lastchange);
2821 		break;
2822 
2823 	case SIOCSIFPHYADDR:
2824 	case SIOCDIFPHYADDR:
2825 #ifdef INET6
2826 	case SIOCSIFPHYADDR_IN6:
2827 #endif
2828 	case SIOCSIFMEDIA:
2829 	case SIOCSIFGENERIC:
2830 		error = priv_check(td, PRIV_NET_HWIOCTL);
2831 		if (error)
2832 			return (error);
2833 		if (ifp->if_ioctl == NULL)
2834 			return (EOPNOTSUPP);
2835 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2836 		if (error == 0)
2837 			getmicrotime(&ifp->if_lastchange);
2838 		break;
2839 
2840 	case SIOCGIFSTATUS:
2841 	case SIOCGIFPSRCADDR:
2842 	case SIOCGIFPDSTADDR:
2843 	case SIOCGIFMEDIA:
2844 	case SIOCGIFXMEDIA:
2845 	case SIOCGIFGENERIC:
2846 	case SIOCGIFRSSKEY:
2847 	case SIOCGIFRSSHASH:
2848 	case SIOCGIFDOWNREASON:
2849 		if (ifp->if_ioctl == NULL)
2850 			return (EOPNOTSUPP);
2851 		error = (*ifp->if_ioctl)(ifp, cmd, data);
2852 		break;
2853 
2854 	case SIOCSIFLLADDR:
2855 		error = priv_check(td, PRIV_NET_SETLLADDR);
2856 		if (error)
2857 			return (error);
2858 		error = if_setlladdr(ifp,
2859 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
2860 		break;
2861 
2862 	case SIOCGHWADDR:
2863 		error = if_gethwaddr(ifp, ifr);
2864 		break;
2865 
2866 	case SIOCAIFGROUP:
2867 		error = priv_check(td, PRIV_NET_ADDIFGROUP);
2868 		if (error)
2869 			return (error);
2870 		error = if_addgroup(ifp,
2871 		    ((struct ifgroupreq *)data)->ifgr_group);
2872 		if (error != 0)
2873 			return (error);
2874 		break;
2875 
2876 	case SIOCGIFGROUP:
2877 	{
2878 		struct epoch_tracker et;
2879 
2880 		NET_EPOCH_ENTER(et);
2881 		error = if_getgroup((struct ifgroupreq *)data, ifp);
2882 		NET_EPOCH_EXIT(et);
2883 		break;
2884 	}
2885 
2886 	case SIOCDIFGROUP:
2887 		error = priv_check(td, PRIV_NET_DELIFGROUP);
2888 		if (error)
2889 			return (error);
2890 		error = if_delgroup(ifp,
2891 		    ((struct ifgroupreq *)data)->ifgr_group);
2892 		if (error != 0)
2893 			return (error);
2894 		break;
2895 
2896 	default:
2897 		error = ENOIOCTL;
2898 		break;
2899 	}
2900 	return (error);
2901 }
2902 
2903 /*
2904  * Interface ioctls.
2905  */
2906 int
2907 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td)
2908 {
2909 #ifdef COMPAT_FREEBSD32
2910 	union {
2911 		struct ifconf ifc;
2912 		struct ifdrv ifd;
2913 		struct ifgroupreq ifgr;
2914 		struct ifmediareq ifmr;
2915 	} thunk;
2916 	u_long saved_cmd;
2917 	struct ifconf32 *ifc32;
2918 	struct ifdrv32 *ifd32;
2919 	struct ifgroupreq32 *ifgr32;
2920 	struct ifmediareq32 *ifmr32;
2921 #endif
2922 	struct ifnet *ifp;
2923 	struct ifreq *ifr;
2924 	int error;
2925 	int oif_flags;
2926 #ifdef VIMAGE
2927 	bool shutdown;
2928 #endif
2929 
2930 	CURVNET_SET(so->so_vnet);
2931 #ifdef VIMAGE
2932 	/* Make sure the VNET is stable. */
2933 	shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet);
2934 	if (shutdown) {
2935 		CURVNET_RESTORE();
2936 		return (EBUSY);
2937 	}
2938 #endif
2939 
2940 #ifdef COMPAT_FREEBSD32
2941 	saved_cmd = cmd;
2942 	switch (cmd) {
2943 	case SIOCGIFCONF32:
2944 		ifc32 = (struct ifconf32 *)data;
2945 		thunk.ifc.ifc_len = ifc32->ifc_len;
2946 		thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf);
2947 		data = (caddr_t)&thunk.ifc;
2948 		cmd = SIOCGIFCONF;
2949 		break;
2950 	case SIOCGDRVSPEC32:
2951 	case SIOCSDRVSPEC32:
2952 		ifd32 = (struct ifdrv32 *)data;
2953 		memcpy(thunk.ifd.ifd_name, ifd32->ifd_name,
2954 		    sizeof(thunk.ifd.ifd_name));
2955 		thunk.ifd.ifd_cmd = ifd32->ifd_cmd;
2956 		thunk.ifd.ifd_len = ifd32->ifd_len;
2957 		thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data);
2958 		data = (caddr_t)&thunk.ifd;
2959 		cmd = _IOC_NEWTYPE(cmd, struct ifdrv);
2960 		break;
2961 	case SIOCAIFGROUP32:
2962 	case SIOCGIFGROUP32:
2963 	case SIOCDIFGROUP32:
2964 	case SIOCGIFGMEMB32:
2965 		ifgr32 = (struct ifgroupreq32 *)data;
2966 		memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name,
2967 		    sizeof(thunk.ifgr.ifgr_name));
2968 		thunk.ifgr.ifgr_len = ifgr32->ifgr_len;
2969 		switch (cmd) {
2970 		case SIOCAIFGROUP32:
2971 		case SIOCDIFGROUP32:
2972 			memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group,
2973 			    sizeof(thunk.ifgr.ifgr_group));
2974 			break;
2975 		case SIOCGIFGROUP32:
2976 		case SIOCGIFGMEMB32:
2977 			thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups);
2978 			break;
2979 		}
2980 		data = (caddr_t)&thunk.ifgr;
2981 		cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq);
2982 		break;
2983 	case SIOCGIFMEDIA32:
2984 	case SIOCGIFXMEDIA32:
2985 		ifmr32 = (struct ifmediareq32 *)data;
2986 		memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name,
2987 		    sizeof(thunk.ifmr.ifm_name));
2988 		thunk.ifmr.ifm_current = ifmr32->ifm_current;
2989 		thunk.ifmr.ifm_mask = ifmr32->ifm_mask;
2990 		thunk.ifmr.ifm_status = ifmr32->ifm_status;
2991 		thunk.ifmr.ifm_active = ifmr32->ifm_active;
2992 		thunk.ifmr.ifm_count = ifmr32->ifm_count;
2993 		thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist);
2994 		data = (caddr_t)&thunk.ifmr;
2995 		cmd = _IOC_NEWTYPE(cmd, struct ifmediareq);
2996 		break;
2997 	}
2998 #endif
2999 
3000 	switch (cmd) {
3001 	case SIOCGIFCONF:
3002 		error = ifconf(cmd, data);
3003 		goto out_noref;
3004 	}
3005 
3006 	ifr = (struct ifreq *)data;
3007 	switch (cmd) {
3008 #ifdef VIMAGE
3009 	case SIOCSIFRVNET:
3010 		error = priv_check(td, PRIV_NET_SETIFVNET);
3011 		if (error == 0)
3012 			error = if_vmove_reclaim(td, ifr->ifr_name,
3013 			    ifr->ifr_jid);
3014 		goto out_noref;
3015 #endif
3016 	case SIOCIFCREATE:
3017 	case SIOCIFCREATE2:
3018 		error = priv_check(td, PRIV_NET_IFCREATE);
3019 		if (error == 0)
3020 			error = if_clone_create(ifr->ifr_name,
3021 			    sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ?
3022 			    ifr_data_get_ptr(ifr) : NULL);
3023 		goto out_noref;
3024 	case SIOCIFDESTROY:
3025 		error = priv_check(td, PRIV_NET_IFDESTROY);
3026 
3027 		if (error == 0) {
3028 			sx_xlock(&ifnet_detach_sxlock);
3029 			error = if_clone_destroy(ifr->ifr_name);
3030 			sx_xunlock(&ifnet_detach_sxlock);
3031 		}
3032 		goto out_noref;
3033 
3034 	case SIOCIFGCLONERS:
3035 		error = if_clone_list((struct if_clonereq *)data);
3036 		goto out_noref;
3037 
3038 	case SIOCGIFGMEMB:
3039 		error = if_getgroupmembers((struct ifgroupreq *)data);
3040 		goto out_noref;
3041 
3042 #if defined(INET) || defined(INET6)
3043 	case SIOCSVH:
3044 	case SIOCGVH:
3045 		if (carp_ioctl_p == NULL)
3046 			error = EPROTONOSUPPORT;
3047 		else
3048 			error = (*carp_ioctl_p)(ifr, cmd, td);
3049 		goto out_noref;
3050 #endif
3051 	}
3052 
3053 	ifp = ifunit_ref(ifr->ifr_name);
3054 	if (ifp == NULL) {
3055 		error = ENXIO;
3056 		goto out_noref;
3057 	}
3058 
3059 	error = ifhwioctl(cmd, ifp, data, td);
3060 	if (error != ENOIOCTL)
3061 		goto out_ref;
3062 
3063 	oif_flags = ifp->if_flags;
3064 	if (so->so_proto == NULL) {
3065 		error = EOPNOTSUPP;
3066 		goto out_ref;
3067 	}
3068 
3069 	/*
3070 	 * Pass the request on to the socket control method, and if the
3071 	 * latter returns EOPNOTSUPP, directly to the interface.
3072 	 *
3073 	 * Make an exception for the legacy SIOCSIF* requests.  Drivers
3074 	 * trust SIOCSIFADDR et al to come from an already privileged
3075 	 * layer, and do not perform any credentials checks or input
3076 	 * validation.
