1 /*- 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if.c 8.5 (Berkeley) 1/9/95 30 * $FreeBSD$ 31 */ 32 33 #include "opt_compat.h" 34 #include "opt_inet6.h" 35 #include "opt_inet.h" 36 37 #include <sys/param.h> 38 #include <sys/types.h> 39 #include <sys/conf.h> 40 #include <sys/malloc.h> 41 #include <sys/sbuf.h> 42 #include <sys/bus.h> 43 #include <sys/mbuf.h> 44 #include <sys/systm.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/protosw.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/refcount.h> 53 #include <sys/module.h> 54 #include <sys/rwlock.h> 55 #include <sys/sockio.h> 56 #include <sys/syslog.h> 57 #include <sys/sysctl.h> 58 #include <sys/taskqueue.h> 59 #include <sys/domain.h> 60 #include <sys/jail.h> 61 #include <sys/priv.h> 62 63 #include <machine/stdarg.h> 64 #include <vm/uma.h> 65 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/if.h> 69 #include <net/if_arp.h> 70 #include <net/if_clone.h> 71 #include <net/if_dl.h> 72 #include <net/if_types.h> 73 #include <net/if_var.h> 74 #include <net/if_media.h> 75 #include <net/if_vlan_var.h> 76 #include <net/radix.h> 77 #include <net/route.h> 78 #include <net/vnet.h> 79 80 #if defined(INET) || defined(INET6) 81 #include <net/ethernet.h> 82 #include <netinet/in.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_carp.h> 86 #ifdef INET 87 #include <netinet/if_ether.h> 88 #endif /* INET */ 89 #ifdef INET6 90 #include <netinet6/in6_var.h> 91 #include <netinet6/in6_ifattach.h> 92 #endif /* INET6 */ 93 #endif /* INET || INET6 */ 94 95 #include <security/mac/mac_framework.h> 96 97 #ifdef COMPAT_FREEBSD32 98 #include <sys/mount.h> 99 #include <compat/freebsd32/freebsd32.h> 100 #endif 101 102 struct ifindex_entry { 103 struct ifnet *ife_ifnet; 104 }; 105 106 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 107 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 108 109 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 110 &ifqmaxlen, 0, "max send queue size"); 111 112 /* Log link state change events */ 113 static int log_link_state_change = 1; 114 115 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 116 &log_link_state_change, 0, 117 "log interface link state change events"); 118 119 /* Interface description */ 120 static unsigned int ifdescr_maxlen = 1024; 121 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 122 &ifdescr_maxlen, 0, 123 "administrative maximum length for interface description"); 124 125 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 126 127 /* global sx for non-critical path ifdescr */ 128 static struct sx ifdescr_sx; 129 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 130 131 void (*bridge_linkstate_p)(struct ifnet *ifp); 132 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 133 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 134 /* These are external hooks for CARP. */ 135 void (*carp_linkstate_p)(struct ifnet *ifp); 136 void (*carp_demote_adj_p)(int, char *); 137 int (*carp_master_p)(struct ifaddr *); 138 #if defined(INET) || defined(INET6) 139 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 140 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 141 const struct sockaddr *sa); 142 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 143 int (*carp_attach_p)(struct ifaddr *, int); 144 void (*carp_detach_p)(struct ifaddr *); 145 #endif 146 #ifdef INET 147 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 148 #endif 149 #ifdef INET6 150 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 151 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 152 const struct in6_addr *taddr); 153 #endif 154 155 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 156 157 /* 158 * XXX: Style; these should be sorted alphabetically, and unprototyped 159 * static functions should be prototyped. Currently they are sorted by 160 * declaration order. 161 */ 162 static void if_attachdomain(void *); 163 static void if_attachdomain1(struct ifnet *); 164 static int ifconf(u_long, caddr_t); 165 static void if_freemulti(struct ifmultiaddr *); 166 static void if_init(void *); 167 static void if_grow(void); 168 static void if_route(struct ifnet *, int flag, int fam); 169 static int if_setflag(struct ifnet *, int, int, int *, int); 170 static int if_transmit(struct ifnet *ifp, struct mbuf *m); 171 static void if_unroute(struct ifnet *, int flag, int fam); 172 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 173 static int if_rtdel(struct radix_node *, void *); 174 static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *); 175 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 176 static void do_link_state_change(void *, int); 177 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 178 static int if_getgroupmembers(struct ifgroupreq *); 179 static void if_delgroups(struct ifnet *); 180 static void if_attach_internal(struct ifnet *, int); 181 static void if_detach_internal(struct ifnet *, int); 182 183 #ifdef INET6 184 /* 185 * XXX: declare here to avoid to include many inet6 related files.. 186 * should be more generalized? 187 */ 188 extern void nd6_setmtu(struct ifnet *); 189 #endif 190 191 VNET_DEFINE(int, if_index); 192 int ifqmaxlen = IFQ_MAXLEN; 193 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 194 VNET_DEFINE(struct ifgrouphead, ifg_head); 195 196 static VNET_DEFINE(int, if_indexlim) = 8; 197 198 /* Table of ifnet by index. */ 199 VNET_DEFINE(struct ifindex_entry *, ifindex_table); 200 201 #define V_if_indexlim VNET(if_indexlim) 202 #define V_ifindex_table VNET(ifindex_table) 203 204 /* 205 * The global network interface list (V_ifnet) and related state (such as 206 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and 207 * an rwlock. Either may be acquired shared to stablize the list, but both 208 * must be acquired writable to modify the list. This model allows us to 209 * both stablize the interface list during interrupt thread processing, but 210 * also to stablize it over long-running ioctls, without introducing priority 211 * inversions and deadlocks. 212 */ 213 struct rwlock ifnet_rwlock; 214 struct sx ifnet_sxlock; 215 216 /* 217 * The allocation of network interfaces is a rather non-atomic affair; we 218 * need to select an index before we are ready to expose the interface for 219 * use, so will use this pointer value to indicate reservation. 220 */ 221 #define IFNET_HOLD (void *)(uintptr_t)(-1) 222 223 static if_com_alloc_t *if_com_alloc[256]; 224 static if_com_free_t *if_com_free[256]; 225 226 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 227 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 228 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 229 230 struct ifnet * 231 ifnet_byindex_locked(u_short idx) 232 { 233 234 if (idx > V_if_index) 235 return (NULL); 236 if (V_ifindex_table[idx].ife_ifnet == IFNET_HOLD) 237 return (NULL); 238 return (V_ifindex_table[idx].ife_ifnet); 239 } 240 241 struct ifnet * 242 ifnet_byindex(u_short idx) 243 { 244 struct ifnet *ifp; 245 246 IFNET_RLOCK_NOSLEEP(); 247 ifp = ifnet_byindex_locked(idx); 248 IFNET_RUNLOCK_NOSLEEP(); 249 return (ifp); 250 } 251 252 struct ifnet * 253 ifnet_byindex_ref(u_short idx) 254 { 255 struct ifnet *ifp; 256 257 IFNET_RLOCK_NOSLEEP(); 258 ifp = ifnet_byindex_locked(idx); 259 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) { 260 IFNET_RUNLOCK_NOSLEEP(); 261 return (NULL); 262 } 263 if_ref(ifp); 264 IFNET_RUNLOCK_NOSLEEP(); 265 return (ifp); 266 } 267 268 /* 269 * Allocate an ifindex array entry; return 0 on success or an error on 270 * failure. 271 */ 272 static int 273 ifindex_alloc_locked(u_short *idxp) 274 { 275 u_short idx; 276 277 IFNET_WLOCK_ASSERT(); 278 279 retry: 280 /* 281 * Try to find an empty slot below V_if_index. If we fail, take the 282 * next slot. 283 */ 284 for (idx = 1; idx <= V_if_index; idx++) { 285 if (V_ifindex_table[idx].ife_ifnet == NULL) 286 break; 287 } 288 289 /* Catch if_index overflow. */ 290 if (idx >= V_if_indexlim) { 291 if_grow(); 292 goto retry; 293 } 294 if (idx > V_if_index) 295 V_if_index = idx; 296 *idxp = idx; 297 return (0); 298 } 299 300 static void 301 ifindex_free_locked(u_short idx) 302 { 303 304 IFNET_WLOCK_ASSERT(); 305 306 V_ifindex_table[idx].ife_ifnet = NULL; 307 while (V_if_index > 0 && 308 V_ifindex_table[V_if_index].ife_ifnet == NULL) 309 V_if_index--; 310 } 311 312 static void 313 ifindex_free(u_short idx) 314 { 315 316 IFNET_WLOCK(); 317 ifindex_free_locked(idx); 318 IFNET_WUNLOCK(); 319 } 320 321 static void 322 ifnet_setbyindex_locked(u_short idx, struct ifnet *ifp) 323 { 324 325 IFNET_WLOCK_ASSERT(); 326 327 V_ifindex_table[idx].ife_ifnet = ifp; 328 } 329 330 static void 331 ifnet_setbyindex(u_short idx, struct ifnet *ifp) 332 { 333 334 IFNET_WLOCK(); 335 ifnet_setbyindex_locked(idx, ifp); 336 IFNET_WUNLOCK(); 337 } 338 339 struct ifaddr * 340 ifaddr_byindex(u_short idx) 341 { 342 struct ifaddr *ifa; 343 344 IFNET_RLOCK_NOSLEEP(); 345 ifa = ifnet_byindex_locked(idx)->if_addr; 346 if (ifa != NULL) 347 ifa_ref(ifa); 348 IFNET_RUNLOCK_NOSLEEP(); 349 return (ifa); 350 } 351 352 /* 353 * Network interface utility routines. 354 * 355 * Routines with ifa_ifwith* names take sockaddr *'s as 356 * parameters. 357 */ 358 359 static void 360 vnet_if_init(const void *unused __unused) 361 { 362 363 TAILQ_INIT(&V_ifnet); 364 TAILQ_INIT(&V_ifg_head); 365 IFNET_WLOCK(); 366 if_grow(); /* create initial table */ 367 IFNET_WUNLOCK(); 368 vnet_if_clone_init(); 369 } 370 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 371 NULL); 372 373 /* ARGSUSED*/ 374 static void 375 if_init(void *dummy __unused) 376 { 377 378 IFNET_LOCK_INIT(); 379 if_clone_init(); 380 } 381 SYSINIT(interfaces, SI_SUB_INIT_IF, SI_ORDER_FIRST, if_init, NULL); 382 383 384 #ifdef VIMAGE 385 static void 386 vnet_if_uninit(const void *unused __unused) 387 { 388 389 VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " 390 "not empty", __func__, __LINE__, &V_ifnet)); 391 VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " 392 "not empty", __func__, __LINE__, &V_ifg_head)); 393 394 free((caddr_t)V_ifindex_table, M_IFNET); 395 } 396 VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, 397 vnet_if_uninit, NULL); 398 #endif 399 400 static void 401 if_grow(void) 402 { 403 int oldlim; 404 u_int n; 405 struct ifindex_entry *e; 406 407 IFNET_WLOCK_ASSERT(); 408 oldlim = V_if_indexlim; 409 IFNET_WUNLOCK(); 410 n = (oldlim << 1) * sizeof(*e); 411 e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); 412 IFNET_WLOCK(); 413 if (V_if_indexlim != oldlim) { 414 free(e, M_IFNET); 415 return; 416 } 417 if (V_ifindex_table != NULL) { 418 memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); 419 free((caddr_t)V_ifindex_table, M_IFNET); 420 } 421 V_if_indexlim <<= 1; 422 V_ifindex_table = e; 423 } 424 425 /* 426 * Allocate a struct ifnet and an index for an interface. A layer 2 427 * common structure will also be allocated if an allocation routine is 428 * registered for the passed type. 429 */ 430 struct ifnet * 431 if_alloc(u_char type) 432 { 433 struct ifnet *ifp; 434 u_short idx; 435 436 ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO); 437 IFNET_WLOCK(); 438 if (ifindex_alloc_locked(&idx) != 0) { 439 IFNET_WUNLOCK(); 440 free(ifp, M_IFNET); 441 return (NULL); 442 } 443 ifnet_setbyindex_locked(idx, IFNET_HOLD); 444 IFNET_WUNLOCK(); 445 ifp->if_index = idx; 446 ifp->if_type = type; 447 ifp->if_alloctype = type; 448 if (if_com_alloc[type] != NULL) { 449 ifp->if_l2com = if_com_alloc[type](type, ifp); 450 if (ifp->if_l2com == NULL) { 451 free(ifp, M_IFNET); 452 ifindex_free(idx); 453 return (NULL); 454 } 455 } 456 457 IF_ADDR_LOCK_INIT(ifp); 458 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 459 ifp->if_afdata_initialized = 0; 460 IF_AFDATA_LOCK_INIT(ifp); 461 TAILQ_INIT(&ifp->if_addrhead); 462 TAILQ_INIT(&ifp->if_multiaddrs); 463 TAILQ_INIT(&ifp->if_groups); 464 #ifdef MAC 465 mac_ifnet_init(ifp); 466 #endif 467 ifq_init(&ifp->if_snd, ifp); 468 469 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 470 for (int i = 0; i < IFCOUNTERS; i++) 471 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 472 ifp->if_get_counter = if_get_counter_default; 473 ifnet_setbyindex(ifp->if_index, ifp); 474 return (ifp); 475 } 476 477 /* 478 * Do the actual work of freeing a struct ifnet, and layer 2 common 479 * structure. This call is made when the last reference to an 480 * interface is released. 481 */ 482 static void 483 if_free_internal(struct ifnet *ifp) 484 { 485 486 KASSERT((ifp->if_flags & IFF_DYING), 487 ("if_free_internal: interface not dying")); 488 489 if (if_com_free[ifp->if_alloctype] != NULL) 490 if_com_free[ifp->if_alloctype](ifp->if_l2com, 491 ifp->if_alloctype); 492 493 #ifdef MAC 494 mac_ifnet_destroy(ifp); 495 #endif /* MAC */ 496 if (ifp->if_description != NULL) 497 free(ifp->if_description, M_IFDESCR); 498 IF_AFDATA_DESTROY(ifp); 499 IF_ADDR_LOCK_DESTROY(ifp); 500 ifq_delete(&ifp->if_snd); 501 502 for (int i = 0; i < IFCOUNTERS; i++) 503 counter_u64_free(ifp->if_counters[i]); 504 505 free(ifp, M_IFNET); 506 } 507 508 /* 509 * Deregister an interface and free the associated storage. 