1 /*- 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if.c 8.5 (Berkeley) 1/9/95 30 * $FreeBSD$ 31 */ 32 33 #include "opt_compat.h" 34 #include "opt_inet6.h" 35 #include "opt_inet.h" 36 37 #include <sys/param.h> 38 #include <sys/types.h> 39 #include <sys/conf.h> 40 #include <sys/malloc.h> 41 #include <sys/sbuf.h> 42 #include <sys/bus.h> 43 #include <sys/mbuf.h> 44 #include <sys/systm.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/protosw.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/refcount.h> 53 #include <sys/module.h> 54 #include <sys/rwlock.h> 55 #include <sys/sockio.h> 56 #include <sys/syslog.h> 57 #include <sys/sysctl.h> 58 #include <sys/taskqueue.h> 59 #include <sys/domain.h> 60 #include <sys/jail.h> 61 #include <sys/priv.h> 62 63 #include <machine/stdarg.h> 64 #include <vm/uma.h> 65 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/if.h> 69 #include <net/if_arp.h> 70 #include <net/if_clone.h> 71 #include <net/if_dl.h> 72 #include <net/if_types.h> 73 #include <net/if_var.h> 74 #include <net/if_media.h> 75 #include <net/if_vlan_var.h> 76 #include <net/radix.h> 77 #include <net/route.h> 78 #include <net/vnet.h> 79 80 #if defined(INET) || defined(INET6) 81 #include <net/ethernet.h> 82 #include <netinet/in.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_carp.h> 86 #ifdef INET 87 #include <netinet/if_ether.h> 88 #endif /* INET */ 89 #ifdef INET6 90 #include <netinet6/in6_var.h> 91 #include <netinet6/in6_ifattach.h> 92 #endif /* INET6 */ 93 #endif /* INET || INET6 */ 94 95 #include <security/mac/mac_framework.h> 96 97 #ifdef COMPAT_FREEBSD32 98 #include <sys/mount.h> 99 #include <compat/freebsd32/freebsd32.h> 100 #endif 101 102 struct ifindex_entry { 103 struct ifnet *ife_ifnet; 104 }; 105 106 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 107 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 108 109 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 110 &ifqmaxlen, 0, "max send queue size"); 111 112 /* Log link state change events */ 113 static int log_link_state_change = 1; 114 115 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 116 &log_link_state_change, 0, 117 "log interface link state change events"); 118 119 /* Interface description */ 120 static unsigned int ifdescr_maxlen = 1024; 121 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 122 &ifdescr_maxlen, 0, 123 "administrative maximum length for interface description"); 124 125 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 126 127 /* global sx for non-critical path ifdescr */ 128 static struct sx ifdescr_sx; 129 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 130 131 void (*bridge_linkstate_p)(struct ifnet *ifp); 132 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 133 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 134 /* These are external hooks for CARP. */ 135 void (*carp_linkstate_p)(struct ifnet *ifp); 136 void (*carp_demote_adj_p)(int, char *); 137 int (*carp_master_p)(struct ifaddr *); 138 #if defined(INET) || defined(INET6) 139 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 140 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 141 const struct sockaddr *sa); 142 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 143 int (*carp_attach_p)(struct ifaddr *, int); 144 void (*carp_detach_p)(struct ifaddr *); 145 #endif 146 #ifdef INET 147 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 148 #endif 149 #ifdef INET6 150 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 151 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 152 const struct in6_addr *taddr); 153 #endif 154 155 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 156 157 /* 158 * XXX: Style; these should be sorted alphabetically, and unprototyped 159 * static functions should be prototyped. Currently they are sorted by 160 * declaration order. 