3077 	 */
3078 	error = so->so_proto->pr_control(so, cmd, data, ifp, td);
3079 	if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL &&
3080 	    cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR &&
3081 	    cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK)
3082 		error = (*ifp->if_ioctl)(ifp, cmd, data);
3083 
3084 	if (!(oif_flags & IFF_UP) && (ifp->if_flags & IFF_UP))
3085 		if_up(ifp);
3086 out_ref:
3087 	if_rele(ifp);
3088 out_noref:
3089 	CURVNET_RESTORE();
3090 #ifdef COMPAT_FREEBSD32
3091 	if (error != 0)
3092 		return (error);
3093 	switch (saved_cmd) {
3094 	case SIOCGIFCONF32:
3095 		ifc32->ifc_len = thunk.ifc.ifc_len;
3096 		break;
3097 	case SIOCGDRVSPEC32:
3098 		/*
3099 		 * SIOCGDRVSPEC is IOWR, but nothing actually touches
3100 		 * the struct so just assert that ifd_len (the only
3101 		 * field it might make sense to update) hasn't
3102 		 * changed.
3103 		 */
3104 		KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len,
3105 		    ("ifd_len was updated %u -> %zu", ifd32->ifd_len,
3106 			thunk.ifd.ifd_len));
3107 		break;
3108 	case SIOCGIFGROUP32:
3109 	case SIOCGIFGMEMB32:
3110 		ifgr32->ifgr_len = thunk.ifgr.ifgr_len;
3111 		break;
3112 	case SIOCGIFMEDIA32:
3113 	case SIOCGIFXMEDIA32:
3114 		ifmr32->ifm_current = thunk.ifmr.ifm_current;
3115 		ifmr32->ifm_mask = thunk.ifmr.ifm_mask;
3116 		ifmr32->ifm_status = thunk.ifmr.ifm_status;
3117 		ifmr32->ifm_active = thunk.ifmr.ifm_active;
3118 		ifmr32->ifm_count = thunk.ifmr.ifm_count;
3119 		break;
3120 	}
3121 #endif
3122 	return (error);
3123 }
3124 
3125 int
3126 if_rename(struct ifnet *ifp, char *new_name)
3127 {
3128 	struct ifaddr *ifa;
3129 	struct sockaddr_dl *sdl;
3130 	size_t namelen, onamelen;
3131 	char old_name[IFNAMSIZ];
3132 	char strbuf[IFNAMSIZ + 8];
3133 
3134 	if (new_name[0] == '\0')
3135 		return (EINVAL);
3136 	if (strcmp(new_name, ifp->if_xname) == 0)
3137 		return (0);
3138 	if (ifunit(new_name) != NULL)
3139 		return (EEXIST);
3140 
3141 	/*
3142 	 * XXX: Locking.  Nothing else seems to lock if_flags,
3143 	 * and there are numerous other races with the
3144 	 * ifunit() checks not being atomic with namespace
3145 	 * changes (renames, vmoves, if_attach, etc).
3146 	 */
3147 	ifp->if_flags |= IFF_RENAMING;
3148 
3149 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
3150 
3151 	if_printf(ifp, "changing name to '%s'\n", new_name);
3152 
3153 	IF_ADDR_WLOCK(ifp);
3154 	strlcpy(old_name, ifp->if_xname, sizeof(old_name));
3155 	strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
3156 	ifa = ifp->if_addr;
3157 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
3158 	namelen = strlen(new_name);
3159 	onamelen = sdl->sdl_nlen;
3160 	/*
3161 	 * Move the address if needed.  This is safe because we
3162 	 * allocate space for a name of length IFNAMSIZ when we
3163 	 * create this in if_attach().
3164 	 */
3165 	if (namelen != onamelen) {
3166 		bcopy(sdl->sdl_data + onamelen,
3167 		    sdl->sdl_data + namelen, sdl->sdl_alen);
3168 	}
3169 	bcopy(new_name, sdl->sdl_data, namelen);
3170 	sdl->sdl_nlen = namelen;
3171 	sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
3172 	bzero(sdl->sdl_data, onamelen);
3173 	while (namelen != 0)
3174 		sdl->sdl_data[--namelen] = 0xff;
3175 	IF_ADDR_WUNLOCK(ifp);
3176 
3177 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
3178 
3179 	ifp->if_flags &= ~IFF_RENAMING;
3180 
3181 	snprintf(strbuf, sizeof(strbuf), "name=%s", new_name);
3182 	devctl_notify("IFNET", old_name, "RENAME", strbuf);
3183 
3184 	return (0);
3185 }
3186 
3187 /*
3188  * The code common to handling reference counted flags,
3189  * e.g., in ifpromisc() and if_allmulti().
3190  * The "pflag" argument can specify a permanent mode flag to check,
3191  * such as IFF_PPROMISC for promiscuous mode; should be 0 if none.
3192  *
3193  * Only to be used on stack-owned flags, not driver-owned flags.
3194  */
3195 static int
3196 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch)
3197 {
3198 	struct ifreq ifr;
3199 	int error;
3200 	int oldflags, oldcount;
3201 
3202 	/* Sanity checks to catch programming errors */
3203 	KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0,
3204 	    ("%s: setting driver-owned flag %d", __func__, flag));
3205 
3206 	if (onswitch)
3207 		KASSERT(*refcount >= 0,
3208 		    ("%s: increment negative refcount %d for flag %d",
3209 		    __func__, *refcount, flag));
3210 	else
3211 		KASSERT(*refcount > 0,
3212 		    ("%s: decrement non-positive refcount %d for flag %d",
3213 		    __func__, *refcount, flag));
3214 
3215 	/* In case this mode is permanent, just touch refcount */
3216 	if (ifp->if_flags & pflag) {
3217 		*refcount += onswitch ? 1 : -1;
3218 		return (0);
3219 	}
3220 
3221 	/* Save ifnet parameters for if_ioctl() may fail */
3222 	oldcount = *refcount;
3223 	oldflags = ifp->if_flags;
3224 
3225 	/*
3226 	 * See if we aren't the only and touching refcount is enough.
3227 	 * Actually toggle interface flag if we are the first or last.
3228 	 */
3229 	if (onswitch) {
3230 		if ((*refcount)++)
3231 			return (0);
3232 		ifp->if_flags |= flag;
3233 	} else {
3234 		if (--(*refcount))
3235 			return (0);
3236 		ifp->if_flags &= ~flag;
3237 	}
3238 
3239 	/* Call down the driver since we've changed interface flags */
3240 	if (ifp->if_ioctl == NULL) {
3241 		error = EOPNOTSUPP;
3242 		goto recover;
3243 	}
3244 	ifr.ifr_flags = ifp->if_flags & 0xffff;
3245 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
3246 	error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3247 	if (error)
3248 		goto recover;
3249 	/* Notify userland that interface flags have changed */
3250 	rt_ifmsg(ifp, flag);
3251 	return (0);
3252 
3253 recover:
3254 	/* Recover after driver error */
3255 	*refcount = oldcount;
3256 	ifp->if_flags = oldflags;
3257 	return (error);
3258 }
3259 
3260 /*
3261  * Set/clear promiscuous mode on interface ifp based on the truth value
3262  * of pswitch.  The calls are reference counted so that only the first
3263  * "on" request actually has an effect, as does the final "off" request.
3264  * Results are undefined if the "off" and "on" requests are not matched.
3265  */
3266 int
3267 ifpromisc(struct ifnet *ifp, int pswitch)
3268 {
3269 	int error;
3270 	int oldflags = ifp->if_flags;
3271 
3272 	error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC,
3273 			   &ifp->if_pcount, pswitch);
3274 	/* If promiscuous mode status has changed, log a message */
3275 	if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) &&
3276             log_promisc_mode_change)
3277 		if_printf(ifp, "promiscuous mode %s\n",
3278 		    (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
3279 	return (error);
3280 }
3281 
3282 /*
3283  * Return interface configuration
3284  * of system.  List may be used
3285  * in later ioctl's (above) to get
3286  * other information.
3287  */
3288 /*ARGSUSED*/
3289 static int
3290 ifconf(u_long cmd, caddr_t data)
3291 {
3292 	struct ifconf *ifc = (struct ifconf *)data;
3293 	struct ifnet *ifp;
3294 	struct ifaddr *ifa;
3295 	struct ifreq ifr;
3296 	struct sbuf *sb;
3297 	int error, full = 0, valid_len, max_len;
3298 
3299 	/* Limit initial buffer size to maxphys to avoid DoS from userspace. */
3300 	max_len = maxphys - 1;
3301 
3302 	/* Prevent hostile input from being able to crash the system */
3303 	if (ifc->ifc_len <= 0)
3304 		return (EINVAL);
3305 
3306 again:
3307 	if (ifc->ifc_len <= max_len) {
3308 		max_len = ifc->ifc_len;
3309 		full = 1;
3310 	}
3311 	sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN);
3312 	max_len = 0;
3313 	valid_len = 0;
3314 
3315 	IFNET_RLOCK();
3316 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
3317 		struct epoch_tracker et;
3318 		int addrs;
3319 
3320 		/*
3321 		 * Zero the ifr to make sure we don't disclose the contents
3322 		 * of the stack.