510 */ 511 void 512 if_free(struct ifnet *ifp) 513 { 514 515 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 516 517 CURVNET_SET_QUIET(ifp->if_vnet); 518 IFNET_WLOCK(); 519 KASSERT(ifp == ifnet_byindex_locked(ifp->if_index), 520 ("%s: freeing unallocated ifnet", ifp->if_xname)); 521 522 ifindex_free_locked(ifp->if_index); 523 IFNET_WUNLOCK(); 524 525 if (refcount_release(&ifp->if_refcount)) 526 if_free_internal(ifp); 527 CURVNET_RESTORE(); 528 } 529 530 /* 531 * Interfaces to keep an ifnet type-stable despite the possibility of the 532 * driver calling if_free(). If there are additional references, we defer 533 * freeing the underlying data structure. 534 */ 535 void 536 if_ref(struct ifnet *ifp) 537 { 538 539 /* We don't assert the ifnet list lock here, but arguably should. */ 540 refcount_acquire(&ifp->if_refcount); 541 } 542 543 void 544 if_rele(struct ifnet *ifp) 545 { 546 547 if (!refcount_release(&ifp->if_refcount)) 548 return; 549 if_free_internal(ifp); 550 } 551 552 void 553 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 554 { 555 556 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 557 558 if (ifq->ifq_maxlen == 0) 559 ifq->ifq_maxlen = ifqmaxlen; 560 561 ifq->altq_type = 0; 562 ifq->altq_disc = NULL; 563 ifq->altq_flags &= ALTQF_CANTCHANGE; 564 ifq->altq_tbr = NULL; 565 ifq->altq_ifp = ifp; 566 } 567 568 void 569 ifq_delete(struct ifaltq *ifq) 570 { 571 mtx_destroy(&ifq->ifq_mtx); 572 } 573 574 /* 575 * Perform generic interface initalization tasks and attach the interface 576 * to the list of "active" interfaces. If vmove flag is set on entry 577 * to if_attach_internal(), perform only a limited subset of initialization 578 * tasks, given that we are moving from one vnet to another an ifnet which 579 * has already been fully initialized. 580 * 581 * XXX: 582 * - The decision to return void and thus require this function to 583 * succeed is questionable. 584 * - We should probably do more sanity checking. For instance we don't 585 * do anything to insure if_xname is unique or non-empty. 586 */ 587 void 588 if_attach(struct ifnet *ifp) 589 { 590 591 if_attach_internal(ifp, 0); 592 } 593 594 /* 595 * Compute the least common TSO limit. 596 */ 597 void 598 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 599 { 600 /* 601 * 1) If there is no limit currently, take the limit from 602 * the network adapter. 603 * 604 * 2) If the network adapter has a limit below the current 605 * limit, apply it. 606 */ 607 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 608 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 609 pmax->tsomaxbytes = ifp->if_hw_tsomax; 610 } 611 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 612 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 613 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 614 } 615 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 616 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 617 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 618 } 619 } 620 621 /* 622 * Update TSO limit of a network adapter. 623 * 624 * Returns zero if no change. Else non-zero. 625 */ 626 int 627 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 628 { 629 int retval = 0; 630 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 631 ifp->if_hw_tsomax = pmax->tsomaxbytes; 632 retval++; 633 } 634 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 635 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 636 retval++; 637 } 638 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 639 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 640 retval++; 641 } 642 return (retval); 643 } 644 645 static void 646 if_attach_internal(struct ifnet *ifp, int vmove) 647 { 648 unsigned socksize, ifasize; 649 int namelen, masklen; 650 struct sockaddr_dl *sdl; 651 struct ifaddr *ifa; 652 653 if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) 654 panic ("%s: BUG: if_attach called without if_alloc'd input()\n", 655 ifp->if_xname); 656 657 #ifdef VIMAGE 658 ifp->if_vnet = curvnet; 659 if (ifp->if_home_vnet == NULL) 660 ifp->if_home_vnet = curvnet; 661 #endif 662 663 if_addgroup(ifp, IFG_ALL); 664 665 getmicrotime(&ifp->if_lastchange); 666 ifp->if_epoch = time_uptime; 667 668 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 669 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 670 ("transmit and qflush must both either be set or both be NULL")); 671 if (ifp->if_transmit == NULL) { 672 ifp->if_transmit = if_transmit; 673 ifp->if_qflush = if_qflush; 674 } 675 676 if (!vmove) { 677 #ifdef MAC 678 mac_ifnet_create(ifp); 679 #endif 680 681 /* 682 * Create a Link Level name for this device. 683 */ 684 namelen = strlen(ifp->if_xname); 685 /* 686 * Always save enough space for any possiable name so we 687 * can do a rename in place later. 688 */ 689 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 690 socksize = masklen + ifp->if_addrlen; 691 if (socksize < sizeof(*sdl)) 692 socksize = sizeof(*sdl); 693 socksize = roundup2(socksize, sizeof(long)); 694 ifasize = sizeof(*ifa) + 2 * socksize; 695 ifa = ifa_alloc(ifasize, M_WAITOK); 696 sdl = (struct sockaddr_dl *)(ifa + 1); 697 sdl->sdl_len = socksize; 698 sdl->sdl_family = AF_LINK; 699 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 700 sdl->sdl_nlen = namelen; 701 sdl->sdl_index = ifp->if_index; 702 sdl->sdl_type = ifp->if_type; 703 ifp->if_addr = ifa; 704 ifa->ifa_ifp = ifp; 705 ifa->ifa_rtrequest = link_rtrequest; 706 ifa->ifa_addr = (struct sockaddr *)sdl; 707 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 708 ifa->ifa_netmask = (struct sockaddr *)sdl; 709 sdl->sdl_len = masklen; 710 while (namelen != 0) 711 sdl->sdl_data[--namelen] = 0xff; 712 TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 713 /* Reliably crash if used uninitialized. */ 714 ifp->if_broadcastaddr = NULL; 715 716 #if defined(INET) || defined(INET6) 717 /* Use defaults for TSO, if nothing is set */ 718 if (ifp->if_hw_tsomax == 0 && 719 ifp->if_hw_tsomaxsegcount == 0 && 720 ifp->if_hw_tsomaxsegsize == 0) { 721 /* 722 * The TSO defaults needs to be such that an 723 * NFS mbuf list of 35 mbufs totalling just 724 * below 64K works and that a chain of mbufs 725 * can be defragged into at most 32 segments: 726 */ 727 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 728 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 729 ifp->if_hw_tsomaxsegcount = 35; 730 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 731 732 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 733 if (ifp->if_capabilities & IFCAP_TSO) { 734 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 735 ifp->if_hw_tsomax, 736 ifp->if_hw_tsomaxsegcount, 737 ifp->if_hw_tsomaxsegsize); 738 } 739 } 740 /* 741 * If the "if_hw_tsomax" limit is set, check if it is 742 * too small: 743 */ 744 KASSERT(ifp->if_hw_tsomax == 0 || 745 ifp->if_hw_tsomax >= (IP_MAXPACKET / 8), 746 ("%s: if_hw_tsomax is outside of range", __func__)); 747 #endif 748 } 749 #ifdef VIMAGE 750 else { 751 /* 752 * Update the interface index in the link layer address 753 * of the interface. 754 */ 755 for (ifa = ifp->if_addr; ifa != NULL; 756 ifa = TAILQ_NEXT(ifa, ifa_link)) { 757 if (ifa->ifa_addr->sa_family == AF_LINK) { 758 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 759 sdl->sdl_index = ifp->if_index; 760 } 761 } 762 } 763 #endif 764 765 IFNET_WLOCK(); 766 TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 767 #ifdef VIMAGE 768 curvnet->vnet_ifcnt++; 769 #endif 770 IFNET_WUNLOCK(); 771 772 if (domain_init_status >= 2) 773 if_attachdomain1(ifp); 774 775 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 776 if (IS_DEFAULT_VNET(curvnet)) 777 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 778 779 /* Announce the interface. */ 780 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 781 } 782 783 static void 784 if_attachdomain(void *dummy) 785 { 786 struct ifnet *ifp; 787 788 TAILQ_FOREACH(ifp, &V_ifnet, if_link) 789 if_attachdomain1(ifp); 790 } 791 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 792 if_attachdomain, NULL); 793 794 static void 795 if_attachdomain1(struct ifnet *ifp) 796 { 797 struct domain *dp; 798 799 /* 800 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 801 * cannot lock ifp->if_afdata initialization, entirely. 802 */ 803 if (IF_AFDATA_TRYLOCK(ifp) == 0) 804 return; 805 if (ifp->if_afdata_initialized >= domain_init_status) { 806 IF_AFDATA_UNLOCK(ifp); 807 log(LOG_WARNING, "%s called more than once on %s\n", 808 __func__, ifp->if_xname); 809 return; 810 } 811 ifp->if_afdata_initialized = domain_init_status; 812 IF_AFDATA_UNLOCK(ifp); 813 814 /* address family dependent data region */ 815 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 816 for (dp = domains; dp; dp = dp->dom_next) { 817 if (dp->dom_ifattach) 818 ifp->if_afdata[dp->dom_family] = 819 (*dp->dom_ifattach)(ifp); 820 } 821 } 822 823 /* 824 * Remove any unicast or broadcast network addresses from an interface. 825 */ 826 void 827 if_purgeaddrs(struct ifnet *ifp) 828 { 829 struct ifaddr *ifa, *next; 830 831 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 832 if (ifa->ifa_addr->sa_family == AF_LINK) 833 continue; 834 #ifdef INET 835 /* XXX: Ugly!! ad hoc just for INET */ 836 if (ifa->ifa_addr->sa_family == AF_INET) { 837 struct ifaliasreq ifr; 838 839 bzero(&ifr, sizeof(ifr)); 840 ifr.ifra_addr = *ifa->ifa_addr; 841 if (ifa->ifa_dstaddr) 842 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 843 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 844 NULL) == 0) 845 continue; 846 } 847 #endif /* INET */ 848 #ifdef INET6 849 if (ifa->ifa_addr->sa_family == AF_INET6) { 850 in6_purgeaddr(ifa); 851 /* ifp_addrhead is already updated */ 852 continue; 853 } 854 #endif /* INET6 */ 855 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 856 ifa_free(ifa); 857 } 858 } 859 860 /* 861 * Remove any multicast network addresses from an interface when an ifnet 862 * is going away. 863 */ 864 static void 865 if_purgemaddrs(struct ifnet *ifp) 866 { 867 struct ifmultiaddr *ifma; 868 struct ifmultiaddr *next; 869 870 IF_ADDR_WLOCK(ifp); 871 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 872 if_delmulti_locked(ifp, ifma, 1); 873 IF_ADDR_WUNLOCK(ifp); 874 } 875 876 /* 877 * Detach an interface, removing it from the list of "active" interfaces. 878 * If vmove flag is set on entry to if_detach_internal(), perform only a 879 * limited subset of cleanup tasks, given that we are moving an ifnet from 880 * one vnet to another, where it must be fully operational. 881 * 882 * XXXRW: There are some significant questions about event ordering, and 883 * how to prevent things from starting to use the interface during detach. 884 */ 885 void 886 if_detach(struct ifnet *ifp) 887 { 888 889 CURVNET_SET_QUIET(ifp->if_vnet); 890 if_detach_internal(ifp, 0); 891 CURVNET_RESTORE(); 892 } 893 894 static void 895 if_detach_internal(struct ifnet *ifp, int vmove) 896 { 897 struct ifaddr *ifa; 898 struct radix_node_head *rnh; 899 int i, j; 900 struct domain *dp; 901 struct ifnet *iter; 902 int found = 0; 903 904 IFNET_WLOCK(); 905 TAILQ_FOREACH(iter, &V_ifnet, if_link) 906 if (iter == ifp) { 907 TAILQ_REMOVE(&V_ifnet, ifp, if_link); 908 found = 1; 909 break; 910 } 911 #ifdef VIMAGE 912 if (found) 913 curvnet->vnet_ifcnt--; 914 #endif 915 IFNET_WUNLOCK(); 916 if (!found) { 917 if (vmove) 918 panic("%s: ifp=%p not on the ifnet tailq %p", 919 __func__, ifp, &V_ifnet); 920 else 921 return; /* XXX this should panic as well? */ 922 } 923 924 /* 925 * Remove/wait for pending events. 926 */ 927 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 928 929 /* 930 * Remove routes and flush queues. 931 */ 932 if_down(ifp); 933 #ifdef ALTQ 934 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 935 altq_disable(&ifp->if_snd); 936 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 937 altq_detach(&ifp->if_snd); 938 #endif 939 940 if_purgeaddrs(ifp); 941 942 #ifdef INET 943 in_ifdetach(ifp); 944 #endif 945 946 #ifdef INET6 947 /* 948 * Remove all IPv6 kernel structs related to ifp. This should be done 949 * before removing routing entries below, since IPv6 interface direct 950 * routes are expected to be removed by the IPv6-specific kernel API. 951 * Otherwise, the kernel will detect some inconsistency and bark it. 952 */ 953 in6_ifdetach(ifp); 954 #endif 955 if_purgemaddrs(ifp); 956 957 /* Announce that the interface is gone. */ 958 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 959 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 960 if (IS_DEFAULT_VNET(curvnet)) 961 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 962 963 if (!vmove) { 964 /* 965 * Prevent further calls into the device driver via ifnet. 966 */ 967 if_dead(ifp); 968 969 /* 970 * Remove link ifaddr pointer and maybe decrement if_index. 971 * Clean up all addresses. 972 */ 973 ifp->if_addr = NULL; 974 975 /* We can now free link ifaddr. */ 976 if (!TAILQ_EMPTY(&ifp->if_addrhead)) { 977 ifa = TAILQ_FIRST(&ifp->if_addrhead); 978 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 979 ifa_free(ifa); 980 } 981 } 982 983 /* 984 * Delete all remaining routes using this interface 985 * Unfortuneatly the only way to do this is to slog through 986 * the entire routing table looking for routes which point 987 * to this interface...oh well... 988 */ 989 for (i = 1; i <= AF_MAX; i++) { 990 for (j = 0; j < rt_numfibs; j++) { 991 rnh = rt_tables_get_rnh(j, i); 992 if (rnh == NULL) 993 continue; 994 RADIX_NODE_HEAD_LOCK(rnh); 995 (void) rnh->rnh_walktree(rnh, if_rtdel, ifp); 996 RADIX_NODE_HEAD_UNLOCK(rnh); 997 } 998 } 999 1000 if_delgroups(ifp); 1001 1002 /* 1003 * We cannot hold the lock over dom_ifdetach calls as they might 1004 * sleep, for example trying to drain a callout, thus open up the 1005 * theoretical race with re-attaching. 