161 */ 162 static void if_attachdomain(void *); 163 static void if_attachdomain1(struct ifnet *); 164 static int ifconf(u_long, caddr_t); 165 static void if_freemulti(struct ifmultiaddr *); 166 static void if_init(void *); 167 static void if_grow(void); 168 static void if_route(struct ifnet *, int flag, int fam); 169 static int if_setflag(struct ifnet *, int, int, int *, int); 170 static int if_transmit(struct ifnet *ifp, struct mbuf *m); 171 static void if_unroute(struct ifnet *, int flag, int fam); 172 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 173 static int if_rtdel(struct radix_node *, void *); 174 static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *); 175 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 176 static void do_link_state_change(void *, int); 177 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 178 static int if_getgroupmembers(struct ifgroupreq *); 179 static void if_delgroups(struct ifnet *); 180 static void if_attach_internal(struct ifnet *, int); 181 static void if_detach_internal(struct ifnet *, int); 182 183 #ifdef INET6 184 /* 185 * XXX: declare here to avoid to include many inet6 related files.. 186 * should be more generalized? 187 */ 188 extern void nd6_setmtu(struct ifnet *); 189 #endif 190 191 VNET_DEFINE(int, if_index); 192 int ifqmaxlen = IFQ_MAXLEN; 193 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 194 VNET_DEFINE(struct ifgrouphead, ifg_head); 195 196 static VNET_DEFINE(int, if_indexlim) = 8; 197 198 /* Table of ifnet by index. */ 199 VNET_DEFINE(struct ifindex_entry *, ifindex_table); 200 201 #define V_if_indexlim VNET(if_indexlim) 202 #define V_ifindex_table VNET(ifindex_table) 203 204 /* 205 * The global network interface list (V_ifnet) and related state (such as 206 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and 207 * an rwlock. Either may be acquired shared to stablize the list, but both 208 * must be acquired writable to modify the list. This model allows us to 209 * both stablize the interface list during interrupt thread processing, but 210 * also to stablize it over long-running ioctls, without introducing priority 211 * inversions and deadlocks. 212 */ 213 struct rwlock ifnet_rwlock; 214 struct sx ifnet_sxlock; 215 216 /* 217 * The allocation of network interfaces is a rather non-atomic affair; we 218 * need to select an index before we are ready to expose the interface for 219 * use, so will use this pointer value to indicate reservation. 220 */ 221 #define IFNET_HOLD (void *)(uintptr_t)(-1) 222 223 static if_com_alloc_t *if_com_alloc[256]; 224 static if_com_free_t *if_com_free[256]; 225 226 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 227 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 228 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 229 230 struct ifnet * 231 ifnet_byindex_locked(u_short idx) 232 { 233 234 if (idx > V_if_index) 235 return (NULL); 236 if (V_ifindex_table[idx].ife_ifnet == IFNET_HOLD) 237 return (NULL); 238 return (V_ifindex_table[idx].ife_ifnet); 239 } 240 241 struct ifnet * 242 ifnet_byindex(u_short idx) 243 { 244 struct ifnet *ifp; 245 246 IFNET_RLOCK_NOSLEEP(); 247 ifp = ifnet_byindex_locked(idx); 248 IFNET_RUNLOCK_NOSLEEP(); 249 return (ifp); 250 } 251 252 struct ifnet * 253 ifnet_byindex_ref(u_short idx) 254 { 255 struct ifnet *ifp; 256 257 IFNET_RLOCK_NOSLEEP(); 258 ifp = ifnet_byindex_locked(idx); 259 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) { 260 IFNET_RUNLOCK_NOSLEEP(); 261 return (NULL); 262 } 263 if_ref(ifp); 264 IFNET_RUNLOCK_NOSLEEP(); 265 return (ifp); 266 } 267 268 /* 269 * Allocate an ifindex array entry; return 0 on success or an error on 270 * failure. 