3323 		 */
3324 		memset(&ifr, 0, sizeof(ifr));
3325 
3326 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
3327 		    >= sizeof(ifr.ifr_name)) {
3328 			sbuf_delete(sb);
3329 			IFNET_RUNLOCK();
3330 			return (ENAMETOOLONG);
3331 		}
3332 
3333 		addrs = 0;
3334 		NET_EPOCH_ENTER(et);
3335 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
3336 			struct sockaddr *sa = ifa->ifa_addr;
3337 
3338 			if (prison_if(curthread->td_ucred, sa) != 0)
3339 				continue;
3340 			addrs++;
3341 			if (sa->sa_len <= sizeof(*sa)) {
3342 				if (sa->sa_len < sizeof(*sa)) {
3343 					memset(&ifr.ifr_ifru.ifru_addr, 0,
3344 					    sizeof(ifr.ifr_ifru.ifru_addr));
3345 					memcpy(&ifr.ifr_ifru.ifru_addr, sa,
3346 					    sa->sa_len);
3347 				} else
3348 					ifr.ifr_ifru.ifru_addr = *sa;
3349 				sbuf_bcat(sb, &ifr, sizeof(ifr));
3350 				max_len += sizeof(ifr);
3351 			} else {
3352 				sbuf_bcat(sb, &ifr,
3353 				    offsetof(struct ifreq, ifr_addr));
3354 				max_len += offsetof(struct ifreq, ifr_addr);
3355 				sbuf_bcat(sb, sa, sa->sa_len);
3356 				max_len += sa->sa_len;
3357 			}
3358 
3359 			if (sbuf_error(sb) == 0)
3360 				valid_len = sbuf_len(sb);
3361 		}
3362 		NET_EPOCH_EXIT(et);
3363 		if (addrs == 0) {
3364 			sbuf_bcat(sb, &ifr, sizeof(ifr));
3365 			max_len += sizeof(ifr);
3366 
3367 			if (sbuf_error(sb) == 0)
3368 				valid_len = sbuf_len(sb);
3369 		}
3370 	}
3371 	IFNET_RUNLOCK();
3372 
3373 	/*
3374 	 * If we didn't allocate enough space (uncommon), try again.  If
3375 	 * we have already allocated as much space as we are allowed,
3376 	 * return what we've got.
3377 	 */
3378 	if (valid_len != max_len && !full) {
3379 		sbuf_delete(sb);
3380 		goto again;
3381 	}
3382 
3383 	ifc->ifc_len = valid_len;
3384 	sbuf_finish(sb);
3385 	error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len);
3386 	sbuf_delete(sb);
3387 	return (error);
3388 }
3389 
3390 /*
3391  * Just like ifpromisc(), but for all-multicast-reception mode.
3392  */
3393 int
3394 if_allmulti(struct ifnet *ifp, int onswitch)
3395 {
3396 
3397 	return (if_setflag(ifp, IFF_ALLMULTI, IFF_PALLMULTI, &ifp->if_amcount,
3398 	    onswitch));
3399 }
3400 
3401 struct ifmultiaddr *
3402 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa)
3403 {
3404 	struct ifmultiaddr *ifma;
3405 
3406 	IF_ADDR_LOCK_ASSERT(ifp);
3407 
3408 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3409 		if (sa->sa_family == AF_LINK) {
3410 			if (sa_dl_equal(ifma->ifma_addr, sa))
3411 				break;
3412 		} else {
3413 			if (sa_equal(ifma->ifma_addr, sa))
3414 				break;
3415 		}
3416 	}
3417 
3418 	return ifma;
3419 }
3420 
3421 /*
3422  * Allocate a new ifmultiaddr and initialize based on passed arguments.  We
3423  * make copies of passed sockaddrs.  The ifmultiaddr will not be added to
3424  * the ifnet multicast address list here, so the caller must do that and
3425  * other setup work (such as notifying the device driver).  The reference
3426  * count is initialized to 1.
3427  */
3428 static struct ifmultiaddr *
3429 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa,
3430     int mflags)
3431 {
3432 	struct ifmultiaddr *ifma;
3433 	struct sockaddr *dupsa;
3434 
3435 	ifma = malloc(sizeof *ifma, M_IFMADDR, mflags |
3436 	    M_ZERO);
3437 	if (ifma == NULL)
3438 		return (NULL);
3439 
3440 	dupsa = malloc(sa->sa_len, M_IFMADDR, mflags);
3441 	if (dupsa == NULL) {
3442 		free(ifma, M_IFMADDR);
3443 		return (NULL);
3444 	}
3445 	bcopy(sa, dupsa, sa->sa_len);
3446 	ifma->ifma_addr = dupsa;
3447 
3448 	ifma->ifma_ifp = ifp;
3449 	ifma->ifma_refcount = 1;
3450 	ifma->ifma_protospec = NULL;
3451 
3452 	if (llsa == NULL) {
3453 		ifma->ifma_lladdr = NULL;
3454 		return (ifma);
3455 	}
3456 
3457 	dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags);
3458 	if (dupsa == NULL) {
3459 		free(ifma->ifma_addr, M_IFMADDR);
3460 		free(ifma, M_IFMADDR);
3461 		return (NULL);
3462 	}
3463 	bcopy(llsa, dupsa, llsa->sa_len);
3464 	ifma->ifma_lladdr = dupsa;
3465 
3466 	return (ifma);
3467 }
3468 
3469 /*
3470  * if_freemulti: free ifmultiaddr structure and possibly attached related
3471  * addresses.  The caller is responsible for implementing reference
3472  * counting, notifying the driver, handling routing messages, and releasing
3473  * any dependent link layer state.
3474  */
3475 #ifdef MCAST_VERBOSE
3476 extern void kdb_backtrace(void);
3477 #endif
3478 static void
3479 if_freemulti_internal(struct ifmultiaddr *ifma)
3480 {
3481 
3482 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d",
3483 	    ifma->ifma_refcount));
3484 
3485 	if (ifma->ifma_lladdr != NULL)
3486 		free(ifma->ifma_lladdr, M_IFMADDR);
3487 #ifdef MCAST_VERBOSE
3488 	kdb_backtrace();
3489 	printf("%s freeing ifma: %p\n", __func__, ifma);
3490 #endif
3491 	free(ifma->ifma_addr, M_IFMADDR);
3492 	free(ifma, M_IFMADDR);
3493 }
3494 
3495 static void
3496 if_destroymulti(epoch_context_t ctx)
3497 {
3498 	struct ifmultiaddr *ifma;
3499 
3500 	ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx);
3501 	if_freemulti_internal(ifma);
3502 }
3503 
3504 void
3505 if_freemulti(struct ifmultiaddr *ifma)
3506 {
3507 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d",
3508 	    ifma->ifma_refcount));
3509 
3510 	NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx);
3511 }
3512 
3513 /*
3514  * Register an additional multicast address with a network interface.
3515  *
3516  * - If the address is already present, bump the reference count on the
3517  *   address and return.
3518  * - If the address is not link-layer, look up a link layer address.
3519  * - Allocate address structures for one or both addresses, and attach to the
3520  *   multicast address list on the interface.  If automatically adding a link
3521  *   layer address, the protocol address will own a reference to the link
3522  *   layer address, to be freed when it is freed.
3523  * - Notify the network device driver of an addition to the multicast address
3524  *   list.
3525  *
3526  * 'sa' points to caller-owned memory with the desired multicast address.
3527  *
3528  * 'retifma' will be used to return a pointer to the resulting multicast
3529  * address reference, if desired.
3530  */
3531 int
3532 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
3533     struct ifmultiaddr **retifma)
3534 {
3535 	struct ifmultiaddr *ifma, *ll_ifma;
3536 	struct sockaddr *llsa;
3537 	struct sockaddr_dl sdl;
3538 	int error;
3539 
3540 #ifdef INET
3541 	IN_MULTI_LIST_UNLOCK_ASSERT();
3542 #endif
3543 #ifdef INET6
3544 	IN6_MULTI_LIST_UNLOCK_ASSERT();
3545 #endif
3546 	/*
3547 	 * If the address is already present, return a new reference to it;
3548 	 * otherwise, allocate storage and set up a new address.
3549 	 */
3550 	IF_ADDR_WLOCK(ifp);
3551 	ifma = if_findmulti(ifp, sa);
3552 	if (ifma != NULL) {
3553 		ifma->ifma_refcount++;
3554 		if (retifma != NULL)
3555 			*retifma = ifma;
3556 		IF_ADDR_WUNLOCK(ifp);
3557 		return (0);
3558 	}
3559 
3560 	/*
3561 	 * The address isn't already present; resolve the protocol address
3562 	 * into a link layer address, and then look that up, bump its
3563 	 * refcount or allocate an ifma for that also.
3564 	 * Most link layer resolving functions returns address data which
3565 	 * fits inside default sockaddr_dl structure. However callback
3566 	 * can allocate another sockaddr structure, in that case we need to
3567 	 * free it later.
3568 	 */
3569 	llsa = NULL;
3570 	ll_ifma = NULL;
3571 	if (ifp->if_resolvemulti != NULL) {
3572 		/* Provide called function with buffer size information */
3573 		sdl.sdl_len = sizeof(sdl);
3574 		llsa = (struct sockaddr *)&sdl;
3575 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
3576 		if (error)
3577 			goto unlock_out;
3578 	}
3579 
3580 	/*
3581 	 * Allocate the new address.  Don't hook it up yet, as we may also
3582 	 * need to allocate a link layer multicast address.
3583 	 */
3584 	ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT);
3585 	if (ifma == NULL) {
3586 		error = ENOMEM;
3587 		goto free_llsa_out;
3588 	}
3589 
3590 	/*
3591 	 * If a link layer address is found, we'll need to see if it's
3592 	 * already present in the address list, or allocate is as well.
3593 	 * When this block finishes, the link layer address will be on the
3594 	 * list.
3595 	 */
3596 	if (llsa != NULL) {
3597 		ll_ifma = if_findmulti(ifp, llsa);
3598 		if (ll_ifma == NULL) {
3599 			ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT);
3600 			if (ll_ifma == NULL) {
3601 				--ifma->ifma_refcount;
3602 				if_freemulti(ifma);
3603 				error = ENOMEM;
3604 				goto free_llsa_out;
3605 			}
3606 			ll_ifma->ifma_flags |= IFMA_F_ENQUEUED;
3607 			CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma,
3608 			    ifma_link);
3609 		} else
3610 			ll_ifma->ifma_refcount++;
3611 		ifma->ifma_llifma = ll_ifma;
3612 	}
3613 
3614 	/*
3615 	 * We now have a new multicast address, ifma, and possibly a new or
3616 	 * referenced link layer address.  Add the primary address to the
3617 	 * ifnet address list.