1006 */ 1007 IF_AFDATA_LOCK(ifp); 1008 i = ifp->if_afdata_initialized; 1009 ifp->if_afdata_initialized = 0; 1010 IF_AFDATA_UNLOCK(ifp); 1011 for (dp = domains; i > 0 && dp; dp = dp->dom_next) { 1012 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 1013 (*dp->dom_ifdetach)(ifp, 1014 ifp->if_afdata[dp->dom_family]); 1015 } 1016 } 1017 1018 #ifdef VIMAGE 1019 /* 1020 * if_vmove() performs a limited version of if_detach() in current 1021 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1022 * An attempt is made to shrink if_index in current vnet, find an 1023 * unused if_index in target vnet and calls if_grow() if necessary, 1024 * and finally find an unused if_xname for the target vnet. 1025 */ 1026 void 1027 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1028 { 1029 u_short idx; 1030 1031 /* 1032 * Detach from current vnet, but preserve LLADDR info, do not 1033 * mark as dead etc. so that the ifnet can be reattached later. 1034 */ 1035 if_detach_internal(ifp, 1); 1036 1037 /* 1038 * Unlink the ifnet from ifindex_table[] in current vnet, and shrink 1039 * the if_index for that vnet if possible. 1040 * 1041 * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, 1042 * or we'd lock on one vnet and unlock on another. 1043 */ 1044 IFNET_WLOCK(); 1045 ifindex_free_locked(ifp->if_index); 1046 IFNET_WUNLOCK(); 1047 1048 /* 1049 * Perform interface-specific reassignment tasks, if provided by 1050 * the driver. 1051 */ 1052 if (ifp->if_reassign != NULL) 1053 ifp->if_reassign(ifp, new_vnet, NULL); 1054 1055 /* 1056 * Switch to the context of the target vnet. 1057 */ 1058 CURVNET_SET_QUIET(new_vnet); 1059 1060 IFNET_WLOCK(); 1061 if (ifindex_alloc_locked(&idx) != 0) { 1062 IFNET_WUNLOCK(); 1063 panic("if_index overflow"); 1064 } 1065 ifp->if_index = idx; 1066 ifnet_setbyindex_locked(ifp->if_index, ifp); 1067 IFNET_WUNLOCK(); 1068 1069 if_attach_internal(ifp, 1); 1070 1071 CURVNET_RESTORE(); 1072 } 1073 1074 /* 1075 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1076 */ 1077 static int 1078 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1079 { 1080 struct prison *pr; 1081 struct ifnet *difp; 1082 1083 /* Try to find the prison within our visibility. */ 1084 sx_slock(&allprison_lock); 1085 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1086 sx_sunlock(&allprison_lock); 1087 if (pr == NULL) 1088 return (ENXIO); 1089 prison_hold_locked(pr); 1090 mtx_unlock(&pr->pr_mtx); 1091 1092 /* Do not try to move the iface from and to the same prison. */ 1093 if (pr->pr_vnet == ifp->if_vnet) { 1094 prison_free(pr); 1095 return (EEXIST); 1096 } 1097 1098 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1099 /* XXX Lock interfaces to avoid races. */ 1100 CURVNET_SET_QUIET(pr->pr_vnet); 1101 difp = ifunit(ifname); 1102 CURVNET_RESTORE(); 1103 if (difp != NULL) { 1104 prison_free(pr); 1105 return (EEXIST); 1106 } 1107 1108 /* Move the interface into the child jail/vnet. */ 1109 if_vmove(ifp, pr->pr_vnet); 1110 1111 /* Report the new if_xname back to the userland. */ 1112 sprintf(ifname, "%s", ifp->if_xname); 1113 1114 prison_free(pr); 1115 return (0); 1116 } 1117 1118 static int 1119 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1120 { 1121 struct prison *pr; 1122 struct vnet *vnet_dst; 1123 struct ifnet *ifp; 1124 1125 /* Try to find the prison within our visibility. */ 1126 sx_slock(&allprison_lock); 1127 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1128 sx_sunlock(&allprison_lock); 1129 if (pr == NULL) 1130 return (ENXIO); 1131 prison_hold_locked(pr); 1132 mtx_unlock(&pr->pr_mtx); 1133 1134 /* Make sure the named iface exists in the source prison/vnet. */ 1135 CURVNET_SET(pr->pr_vnet); 1136 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1137 if (ifp == NULL) { 1138 CURVNET_RESTORE(); 1139 prison_free(pr); 1140 return (ENXIO); 1141 } 1142 1143 /* Do not try to move the iface from and to the same prison. */ 1144 vnet_dst = TD_TO_VNET(td); 1145 if (vnet_dst == ifp->if_vnet) { 1146 CURVNET_RESTORE(); 1147 prison_free(pr); 1148 return (EEXIST); 1149 } 1150 1151 /* Get interface back from child jail/vnet. */ 1152 if_vmove(ifp, vnet_dst); 1153 CURVNET_RESTORE(); 1154 1155 /* Report the new if_xname back to the userland. */ 1156 sprintf(ifname, "%s", ifp->if_xname); 1157 1158 prison_free(pr); 1159 return (0); 1160 } 1161 #endif /* VIMAGE */ 1162 1163 /* 1164 * Add a group to an interface 1165 */ 1166 int 1167 if_addgroup(struct ifnet *ifp, const char *groupname) 1168 { 1169 struct ifg_list *ifgl; 1170 struct ifg_group *ifg = NULL; 1171 struct ifg_member *ifgm; 1172 int new = 0; 1173 1174 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1175 groupname[strlen(groupname) - 1] <= '9') 1176 return (EINVAL); 1177 1178 IFNET_WLOCK(); 1179 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1180 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1181 IFNET_WUNLOCK(); 1182 return (EEXIST); 1183 } 1184 1185 if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP, 1186 M_NOWAIT)) == NULL) { 1187 IFNET_WUNLOCK(); 1188 return (ENOMEM); 1189 } 1190 1191 if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member), 1192 M_TEMP, M_NOWAIT)) == NULL) { 1193 free(ifgl, M_TEMP); 1194 IFNET_WUNLOCK(); 1195 return (ENOMEM); 1196 } 1197 1198 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1199 if (!strcmp(ifg->ifg_group, groupname)) 1200 break; 1201 1202 if (ifg == NULL) { 1203 if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group), 1204 M_TEMP, M_NOWAIT)) == NULL) { 1205 free(ifgl, M_TEMP); 1206 free(ifgm, M_TEMP); 1207 IFNET_WUNLOCK(); 1208 return (ENOMEM); 1209 } 1210 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1211 ifg->ifg_refcnt = 0; 1212 TAILQ_INIT(&ifg->ifg_members); 1213 TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1214 new = 1; 1215 } 1216 1217 ifg->ifg_refcnt++; 1218 ifgl->ifgl_group = ifg; 1219 ifgm->ifgm_ifp = ifp; 1220 1221 IF_ADDR_WLOCK(ifp); 1222 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1223 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1224 IF_ADDR_WUNLOCK(ifp); 1225 1226 IFNET_WUNLOCK(); 1227 1228 if (new) 1229 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1230 EVENTHANDLER_INVOKE(group_change_event, groupname); 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * Remove a group from an interface 1237 */ 1238 int 1239 if_delgroup(struct ifnet *ifp, const char *groupname) 1240 { 1241 struct ifg_list *ifgl; 1242 struct ifg_member *ifgm; 1243 1244 IFNET_WLOCK(); 1245 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1246 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 1247 break; 1248 if (ifgl == NULL) { 1249 IFNET_WUNLOCK(); 1250 return (ENOENT); 1251 } 1252 1253 IF_ADDR_WLOCK(ifp); 1254 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1255 IF_ADDR_WUNLOCK(ifp); 1256 1257 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1258 if (ifgm->ifgm_ifp == ifp) 1259 break; 1260 1261 if (ifgm != NULL) { 1262 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 1263 free(ifgm, M_TEMP); 1264 } 1265 1266 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1267 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1268 IFNET_WUNLOCK(); 1269 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1270 free(ifgl->ifgl_group, M_TEMP); 1271 } else 1272 IFNET_WUNLOCK(); 1273 1274 free(ifgl, M_TEMP); 1275 1276 EVENTHANDLER_INVOKE(group_change_event, groupname); 1277 1278 return (0); 1279 } 1280 1281 /* 1282 * Remove an interface from all groups 1283 */ 1284 static void 1285 if_delgroups(struct ifnet *ifp) 1286 { 1287 struct ifg_list *ifgl; 1288 struct ifg_member *ifgm; 1289 char groupname[IFNAMSIZ]; 1290 1291 IFNET_WLOCK(); 1292 while (!TAILQ_EMPTY(&ifp->if_groups)) { 1293 ifgl = TAILQ_FIRST(&ifp->if_groups); 1294 1295 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1296 1297 IF_ADDR_WLOCK(ifp); 1298 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1299 IF_ADDR_WUNLOCK(ifp); 1300 1301 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1302 if (ifgm->ifgm_ifp == ifp) 1303 break; 1304 1305 if (ifgm != NULL) { 1306 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1307 ifgm_next); 1308 free(ifgm, M_TEMP); 1309 } 1310 1311 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1312 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1313 IFNET_WUNLOCK(); 1314 EVENTHANDLER_INVOKE(group_detach_event, 1315 ifgl->ifgl_group); 1316 free(ifgl->ifgl_group, M_TEMP); 1317 } else 1318 IFNET_WUNLOCK(); 1319 1320 free(ifgl, M_TEMP); 1321 1322 EVENTHANDLER_INVOKE(group_change_event, groupname); 1323 1324 IFNET_WLOCK(); 1325 } 1326 IFNET_WUNLOCK(); 1327 } 1328 1329 /* 1330 * Stores all groups from an interface in memory pointed 1331 * to by data 1332 */ 1333 static int 1334 if_getgroup(struct ifgroupreq *data, struct ifnet *ifp) 1335 { 1336 int len, error; 1337 struct ifg_list *ifgl; 1338 struct ifg_req ifgrq, *ifgp; 1339 struct ifgroupreq *ifgr = data; 1340 1341 if (ifgr->ifgr_len == 0) { 1342 IF_ADDR_RLOCK(ifp); 1343 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1344 ifgr->ifgr_len += sizeof(struct ifg_req); 1345 IF_ADDR_RUNLOCK(ifp); 1346 return (0); 1347 } 1348 1349 len = ifgr->ifgr_len; 1350 ifgp = ifgr->ifgr_groups; 1351 /* XXX: wire */ 1352 IF_ADDR_RLOCK(ifp); 1353 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1354 if (len < sizeof(ifgrq)) { 1355 IF_ADDR_RUNLOCK(ifp); 1356 return (EINVAL); 1357 } 1358 bzero(&ifgrq, sizeof ifgrq); 1359 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1360 sizeof(ifgrq.ifgrq_group)); 1361 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1362 IF_ADDR_RUNLOCK(ifp); 1363 return (error); 1364 } 1365 len -= sizeof(ifgrq); 1366 ifgp++; 1367 } 1368 IF_ADDR_RUNLOCK(ifp); 1369 1370 return (0); 1371 } 1372 1373 /* 1374 * Stores all members of a group in memory pointed to by data 1375 */ 1376 static int 1377 if_getgroupmembers(struct ifgroupreq *data) 1378 { 1379 struct ifgroupreq *ifgr = data; 1380 struct ifg_group *ifg; 1381 struct ifg_member *ifgm; 1382 struct ifg_req ifgrq, *ifgp; 1383 int len, error; 1384 1385 IFNET_RLOCK(); 1386 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1387 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1388 break; 1389 if (ifg == NULL) { 1390 IFNET_RUNLOCK(); 1391 return (ENOENT); 1392 } 1393 1394 if (ifgr->ifgr_len == 0) { 1395 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1396 ifgr->ifgr_len += sizeof(ifgrq); 1397 IFNET_RUNLOCK(); 1398 return (0); 1399 } 1400 1401 len = ifgr->ifgr_len; 1402 ifgp = ifgr->ifgr_groups; 1403 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1404 if (len < sizeof(ifgrq)) { 1405 IFNET_RUNLOCK(); 1406 return (EINVAL); 1407 } 1408 bzero(&ifgrq, sizeof ifgrq); 1409 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1410 sizeof(ifgrq.ifgrq_member)); 1411 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1412 IFNET_RUNLOCK(); 1413 return (error); 1414 } 1415 len -= sizeof(ifgrq); 1416 ifgp++; 1417 } 1418 IFNET_RUNLOCK(); 1419 1420 return (0); 1421 } 1422 1423 /* 1424 * Delete Routes for a Network Interface 1425 * 1426 * Called for each routing entry via the rnh->rnh_walktree() call above 1427 * to delete all route entries referencing a detaching network interface. 1428 * 1429 * Arguments: 1430 * rn pointer to node in the routing table 1431 * arg argument passed to rnh->rnh_walktree() - detaching interface 1432 * 1433 * Returns: 1434 * 0 successful 1435 * errno failed - reason indicated 1436 * 1437 */ 1438 static int 1439 if_rtdel(struct radix_node *rn, void *arg) 1440 { 1441 struct rtentry *rt = (struct rtentry *)rn; 1442 struct ifnet *ifp = arg; 1443 int err; 1444 1445 if (rt->rt_ifp == ifp) { 1446 1447 /* 1448 * Protect (sorta) against walktree recursion problems 1449 * with cloned routes 1450 */ 1451 if ((rt->rt_flags & RTF_UP) == 0) 1452 return (0); 1453 1454 err = rtrequest_fib(RTM_DELETE, rt_key(rt), rt->rt_gateway, 1455 rt_mask(rt), 1456 rt->rt_flags|RTF_RNH_LOCKED|RTF_PINNED, 1457 (struct rtentry **) NULL, rt->rt_fibnum); 1458 if (err) { 1459 log(LOG_WARNING, "if_rtdel: error %d\n", err); 1460 } 1461 } 1462 1463 return (0); 1464 } 1465 1466 /* 1467 * Return counter values from counter(9)s stored in ifnet. 