271 */ 272 static int 273 ifindex_alloc_locked(u_short *idxp) 274 { 275 u_short idx; 276 277 IFNET_WLOCK_ASSERT(); 278 279 retry: 280 /* 281 * Try to find an empty slot below V_if_index. If we fail, take the 282 * next slot. 283 */ 284 for (idx = 1; idx <= V_if_index; idx++) { 285 if (V_ifindex_table[idx].ife_ifnet == NULL) 286 break; 287 } 288 289 /* Catch if_index overflow. */ 290 if (idx >= V_if_indexlim) { 291 if_grow(); 292 goto retry; 293 } 294 if (idx > V_if_index) 295 V_if_index = idx; 296 *idxp = idx; 297 return (0); 298 } 299 300 static void 301 ifindex_free_locked(u_short idx) 302 { 303 304 IFNET_WLOCK_ASSERT(); 305 306 V_ifindex_table[idx].ife_ifnet = NULL; 307 while (V_if_index > 0 && 308 V_ifindex_table[V_if_index].ife_ifnet == NULL) 309 V_if_index--; 310 } 311 312 static void 313 ifindex_free(u_short idx) 314 { 315 316 IFNET_WLOCK(); 317 ifindex_free_locked(idx); 318 IFNET_WUNLOCK(); 319 } 320 321 static void 322 ifnet_setbyindex_locked(u_short idx, struct ifnet *ifp) 323 { 324 325 IFNET_WLOCK_ASSERT(); 326 327 V_ifindex_table[idx].ife_ifnet = ifp; 328 } 329 330 static void 331 ifnet_setbyindex(u_short idx, struct ifnet *ifp) 332 { 333 334 IFNET_WLOCK(); 335 ifnet_setbyindex_locked(idx, ifp); 336 IFNET_WUNLOCK(); 337 } 338 339 struct ifaddr * 340 ifaddr_byindex(u_short idx) 341 { 342 struct ifaddr *ifa; 343 344 IFNET_RLOCK_NOSLEEP(); 345 ifa = ifnet_byindex_locked(idx)->if_addr; 346 if (ifa != NULL) 347 ifa_ref(ifa); 348 IFNET_RUNLOCK_NOSLEEP(); 349 return (ifa); 350 } 351 352 /* 353 * Network interface utility routines. 354 * 355 * Routines with ifa_ifwith* names take sockaddr *'s as 356 * parameters. 357 */ 358 359 static void 360 vnet_if_init(const void *unused __unused) 361 { 362 363 TAILQ_INIT(&V_ifnet); 364 TAILQ_INIT(&V_ifg_head); 365 IFNET_WLOCK(); 366 if_grow(); /* create initial table */ 367 IFNET_WUNLOCK(); 368 vnet_if_clone_init(); 369 } 370 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 371 NULL); 372 373 /* ARGSUSED*/ 374 static void 375 if_init(void *dummy __unused) 376 { 377 378 IFNET_LOCK_INIT(); 379 if_clone_init(); 380 } 381 SYSINIT(interfaces, SI_SUB_INIT_IF, SI_ORDER_FIRST, if_init, NULL); 382 383 384 #ifdef VIMAGE 385 static void 386 vnet_if_uninit(const void *unused __unused) 387 { 388 389 VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " 390 "not empty", __func__, __LINE__, &V_ifnet)); 391 VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " 392 "not empty", __func__, __LINE__, &V_ifg_head)); 393 394 free((caddr_t)V_ifindex_table, M_IFNET); 395 } 396 VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, 397 vnet_if_uninit, NULL); 398 #endif 399 400 static void 401 if_grow(void) 402 { 403 int oldlim; 404 u_int n; 405 struct ifindex_entry *e; 406 407 IFNET_WLOCK_ASSERT(); 408 oldlim = V_if_indexlim; 409 IFNET_WUNLOCK(); 410 n = (oldlim << 1) * sizeof(*e); 411 e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); 412 IFNET_WLOCK(); 413 if (V_if_indexlim != oldlim) { 414 free(e, M_IFNET); 415 return; 416 } 417 if (V_ifindex_table != NULL) { 418 memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); 419 free((caddr_t)V_ifindex_table, M_IFNET); 420 } 421 V_if_indexlim <<= 1; 422 V_ifindex_table = e; 423 } 424 425 /* 426 * Allocate a struct ifnet and an index for an interface. A layer 2 427 * common structure will also be allocated if an allocation routine is 428 * registered for the passed type. 429 */ 430 struct ifnet * 431 if_alloc(u_char type) 432 { 433 struct ifnet *ifp; 434 u_short idx; 435 436 ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO); 437 IFNET_WLOCK(); 438 if (ifindex_alloc_locked(&idx) != 0) { 