3618 	 */
3619 	ifma->ifma_flags |= IFMA_F_ENQUEUED;
3620 	CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
3621 
3622 	if (retifma != NULL)
3623 		*retifma = ifma;
3624 
3625 	/*
3626 	 * Must generate the message while holding the lock so that 'ifma'
3627 	 * pointer is still valid.
3628 	 */
3629 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
3630 	IF_ADDR_WUNLOCK(ifp);
3631 
3632 	/*
3633 	 * We are certain we have added something, so call down to the
3634 	 * interface to let them know about it.
3635 	 */
3636 	if (ifp->if_ioctl != NULL) {
3637 		if (THREAD_CAN_SLEEP())
3638 			(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
3639 		else
3640 			taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask);
3641 	}
3642 
3643 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3644 		link_free_sdl(llsa);
3645 
3646 	return (0);
3647 
3648 free_llsa_out:
3649 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
3650 		link_free_sdl(llsa);
3651 
3652 unlock_out:
3653 	IF_ADDR_WUNLOCK(ifp);
3654 	return (error);
3655 }
3656 
3657 static void
3658 if_siocaddmulti(void *arg, int pending)
3659 {
3660 	struct ifnet *ifp;
3661 
3662 	ifp = arg;
3663 #ifdef DIAGNOSTIC
3664 	if (pending > 1)
3665 		if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending);
3666 #endif
3667 	CURVNET_SET(ifp->if_vnet);
3668 	(void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
3669 	CURVNET_RESTORE();
3670 }
3671 
3672 /*
3673  * Delete a multicast group membership by network-layer group address.
3674  *
3675  * Returns ENOENT if the entry could not be found. If ifp no longer
3676  * exists, results are undefined. This entry point should only be used
3677  * from subsystems which do appropriate locking to hold ifp for the
3678  * duration of the call.
3679  * Network-layer protocol domains must use if_delmulti_ifma().
3680  */
3681 int
3682 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
3683 {
3684 	struct ifmultiaddr *ifma;
3685 	int lastref;
3686 
3687 	KASSERT(ifp, ("%s: NULL ifp", __func__));
3688 
3689 	IF_ADDR_WLOCK(ifp);
3690 	lastref = 0;
3691 	ifma = if_findmulti(ifp, sa);
3692 	if (ifma != NULL)
3693 		lastref = if_delmulti_locked(ifp, ifma, 0);
3694 	IF_ADDR_WUNLOCK(ifp);
3695 
3696 	if (ifma == NULL)
3697 		return (ENOENT);
3698 
3699 	if (lastref && ifp->if_ioctl != NULL) {
3700 		(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3701 	}
3702 
3703 	return (0);
3704 }
3705 
3706 /*
3707  * Delete all multicast group membership for an interface.
3708  * Should be used to quickly flush all multicast filters.
3709  */
3710 void
3711 if_delallmulti(struct ifnet *ifp)
3712 {
3713 	struct ifmultiaddr *ifma;
3714 	struct ifmultiaddr *next;
3715 
3716 	IF_ADDR_WLOCK(ifp);
3717 	CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
3718 		if_delmulti_locked(ifp, ifma, 0);
3719 	IF_ADDR_WUNLOCK(ifp);
3720 }
3721 
3722 void
3723 if_delmulti_ifma(struct ifmultiaddr *ifma)
3724 {
3725 	if_delmulti_ifma_flags(ifma, 0);
3726 }
3727 
3728 /*
3729  * Delete a multicast group membership by group membership pointer.
3730  * Network-layer protocol domains must use this routine.
3731  *
3732  * It is safe to call this routine if the ifp disappeared.
3733  */
3734 void
3735 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags)
3736 {
3737 	struct ifnet *ifp;
3738 	int lastref;
3739 	MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma);
3740 #ifdef INET
3741 	IN_MULTI_LIST_UNLOCK_ASSERT();
3742 #endif
3743 	ifp = ifma->ifma_ifp;
3744 #ifdef DIAGNOSTIC
3745 	if (ifp == NULL) {
3746 		printf("%s: ifma_ifp seems to be detached\n", __func__);
3747 	} else {
3748 		struct epoch_tracker et;
3749 		struct ifnet *oifp;
3750 
3751 		NET_EPOCH_ENTER(et);
3752 		CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link)
3753 			if (ifp == oifp)
3754 				break;
3755 		NET_EPOCH_EXIT(et);
3756 		if (ifp != oifp)
3757 			ifp = NULL;
3758 	}
3759 #endif
3760 	/*
3761 	 * If and only if the ifnet instance exists: Acquire the address lock.
3762 	 */
3763 	if (ifp != NULL)
3764 		IF_ADDR_WLOCK(ifp);
3765 
3766 	lastref = if_delmulti_locked(ifp, ifma, flags);
3767 
3768 	if (ifp != NULL) {
3769 		/*
3770 		 * If and only if the ifnet instance exists:
3771 		 *  Release the address lock.
3772 		 *  If the group was left: update the hardware hash filter.
3773 		 */
3774 		IF_ADDR_WUNLOCK(ifp);
3775 		if (lastref && ifp->if_ioctl != NULL) {
3776 			(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
3777 		}
3778 	}
3779 }
3780 
3781 /*
3782  * Perform deletion of network-layer and/or link-layer multicast address.
3783  *
3784  * Return 0 if the reference count was decremented.
3785  * Return 1 if the final reference was released, indicating that the
3786  * hardware hash filter should be reprogrammed.
3787  */
3788 static int
3789 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching)
3790 {
3791 	struct ifmultiaddr *ll_ifma;
3792 
3793 	if (ifp != NULL && ifma->ifma_ifp != NULL) {
3794 		KASSERT(ifma->ifma_ifp == ifp,
3795 		    ("%s: inconsistent ifp %p", __func__, ifp));
3796 		IF_ADDR_WLOCK_ASSERT(ifp);
3797 	}
3798 
3799 	ifp = ifma->ifma_ifp;
3800 	MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : "");
3801 
3802 	/*
3803 	 * If the ifnet is detaching, null out references to ifnet,
3804 	 * so that upper protocol layers will notice, and not attempt
3805 	 * to obtain locks for an ifnet which no longer exists. The
3806 	 * routing socket announcement must happen before the ifnet
3807 	 * instance is detached from the system.
3808 	 */
3809 	if (detaching) {
3810 #ifdef DIAGNOSTIC
3811 		printf("%s: detaching ifnet instance %p\n", __func__, ifp);
3812 #endif
3813 		/*
3814 		 * ifp may already be nulled out if we are being reentered
3815 		 * to delete the ll_ifma.
3816 		 */
3817 		if (ifp != NULL) {
3818 			rt_newmaddrmsg(RTM_DELMADDR, ifma);
3819 			ifma->ifma_ifp = NULL;
3820 		}
3821 	}
3822 
3823 	if (--ifma->ifma_refcount > 0)
3824 		return 0;
3825 
3826 	if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) {
3827 		CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link);
3828 		ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3829 	}
3830 	/*
3831 	 * If this ifma is a network-layer ifma, a link-layer ifma may
3832 	 * have been associated with it. Release it first if so.
3833 	 */
3834 	ll_ifma = ifma->ifma_llifma;
3835 	if (ll_ifma != NULL) {
3836 		KASSERT(ifma->ifma_lladdr != NULL,
3837 		    ("%s: llifma w/o lladdr", __func__));
3838 		if (detaching)
3839 			ll_ifma->ifma_ifp = NULL;	/* XXX */
3840 		if (--ll_ifma->ifma_refcount == 0) {
3841 			if (ifp != NULL) {
3842 				if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) {
3843 					CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr,
3844 						ifma_link);
3845 					ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED;
3846 				}
3847 			}
3848 			if_freemulti(ll_ifma);
3849 		}
3850 	}
3851 #ifdef INVARIANTS
3852 	if (ifp) {
3853 		struct ifmultiaddr *ifmatmp;
3854 
3855 		CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link)
3856 			MPASS(ifma != ifmatmp);
3857 	}
3858 #endif
3859 	if_freemulti(ifma);
3860 	/*
3861 	 * The last reference to this instance of struct ifmultiaddr
3862 	 * was released; the hardware should be notified of this change.
3863 	 */
3864 	return 1;
3865 }
3866 
3867 /*
3868  * Set the link layer address on an interface.
3869  *
3870  * At this time we only support certain types of interfaces,
3871  * and we don't allow the length of the address to change.
3872  *
3873  * Set noinline to be dtrace-friendly
3874  */
3875 __noinline int
3876 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
3877 {
3878 	struct sockaddr_dl *sdl;
3879 	struct ifaddr *ifa;
3880 	struct ifreq ifr;
3881 
3882 	ifa = ifp->if_addr;
3883 	if (ifa == NULL)
3884 		return (EINVAL);
3885 
3886 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
3887 	if (sdl == NULL)
3888 		return (EINVAL);
3889 
3890 	if (len != sdl->sdl_alen)	/* don't allow length to change */
3891 		return (EINVAL);
3892 
3893 	switch (ifp->if_type) {
3894 	case IFT_ETHER:
3895 	case IFT_XETHER:
3896 	case IFT_L2VLAN:
3897 	case IFT_BRIDGE:
3898 	case IFT_IEEE8023ADLAG:
3899 		bcopy(lladdr, LLADDR(sdl), len);
3900 		break;
3901 	default:
3902 		return (ENODEV);
3903 	}
3904 
3905 	/*
3906 	 * If the interface is already up, we need
3907 	 * to re-init it in order to reprogram its
3908 	 * address filter.