1468 */ 1469 uint64_t 1470 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1471 { 1472 1473 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1474 1475 return (counter_u64_fetch(ifp->if_counters[cnt])); 1476 } 1477 1478 /* 1479 * Increase an ifnet counter. Usually used for counters shared 1480 * between the stack and a driver, but function supports them all. 1481 */ 1482 void 1483 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1484 { 1485 1486 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1487 1488 counter_u64_add(ifp->if_counters[cnt], inc); 1489 } 1490 1491 /* 1492 * Copy data from ifnet to userland API structure if_data. 1493 */ 1494 void 1495 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1496 { 1497 1498 ifd->ifi_type = ifp->if_type; 1499 ifd->ifi_physical = 0; 1500 ifd->ifi_addrlen = ifp->if_addrlen; 1501 ifd->ifi_hdrlen = ifp->if_hdrlen; 1502 ifd->ifi_link_state = ifp->if_link_state; 1503 ifd->ifi_vhid = 0; 1504 ifd->ifi_datalen = sizeof(struct if_data); 1505 ifd->ifi_mtu = ifp->if_mtu; 1506 ifd->ifi_metric = ifp->if_metric; 1507 ifd->ifi_baudrate = ifp->if_baudrate; 1508 ifd->ifi_hwassist = ifp->if_hwassist; 1509 ifd->ifi_epoch = ifp->if_epoch; 1510 ifd->ifi_lastchange = ifp->if_lastchange; 1511 1512 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1513 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1514 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1515 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1516 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1517 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1518 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1519 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1520 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1521 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1522 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1523 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1524 } 1525 1526 /* 1527 * Wrapper functions for struct ifnet address list locking macros. These are 1528 * used by kernel modules to avoid encoding programming interface or binary 1529 * interface assumptions that may be violated when kernel-internal locking 1530 * approaches change. 1531 */ 1532 void 1533 if_addr_rlock(struct ifnet *ifp) 1534 { 1535 1536 IF_ADDR_RLOCK(ifp); 1537 } 1538 1539 void 1540 if_addr_runlock(struct ifnet *ifp) 1541 { 1542 1543 IF_ADDR_RUNLOCK(ifp); 1544 } 1545 1546 void 1547 if_maddr_rlock(if_t ifp) 1548 { 1549 1550 IF_ADDR_RLOCK((struct ifnet *)ifp); 1551 } 1552 1553 void 1554 if_maddr_runlock(if_t ifp) 1555 { 1556 1557 IF_ADDR_RUNLOCK((struct ifnet *)ifp); 1558 } 1559 1560 /* 1561 * Initialization, destruction and refcounting functions for ifaddrs. 1562 */ 1563 struct ifaddr * 1564 ifa_alloc(size_t size, int flags) 1565 { 1566 struct ifaddr *ifa; 1567 1568 KASSERT(size >= sizeof(struct ifaddr), 1569 ("%s: invalid size %zu", __func__, size)); 1570 1571 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1572 if (ifa == NULL) 1573 return (NULL); 1574 1575 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1576 goto fail; 1577 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1578 goto fail; 1579 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1580 goto fail; 1581 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1582 goto fail; 1583 1584 refcount_init(&ifa->ifa_refcnt, 1); 1585 1586 return (ifa); 1587 1588 fail: 1589 /* free(NULL) is okay */ 1590 counter_u64_free(ifa->ifa_opackets); 1591 counter_u64_free(ifa->ifa_ipackets); 1592 counter_u64_free(ifa->ifa_obytes); 1593 counter_u64_free(ifa->ifa_ibytes); 1594 free(ifa, M_IFADDR); 1595 1596 return (NULL); 1597 } 1598 1599 void 1600 ifa_ref(struct ifaddr *ifa) 1601 { 1602 1603 refcount_acquire(&ifa->ifa_refcnt); 1604 } 1605 1606 void 1607 ifa_free(struct ifaddr *ifa) 1608 { 1609 1610 if (refcount_release(&ifa->ifa_refcnt)) { 1611 counter_u64_free(ifa->ifa_opackets); 1612 counter_u64_free(ifa->ifa_ipackets); 1613 counter_u64_free(ifa->ifa_obytes); 1614 counter_u64_free(ifa->ifa_ibytes); 1615 free(ifa, M_IFADDR); 1616 } 1617 } 1618 1619 int 1620 ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1621 { 1622 int error = 0; 1623 struct rtentry *rt = NULL; 1624 struct rt_addrinfo info; 1625 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1626 1627 bzero(&info, sizeof(info)); 1628 info.rti_ifp = V_loif; 1629 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1630 info.rti_info[RTAX_DST] = ia; 1631 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1632 error = rtrequest1_fib(RTM_ADD, &info, &rt, ifa->ifa_ifp->if_fib); 1633 1634 if (error == 0 && rt != NULL) { 1635 RT_LOCK(rt); 1636 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 1637 ifa->ifa_ifp->if_type; 1638 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 1639 ifa->ifa_ifp->if_index; 1640 RT_REMREF(rt); 1641 RT_UNLOCK(rt); 1642 } else if (error != 0) 1643 log(LOG_DEBUG, "%s: insertion failed: %u\n", __func__, error); 1644 1645 return (error); 1646 } 1647 1648 int 1649 ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1650 { 1651 int error = 0; 1652 struct rt_addrinfo info; 1653 struct sockaddr_dl null_sdl; 1654 1655 bzero(&null_sdl, sizeof(null_sdl)); 1656 null_sdl.sdl_len = sizeof(null_sdl); 1657 null_sdl.sdl_family = AF_LINK; 1658 null_sdl.sdl_type = ifa->ifa_ifp->if_type; 1659 null_sdl.sdl_index = ifa->ifa_ifp->if_index; 1660 bzero(&info, sizeof(info)); 1661 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1662 info.rti_info[RTAX_DST] = ia; 1663 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1664 error = rtrequest1_fib(RTM_DELETE, &info, NULL, ifa->ifa_ifp->if_fib); 1665 1666 if (error != 0) 1667 log(LOG_DEBUG, "%s: deletion failed: %u\n", __func__, error); 1668 1669 return (error); 1670 } 1671 1672 int 1673 ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *sa, int fib) 1674 { 1675 struct rtentry *rt; 1676 1677 rt = rtalloc1_fib(sa, 0, 0, fib); 1678 if (rt == NULL) { 1679 log(LOG_DEBUG, "%s: fail", __func__); 1680 return (EHOSTUNREACH); 1681 } 1682 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 1683 ifa->ifa_ifp->if_type; 1684 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 1685 ifa->ifa_ifp->if_index; 1686 RTFREE_LOCKED(rt); 1687 1688 return (0); 1689 } 1690 1691 /* 1692 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1693 * structs used to represent other address families, it is necessary 1694 * to perform a different comparison. 1695 */ 1696 1697 #define sa_dl_equal(a1, a2) \ 1698 ((((struct sockaddr_dl *)(a1))->sdl_len == \ 1699 ((struct sockaddr_dl *)(a2))->sdl_len) && \ 1700 (bcmp(LLADDR((struct sockaddr_dl *)(a1)), \ 1701 LLADDR((struct sockaddr_dl *)(a2)), \ 1702 ((struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1703 1704 /* 1705 * Locate an interface based on a complete address. 1706 */ 1707 /*ARGSUSED*/ 1708 static struct ifaddr * 1709 ifa_ifwithaddr_internal(struct sockaddr *addr, int getref) 1710 { 1711 struct ifnet *ifp; 1712 struct ifaddr *ifa; 1713 1714 IFNET_RLOCK_NOSLEEP(); 1715 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1716 IF_ADDR_RLOCK(ifp); 1717 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1718 if (ifa->ifa_addr->sa_family != addr->sa_family) 1719 continue; 1720 if (sa_equal(addr, ifa->ifa_addr)) { 1721 if (getref) 1722 ifa_ref(ifa); 1723 IF_ADDR_RUNLOCK(ifp); 1724 goto done; 1725 } 1726 /* IP6 doesn't have broadcast */ 1727 if ((ifp->if_flags & IFF_BROADCAST) && 1728 ifa->ifa_broadaddr && 1729 ifa->ifa_broadaddr->sa_len != 0 && 1730 sa_equal(ifa->ifa_broadaddr, addr)) { 1731 if (getref) 1732 ifa_ref(ifa); 1733 IF_ADDR_RUNLOCK(ifp); 1734 goto done; 1735 } 1736 } 1737 IF_ADDR_RUNLOCK(ifp); 1738 } 1739 ifa = NULL; 1740 done: 1741 IFNET_RUNLOCK_NOSLEEP(); 1742 return (ifa); 1743 } 1744 1745 struct ifaddr * 1746 ifa_ifwithaddr(struct sockaddr *addr) 1747 { 1748 1749 return (ifa_ifwithaddr_internal(addr, 1)); 1750 } 1751 1752 int 1753 ifa_ifwithaddr_check(struct sockaddr *addr) 1754 { 1755 1756 return (ifa_ifwithaddr_internal(addr, 0) != NULL); 1757 } 1758 1759 /* 1760 * Locate an interface based on the broadcast address. 1761 */ 1762 /* ARGSUSED */ 1763 struct ifaddr * 1764 ifa_ifwithbroadaddr(struct sockaddr *addr, int fibnum) 1765 { 1766 struct ifnet *ifp; 1767 struct ifaddr *ifa; 1768 1769 IFNET_RLOCK_NOSLEEP(); 1770 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1771 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1772 continue; 1773 IF_ADDR_RLOCK(ifp); 1774 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1775 if (ifa->ifa_addr->sa_family != addr->sa_family) 1776 continue; 1777 if ((ifp->if_flags & IFF_BROADCAST) && 1778 ifa->ifa_broadaddr && 1779 ifa->ifa_broadaddr->sa_len != 0 && 1780 sa_equal(ifa->ifa_broadaddr, addr)) { 1781 ifa_ref(ifa); 1782 IF_ADDR_RUNLOCK(ifp); 1783 goto done; 1784 } 1785 } 1786 IF_ADDR_RUNLOCK(ifp); 1787 } 1788 ifa = NULL; 1789 done: 1790 IFNET_RUNLOCK_NOSLEEP(); 1791 return (ifa); 1792 } 1793 1794 /* 1795 * Locate the point to point interface with a given destination address. 1796 */ 1797 /*ARGSUSED*/ 1798 struct ifaddr * 1799 ifa_ifwithdstaddr(struct sockaddr *addr, int fibnum) 1800 { 1801 struct ifnet *ifp; 1802 struct ifaddr *ifa; 1803 1804 IFNET_RLOCK_NOSLEEP(); 1805 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1806 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1807 continue; 1808 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1809 continue; 1810 IF_ADDR_RLOCK(ifp); 1811 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1812 if (ifa->ifa_addr->sa_family != addr->sa_family) 1813 continue; 1814 if (ifa->ifa_dstaddr != NULL && 1815 sa_equal(addr, ifa->ifa_dstaddr)) { 1816 ifa_ref(ifa); 1817 IF_ADDR_RUNLOCK(ifp); 1818 goto done; 1819 } 1820 } 1821 IF_ADDR_RUNLOCK(ifp); 1822 } 1823 ifa = NULL; 1824 done: 1825 IFNET_RUNLOCK_NOSLEEP(); 1826 return (ifa); 1827 } 1828 1829 /* 1830 * Find an interface on a specific network. If many, choice 1831 * is most specific found. 1832 */ 1833 struct ifaddr * 1834 ifa_ifwithnet(struct sockaddr *addr, int ignore_ptp, int fibnum) 1835 { 1836 struct ifnet *ifp; 1837 struct ifaddr *ifa; 1838 struct ifaddr *ifa_maybe = NULL; 1839 u_int af = addr->sa_family; 1840 char *addr_data = addr->sa_data, *cplim; 1841 1842 /* 1843 * AF_LINK addresses can be looked up directly by their index number, 1844 * so do that if we can. 1845 */ 1846 if (af == AF_LINK) { 1847 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1848 if (sdl->sdl_index && sdl->sdl_index <= V_if_index) 1849 return (ifaddr_byindex(sdl->sdl_index)); 1850 } 1851 1852 /* 1853 * Scan though each interface, looking for ones that have addresses 1854 * in this address family and the requested fib. Maintain a reference 1855 * on ifa_maybe once we find one, as we release the IF_ADDR_RLOCK() that 1856 * kept it stable when we move onto the next interface. 1857 */ 1858 IFNET_RLOCK_NOSLEEP(); 1859 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1860 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1861 continue; 1862 IF_ADDR_RLOCK(ifp); 1863 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1864 char *cp, *cp2, *cp3; 1865 1866 if (ifa->ifa_addr->sa_family != af) 1867 next: continue; 1868 if (af == AF_INET && 1869 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1870 /* 1871 * This is a bit broken as it doesn't 1872 * take into account that the remote end may 1873 * be a single node in the network we are 1874 * looking for. 1875 * The trouble is that we don't know the 1876 * netmask for the remote end. 1877 */ 1878 if (ifa->ifa_dstaddr != NULL && 1879 sa_equal(addr, ifa->ifa_dstaddr)) { 1880 ifa_ref(ifa); 1881 IF_ADDR_RUNLOCK(ifp); 1882 goto done; 1883 } 1884 } else { 1885 /* 1886 * Scan all the bits in the ifa's address. 1887 * If a bit dissagrees with what we are 1888 * looking for, mask it with the netmask 1889 * to see if it really matters. 1890 * (A byte at a time) 1891 */ 1892 if (ifa->ifa_netmask == 0) 1893 continue; 1894 cp = addr_data; 1895 cp2 = ifa->ifa_addr->sa_data; 1896 cp3 = ifa->ifa_netmask->sa_data; 1897 cplim = ifa->ifa_netmask->sa_len 1898 + (char *)ifa->ifa_netmask; 1899 while (cp3 < cplim) 1900 if ((*cp++ ^ *cp2++) & *cp3++) 1901 goto next; /* next address! */ 1902 /* 1903 * If the netmask of what we just found 1904 * is more specific than what we had before 1905 * (if we had one), or if the virtual status 1906 * of new prefix is better than of the old one, 1907 * then remember the new one before continuing 1908 * to search for an even better one. 1909 */ 1910 if (ifa_maybe == NULL || 1911 ifa_preferred(ifa_maybe, ifa) || 1912 rn_refines((caddr_t)ifa->ifa_netmask, 1913 (caddr_t)ifa_maybe->ifa_netmask)) { 1914 if (ifa_maybe != NULL) 1915 ifa_free(ifa_maybe); 1916 ifa_maybe = ifa; 1917 ifa_ref(ifa_maybe); 1918 } 1919 } 1920 } 1921 IF_ADDR_RUNLOCK(ifp); 1922 } 1923 ifa = ifa_maybe; 1924 ifa_maybe = NULL; 1925 done: 1926 IFNET_RUNLOCK_NOSLEEP(); 1927 if (ifa_maybe != NULL) 1928 ifa_free(ifa_maybe); 1929 return (ifa); 1930 } 1931 1932 /* 1933 * Find an interface address specific to an interface best matching 1934 * a given address. 1935 */ 1936 struct ifaddr * 1937 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1938 { 1939 struct ifaddr *ifa; 1940 char *cp, *cp2, *cp3; 1941 char *cplim; 1942 struct ifaddr *ifa_maybe = NULL; 1943 u_int af = addr->sa_family; 1944 1945 if (af >= AF_MAX) 1946 return (NULL); 1947 IF_ADDR_RLOCK(ifp); 1948 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1949 if (ifa->ifa_addr->sa_family != af) 1950 continue; 1951 if (ifa_maybe == NULL) 1952 ifa_maybe = ifa; 1953 if (ifa->ifa_netmask == 0) { 1954 if (sa_equal(addr, ifa->ifa_addr) || 1955 (ifa->ifa_dstaddr && 1956 sa_equal(addr, ifa->ifa_dstaddr))) 1957 goto done; 1958 continue; 1959 } 1960 if (ifp->if_flags & IFF_POINTOPOINT) { 1961 if (sa_equal(addr, ifa->ifa_dstaddr)) 1962 goto done; 1963 } else { 1964 cp = addr->sa_data; 1965 cp2 = ifa->ifa_addr->sa_data; 1966 cp3 = ifa->ifa_netmask->sa_data; 1967 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1968 for (; cp3 < cplim; cp3++) 1969 if ((*cp++ ^ *cp2++) & *cp3) 1970 break; 1971 if (cp3 == cplim) 1972 goto done; 1973 } 1974 } 1975 ifa = ifa_maybe; 1976 done: 1977 if (ifa != NULL) 1978 ifa_ref(ifa); 1979 IF_ADDR_RUNLOCK(ifp); 1980 return (ifa); 1981 } 1982 1983 /* 1984 * See whether new ifa is better than current one: 1985 * 1) A non-virtual one is preferred over virtual. 