439 IFNET_WUNLOCK(); 440 free(ifp, M_IFNET); 441 return (NULL); 442 } 443 ifnet_setbyindex_locked(idx, IFNET_HOLD); 444 IFNET_WUNLOCK(); 445 ifp->if_index = idx; 446 ifp->if_type = type; 447 ifp->if_alloctype = type; 448 if (if_com_alloc[type] != NULL) { 449 ifp->if_l2com = if_com_alloc[type](type, ifp); 450 if (ifp->if_l2com == NULL) { 451 free(ifp, M_IFNET); 452 ifindex_free(idx); 453 return (NULL); 454 } 455 } 456 457 IF_ADDR_LOCK_INIT(ifp); 458 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 459 ifp->if_afdata_initialized = 0; 460 IF_AFDATA_LOCK_INIT(ifp); 461 TAILQ_INIT(&ifp->if_addrhead); 462 TAILQ_INIT(&ifp->if_multiaddrs); 463 TAILQ_INIT(&ifp->if_groups); 464 #ifdef MAC 465 mac_ifnet_init(ifp); 466 #endif 467 ifq_init(&ifp->if_snd, ifp); 468 469 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 470 ifnet_setbyindex(ifp->if_index, ifp); 471 472 for (int i = 0; i < IFCOUNTERS; i++) 473 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 474 475 return (ifp); 476 } 477 478 /* 479 * Do the actual work of freeing a struct ifnet, and layer 2 common 480 * structure. This call is made when the last reference to an 481 * interface is released. 482 */ 483 static void 484 if_free_internal(struct ifnet *ifp) 485 { 486 487 KASSERT((ifp->if_flags & IFF_DYING), 488 ("if_free_internal: interface not dying")); 489 490 if (if_com_free[ifp->if_alloctype] != NULL) 491 if_com_free[ifp->if_alloctype](ifp->if_l2com, 492 ifp->if_alloctype); 493 494 #ifdef MAC 495 mac_ifnet_destroy(ifp); 496 #endif /* MAC */ 497 if (ifp->if_description != NULL) 498 free(ifp->if_description, M_IFDESCR); 499 IF_AFDATA_DESTROY(ifp); 500 IF_ADDR_LOCK_DESTROY(ifp); 501 ifq_delete(&ifp->if_snd); 502 503 for (int i = 0; i < IFCOUNTERS; i++) 504 counter_u64_free(ifp->if_counters[i]); 505 506 free(ifp, M_IFNET); 507 } 508 509 /* 510 * Deregister an interface and free the associated storage. 511 */ 512 void 513 if_free(struct ifnet *ifp) 514 { 515 516 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 517 518 CURVNET_SET_QUIET(ifp->if_vnet); 519 IFNET_WLOCK(); 520 KASSERT(ifp == ifnet_byindex_locked(ifp->if_index), 521 ("%s: freeing unallocated ifnet", ifp->if_xname)); 522 523 ifindex_free_locked(ifp->if_index); 524 IFNET_WUNLOCK(); 525 526 if (refcount_release(&ifp->if_refcount)) 527 if_free_internal(ifp); 528 CURVNET_RESTORE(); 529 } 530 531 /* 532 * Interfaces to keep an ifnet type-stable despite the possibility of the 533 * driver calling if_free(). If there are additional references, we defer 534 * freeing the underlying data structure. 535 */ 536 void 537 if_ref(struct ifnet *ifp) 538 { 539 540 /* We don't assert the ifnet list lock here, but arguably should. */ 541 refcount_acquire(&ifp->if_refcount); 542 } 543 544 void 545 if_rele(struct ifnet *ifp) 546 { 547 548 if (!refcount_release(&ifp->if_refcount)) 549 return; 550 if_free_internal(ifp); 551 } 552 553 void 554 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 555 { 556 557 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 558 559 if (ifq->ifq_maxlen == 0) 560 ifq->ifq_maxlen = ifqmaxlen; 561 562 ifq->altq_type = 0; 563 ifq->altq_disc = NULL; 564 ifq->altq_flags &= ALTQF_CANTCHANGE; 565 ifq->altq_tbr = NULL; 566 ifq->altq_ifp = ifp; 567 } 568 569 void 570 ifq_delete(struct ifaltq *ifq) 571 { 572 mtx_destroy(&ifq->ifq_mtx); 573 } 574 575 /* 576 * Perform generic interface initalization tasks and attach the interface 577 * to the list of "active" interfaces. If vmove flag is set on entry 578 * to if_attach_internal(), perform only a limited subset of initialization 579 * tasks, given that we are moving from one vnet to another an ifnet which 580 * has already been fully initialized. 