3909 	 */
3910 	if ((ifp->if_flags & IFF_UP) != 0) {
3911 		if (ifp->if_ioctl) {
3912 			ifp->if_flags &= ~IFF_UP;
3913 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3914 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3915 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3916 			ifp->if_flags |= IFF_UP;
3917 			ifr.ifr_flags = ifp->if_flags & 0xffff;
3918 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
3919 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
3920 		}
3921 	}
3922 	EVENTHANDLER_INVOKE(iflladdr_event, ifp);
3923 
3924 	return (0);
3925 }
3926 
3927 /*
3928  * Compat function for handling basic encapsulation requests.
3929  * Not converted stacks (FDDI, IB, ..) supports traditional
3930  * output model: ARP (and other similar L2 protocols) are handled
3931  * inside output routine, arpresolve/nd6_resolve() returns MAC
3932  * address instead of full prepend.
3933  *
3934  * This function creates calculated header==MAC for IPv4/IPv6 and
3935  * returns EAFNOSUPPORT (which is then handled in ARP code) for other
3936  * address families.
3937  */
3938 static int
3939 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req)
3940 {
3941 	if (req->rtype != IFENCAP_LL)
3942 		return (EOPNOTSUPP);
3943 
3944 	if (req->bufsize < req->lladdr_len)
3945 		return (ENOMEM);
3946 
3947 	switch (req->family) {
3948 	case AF_INET:
3949 	case AF_INET6:
3950 		break;
3951 	default:
3952 		return (EAFNOSUPPORT);
3953 	}
3954 
3955 	/* Copy lladdr to storage as is */
3956 	memmove(req->buf, req->lladdr, req->lladdr_len);
3957 	req->bufsize = req->lladdr_len;
3958 	req->lladdr_off = 0;
3959 
3960 	return (0);
3961 }
3962 
3963 /*
3964  * Tunnel interfaces can nest, also they may cause infinite recursion
3965  * calls when misconfigured. We'll prevent this by detecting loops.
3966  * High nesting level may cause stack exhaustion. We'll prevent this
3967  * by introducing upper limit.
3968  *
3969  * Return 0, if tunnel nesting count is equal or less than limit.
3970  */
3971 int
3972 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie,
3973     int limit)
3974 {
3975 	struct m_tag *mtag;
3976 	int count;
3977 
3978 	count = 1;
3979 	mtag = NULL;
3980 	while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) {
3981 		if (*(struct ifnet **)(mtag + 1) == ifp) {
3982 			log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp));
3983 			return (EIO);
3984 		}
3985 		count++;
3986 	}
3987 	if (count > limit) {
3988 		log(LOG_NOTICE,
3989 		    "%s: if_output recursively called too many times(%d)\n",
3990 		    if_name(ifp), count);
3991 		return (EIO);
3992 	}
3993 	mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT);
3994 	if (mtag == NULL)
3995 		return (ENOMEM);
3996 	*(struct ifnet **)(mtag + 1) = ifp;
3997 	m_tag_prepend(m, mtag);
3998 	return (0);
3999 }
4000 
4001 /*
4002  * Get the link layer address that was read from the hardware at attach.
4003  *
4004  * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type
4005  * their component interfaces as IFT_IEEE8023ADLAG.
4006  */
4007 int
4008 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr)
4009 {
4010 	if (ifp->if_hw_addr == NULL)
4011 		return (ENODEV);
4012 
4013 	switch (ifp->if_type) {
4014 	case IFT_ETHER:
4015 	case IFT_IEEE8023ADLAG:
4016 		bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen);
4017 		return (0);
4018 	default:
4019 		return (ENODEV);
4020 	}
4021 }
4022 
4023 /*
4024  * The name argument must be a pointer to storage which will last as
4025  * long as the interface does.  For physical devices, the result of
4026  * device_get_name(dev) is a good choice and for pseudo-devices a
4027  * static string works well.
4028  */
4029 void
4030 if_initname(struct ifnet *ifp, const char *name, int unit)
4031 {
4032 	ifp->if_dname = name;
4033 	ifp->if_dunit = unit;
4034 	if (unit != IF_DUNIT_NONE)
4035 		snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
4036 	else
4037 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
4038 }
4039 
4040 static int
4041 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap)
4042 {
4043 	char if_fmt[256];
4044 
4045 	snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt);
4046 	vlog(pri, if_fmt, ap);
4047 	return (0);
4048 }
4049 
4050 
4051 int
4052 if_printf(struct ifnet *ifp, const char *fmt, ...)
4053 {
4054 	va_list ap;
4055 
4056 	va_start(ap, fmt);
4057 	if_vlog(ifp, LOG_INFO, fmt, ap);
4058 	va_end(ap);
4059 	return (0);
4060 }
4061 
4062 int
4063 if_log(struct ifnet *ifp, int pri, const char *fmt, ...)
4064 {
4065 	va_list ap;
4066 
4067 	va_start(ap, fmt);
4068 	if_vlog(ifp, pri, fmt, ap);
4069 	va_end(ap);
4070 	return (0);
4071 }
4072 
4073 void
4074 if_start(struct ifnet *ifp)
4075 {
4076 
4077 	(*(ifp)->if_start)(ifp);
4078 }
4079 
4080 /*
4081  * Backwards compatibility interface for drivers
4082  * that have not implemented it
4083  */
4084 static int
4085 if_transmit_default(struct ifnet *ifp, struct mbuf *m)
4086 {
4087 	int error;
4088 
4089 	IFQ_HANDOFF(ifp, m, error);
4090 	return (error);
4091 }
4092 
4093 static void
4094 if_input_default(struct ifnet *ifp __unused, struct mbuf *m)
4095 {
4096 	m_freem(m);
4097 }
4098 
4099 int
4100 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
4101 {
4102 	int active = 0;
4103 
4104 	IF_LOCK(ifq);
4105 	if (_IF_QFULL(ifq)) {
4106 		IF_UNLOCK(ifq);
4107 		if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4108 		m_freem(m);
4109 		return (0);
4110 	}
4111 	if (ifp != NULL) {
4112 		if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust);
4113 		if (m->m_flags & (M_BCAST|M_MCAST))
4114 			if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4115 		active = ifp->if_drv_flags & IFF_DRV_OACTIVE;
4116 	}
4117 	_IF_ENQUEUE(ifq, m);
4118 	IF_UNLOCK(ifq);
4119 	if (ifp != NULL && !active)
4120 		(*(ifp)->if_start)(ifp);
4121 	return (1);
4122 }
4123 
4124 void
4125 if_register_com_alloc(u_char type,
4126     if_com_alloc_t *a, if_com_free_t *f)
4127 {
4128 
4129 	KASSERT(if_com_alloc[type] == NULL,
4130 	    ("if_register_com_alloc: %d already registered", type));
4131 	KASSERT(if_com_free[type] == NULL,
4132 	    ("if_register_com_alloc: %d free already registered", type));
4133 
4134 	if_com_alloc[type] = a;
4135 	if_com_free[type] = f;
4136 }
4137 
4138 void
4139 if_deregister_com_alloc(u_char type)
4140 {
4141 
4142 	KASSERT(if_com_alloc[type] != NULL,
4143 	    ("if_deregister_com_alloc: %d not registered", type));
4144 	KASSERT(if_com_free[type] != NULL,
4145 	    ("if_deregister_com_alloc: %d free not registered", type));
4146 
4147 	/*
4148 	 * Ensure all pending EPOCH(9) callbacks have been executed. This
4149 	 * fixes issues about late invocation of if_destroy(), which leads
4150 	 * to memory leak from if_com_alloc[type] allocated if_l2com.