1986 * 2) A virtual in master state preferred over any other state. 1987 * 1988 * Used in several address selecting functions. 1989 */ 1990 int 1991 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 1992 { 1993 1994 return (cur->ifa_carp && (!next->ifa_carp || 1995 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 1996 } 1997 1998 #include <net/if_llatbl.h> 1999 2000 /* 2001 * Default action when installing a route with a Link Level gateway. 2002 * Lookup an appropriate real ifa to point to. 2003 * This should be moved to /sys/net/link.c eventually. 2004 */ 2005 static void 2006 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 2007 { 2008 struct ifaddr *ifa, *oifa; 2009 struct sockaddr *dst; 2010 struct ifnet *ifp; 2011 2012 RT_LOCK_ASSERT(rt); 2013 2014 if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || 2015 ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) 2016 return; 2017 ifa = ifaof_ifpforaddr(dst, ifp); 2018 if (ifa) { 2019 oifa = rt->rt_ifa; 2020 rt->rt_ifa = ifa; 2021 ifa_free(oifa); 2022 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2023 ifa->ifa_rtrequest(cmd, rt, info); 2024 } 2025 } 2026 2027 struct sockaddr_dl * 2028 link_alloc_sdl(size_t size, int flags) 2029 { 2030 2031 return (malloc(size, M_TEMP, flags)); 2032 } 2033 2034 void 2035 link_free_sdl(struct sockaddr *sa) 2036 { 2037 free(sa, M_TEMP); 2038 } 2039 2040 /* 2041 * Fills in given sdl with interface basic info. 2042 * Returns pointer to filled sdl. 2043 */ 2044 struct sockaddr_dl * 2045 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2046 { 2047 struct sockaddr_dl *sdl; 2048 2049 sdl = (struct sockaddr_dl *)paddr; 2050 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2051 sdl->sdl_len = sizeof(struct sockaddr_dl); 2052 sdl->sdl_family = AF_LINK; 2053 sdl->sdl_index = ifp->if_index; 2054 sdl->sdl_type = iftype; 2055 2056 return (sdl); 2057 } 2058 2059 /* 2060 * Mark an interface down and notify protocols of 2061 * the transition. 2062 */ 2063 static void 2064 if_unroute(struct ifnet *ifp, int flag, int fam) 2065 { 2066 struct ifaddr *ifa; 2067 2068 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 2069 2070 ifp->if_flags &= ~flag; 2071 getmicrotime(&ifp->if_lastchange); 2072 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2073 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2074 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2075 ifp->if_qflush(ifp); 2076 2077 if (ifp->if_carp) 2078 (*carp_linkstate_p)(ifp); 2079 rt_ifmsg(ifp); 2080 } 2081 2082 /* 2083 * Mark an interface up and notify protocols of 2084 * the transition. 2085 */ 2086 static void 2087 if_route(struct ifnet *ifp, int flag, int fam) 2088 { 2089 struct ifaddr *ifa; 2090 2091 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 2092 2093 ifp->if_flags |= flag; 2094 getmicrotime(&ifp->if_lastchange); 2095 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2096 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2097 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2098 if (ifp->if_carp) 2099 (*carp_linkstate_p)(ifp); 2100 rt_ifmsg(ifp); 2101 #ifdef INET6 2102 in6_if_up(ifp); 2103 #endif 2104 } 2105 2106 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2107 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2108 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2109 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2110 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2111 int (*vlan_setcookie_p)(struct ifnet *, void *); 2112 void *(*vlan_cookie_p)(struct ifnet *); 2113 2114 /* 2115 * Handle a change in the interface link state. To avoid LORs 2116 * between driver lock and upper layer locks, as well as possible 2117 * recursions, we post event to taskqueue, and all job 2118 * is done in static do_link_state_change(). 2119 */ 2120 void 2121 if_link_state_change(struct ifnet *ifp, int link_state) 2122 { 2123 /* Return if state hasn't changed. */ 2124 if (ifp->if_link_state == link_state) 2125 return; 2126 2127 ifp->if_link_state = link_state; 2128 2129 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2130 } 2131 2132 static void 2133 do_link_state_change(void *arg, int pending) 2134 { 2135 struct ifnet *ifp = (struct ifnet *)arg; 2136 int link_state = ifp->if_link_state; 2137 CURVNET_SET(ifp->if_vnet); 2138 2139 /* Notify that the link state has changed. */ 2140 rt_ifmsg(ifp); 2141 if (ifp->if_vlantrunk != NULL) 2142 (*vlan_link_state_p)(ifp); 2143 2144 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2145 IFP2AC(ifp)->ac_netgraph != NULL) 2146 (*ng_ether_link_state_p)(ifp, link_state); 2147 if (ifp->if_carp) 2148 (*carp_linkstate_p)(ifp); 2149 if (ifp->if_bridge) 2150 (*bridge_linkstate_p)(ifp); 2151 if (ifp->if_lagg) 2152 (*lagg_linkstate_p)(ifp, link_state); 2153 2154 if (IS_DEFAULT_VNET(curvnet)) 2155 devctl_notify("IFNET", ifp->if_xname, 2156 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2157 NULL); 2158 if (pending > 1) 2159 if_printf(ifp, "%d link states coalesced\n", pending); 2160 if (log_link_state_change) 2161 log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname, 2162 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2163 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, ifp->if_link_state); 2164 CURVNET_RESTORE(); 2165 } 2166 2167 /* 2168 * Mark an interface down and notify protocols of 2169 * the transition. 2170 */ 2171 void 2172 if_down(struct ifnet *ifp) 2173 { 2174 2175 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2176 } 2177 2178 /* 2179 * Mark an interface up and notify protocols of 2180 * the transition. 2181 */ 2182 void 2183 if_up(struct ifnet *ifp) 2184 { 2185 2186 if_route(ifp, IFF_UP, AF_UNSPEC); 2187 } 2188 2189 /* 2190 * Flush an interface queue. 2191 */ 2192 void 2193 if_qflush(struct ifnet *ifp) 2194 { 2195 struct mbuf *m, *n; 2196 struct ifaltq *ifq; 2197 2198 ifq = &ifp->if_snd; 2199 IFQ_LOCK(ifq); 2200 #ifdef ALTQ 2201 if (ALTQ_IS_ENABLED(ifq)) 2202 ALTQ_PURGE(ifq); 2203 #endif 2204 n = ifq->ifq_head; 2205 while ((m = n) != 0) { 2206 n = m->m_nextpkt; 2207 m_freem(m); 2208 } 2209 ifq->ifq_head = 0; 2210 ifq->ifq_tail = 0; 2211 ifq->ifq_len = 0; 2212 IFQ_UNLOCK(ifq); 2213 } 2214 2215 /* 2216 * Map interface name to interface structure pointer, with or without 2217 * returning a reference. 2218 */ 2219 struct ifnet * 2220 ifunit_ref(const char *name) 2221 { 2222 struct ifnet *ifp; 2223 2224 IFNET_RLOCK_NOSLEEP(); 2225 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2226 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2227 !(ifp->if_flags & IFF_DYING)) 2228 break; 2229 } 2230 if (ifp != NULL) 2231 if_ref(ifp); 2232 IFNET_RUNLOCK_NOSLEEP(); 2233 return (ifp); 2234 } 2235 2236 struct ifnet * 2237 ifunit(const char *name) 2238 { 2239 struct ifnet *ifp; 2240 2241 IFNET_RLOCK_NOSLEEP(); 2242 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2243 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2244 break; 2245 } 2246 IFNET_RUNLOCK_NOSLEEP(); 2247 return (ifp); 2248 } 2249 2250 /* 2251 * Hardware specific interface ioctls. 2252 */ 2253 static int 2254 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2255 { 2256 struct ifreq *ifr; 2257 int error = 0; 2258 int new_flags, temp_flags; 2259 size_t namelen, onamelen; 2260 size_t descrlen; 2261 char *descrbuf, *odescrbuf; 2262 char new_name[IFNAMSIZ]; 2263 struct ifaddr *ifa; 2264 struct sockaddr_dl *sdl; 2265 2266 ifr = (struct ifreq *)data; 2267 switch (cmd) { 2268 case SIOCGIFINDEX: 2269 ifr->ifr_index = ifp->if_index; 2270 break; 2271 2272 case SIOCGIFFLAGS: 2273 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2274 ifr->ifr_flags = temp_flags & 0xffff; 2275 ifr->ifr_flagshigh = temp_flags >> 16; 2276 break; 2277 2278 case SIOCGIFCAP: 2279 ifr->ifr_reqcap = ifp->if_capabilities; 2280 ifr->ifr_curcap = ifp->if_capenable; 2281 break; 2282 2283 #ifdef MAC 2284 case SIOCGIFMAC: 2285 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2286 break; 2287 #endif 2288 2289 case SIOCGIFMETRIC: 2290 ifr->ifr_metric = ifp->if_metric; 2291 break; 2292 2293 case SIOCGIFMTU: 2294 ifr->ifr_mtu = ifp->if_mtu; 2295 break; 2296 2297 case SIOCGIFPHYS: 2298 /* XXXGL: did this ever worked? */ 2299 ifr->ifr_phys = 0; 2300 break; 2301 2302 case SIOCGIFDESCR: 2303 error = 0; 2304 sx_slock(&ifdescr_sx); 2305 if (ifp->if_description == NULL) 2306 error = ENOMSG; 2307 else { 2308 /* space for terminating nul */ 2309 descrlen = strlen(ifp->if_description) + 1; 2310 if (ifr->ifr_buffer.length < descrlen) 2311 ifr->ifr_buffer.buffer = NULL; 2312 else 2313 error = copyout(ifp->if_description, 2314 ifr->ifr_buffer.buffer, descrlen); 2315 ifr->ifr_buffer.length = descrlen; 2316 } 2317 sx_sunlock(&ifdescr_sx); 2318 break; 2319 2320 case SIOCSIFDESCR: 2321 error = priv_check(td, PRIV_NET_SETIFDESCR); 2322 if (error) 2323 return (error); 2324 2325 /* 2326 * Copy only (length-1) bytes to make sure that 2327 * if_description is always nul terminated. The 2328 * length parameter is supposed to count the 2329 * terminating nul in. 2330 */ 2331 if (ifr->ifr_buffer.length > ifdescr_maxlen) 2332 return (ENAMETOOLONG); 2333 else if (ifr->ifr_buffer.length == 0) 2334 descrbuf = NULL; 2335 else { 2336 descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR, 2337 M_WAITOK | M_ZERO); 2338 error = copyin(ifr->ifr_buffer.buffer, descrbuf, 2339 ifr->ifr_buffer.length - 1); 2340 if (error) { 2341 free(descrbuf, M_IFDESCR); 2342 break; 2343 } 2344 } 2345 2346 sx_xlock(&ifdescr_sx); 2347 odescrbuf = ifp->if_description; 2348 ifp->if_description = descrbuf; 2349 sx_xunlock(&ifdescr_sx); 2350 2351 getmicrotime(&ifp->if_lastchange); 2352 free(odescrbuf, M_IFDESCR); 2353 break; 2354 2355 case SIOCGIFFIB: 2356 ifr->ifr_fib = ifp->if_fib; 2357 break; 2358 2359 case SIOCSIFFIB: 2360 error = priv_check(td, PRIV_NET_SETIFFIB); 2361 if (error) 2362 return (error); 2363 if (ifr->ifr_fib >= rt_numfibs) 2364 return (EINVAL); 2365 2366 ifp->if_fib = ifr->ifr_fib; 2367 break; 2368 2369 case SIOCSIFFLAGS: 2370 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2371 if (error) 2372 return (error); 2373 /* 2374 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2375 * check, so we don't need special handling here yet. 2376 */ 2377 new_flags = (ifr->ifr_flags & 0xffff) | 2378 (ifr->ifr_flagshigh << 16); 2379 if (ifp->if_flags & IFF_UP && 2380 (new_flags & IFF_UP) == 0) { 2381 if_down(ifp); 2382 } else if (new_flags & IFF_UP && 2383 (ifp->if_flags & IFF_UP) == 0) { 2384 if_up(ifp); 2385 } 2386 /* See if permanently promiscuous mode bit is about to flip */ 2387 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2388 if (new_flags & IFF_PPROMISC) 2389 ifp->if_flags |= IFF_PROMISC; 2390 else if (ifp->if_pcount == 0) 2391 ifp->if_flags &= ~IFF_PROMISC; 2392 log(LOG_INFO, "%s: permanently promiscuous mode %s\n", 2393 ifp->if_xname, 2394 (new_flags & IFF_PPROMISC) ? "enabled" : "disabled"); 2395 } 2396 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2397 (new_flags &~ IFF_CANTCHANGE); 2398 if (ifp->if_ioctl) { 2399 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2400 } 2401 getmicrotime(&ifp->if_lastchange); 2402 break; 2403 2404 case SIOCSIFCAP: 2405 error = priv_check(td, PRIV_NET_SETIFCAP); 2406 if (error) 2407 return (error); 2408 if (ifp->if_ioctl == NULL) 2409 return (EOPNOTSUPP); 2410 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2411 return (EINVAL); 2412 error = (*ifp->if_ioctl)(ifp, cmd, data); 2413 if (error == 0) 2414 getmicrotime(&ifp->if_lastchange); 2415 break; 2416 2417 #ifdef MAC 2418 case SIOCSIFMAC: 2419 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2420 break; 2421 #endif 2422 2423 case SIOCSIFNAME: 2424 error = priv_check(td, PRIV_NET_SETIFNAME); 2425 if (error) 2426 return (error); 2427 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 2428 if (error != 0) 2429 return (error); 2430 if (new_name[0] == '\0') 2431 return (EINVAL); 2432 if (ifunit(new_name) != NULL) 2433 return (EEXIST); 2434 2435 /* 2436 * XXX: Locking. Nothing else seems to lock if_flags, 2437 * and there are numerous other races with the 2438 * ifunit() checks not being atomic with namespace 2439 * changes (renames, vmoves, if_attach, etc). 2440 */ 2441 ifp->if_flags |= IFF_RENAMING; 2442 2443 /* Announce the departure of the interface. */ 2444 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 2445 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 2446 2447 log(LOG_INFO, "%s: changing name to '%s'\n", 2448 ifp->if_xname, new_name); 2449 2450 IF_ADDR_WLOCK(ifp); 2451 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 2452 ifa = ifp->if_addr; 2453 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 2454 namelen = strlen(new_name); 2455 onamelen = sdl->sdl_nlen; 2456 /* 2457 * Move the address if needed. This is safe because we 2458 * allocate space for a name of length IFNAMSIZ when we 2459 * create this in if_attach(). 