4151 	 */
4152 	NET_EPOCH_DRAIN_CALLBACKS();
4153 
4154 	if_com_alloc[type] = NULL;
4155 	if_com_free[type] = NULL;
4156 }
4157 
4158 /* API for driver access to network stack owned ifnet.*/
4159 uint64_t
4160 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate)
4161 {
4162 	uint64_t oldbrate;
4163 
4164 	oldbrate = ifp->if_baudrate;
4165 	ifp->if_baudrate = baudrate;
4166 	return (oldbrate);
4167 }
4168 
4169 uint64_t
4170 if_getbaudrate(const if_t ifp)
4171 {
4172 	return (ifp->if_baudrate);
4173 }
4174 
4175 int
4176 if_setcapabilities(if_t ifp, int capabilities)
4177 {
4178 	ifp->if_capabilities = capabilities;
4179 	return (0);
4180 }
4181 
4182 int
4183 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit)
4184 {
4185 	ifp->if_capabilities &= ~clearbit;
4186 	ifp->if_capabilities |= setbit;
4187 	return (0);
4188 }
4189 
4190 int
4191 if_getcapabilities(const if_t ifp)
4192 {
4193 	return (ifp->if_capabilities);
4194 }
4195 
4196 int
4197 if_setcapenable(if_t ifp, int capabilities)
4198 {
4199 	ifp->if_capenable = capabilities;
4200 	return (0);
4201 }
4202 
4203 int
4204 if_setcapenablebit(if_t ifp, int setcap, int clearcap)
4205 {
4206 	ifp->if_capenable &= ~clearcap;
4207 	ifp->if_capenable |= setcap;
4208 	return (0);
4209 }
4210 
4211 int
4212 if_setcapabilities2(if_t ifp, int capabilities)
4213 {
4214 	ifp->if_capabilities2 = capabilities;
4215 	return (0);
4216 }
4217 
4218 int
4219 if_setcapabilities2bit(if_t ifp, int setbit, int clearbit)
4220 {
4221 	ifp->if_capabilities2 &= ~clearbit;
4222 	ifp->if_capabilities2 |= setbit;
4223 	return (0);
4224 }
4225 
4226 int
4227 if_getcapabilities2(const if_t ifp)
4228 {
4229 	return (ifp->if_capabilities2);
4230 }
4231 
4232 int
4233 if_setcapenable2(if_t ifp, int capabilities2)
4234 {
4235 	ifp->if_capenable2 = capabilities2;
4236 	return (0);
4237 }
4238 
4239 int
4240 if_setcapenable2bit(if_t ifp, int setcap, int clearcap)
4241 {
4242 	ifp->if_capenable2 &= ~clearcap;
4243 	ifp->if_capenable2 |= setcap;
4244 	return (0);
4245 }
4246 
4247 const char *
4248 if_getdname(const if_t ifp)
4249 {
4250 	return (ifp->if_dname);
4251 }
4252 
4253 void
4254 if_setdname(if_t ifp, const char *dname)
4255 {
4256 	ifp->if_dname = dname;
4257 }
4258 
4259 const char *
4260 if_name(if_t ifp)
4261 {
4262 	return (ifp->if_xname);
4263 }
4264 
4265 int
4266 if_setname(if_t ifp, const char *name)
4267 {
4268 	if (strlen(name) > sizeof(ifp->if_xname) - 1)
4269 		return (ENAMETOOLONG);
4270 	strcpy(ifp->if_xname, name);
4271 
4272 	return (0);
4273 }
4274 
4275 int
4276 if_togglecapenable(if_t ifp, int togglecap)
4277 {
4278 	ifp->if_capenable ^= togglecap;
4279 	return (0);
4280 }
4281 
4282 int
4283 if_getcapenable(const if_t ifp)
4284 {
4285 	return (ifp->if_capenable);
4286 }
4287 
4288 int
4289 if_togglecapenable2(if_t ifp, int togglecap)
4290 {
4291 	ifp->if_capenable2 ^= togglecap;
4292 	return (0);
4293 }
4294 
4295 int
4296 if_getcapenable2(const if_t ifp)
4297 {
4298 	return (ifp->if_capenable2);
4299 }
4300 
4301 int
4302 if_getdunit(const if_t ifp)
4303 {
4304 	return (ifp->if_dunit);
4305 }
4306 
4307 int
4308 if_getindex(const if_t ifp)
4309 {
4310 	return (ifp->if_index);
4311 }
4312 
4313 int
4314 if_getidxgen(const if_t ifp)
4315 {
4316 	return (ifp->if_idxgen);
4317 }
4318 
4319 const char *
4320 if_getdescr(if_t ifp)
4321 {
4322 	return (ifp->if_description);
4323 }
4324 
4325 void
4326 if_setdescr(if_t ifp, char *descrbuf)
4327 {
4328 	sx_xlock(&ifdescr_sx);
4329 	char *odescrbuf = ifp->if_description;
4330 	ifp->if_description = descrbuf;
4331 	sx_xunlock(&ifdescr_sx);
4332 
4333 	if_freedescr(odescrbuf);
4334 }
4335 
4336 char *
4337 if_allocdescr(size_t sz, int malloc_flag)
4338 {
4339 	malloc_flag &= (M_WAITOK | M_NOWAIT);
4340 	return (malloc(sz, M_IFDESCR, M_ZERO | malloc_flag));
4341 }
4342 
4343 void
4344 if_freedescr(char *descrbuf)
4345 {
4346 	free(descrbuf, M_IFDESCR);
4347 }
4348 
4349 int
4350 if_getalloctype(const if_t ifp)
4351 {
4352 	return (ifp->if_alloctype);
4353 }
4354 
4355 void
4356 if_setlastchange(if_t ifp)
4357 {
4358 	getmicrotime(&ifp->if_lastchange);
4359 }
4360 
4361 /*
4362  * This is largely undesirable because it ties ifnet to a device, but does
4363  * provide flexiblity for an embedded product vendor. Should be used with
4364  * the understanding that it violates the interface boundaries, and should be
4365  * a last resort only.
4366  */
4367 int
4368 if_setdev(if_t ifp, void *dev)
4369 {
4370 	return (0);
4371 }
4372 
4373 int
4374 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags)
4375 {
4376 	ifp->if_drv_flags &= ~clear_flags;
4377 	ifp->if_drv_flags |= set_flags;
4378 
4379 	return (0);
4380 }
4381 
4382 int
4383 if_getdrvflags(const if_t ifp)
4384 {
4385 	return (ifp->if_drv_flags);
4386 }
4387 
4388 int
4389 if_setdrvflags(if_t ifp, int flags)
4390 {
4391 	ifp->if_drv_flags = flags;
4392 	return (0);
4393 }
4394 
4395 int
4396 if_setflags(if_t ifp, int flags)
4397 {
4398 	ifp->if_flags = flags;
4399 	return (0);
4400 }
4401 
4402 int
4403 if_setflagbits(if_t ifp, int set, int clear)
4404 {
4405 	ifp->if_flags &= ~clear;
4406 	ifp->if_flags |= set;
4407 	return (0);
4408 }
4409 
4410 int
4411 if_getflags(const if_t ifp)
4412 {
4413 	return (ifp->if_flags);
4414 }
4415 
4416 int
4417 if_clearhwassist(if_t ifp)
4418 {
4419 	ifp->if_hwassist = 0;
4420 	return (0);
4421 }
4422 
4423 int
4424 if_sethwassistbits(if_t ifp, int toset, int toclear)
4425 {
4426 	ifp->if_hwassist &= ~toclear;
4427 	ifp->if_hwassist |= toset;
4428 
4429 	return (0);
4430 }
4431 
4432 int
4433 if_sethwassist(if_t ifp, int hwassist_bit)
4434 {
4435 	ifp->if_hwassist = hwassist_bit;
4436 	return (0);
4437 }
4438 
4439 int
4440 if_gethwassist(const if_t ifp)
4441 {
4442 	return (ifp->if_hwassist);
4443 }
4444 
4445 int
4446 if_togglehwassist(if_t ifp, int toggle_bits)
4447 {
4448 	ifp->if_hwassist ^= toggle_bits;
4449 	return (0);
4450 }
4451 
4452 int
4453 if_setmtu(if_t ifp, int mtu)
4454 {
4455 	ifp->if_mtu = mtu;
4456 	return (0);
4457 }
4458 
4459 void
4460 if_notifymtu(if_t ifp)
4461 {
4462 #ifdef INET6
4463 	nd6_setmtu(ifp);
4464 #endif
4465 	rt_updatemtu(ifp);
4466 }
4467 
4468 int
4469 if_getmtu(const if_t ifp)
4470 {
4471 	return (ifp->if_mtu);
4472 }
4473 
4474 int
4475 if_getmtu_family(const if_t ifp, int family)
4476 {
4477 	struct domain *dp;
4478 
4479 	SLIST_FOREACH(dp, &domains, dom_next) {
4480 		if (dp->dom_family == family && dp->dom_ifmtu != NULL)
4481 			return (dp->dom_ifmtu(ifp));
4482 	}
4483 
4484 	return (ifp->if_mtu);
4485 }
4486 
4487 /*
4488  * Methods for drivers to access interface unicast and multicast
4489  * link level addresses.  Driver shall not know 'struct ifaddr' neither
4490  * 'struct ifmultiaddr'.
4491  */
4492 u_int
4493 if_lladdr_count(if_t ifp)
4494 {
4495 	struct epoch_tracker et;
4496 	struct ifaddr *ifa;
4497 	u_int count;
4498 
4499 	count = 0;
4500 	NET_EPOCH_ENTER(et);
4501 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
4502 		if (ifa->ifa_addr->sa_family == AF_LINK)
4503 			count++;
4504 	NET_EPOCH_EXIT(et);
4505 
4506 	return (count);
4507 }
4508 
4509 int
4510 if_foreach(if_foreach_cb_t cb, void *cb_arg)
4511 {
4512 	if_t ifp;
4513 	int error;
4514 
4515 	NET_EPOCH_ASSERT();
4516 	MPASS(cb);
4517 
4518 	error = 0;
4519 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
4520 		error = cb(ifp, cb_arg);
4521 		if (error != 0)
4522 			break;
4523 	}
4524 
4525 	return (error);
4526 }
4527 
4528 /*
4529  * Iterates over the list of interfaces, permitting callback function @cb to sleep.
4530  * Stops iteration if @cb returns non-zero error code.
4531  * Returns the last error code from @cb.
4532  * @match_cb: optional match callback limiting the iteration to only matched interfaces
4533  * @match_arg: argument to pass to @match_cb
4534  * @cb: iteration callback
4535  * @cb_arg: argument to pass to @cb
4536  */
4537 int
4538 if_foreach_sleep(if_foreach_match_t match_cb, void *match_arg, if_foreach_cb_t cb,
4539     void *cb_arg)
4540 {
4541 	int match_count = 0, array_size = 16; /* 128 bytes for malloc */
4542 	struct ifnet **match_array = NULL;
4543 	int error = 0;
4544 
4545 	MPASS(cb);
4546 
4547 	while (true) {
4548 		struct ifnet **new_array;
4549 		int new_size = array_size;
4550 		struct epoch_tracker et;
4551 		struct ifnet *ifp;
4552 
4553 		while (new_size < match_count)
4554 			new_size *= 2;
4555 		new_array = malloc(new_size * sizeof(void *), M_TEMP, M_WAITOK);
4556 		if (match_array != NULL)
4557 			memcpy(new_array, match_array, array_size * sizeof(void *));
4558 		free(match_array, M_TEMP);
4559 		match_array = new_array;
4560 		array_size = new_size;
4561 
4562 		match_count = 0;
4563 		NET_EPOCH_ENTER(et);
4564 		CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
4565 			if (match_cb != NULL && !match_cb(ifp, match_arg))
4566 				continue;
4567 			if (match_count < array_size) {
4568 				if (if_try_ref(ifp))
4569 					match_array[match_count++] = ifp;
4570 			} else
4571 				match_count++;
4572 		}
4573 		NET_EPOCH_EXIT(et);
4574 
4575 		if (match_count > array_size) {
4576 			for (int i = 0; i < array_size; i++)
4577 				if_rele(match_array[i]);
4578 			continue;
4579 		} else {
4580 			for (int i = 0; i < match_count; i++) {
4581 				if (error == 0)
4582 					error = cb(match_array[i], cb_arg);
4583 				if_rele(match_array[i]);
4584 			}
4585 			free(match_array, M_TEMP);
4586 			break;
4587 		}
4588 	}
4589 
4590 	return (error);
4591 }
4592 
4593 
4594 /*
4595  * Uses just 1 pointer of the 4 available in the public struct.
4596  */
4597 if_t
4598 if_iter_start(struct if_iter *iter)
4599 {
4600 	if_t ifp;
4601 
4602 	NET_EPOCH_ASSERT();
4603 
4604 	bzero(iter, sizeof(*iter));
4605 	ifp = CK_STAILQ_FIRST(&V_ifnet);
4606 	if (ifp != NULL)
4607 		iter->context[0] = CK_STAILQ_NEXT(ifp, if_link);
4608 	else
4609 		iter->context[0] = NULL;
4610 	return (ifp);
4611 }
4612 
4613 if_t
4614 if_iter_next(struct if_iter *iter)
4615 {
4616 	if_t cur_ifp = iter->context[0];
4617 
4618 	if (cur_ifp != NULL)
4619 		iter->context[0] = CK_STAILQ_NEXT(cur_ifp, if_link);
4620 	return (cur_ifp);
4621 }
4622 
4623 void
4624 if_iter_finish(struct if_iter *iter)
4625 {
4626 	/* Nothing to do here for now. */
4627 }
4628 
4629 u_int
4630 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
4631 {
4632 	struct epoch_tracker et;
4633 	struct ifaddr *ifa;
4634 	u_int count;
4635 
4636 	MPASS(cb);
4637 
4638 	count = 0;
4639 	NET_EPOCH_ENTER(et);
4640 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
4641 		if (ifa->ifa_addr->sa_family != AF_LINK)
4642 			continue;
4643 		count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr,
4644 		    count);
4645 	}
4646 	NET_EPOCH_EXIT(et);
4647 
4648 	return (count);
4649 }
4650 
4651 u_int
4652 if_llmaddr_count(if_t ifp)
4653 {
4654 	struct epoch_tracker et;
4655 	struct ifmultiaddr *ifma;
4656 	int count;
4657 
4658 	count = 0;
4659 	NET_EPOCH_ENTER(et);
4660 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
4661 		if (ifma->ifma_addr->sa_family == AF_LINK)
4662 			count++;
4663 	NET_EPOCH_EXIT(et);
4664 
4665 	return (count);
4666 }
4667 
4668 bool
4669 if_maddr_empty(if_t ifp)
4670 {
4671 
4672 	return (CK_STAILQ_EMPTY(&ifp->if_multiaddrs));
4673 }
4674 
4675 u_int
4676 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg)
4677 {
4678 	struct epoch_tracker et;
4679 	struct ifmultiaddr *ifma;
4680 	u_int count;
4681 
4682 	MPASS(cb);
4683 
4684 	count = 0;
4685 	NET_EPOCH_ENTER(et);
4686 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4687 		if (ifma->ifma_addr->sa_family != AF_LINK)
4688 			continue;
4689 		count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr,
4690 		    count);
4691 	}
4692 	NET_EPOCH_EXIT(et);
4693 
4694 	return (count);
4695 }
4696 
4697 u_int
4698 if_foreach_addr_type(if_t ifp, int type, if_addr_cb_t cb, void *cb_arg)
4699 {
4700 	struct epoch_tracker et;
4701 	struct ifaddr *ifa;
4702 	u_int count;
4703 
4704 	MPASS(cb);
4705 
4706 	count = 0;
4707 	NET_EPOCH_ENTER(et);
4708 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
4709 		if (ifa->ifa_addr->sa_family != type)
4710 			continue;
4711 		count += (*cb)(cb_arg, ifa, count);
4712 	}
4713 	NET_EPOCH_EXIT(et);
4714 
4715 	return (count);
4716 }
4717 
4718 struct ifaddr *
4719 ifa_iter_start(if_t ifp, struct ifa_iter *iter)
4720 {
4721 	struct ifaddr *ifa;
4722 
4723 	NET_EPOCH_ASSERT();
4724 
4725 	bzero(iter, sizeof(*iter));
4726 	ifa = CK_STAILQ_FIRST(&ifp->if_addrhead);
4727 	if (ifa != NULL)
4728 		iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
4729 	else
4730 		iter->context[0] = NULL;
4731 	return (ifa);
4732 }
4733 
4734 struct ifaddr *
4735 ifa_iter_next(struct ifa_iter *iter)
4736 {
4737 	struct ifaddr *ifa = iter->context[0];
4738 
4739 	if (ifa != NULL)
4740 		iter->context[0] = CK_STAILQ_NEXT(ifa, ifa_link);
4741 	return (ifa);
4742 }
4743 
4744 void
4745 ifa_iter_finish(struct ifa_iter *iter)
4746 {
4747 	/* Nothing to do here for now. */
4748 }
4749 
4750 int
4751 if_setsoftc(if_t ifp, void *softc)
4752 {
4753 	ifp->if_softc = softc;
4754 	return (0);
4755 }
4756 
4757 void *
4758 if_getsoftc(const if_t ifp)
4759 {
4760 	return (ifp->if_softc);
4761 }
4762 
4763 void
4764 if_setrcvif(struct mbuf *m, if_t ifp)
4765 {
4766 
4767 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
4768 	m->m_pkthdr.rcvif = (struct ifnet *)ifp;
4769 }
4770 
4771 void
4772 if_setvtag(struct mbuf *m, uint16_t tag)
4773 {
4774 	m->m_pkthdr.ether_vtag = tag;
4775 }
4776 
4777 uint16_t
4778 if_getvtag(struct mbuf *m)
4779 {
4780 	return (m->m_pkthdr.ether_vtag);
4781 }
4782 
4783 int
4784 if_sendq_empty(if_t ifp)
4785 {
4786 	return (IFQ_DRV_IS_EMPTY(&ifp->if_snd));
4787 }
4788 
4789 struct ifaddr *
4790 if_getifaddr(const if_t ifp)
4791 {
4792 	return (ifp->if_addr);
4793 }
4794 
4795 int
4796 if_setsendqready(if_t ifp)
4797 {
4798 	IFQ_SET_READY(&ifp->if_snd);
4799 	return (0);
4800 }
4801 
4802 int
4803 if_setsendqlen(if_t ifp, int tx_desc_count)
4804 {
4805 	IFQ_SET_MAXLEN(&ifp->if_snd, tx_desc_count);
4806 	ifp->if_snd.ifq_drv_maxlen = tx_desc_count;
4807 	return (0);
4808 }
4809 
4810 void
4811 if_setnetmapadapter(if_t ifp, struct netmap_adapter *na)
4812 {
4813 	ifp->if_netmap = na;
4814 }
4815 
4816 struct netmap_adapter *
4817 if_getnetmapadapter(if_t ifp)
4818 {
4819 	return (ifp->if_netmap);
4820 }
4821 
4822 int
4823 if_vlantrunkinuse(if_t ifp)
4824 {
4825 	return (ifp->if_vlantrunk != NULL);
4826 }
4827 
4828 void
4829 if_init(if_t ifp, void *ctx)
4830 {
4831 	(*ifp->if_init)(ctx);
4832 }
4833 
4834 void
4835 if_input(if_t ifp, struct mbuf* sendmp)
4836 {
4837 	(*ifp->if_input)(ifp, sendmp);
4838 }
4839 
4840 int
4841 if_transmit(if_t ifp, struct mbuf *m)
4842 {
4843 	return ((*ifp->if_transmit)(ifp, m));
4844 }
4845 
4846 int
4847 if_resolvemulti(if_t ifp, struct sockaddr **srcs, struct sockaddr *dst)
4848 {
4849 	if (ifp->if_resolvemulti == NULL)
4850 		return (EOPNOTSUPP);
4851 
4852 	return (ifp->if_resolvemulti(ifp, srcs, dst));
4853 }
4854 
4855 int
4856 if_ioctl(if_t ifp, u_long cmd, void *data)
4857 {
4858 	if (ifp->if_ioctl == NULL)
4859 		return (EOPNOTSUPP);
4860 
4861 	return (ifp->if_ioctl(ifp, cmd, data));
4862 }
4863 
4864 struct mbuf *
4865 if_dequeue(if_t ifp)
4866 {
4867 	struct mbuf *m;
4868 
4869 	IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
4870 	return (m);
4871 }
4872 
4873 int
4874 if_sendq_prepend(if_t ifp, struct mbuf *m)
4875 {
4876 	IFQ_DRV_PREPEND(&ifp->if_snd, m);
4877 	return (0);
4878 }
4879 
4880 int
4881 if_setifheaderlen(if_t ifp, int len)
4882 {
4883 	ifp->if_hdrlen = len;
4884 	return (0);
4885 }
4886 
4887 caddr_t
4888 if_getlladdr(const if_t ifp)
4889 {
4890 	return (IF_LLADDR(ifp));
4891 }
4892 
4893 void *
4894 if_gethandle(u_char type)
4895 {
4896 	return (if_alloc(type));
4897 }
4898 
4899 void
4900 if_vlancap(if_t ifp)
4901 {
4902 	VLAN_CAPABILITIES(ifp);
4903 }
4904 
4905 int
4906 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax)
4907 {
4908 	ifp->if_hw_tsomax = if_hw_tsomax;
4909         return (0);
4910 }
4911 
4912 int
4913 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount)
4914 {
4915 	ifp->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount;
4916         return (0);
4917 }
4918 
4919 int
4920 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize)
4921 {
4922 	ifp->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize;
4923         return (0);
4924 }
4925 
4926 u_int