2460 */ 2461 if (namelen != onamelen) { 2462 bcopy(sdl->sdl_data + onamelen, 2463 sdl->sdl_data + namelen, sdl->sdl_alen); 2464 } 2465 bcopy(new_name, sdl->sdl_data, namelen); 2466 sdl->sdl_nlen = namelen; 2467 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 2468 bzero(sdl->sdl_data, onamelen); 2469 while (namelen != 0) 2470 sdl->sdl_data[--namelen] = 0xff; 2471 IF_ADDR_WUNLOCK(ifp); 2472 2473 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 2474 /* Announce the return of the interface. */ 2475 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 2476 2477 ifp->if_flags &= ~IFF_RENAMING; 2478 break; 2479 2480 #ifdef VIMAGE 2481 case SIOCSIFVNET: 2482 error = priv_check(td, PRIV_NET_SETIFVNET); 2483 if (error) 2484 return (error); 2485 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2486 break; 2487 #endif 2488 2489 case SIOCSIFMETRIC: 2490 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2491 if (error) 2492 return (error); 2493 ifp->if_metric = ifr->ifr_metric; 2494 getmicrotime(&ifp->if_lastchange); 2495 break; 2496 2497 case SIOCSIFPHYS: 2498 error = priv_check(td, PRIV_NET_SETIFPHYS); 2499 if (error) 2500 return (error); 2501 if (ifp->if_ioctl == NULL) 2502 return (EOPNOTSUPP); 2503 error = (*ifp->if_ioctl)(ifp, cmd, data); 2504 if (error == 0) 2505 getmicrotime(&ifp->if_lastchange); 2506 break; 2507 2508 case SIOCSIFMTU: 2509 { 2510 u_long oldmtu = ifp->if_mtu; 2511 2512 error = priv_check(td, PRIV_NET_SETIFMTU); 2513 if (error) 2514 return (error); 2515 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2516 return (EINVAL); 2517 if (ifp->if_ioctl == NULL) 2518 return (EOPNOTSUPP); 2519 error = (*ifp->if_ioctl)(ifp, cmd, data); 2520 if (error == 0) { 2521 getmicrotime(&ifp->if_lastchange); 2522 rt_ifmsg(ifp); 2523 } 2524 /* 2525 * If the link MTU changed, do network layer specific procedure. 2526 */ 2527 if (ifp->if_mtu != oldmtu) { 2528 #ifdef INET6 2529 nd6_setmtu(ifp); 2530 #endif 2531 } 2532 break; 2533 } 2534 2535 case SIOCADDMULTI: 2536 case SIOCDELMULTI: 2537 if (cmd == SIOCADDMULTI) 2538 error = priv_check(td, PRIV_NET_ADDMULTI); 2539 else 2540 error = priv_check(td, PRIV_NET_DELMULTI); 2541 if (error) 2542 return (error); 2543 2544 /* Don't allow group membership on non-multicast interfaces. */ 2545 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2546 return (EOPNOTSUPP); 2547 2548 /* Don't let users screw up protocols' entries. */ 2549 if (ifr->ifr_addr.sa_family != AF_LINK) 2550 return (EINVAL); 2551 2552 if (cmd == SIOCADDMULTI) { 2553 struct ifmultiaddr *ifma; 2554 2555 /* 2556 * Userland is only permitted to join groups once 2557 * via the if_addmulti() KPI, because it cannot hold 2558 * struct ifmultiaddr * between calls. It may also 2559 * lose a race while we check if the membership 2560 * already exists. 2561 */ 2562 IF_ADDR_RLOCK(ifp); 2563 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2564 IF_ADDR_RUNLOCK(ifp); 2565 if (ifma != NULL) 2566 error = EADDRINUSE; 2567 else 2568 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2569 } else { 2570 error = if_delmulti(ifp, &ifr->ifr_addr); 2571 } 2572 if (error == 0) 2573 getmicrotime(&ifp->if_lastchange); 2574 break; 2575 2576 case SIOCSIFPHYADDR: 2577 case SIOCDIFPHYADDR: 2578 #ifdef INET6 2579 case SIOCSIFPHYADDR_IN6: 2580 #endif 2581 case SIOCSIFMEDIA: 2582 case SIOCSIFGENERIC: 2583 error = priv_check(td, PRIV_NET_HWIOCTL); 2584 if (error) 2585 return (error); 2586 if (ifp->if_ioctl == NULL) 2587 return (EOPNOTSUPP); 2588 error = (*ifp->if_ioctl)(ifp, cmd, data); 2589 if (error == 0) 2590 getmicrotime(&ifp->if_lastchange); 2591 break; 2592 2593 case SIOCGIFSTATUS: 2594 case SIOCGIFPSRCADDR: 2595 case SIOCGIFPDSTADDR: 2596 case SIOCGIFMEDIA: 2597 case SIOCGIFGENERIC: 2598 if (ifp->if_ioctl == NULL) 2599 return (EOPNOTSUPP); 2600 error = (*ifp->if_ioctl)(ifp, cmd, data); 2601 break; 2602 2603 case SIOCSIFLLADDR: 2604 error = priv_check(td, PRIV_NET_SETLLADDR); 2605 if (error) 2606 return (error); 2607 error = if_setlladdr(ifp, 2608 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2609 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 2610 break; 2611 2612 case SIOCAIFGROUP: 2613 { 2614 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2615 2616 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2617 if (error) 2618 return (error); 2619 if ((error = if_addgroup(ifp, ifgr->ifgr_group))) 2620 return (error); 2621 break; 2622 } 2623 2624 case SIOCGIFGROUP: 2625 if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp))) 2626 return (error); 2627 break; 2628 2629 case SIOCDIFGROUP: 2630 { 2631 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2632 2633 error = priv_check(td, PRIV_NET_DELIFGROUP); 2634 if (error) 2635 return (error); 2636 if ((error = if_delgroup(ifp, ifgr->ifgr_group))) 2637 return (error); 2638 break; 2639 } 2640 2641 default: 2642 error = ENOIOCTL; 2643 break; 2644 } 2645 return (error); 2646 } 2647 2648 #ifdef COMPAT_FREEBSD32 2649 struct ifconf32 { 2650 int32_t ifc_len; 2651 union { 2652 uint32_t ifcu_buf; 2653 uint32_t ifcu_req; 2654 } ifc_ifcu; 2655 }; 2656 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 2657 #endif 2658 2659 /* 2660 * Interface ioctls. 2661 */ 2662 int 2663 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2664 { 2665 struct ifnet *ifp; 2666 struct ifreq *ifr; 2667 int error; 2668 int oif_flags; 2669 2670 CURVNET_SET(so->so_vnet); 2671 switch (cmd) { 2672 case SIOCGIFCONF: 2673 error = ifconf(cmd, data); 2674 CURVNET_RESTORE(); 2675 return (error); 2676 2677 #ifdef COMPAT_FREEBSD32 2678 case SIOCGIFCONF32: 2679 { 2680 struct ifconf32 *ifc32; 2681 struct ifconf ifc; 2682 2683 ifc32 = (struct ifconf32 *)data; 2684 ifc.ifc_len = ifc32->ifc_len; 2685 ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2686 2687 error = ifconf(SIOCGIFCONF, (void *)&ifc); 2688 CURVNET_RESTORE(); 2689 if (error == 0) 2690 ifc32->ifc_len = ifc.ifc_len; 2691 return (error); 2692 } 2693 #endif 2694 } 2695 ifr = (struct ifreq *)data; 2696 2697 switch (cmd) { 2698 #ifdef VIMAGE 2699 case SIOCSIFRVNET: 2700 error = priv_check(td, PRIV_NET_SETIFVNET); 2701 if (error == 0) 2702 error = if_vmove_reclaim(td, ifr->ifr_name, 2703 ifr->ifr_jid); 2704 CURVNET_RESTORE(); 2705 return (error); 2706 #endif 2707 case SIOCIFCREATE: 2708 case SIOCIFCREATE2: 2709 error = priv_check(td, PRIV_NET_IFCREATE); 2710 if (error == 0) 2711 error = if_clone_create(ifr->ifr_name, 2712 sizeof(ifr->ifr_name), 2713 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL); 2714 CURVNET_RESTORE(); 2715 return (error); 2716 case SIOCIFDESTROY: 2717 error = priv_check(td, PRIV_NET_IFDESTROY); 2718 if (error == 0) 2719 error = if_clone_destroy(ifr->ifr_name); 2720 CURVNET_RESTORE(); 2721 return (error); 2722 2723 case SIOCIFGCLONERS: 2724 error = if_clone_list((struct if_clonereq *)data); 2725 CURVNET_RESTORE(); 2726 return (error); 2727 case SIOCGIFGMEMB: 2728 error = if_getgroupmembers((struct ifgroupreq *)data); 2729 CURVNET_RESTORE(); 2730 return (error); 2731 #if defined(INET) || defined(INET6) 2732 case SIOCSVH: 2733 case SIOCGVH: 2734 if (carp_ioctl_p == NULL) 2735 error = EPROTONOSUPPORT; 2736 else 2737 error = (*carp_ioctl_p)(ifr, cmd, td); 2738 CURVNET_RESTORE(); 2739 return (error); 2740 #endif 2741 } 2742 2743 ifp = ifunit_ref(ifr->ifr_name); 2744 if (ifp == NULL) { 2745 CURVNET_RESTORE(); 2746 return (ENXIO); 2747 } 2748 2749 error = ifhwioctl(cmd, ifp, data, td); 2750 if (error != ENOIOCTL) { 2751 if_rele(ifp); 2752 CURVNET_RESTORE(); 2753 return (error); 2754 } 2755 2756 oif_flags = ifp->if_flags; 2757 if (so->so_proto == NULL) { 2758 if_rele(ifp); 2759 CURVNET_RESTORE(); 2760 return (EOPNOTSUPP); 2761 } 2762 2763 /* 2764 * Pass the request on to the socket control method, and if the 2765 * latter returns EOPNOTSUPP, directly to the interface. 2766 * 2767 * Make an exception for the legacy SIOCSIF* requests. Drivers 2768 * trust SIOCSIFADDR et al to come from an already privileged 2769 * layer, and do not perform any credentials checks or input 2770 * validation. 2771 */ 2772 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, 2773 ifp, td)); 2774 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 2775 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 2776 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 2777 error = (*ifp->if_ioctl)(ifp, cmd, data); 2778 2779 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 2780 #ifdef INET6 2781 if (ifp->if_flags & IFF_UP) 2782 in6_if_up(ifp); 2783 #endif 2784 } 2785 if_rele(ifp); 2786 CURVNET_RESTORE(); 2787 return (error); 2788 } 2789 2790 /* 2791 * The code common to handling reference counted flags, 2792 * e.g., in ifpromisc() and if_allmulti(). 2793 * The "pflag" argument can specify a permanent mode flag to check, 2794 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 2795 * 2796 * Only to be used on stack-owned flags, not driver-owned flags. 2797 */ 2798 static int 2799 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 2800 { 2801 struct ifreq ifr; 2802 int error; 2803 int oldflags, oldcount; 2804 2805 /* Sanity checks to catch programming errors */ 2806 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 2807 ("%s: setting driver-owned flag %d", __func__, flag)); 2808 2809 if (onswitch) 2810 KASSERT(*refcount >= 0, 2811 ("%s: increment negative refcount %d for flag %d", 2812 __func__, *refcount, flag)); 2813 else 2814 KASSERT(*refcount > 0, 2815 ("%s: decrement non-positive refcount %d for flag %d", 2816 __func__, *refcount, flag)); 2817 2818 /* In case this mode is permanent, just touch refcount */ 2819 if (ifp->if_flags & pflag) { 2820 *refcount += onswitch ? 1 : -1; 2821 return (0); 2822 } 2823 2824 /* Save ifnet parameters for if_ioctl() may fail */ 2825 oldcount = *refcount; 2826 oldflags = ifp->if_flags; 2827 2828 /* 2829 * See if we aren't the only and touching refcount is enough. 2830 * Actually toggle interface flag if we are the first or last. 2831 */ 2832 if (onswitch) { 2833 if ((*refcount)++) 2834 return (0); 2835 ifp->if_flags |= flag; 2836 } else { 2837 if (--(*refcount)) 2838 return (0); 2839 ifp->if_flags &= ~flag; 2840 } 2841 2842 /* Call down the driver since we've changed interface flags */ 2843 if (ifp->if_ioctl == NULL) { 2844 error = EOPNOTSUPP; 2845 goto recover; 2846 } 2847 ifr.ifr_flags = ifp->if_flags & 0xffff; 2848 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2849 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 2850 if (error) 2851 goto recover; 2852 /* Notify userland that interface flags have changed */ 2853 rt_ifmsg(ifp); 2854 return (0); 2855 2856 recover: 2857 /* Recover after driver error */ 2858 *refcount = oldcount; 2859 ifp->if_flags = oldflags; 2860 return (error); 2861 } 2862 2863 /* 2864 * Set/clear promiscuous mode on interface ifp based on the truth value 2865 * of pswitch. The calls are reference counted so that only the first 2866 * "on" request actually has an effect, as does the final "off" request. 2867 * Results are undefined if the "off" and "on" requests are not matched. 2868 */ 2869 int 2870 ifpromisc(struct ifnet *ifp, int pswitch) 2871 { 2872 int error; 2873 int oldflags = ifp->if_flags; 2874 2875 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 2876 &ifp->if_pcount, pswitch); 2877 /* If promiscuous mode status has changed, log a message */ 2878 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC)) 2879 log(LOG_INFO, "%s: promiscuous mode %s\n", 2880 ifp->if_xname, 2881 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 2882 return (error); 2883 } 2884 2885 /* 2886 * Return interface configuration 2887 * of system. List may be used 2888 * in later ioctl's (above) to get 2889 * other information. 2890 */ 2891 /*ARGSUSED*/ 2892 static int 2893 ifconf(u_long cmd, caddr_t data) 2894 { 2895 struct ifconf *ifc = (struct ifconf *)data; 2896 struct ifnet *ifp; 2897 struct ifaddr *ifa; 2898 struct ifreq ifr; 2899 struct sbuf *sb; 2900 int error, full = 0, valid_len, max_len; 2901 2902 /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ 2903 max_len = MAXPHYS - 1; 2904 2905 /* Prevent hostile input from being able to crash the system */ 2906 if (ifc->ifc_len <= 0) 2907 return (EINVAL); 2908 2909 again: 2910 if (ifc->ifc_len <= max_len) { 2911 max_len = ifc->ifc_len; 2912 full = 1; 2913 } 2914 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 2915 max_len = 0; 2916 valid_len = 0; 2917 2918 IFNET_RLOCK(); 2919 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2920 int addrs; 2921 2922 /* 2923 * Zero the ifr_name buffer to make sure we don't 2924 * disclose the contents of the stack. 