4927 if_gethwtsomax(const if_t ifp)
4928 {
4929 	return (ifp->if_hw_tsomax);
4930 }
4931 
4932 u_int
4933 if_gethwtsomaxsegcount(const if_t ifp)
4934 {
4935 	return (ifp->if_hw_tsomaxsegcount);
4936 }
4937 
4938 u_int
4939 if_gethwtsomaxsegsize(const if_t ifp)
4940 {
4941 	return (ifp->if_hw_tsomaxsegsize);
4942 }
4943 
4944 void
4945 if_setinitfn(if_t ifp, if_init_fn_t init_fn)
4946 {
4947 	ifp->if_init = init_fn;
4948 }
4949 
4950 void
4951 if_setinputfn(if_t ifp, if_input_fn_t input_fn)
4952 {
4953 	ifp->if_input = input_fn;
4954 }
4955 
4956 if_input_fn_t
4957 if_getinputfn(if_t ifp)
4958 {
4959 	return (ifp->if_input);
4960 }
4961 
4962 void
4963 if_setioctlfn(if_t ifp, if_ioctl_fn_t ioctl_fn)
4964 {
4965 	ifp->if_ioctl = ioctl_fn;
4966 }
4967 
4968 void
4969 if_setoutputfn(if_t ifp, if_output_fn_t output_fn)
4970 {
4971 	ifp->if_output = output_fn;
4972 }
4973 
4974 void
4975 if_setstartfn(if_t ifp, if_start_fn_t start_fn)
4976 {
4977 	ifp->if_start = start_fn;
4978 }
4979 
4980 if_start_fn_t
4981 if_getstartfn(if_t ifp)
4982 {
4983 	return (ifp->if_start);
4984 }
4985 
4986 void
4987 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn)
4988 {
4989 	ifp->if_transmit = start_fn;
4990 }
4991 
4992 if_transmit_fn_t
4993 if_gettransmitfn(if_t ifp)
4994 {
4995 	return (ifp->if_transmit);
4996 }
4997 
4998 void
4999 if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn)
5000 {
5001 	ifp->if_qflush = flush_fn;
5002 }
5003 
5004 void
5005 if_setsndtagallocfn(if_t ifp, if_snd_tag_alloc_t alloc_fn)
5006 {
5007 	ifp->if_snd_tag_alloc = alloc_fn;
5008 }
5009 
5010 int
5011 if_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
5012     struct m_snd_tag **mstp)
5013 {
5014 	if (ifp->if_snd_tag_alloc == NULL)
5015 		return (EOPNOTSUPP);
5016 	return (ifp->if_snd_tag_alloc(ifp, params, mstp));
5017 }
5018 
5019 void
5020 if_setgetcounterfn(if_t ifp, if_get_counter_t fn)
5021 {
5022 	ifp->if_get_counter = fn;
5023 }
5024 
5025 void
5026 if_setreassignfn(if_t ifp, if_reassign_fn_t fn)
5027 {
5028 	ifp->if_reassign = fn;
5029 }
5030 
5031 void
5032 if_setratelimitqueryfn(if_t ifp, if_ratelimit_query_t fn)
5033 {
5034 	ifp->if_ratelimit_query = fn;
5035 }
5036 
5037 void
5038 if_setdebugnet_methods(if_t ifp, struct debugnet_methods *m)
5039 {
5040 	ifp->if_debugnet_methods = m;
5041 }
5042 
5043 struct label *
5044 if_getmaclabel(if_t ifp)
5045 {
5046 	return (ifp->if_label);
5047 }
5048 
5049 void
5050 if_setmaclabel(if_t ifp, struct label *label)
5051 {
5052 	ifp->if_label = label;
5053 }
5054 
5055 int
5056 if_gettype(if_t ifp)
5057 {
5058 	return (ifp->if_type);
5059 }
5060 
5061 void *
5062 if_getllsoftc(if_t ifp)
5063 {
5064 	return (ifp->if_llsoftc);
5065 }
5066 
5067 void
5068 if_setllsoftc(if_t ifp, void *llsoftc)
5069 {
5070 	ifp->if_llsoftc = llsoftc;
5071 };
5072 
5073 int
5074 if_getlinkstate(if_t ifp)
5075 {
5076 	return (ifp->if_link_state);
5077 }
5078 
5079 const uint8_t *
5080 if_getbroadcastaddr(if_t ifp)
5081 {
5082 	return (ifp->if_broadcastaddr);
5083 }
5084 
5085 void
5086 if_setbroadcastaddr(if_t ifp, const uint8_t *addr)
5087 {
5088 	ifp->if_broadcastaddr = addr;
5089 }
5090 
5091 int
5092 if_getnumadomain(if_t ifp)
5093 {
5094 	return (ifp->if_numa_domain);
5095 }
5096 
5097 uint64_t
5098 if_getcounter(if_t ifp, ift_counter counter)
5099 {
5100 	return (ifp->if_get_counter(ifp, counter));
5101 }
5102 
5103 bool
5104 if_altq_is_enabled(if_t ifp)
5105 {
5106 	return (ALTQ_IS_ENABLED(&ifp->if_snd));
5107 }
5108 
5109 struct vnet *
5110 if_getvnet(if_t ifp)
5111 {
5112 	return (ifp->if_vnet);
5113 }
5114 
5115 void *
5116 if_getafdata(if_t ifp, int af)
5117 {
5118 	return (ifp->if_afdata[af]);
5119 }
5120 
5121 u_int
5122 if_getfib(if_t ifp)
5123 {
5124 	return (ifp->if_fib);
5125 }
5126 
5127 uint8_t
5128 if_getaddrlen(if_t ifp)
5129 {
5130 	return (ifp->if_addrlen);
5131 }
5132 
5133 struct bpf_if *
5134 if_getbpf(if_t ifp)
5135 {
5136 	return (ifp->if_bpf);
5137 }
5138 
5139 struct ifvlantrunk *
5140 if_getvlantrunk(if_t ifp)
5141 {
5142 	return (ifp->if_vlantrunk);
5143 }
5144 
5145 uint8_t
5146 if_getpcp(if_t ifp)
5147 {
5148 	return (ifp->if_pcp);
5149 }
5150 
5151 void *
5152 if_getl2com(if_t ifp)
5153 {
5154 	return (ifp->if_l2com);
5155 }
5156 
5157 void
5158 if_setipsec_accel_methods(if_t ifp, const struct if_ipsec_accel_methods *m)
5159 {
5160 	ifp->if_ipsec_accel_m = m;
5161 }
5162 
5163 #ifdef DDB
5164 static void
5165 if_show_ifnet(struct ifnet *ifp)
5166 {
5167 	if (ifp == NULL)
5168 		return;
5169 	db_printf("%s:\n", ifp->if_xname);
5170 #define	IF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, ifp->e);
5171 	IF_DB_PRINTF("%s", if_dname);
5172 	IF_DB_PRINTF("%d", if_dunit);
5173 	IF_DB_PRINTF("%s", if_description);
5174 	IF_DB_PRINTF("%u", if_index);
5175 	IF_DB_PRINTF("%d", if_idxgen);
5176 	IF_DB_PRINTF("%u", if_refcount);
5177 	IF_DB_PRINTF("%p", if_softc);
5178 	IF_DB_PRINTF("%p", if_l2com);
5179 	IF_DB_PRINTF("%p", if_llsoftc);
5180 	IF_DB_PRINTF("%d", if_amcount);
5181 	IF_DB_PRINTF("%p", if_addr);
5182 	IF_DB_PRINTF("%p", if_broadcastaddr);
5183 	IF_DB_PRINTF("%p", if_afdata);
5184 	IF_DB_PRINTF("%d", if_afdata_initialized);
5185 	IF_DB_PRINTF("%u", if_fib);
5186 	IF_DB_PRINTF("%p", if_vnet);
5187 	IF_DB_PRINTF("%p", if_home_vnet);
5188 	IF_DB_PRINTF("%p", if_vlantrunk);
5189 	IF_DB_PRINTF("%p", if_bpf);
5190 	IF_DB_PRINTF("%u", if_pcount);
5191 	IF_DB_PRINTF("%p", if_bridge);
5192 	IF_DB_PRINTF("%p", if_lagg);
5193 	IF_DB_PRINTF("%p", if_pf_kif);
5194 	IF_DB_PRINTF("%p", if_carp);
5195 	IF_DB_PRINTF("%p", if_label);
5196 	IF_DB_PRINTF("%p", if_netmap);
5197 	IF_DB_PRINTF("0x%08x", if_flags);
5198 	IF_DB_PRINTF("0x%08x", if_drv_flags);
5199 	IF_DB_PRINTF("0x%08x", if_capabilities);
5200 	IF_DB_PRINTF("0x%08x", if_capenable);
5201 	IF_DB_PRINTF("%p", if_snd.ifq_head);
5202 	IF_DB_PRINTF("%p", if_snd.ifq_tail);
5203 	IF_DB_PRINTF("%d", if_snd.ifq_len);
5204 	IF_DB_PRINTF("%d", if_snd.ifq_maxlen);
5205 	IF_DB_PRINTF("%p", if_snd.ifq_drv_head);
5206 	IF_DB_PRINTF("%p", if_snd.ifq_drv_tail);
5207 	IF_DB_PRINTF("%d", if_snd.ifq_drv_len);
5208 	IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen);
5209 	IF_DB_PRINTF("%d", if_snd.altq_type);
5210 	IF_DB_PRINTF("%x", if_snd.altq_flags);
5211 #undef IF_DB_PRINTF
5212 }
5213 
5214 DB_SHOW_COMMAND(ifnet, db_show_ifnet)
5215 {
5216 	if (!have_addr) {
5217 		db_printf("usage: show ifnet <struct ifnet *>\n");
5218 		return;
5219 	}
5220 
5221 	if_show_ifnet((struct ifnet *)addr);
5222 }
5223 
5224 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets)
5225 {
5226 	struct ifnet *ifp;
5227 	u_short idx;
5228 
5229 	for (idx = 1; idx <= if_index; idx++) {
5230 		ifp = ifindex_table[idx].ife_ifnet;
5231 		if (ifp == NULL)
5232 			continue;
5233 		db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp);
5234 		if (db_pager_quit)
5235 			break;
5236 	}
5237 }
5238 #endif	/* DDB */
5239