2925 */ 2926 memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name)); 2927 2928 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 2929 >= sizeof(ifr.ifr_name)) { 2930 sbuf_delete(sb); 2931 IFNET_RUNLOCK(); 2932 return (ENAMETOOLONG); 2933 } 2934 2935 addrs = 0; 2936 IF_ADDR_RLOCK(ifp); 2937 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2938 struct sockaddr *sa = ifa->ifa_addr; 2939 2940 if (prison_if(curthread->td_ucred, sa) != 0) 2941 continue; 2942 addrs++; 2943 if (sa->sa_len <= sizeof(*sa)) { 2944 ifr.ifr_addr = *sa; 2945 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2946 max_len += sizeof(ifr); 2947 } else { 2948 sbuf_bcat(sb, &ifr, 2949 offsetof(struct ifreq, ifr_addr)); 2950 max_len += offsetof(struct ifreq, ifr_addr); 2951 sbuf_bcat(sb, sa, sa->sa_len); 2952 max_len += sa->sa_len; 2953 } 2954 2955 if (sbuf_error(sb) == 0) 2956 valid_len = sbuf_len(sb); 2957 } 2958 IF_ADDR_RUNLOCK(ifp); 2959 if (addrs == 0) { 2960 bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); 2961 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2962 max_len += sizeof(ifr); 2963 2964 if (sbuf_error(sb) == 0) 2965 valid_len = sbuf_len(sb); 2966 } 2967 } 2968 IFNET_RUNLOCK(); 2969 2970 /* 2971 * If we didn't allocate enough space (uncommon), try again. If 2972 * we have already allocated as much space as we are allowed, 2973 * return what we've got. 2974 */ 2975 if (valid_len != max_len && !full) { 2976 sbuf_delete(sb); 2977 goto again; 2978 } 2979 2980 ifc->ifc_len = valid_len; 2981 sbuf_finish(sb); 2982 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 2983 sbuf_delete(sb); 2984 return (error); 2985 } 2986 2987 /* 2988 * Just like ifpromisc(), but for all-multicast-reception mode. 2989 */ 2990 int 2991 if_allmulti(struct ifnet *ifp, int onswitch) 2992 { 2993 2994 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 2995 } 2996 2997 struct ifmultiaddr * 2998 if_findmulti(struct ifnet *ifp, struct sockaddr *sa) 2999 { 3000 struct ifmultiaddr *ifma; 3001 3002 IF_ADDR_LOCK_ASSERT(ifp); 3003 3004 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3005 if (sa->sa_family == AF_LINK) { 3006 if (sa_dl_equal(ifma->ifma_addr, sa)) 3007 break; 3008 } else { 3009 if (sa_equal(ifma->ifma_addr, sa)) 3010 break; 3011 } 3012 } 3013 3014 return ifma; 3015 } 3016 3017 /* 3018 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 3019 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 3020 * the ifnet multicast address list here, so the caller must do that and 3021 * other setup work (such as notifying the device driver). The reference 3022 * count is initialized to 1. 3023 */ 3024 static struct ifmultiaddr * 3025 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 3026 int mflags) 3027 { 3028 struct ifmultiaddr *ifma; 3029 struct sockaddr *dupsa; 3030 3031 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3032 M_ZERO); 3033 if (ifma == NULL) 3034 return (NULL); 3035 3036 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3037 if (dupsa == NULL) { 3038 free(ifma, M_IFMADDR); 3039 return (NULL); 3040 } 3041 bcopy(sa, dupsa, sa->sa_len); 3042 ifma->ifma_addr = dupsa; 3043 3044 ifma->ifma_ifp = ifp; 3045 ifma->ifma_refcount = 1; 3046 ifma->ifma_protospec = NULL; 3047 3048 if (llsa == NULL) { 3049 ifma->ifma_lladdr = NULL; 3050 return (ifma); 3051 } 3052 3053 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3054 if (dupsa == NULL) { 3055 free(ifma->ifma_addr, M_IFMADDR); 3056 free(ifma, M_IFMADDR); 3057 return (NULL); 3058 } 3059 bcopy(llsa, dupsa, llsa->sa_len); 3060 ifma->ifma_lladdr = dupsa; 3061 3062 return (ifma); 3063 } 3064 3065 /* 3066 * if_freemulti: free ifmultiaddr structure and possibly attached related 3067 * addresses. The caller is responsible for implementing reference 3068 * counting, notifying the driver, handling routing messages, and releasing 3069 * any dependent link layer state. 3070 */ 3071 static void 3072 if_freemulti(struct ifmultiaddr *ifma) 3073 { 3074 3075 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3076 ifma->ifma_refcount)); 3077 3078 if (ifma->ifma_lladdr != NULL) 3079 free(ifma->ifma_lladdr, M_IFMADDR); 3080 free(ifma->ifma_addr, M_IFMADDR); 3081 free(ifma, M_IFMADDR); 3082 } 3083 3084 /* 3085 * Register an additional multicast address with a network interface. 3086 * 3087 * - If the address is already present, bump the reference count on the 3088 * address and return. 3089 * - If the address is not link-layer, look up a link layer address. 3090 * - Allocate address structures for one or both addresses, and attach to the 3091 * multicast address list on the interface. If automatically adding a link 3092 * layer address, the protocol address will own a reference to the link 3093 * layer address, to be freed when it is freed. 3094 * - Notify the network device driver of an addition to the multicast address 3095 * list. 3096 * 3097 * 'sa' points to caller-owned memory with the desired multicast address. 3098 * 3099 * 'retifma' will be used to return a pointer to the resulting multicast 3100 * address reference, if desired. 3101 */ 3102 int 3103 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3104 struct ifmultiaddr **retifma) 3105 { 3106 struct ifmultiaddr *ifma, *ll_ifma; 3107 struct sockaddr *llsa; 3108 struct sockaddr_dl sdl; 3109 int error; 3110 3111 /* 3112 * If the address is already present, return a new reference to it; 3113 * otherwise, allocate storage and set up a new address. 3114 */ 3115 IF_ADDR_WLOCK(ifp); 3116 ifma = if_findmulti(ifp, sa); 3117 if (ifma != NULL) { 3118 ifma->ifma_refcount++; 3119 if (retifma != NULL) 3120 *retifma = ifma; 3121 IF_ADDR_WUNLOCK(ifp); 3122 return (0); 3123 } 3124 3125 /* 3126 * The address isn't already present; resolve the protocol address 3127 * into a link layer address, and then look that up, bump its 3128 * refcount or allocate an ifma for that also. 3129 * Most link layer resolving functions returns address data which 3130 * fits inside default sockaddr_dl structure. However callback 3131 * can allocate another sockaddr structure, in that case we need to 3132 * free it later. 3133 */ 3134 llsa = NULL; 3135 ll_ifma = NULL; 3136 if (ifp->if_resolvemulti != NULL) { 3137 /* Provide called function with buffer size information */ 3138 sdl.sdl_len = sizeof(sdl); 3139 llsa = (struct sockaddr *)&sdl; 3140 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3141 if (error) 3142 goto unlock_out; 3143 } 3144 3145 /* 3146 * Allocate the new address. Don't hook it up yet, as we may also 3147 * need to allocate a link layer multicast address. 3148 */ 3149 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3150 if (ifma == NULL) { 3151 error = ENOMEM; 3152 goto free_llsa_out; 3153 } 3154 3155 /* 3156 * If a link layer address is found, we'll need to see if it's 3157 * already present in the address list, or allocate is as well. 3158 * When this block finishes, the link layer address will be on the 3159 * list. 3160 */ 3161 if (llsa != NULL) { 3162 ll_ifma = if_findmulti(ifp, llsa); 3163 if (ll_ifma == NULL) { 3164 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3165 if (ll_ifma == NULL) { 3166 --ifma->ifma_refcount; 3167 if_freemulti(ifma); 3168 error = ENOMEM; 3169 goto free_llsa_out; 3170 } 3171 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3172 ifma_link); 3173 } else 3174 ll_ifma->ifma_refcount++; 3175 ifma->ifma_llifma = ll_ifma; 3176 } 3177 3178 /* 3179 * We now have a new multicast address, ifma, and possibly a new or 3180 * referenced link layer address. Add the primary address to the 3181 * ifnet address list. 3182 */ 3183 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3184 3185 if (retifma != NULL) 3186 *retifma = ifma; 3187 3188 /* 3189 * Must generate the message while holding the lock so that 'ifma' 3190 * pointer is still valid. 3191 */ 3192 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3193 IF_ADDR_WUNLOCK(ifp); 3194 3195 /* 3196 * We are certain we have added something, so call down to the 3197 * interface to let them know about it. 3198 */ 3199 if (ifp->if_ioctl != NULL) { 3200 (void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3201 } 3202 3203 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3204 link_free_sdl(llsa); 3205 3206 return (0); 3207 3208 free_llsa_out: 3209 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3210 link_free_sdl(llsa); 3211 3212 unlock_out: 3213 IF_ADDR_WUNLOCK(ifp); 3214 return (error); 3215 } 3216 3217 /* 3218 * Delete a multicast group membership by network-layer group address. 3219 * 3220 * Returns ENOENT if the entry could not be found. If ifp no longer 3221 * exists, results are undefined. This entry point should only be used 3222 * from subsystems which do appropriate locking to hold ifp for the 3223 * duration of the call. 3224 * Network-layer protocol domains must use if_delmulti_ifma(). 3225 */ 3226 int 3227 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3228 { 3229 struct ifmultiaddr *ifma; 3230 int lastref; 3231 #ifdef INVARIANTS 3232 struct ifnet *oifp; 3233 3234 IFNET_RLOCK_NOSLEEP(); 3235 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3236 if (ifp == oifp) 3237 break; 3238 if (ifp != oifp) 3239 ifp = NULL; 3240 IFNET_RUNLOCK_NOSLEEP(); 3241 3242 KASSERT(ifp != NULL, ("%s: ifnet went away", __func__)); 3243 #endif 3244 if (ifp == NULL) 3245 return (ENOENT); 3246 3247 IF_ADDR_WLOCK(ifp); 3248 lastref = 0; 3249 ifma = if_findmulti(ifp, sa); 3250 if (ifma != NULL) 3251 lastref = if_delmulti_locked(ifp, ifma, 0); 3252 IF_ADDR_WUNLOCK(ifp); 3253 3254 if (ifma == NULL) 3255 return (ENOENT); 3256 3257 if (lastref && ifp->if_ioctl != NULL) { 3258 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3259 } 3260 3261 return (0); 3262 } 3263 3264 /* 3265 * Delete all multicast group membership for an interface. 3266 * Should be used to quickly flush all multicast filters. 3267 */ 3268 void 3269 if_delallmulti(struct ifnet *ifp) 3270 { 3271 struct ifmultiaddr *ifma; 3272 struct ifmultiaddr *next; 3273 3274 IF_ADDR_WLOCK(ifp); 3275 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3276 if_delmulti_locked(ifp, ifma, 0); 3277 IF_ADDR_WUNLOCK(ifp); 3278 } 3279 3280 /* 3281 * Delete a multicast group membership by group membership pointer. 3282 * Network-layer protocol domains must use this routine. 3283 * 3284 * It is safe to call this routine if the ifp disappeared. 3285 */ 3286 void 3287 if_delmulti_ifma(struct ifmultiaddr *ifma) 3288 { 3289 struct ifnet *ifp; 3290 int lastref; 3291 3292 ifp = ifma->ifma_ifp; 3293 #ifdef DIAGNOSTIC 3294 if (ifp == NULL) { 3295 printf("%s: ifma_ifp seems to be detached\n", __func__); 3296 } else { 3297 struct ifnet *oifp; 3298 3299 IFNET_RLOCK_NOSLEEP(); 3300 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3301 if (ifp == oifp) 3302 break; 3303 if (ifp != oifp) { 3304 printf("%s: ifnet %p disappeared\n", __func__, ifp); 3305 ifp = NULL; 3306 } 3307 IFNET_RUNLOCK_NOSLEEP(); 3308 } 3309 #endif 3310 /* 3311 * If and only if the ifnet instance exists: Acquire the address lock. 3312 */ 3313 if (ifp != NULL) 3314 IF_ADDR_WLOCK(ifp); 3315 3316 lastref = if_delmulti_locked(ifp, ifma, 0); 3317 3318 if (ifp != NULL) { 3319 /* 3320 * If and only if the ifnet instance exists: 3321 * Release the address lock. 3322 * If the group was left: update the hardware hash filter. 3323 */ 3324 IF_ADDR_WUNLOCK(ifp); 3325 if (lastref && ifp->if_ioctl != NULL) { 3326 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3327 } 3328 } 3329 } 3330 3331 /* 3332 * Perform deletion of network-layer and/or link-layer multicast address. 3333 * 3334 * Return 0 if the reference count was decremented. 3335 * Return 1 if the final reference was released, indicating that the 3336 * hardware hash filter should be reprogrammed. 3337 */ 3338 static int 3339 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3340 { 3341 struct ifmultiaddr *ll_ifma; 3342 3343 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3344 KASSERT(ifma->ifma_ifp == ifp, 3345 ("%s: inconsistent ifp %p", __func__, ifp)); 3346 IF_ADDR_WLOCK_ASSERT(ifp); 3347 } 3348 3349 ifp = ifma->ifma_ifp; 3350 3351 /* 3352 * If the ifnet is detaching, null out references to ifnet, 3353 * so that upper protocol layers will notice, and not attempt 3354 * to obtain locks for an ifnet which no longer exists. The 3355 * routing socket announcement must happen before the ifnet 3356 * instance is detached from the system. 3357 */ 3358 if (detaching) { 3359 #ifdef DIAGNOSTIC 3360 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3361 #endif 3362 /* 3363 * ifp may already be nulled out if we are being reentered 3364 * to delete the ll_ifma. 3365 */ 3366 if (ifp != NULL) { 3367 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3368 ifma->ifma_ifp = NULL; 3369 } 3370 } 3371 3372 if (--ifma->ifma_refcount > 0) 3373 return 0; 3374 3375 /* 3376 * If this ifma is a network-layer ifma, a link-layer ifma may 3377 * have been associated with it. Release it first if so. 3378 */ 3379 ll_ifma = ifma->ifma_llifma; 3380 if (ll_ifma != NULL) { 3381 KASSERT(ifma->ifma_lladdr != NULL, 3382 ("%s: llifma w/o lladdr", __func__)); 3383 if (detaching) 3384 ll_ifma->ifma_ifp = NULL; /* XXX */ 3385 if (--ll_ifma->ifma_refcount == 0) { 3386 if (ifp != NULL) { 3387 TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, 3388 ifma_link); 3389 } 3390 if_freemulti(ll_ifma); 3391 } 3392 } 3393 3394 if (ifp != NULL) 3395 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 3396 3397 if_freemulti(ifma); 3398 3399 /* 3400 * The last reference to this instance of struct ifmultiaddr 3401 * was released; the hardware should be notified of this change. 3402 */ 3403 return 1; 3404 } 3405 3406 /* 3407 * Set the link layer address on an interface. 3408 * 3409 * At this time we only support certain types of interfaces, 3410 * and we don't allow the length of the address to change. 3411 */ 3412 int 3413 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3414 { 3415 struct sockaddr_dl *sdl; 3416 struct ifaddr *ifa; 3417 struct ifreq ifr; 3418 3419 IF_ADDR_RLOCK(ifp); 3420 ifa = ifp->if_addr; 3421 if (ifa == NULL) { 3422 IF_ADDR_RUNLOCK(ifp); 3423 return (EINVAL); 3424 } 3425 ifa_ref(ifa); 3426 IF_ADDR_RUNLOCK(ifp); 3427 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3428 if (sdl == NULL) { 3429 ifa_free(ifa); 3430 return (EINVAL); 3431 } 3432 if (len != sdl->sdl_alen) { /* don't allow length to change */ 3433 ifa_free(ifa); 3434 return (EINVAL); 3435 } 3436 switch (ifp->if_type) { 3437 case IFT_ETHER: 3438 case IFT_FDDI: 3439 case IFT_XETHER: 3440 case IFT_ISO88025: 3441 case IFT_L2VLAN: 3442 case IFT_BRIDGE: 3443 case IFT_ARCNET: 3444 case IFT_IEEE8023ADLAG: 3445 case IFT_IEEE80211: 3446 bcopy(lladdr, LLADDR(sdl), len); 3447 ifa_free(ifa); 3448 break; 3449 default: 3450 ifa_free(ifa); 3451 return (ENODEV); 3452 } 3453 3454 /* 3455 * If the interface is already up, we need 3456 * to re-init it in order to reprogram its 3457 * address filter. 3458 */ 3459 if ((ifp->if_flags & IFF_UP) != 0) { 3460 if (ifp->if_ioctl) { 3461 ifp->if_flags &= ~IFF_UP; 3462 ifr.ifr_flags = ifp->if_flags & 0xffff; 3463 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3464 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3465 ifp->if_flags |= IFF_UP; 3466 ifr.ifr_flags = ifp->if_flags & 0xffff; 3467 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3468 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3469 } 3470 #ifdef INET 3471 /* 3472 * Also send gratuitous ARPs to notify other nodes about 3473 * the address change. 3474 */ 3475 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3476 if (ifa->ifa_addr->sa_family == AF_INET) 3477 arp_ifinit(ifp, ifa); 3478 } 3479 #endif 3480 } 3481 return (0); 3482 } 3483 3484 /* 3485 * The name argument must be a pointer to storage which will last as 3486 * long as the interface does. For physical devices, the result of 3487 * device_get_name(dev) is a good choice and for pseudo-devices a 3488 * static string works well. 3489 */ 3490 void 3491 if_initname(struct ifnet *ifp, const char *name, int unit) 3492 { 3493 ifp->if_dname = name; 3494 ifp->if_dunit = unit; 3495 if (unit != IF_DUNIT_NONE) 3496 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 3497 else 3498 strlcpy(ifp->if_xname, name, IFNAMSIZ); 3499 } 3500 3501 int 3502 if_printf(struct ifnet *ifp, const char * fmt, ...) 3503 { 3504 va_list ap; 3505 int retval; 3506 3507 retval = printf("%s: ", ifp->if_xname); 3508 va_start(ap, fmt); 3509 retval += vprintf(fmt, ap); 3510 va_end(ap); 3511 return (retval); 3512 } 3513 3514 void 3515 if_start(struct ifnet *ifp) 3516 { 3517 3518 (*(ifp)->if_start)(ifp); 3519 } 3520 3521 /* 3522 * Backwards compatibility interface for drivers 3523 * that have not implemented it 3524 */ 3525 static int 3526 if_transmit(struct ifnet *ifp, struct mbuf *m) 3527 { 3528 int error; 3529 3530 IFQ_HANDOFF(ifp, m, error); 3531 return (error); 3532 } 3533 3534 int 3535 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 3536 { 3537 int active = 0; 3538 3539 IF_LOCK(ifq); 3540 if (_IF_QFULL(ifq)) { 3541 IF_UNLOCK(ifq); 3542 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 3543 m_freem(m); 3544 return (0); 3545 } 3546 if (ifp != NULL) { 3547 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 3548 if (m->m_flags & (M_BCAST|M_MCAST)) 3549 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3550 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 3551 } 3552 _IF_ENQUEUE(ifq, m); 3553 IF_UNLOCK(ifq); 3554 if (ifp != NULL && !active) 3555 (*(ifp)->if_start)(ifp); 3556 return (1); 3557 } 3558 3559 void 3560 if_register_com_alloc(u_char type, 3561 if_com_alloc_t *a, if_com_free_t *f) 3562 { 3563 3564 KASSERT(if_com_alloc[type] == NULL, 3565 ("if_register_com_alloc: %d already registered", type)); 3566 KASSERT(if_com_free[type] == NULL, 3567 ("if_register_com_alloc: %d free already registered", type)); 3568 3569 if_com_alloc[type] = a; 3570 if_com_free[type] = f; 3571 } 3572 3573 void 3574 if_deregister_com_alloc(u_char type) 3575 { 3576 3577 KASSERT(if_com_alloc[type] != NULL, 3578 ("if_deregister_com_alloc: %d not registered", type)); 3579 KASSERT(if_com_free[type] != NULL, 3580 ("if_deregister_com_alloc: %d free not registered", type)); 3581 if_com_alloc[type] = NULL; 3582 if_com_free[type] = NULL; 3583 } 3584 3585 /* API for driver access to network stack owned ifnet.*/ 3586 uint64_t 3587 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 3588 { 3589 uint64_t oldbrate; 3590 3591 oldbrate = ifp->if_baudrate; 3592 ifp->if_baudrate = baudrate; 3593 return (oldbrate); 3594 } 3595 3596 uint64_t 3597 if_getbaudrate(if_t ifp) 3598 { 3599 3600 return (((struct ifnet *)ifp)->if_baudrate); 3601 } 3602 3603 int 3604 if_setcapabilities(if_t ifp, int capabilities) 3605 { 3606 ((struct ifnet *)ifp)->if_capabilities = capabilities; 3607 return (0); 3608 } 3609 3610 int 3611 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 3612 { 3613 ((struct ifnet *)ifp)->if_capabilities |= setbit; 3614 ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; 3615 3616 return (0); 3617 } 3618 3619 int 3620 if_getcapabilities(if_t ifp) 3621 { 3622 return ((struct ifnet *)ifp)->if_capabilities; 3623 } 3624 3625 int 3626 if_setcapenable(if_t ifp, int capabilities) 3627 { 3628 ((struct ifnet *)ifp)->if_capenable = capabilities; 3629 return (0); 3630 } 3631 3632 int 3633 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 3634 { 3635 if(setcap) 3636 ((struct ifnet *)ifp)->if_capenable |= setcap; 3637 if(clearcap) 3638 ((struct ifnet *)ifp)->if_capenable &= ~clearcap; 3639 3640 return (0); 3641 } 3642 3643 const char * 3644 if_getdname(if_t ifp) 3645 { 3646 return ((struct ifnet *)ifp)->if_dname; 3647 } 3648 3649 int 3650 if_togglecapenable(if_t ifp, int togglecap) 3651 { 3652 ((struct ifnet *)ifp)->if_capenable ^= togglecap; 3653 return (0); 3654 } 3655 3656 int 3657 if_getcapenable(if_t ifp) 3658 { 3659 return ((struct ifnet *)ifp)->if_capenable; 3660 } 3661 3662 /* 3663 * This is largely undesirable because it ties ifnet to a device, but does 3664 * provide flexiblity for an embedded product vendor. Should be used with 3665 * the understanding that it violates the interface boundaries, and should be 3666 * a last resort only. 3667 */ 3668 int 3669 if_setdev(if_t ifp, void *dev) 3670 { 3671 return (0); 3672 } 3673 3674 int 3675 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 3676 { 3677 ((struct ifnet *)ifp)->if_drv_flags |= set_flags; 3678 ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; 3679 3680 return (0); 3681 } 3682 3683 int 3684 if_getdrvflags(if_t ifp) 3685 { 3686 return ((struct ifnet *)ifp)->if_drv_flags; 3687 } 3688 3689 int 3690 if_setdrvflags(if_t ifp, int flags) 3691 { 3692 ((struct ifnet *)ifp)->if_drv_flags = flags; 3693 return (0); 3694 } 3695 3696 3697 int 3698 if_setflags(if_t ifp, int flags) 3699 { 3700 ((struct ifnet *)ifp)->if_flags = flags; 3701 return (0); 3702 } 3703 3704 int 3705 if_setflagbits(if_t ifp, int set, int clear) 3706 { 3707 ((struct ifnet *)ifp)->if_flags |= set; 3708 ((struct ifnet *)ifp)->if_flags &= ~clear; 3709 3710 return (0); 3711 } 3712 3713 int 3714 if_getflags(if_t ifp) 3715 { 3716 return ((struct ifnet *)ifp)->if_flags; 3717 } 3718 3719 int 3720 if_clearhwassist(if_t ifp) 3721 { 3722 ((struct ifnet *)ifp)->if_hwassist = 0; 3723 return (0); 3724 } 3725 3726 int 3727 if_sethwassistbits(if_t ifp, int toset, int toclear) 3728 { 3729 ((struct ifnet *)ifp)->if_hwassist |= toset; 3730 ((struct ifnet *)ifp)->if_hwassist &= ~toclear; 3731 3732 return (0); 3733 } 3734 3735 int 3736 if_sethwassist(if_t ifp, int hwassist_bit) 3737 { 3738 ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; 3739 return (0); 3740 } 3741 3742 int 3743 if_gethwassist(if_t ifp) 3744 { 3745 return ((struct ifnet *)ifp)->if_hwassist; 3746 } 3747 3748 int 3749 if_setmtu(if_t ifp, int mtu) 3750 { 3751 ((struct ifnet *)ifp)->if_mtu = mtu; 3752 return (0); 3753 } 3754 3755 int 3756 if_getmtu(if_t ifp) 3757 { 3758 return ((struct ifnet *)ifp)->if_mtu; 3759 } 3760 3761 int 3762 if_setsoftc(if_t ifp, void *softc) 3763 { 3764 ((struct ifnet *)ifp)->if_softc = softc; 3765 return (0); 3766 } 3767 3768 void * 3769 if_getsoftc(if_t ifp) 3770 { 3771 return ((struct ifnet *)ifp)->if_softc; 3772 } 3773 3774 void 3775 if_setrcvif(struct mbuf *m, if_t ifp) 3776 { 3777 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 3778 } 3779 3780 void 3781 if_setvtag(struct mbuf *m, uint16_t tag) 3782 { 3783 m->m_pkthdr.ether_vtag = tag; 3784 } 3785 3786 uint16_t 3787 if_getvtag(struct mbuf *m) 3788 { 3789 3790 return (m->m_pkthdr.ether_vtag); 3791 } 3792 3793 int 3794 if_sendq_empty(if_t ifp) 3795 { 3796 return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); 3797 } 3798 3799 struct ifaddr * 3800 if_getifaddr(if_t ifp) 3801 { 3802 return ((struct ifnet *)ifp)->if_addr; 3803 } 3804 3805 int 3806 if_getamcount(if_t ifp) 3807 { 3808 return ((struct ifnet *)ifp)->if_amcount; 3809 } 3810 3811 3812 int 3813 if_setsendqready(if_t ifp) 3814 { 3815 IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); 3816 return (0); 3817 } 3818 3819 int 3820 if_setsendqlen(if_t ifp, int tx_desc_count) 3821 { 3822 IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); 3823 ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; 3824 3825 return (0); 3826 } 3827 3828 int 3829 if_vlantrunkinuse(if_t ifp) 3830 { 3831 return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; 3832 } 3833 3834 int 3835 if_input(if_t ifp, struct mbuf* sendmp) 3836 { 3837 (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); 3838 return (0); 3839 3840 } 3841 3842 /* XXX */ 3843 #ifndef ETH_ADDR_LEN 3844 #define ETH_ADDR_LEN 6 3845 #endif 3846 3847 int 3848 if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max) 3849 { 3850 struct ifmultiaddr *ifma; 3851 uint8_t *lmta = (uint8_t *)mta; 3852 int mcnt = 0; 3853 3854 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3855 if (ifma->ifma_addr->sa_family != AF_LINK) 3856 continue; 3857 3858 if (mcnt == max) 3859 break; 3860 3861 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 3862 &lmta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); 3863 mcnt++; 3864 } 3865 *cnt = mcnt; 3866 3867 return (0); 3868 } 3869 3870 int 3871 if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max) 3872 { 3873 int error; 3874 3875 if_maddr_rlock(ifp); 3876 error = if_setupmultiaddr(ifp, mta, cnt, max); 3877 if_maddr_runlock(ifp); 3878 return (error); 3879 } 3880 3881 int 3882 if_multiaddr_count(if_t ifp, int max) 3883 { 3884 struct ifmultiaddr *ifma; 3885 int count; 3886 3887 count = 0; 3888 if_maddr_rlock(ifp); 3889 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3890 if (ifma->ifma_addr->sa_family != AF_LINK) 3891 continue; 3892 count++; 3893 if (count == max) 3894 break; 3895 } 3896 if_maddr_runlock(ifp); 3897 return (count); 3898 } 3899 3900 struct mbuf * 3901 if_dequeue(if_t ifp) 3902 { 3903 struct mbuf *m; 3904 IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); 3905 3906 return (m); 3907 } 3908 3909 int 3910 if_sendq_prepend(if_t ifp, struct mbuf *m) 3911 { 3912 IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); 3913 return (0); 3914 } 3915 3916 int 3917 if_setifheaderlen(if_t ifp, int len) 3918 { 3919 ((struct ifnet *)ifp)->if_hdrlen = len; 3920 return (0); 3921 } 3922 3923 caddr_t 3924 if_getlladdr(if_t ifp) 3925 { 3926 return (IF_LLADDR((struct ifnet *)ifp)); 3927 } 3928 3929 void * 3930 if_gethandle(u_char type) 3931 { 3932 return (if_alloc(type)); 3933 } 3934 3935 void 3936 if_bpfmtap(if_t ifh, struct mbuf *m) 3937 { 3938 struct ifnet *ifp = (struct ifnet *)ifh; 3939 3940 BPF_MTAP(ifp, m); 3941 } 3942 3943 void 3944 if_etherbpfmtap(if_t ifh, struct mbuf *m) 3945 { 3946 struct ifnet *ifp = (struct ifnet *)ifh; 3947 3948 ETHER_BPF_MTAP(ifp, m); 3949 } 3950 3951 void 3952 if_vlancap(if_t ifh) 3953 { 3954 struct ifnet *ifp = (struct ifnet *)ifh; 3955 VLAN_CAPABILITIES(ifp); 3956 } 3957 3958 void 3959 if_setinitfn(if_t ifp, void (*init_fn)(void *)) 3960 { 3961 ((struct ifnet *)ifp)->if_init = init_fn; 3962 } 3963 3964 void 3965 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) 3966 { 3967 ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; 3968 } 3969 3970 void 3971 if_setstartfn(if_t ifp, void (*start_fn)(if_t)) 3972 { 3973 ((struct ifnet *)ifp)->if_start = (void *)start_fn; 3974 } 3975 3976 void 3977 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 3978 { 3979 ((struct ifnet *)ifp)->if_transmit = start_fn; 3980 } 3981 3982 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 3983 { 3984 ((struct ifnet *)ifp)->if_qflush = flush_fn; 3985 3986 } 3987 3988 void 3989 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 3990 { 3991 3992 ifp->if_get_counter = fn; 3993 } 3994 3995 /* Revisit these - These are inline functions originally. */ 3996 int 3997 drbr_inuse_drv(if_t ifh, struct buf_ring *br) 3998 { 3999 return drbr_inuse_drv(ifh, br); 4000 } 4001 4002 struct mbuf* 4003 drbr_dequeue_drv(if_t ifh, struct buf_ring *br) 4004 { 4005 return drbr_dequeue(ifh, br); 4006 } 4007 4008 int 4009 drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br) 4010 { 4011 return drbr_needs_enqueue(ifh, br); 4012 } 4013 4014 int 4015 drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m) 4016 { 4017 return drbr_enqueue(ifh, br, m); 4018 4019 } 4020