581 * 582 * XXX: 583 * - The decision to return void and thus require this function to 584 * succeed is questionable. 585 * - We should probably do more sanity checking. For instance we don't 586 * do anything to insure if_xname is unique or non-empty. 587 */ 588 void 589 if_attach(struct ifnet *ifp) 590 { 591 592 if_attach_internal(ifp, 0); 593 } 594 595 /* 596 * Compute the least common TSO limit. 597 */ 598 void 599 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 600 { 601 /* 602 * 1) If there is no limit currently, take the limit from 603 * the network adapter. 604 * 605 * 2) If the network adapter has a limit below the current 606 * limit, apply it. 607 */ 608 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 609 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 610 pmax->tsomaxbytes = ifp->if_hw_tsomax; 611 } 612 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 613 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 614 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 615 } 616 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 617 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 618 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 619 } 620 } 621 622 /* 623 * Update TSO limit of a network adapter. 624 * 625 * Returns zero if no change. Else non-zero. 626 */ 627 int 628 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 629 { 630 int retval = 0; 631 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 632 ifp->if_hw_tsomax = pmax->tsomaxbytes; 633 retval++; 634 } 635 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 636 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 637 retval++; 638 } 639 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 640 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 641 retval++; 642 } 643 return (retval); 644 } 645 646 static void 647 if_attach_internal(struct ifnet *ifp, int vmove) 648 { 649 unsigned socksize, ifasize; 650 int namelen, masklen; 651 struct sockaddr_dl *sdl; 652 struct ifaddr *ifa; 653 654 if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) 655 panic ("%s: BUG: if_attach called without if_alloc'd input()\n", 656 ifp->if_xname); 657 658 #ifdef VIMAGE 659 ifp->if_vnet = curvnet; 660 if (ifp->if_home_vnet == NULL) 661 ifp->if_home_vnet = curvnet; 662 #endif 663 664 if_addgroup(ifp, IFG_ALL); 665 666 getmicrotime(&ifp->if_lastchange); 667 ifp->if_epoch = time_uptime; 668 669 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 670 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 671 ("transmit and qflush must both either be set or both be NULL")); 672 if (ifp->if_transmit == NULL) { 673 ifp->if_transmit = if_transmit; 674 ifp->if_qflush = if_qflush; 675 } 676 677 if (ifp->if_get_counter == NULL) 678 ifp->if_get_counter = if_get_counter_default; 679 680 if (!vmove) { 681 #ifdef MAC 682 mac_ifnet_create(ifp); 683 #endif 684 685 /* 686 * Create a Link Level name for this device. 687 */ 688 namelen = strlen(ifp->if_xname); 689 /* 690 * Always save enough space for any possiable name so we 691 * can do a rename in place later. 692 */ 693 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 694 socksize = masklen + ifp->if_addrlen; 695 if (socksize < sizeof(*sdl)) 696 socksize = sizeof(*sdl); 697 socksize = roundup2(socksize, sizeof(long)); 698 ifasize = sizeof(*ifa) + 2 * socksize; 699 ifa = ifa_alloc(ifasize, M_WAITOK); 700 sdl = (struct sockaddr_dl *)(ifa + 1); 701 sdl->sdl_len = socksize; 702 sdl->sdl_family = AF_LINK; 703 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 704 sdl->sdl_nlen = namelen; 705 sdl->sdl_index = ifp->if_index; 706 sdl->sdl_type = ifp->if_type; 707 ifp->if_addr = ifa; 708 ifa->ifa_ifp = ifp; 709 ifa->ifa_rtrequest = link_rtrequest; 710 ifa->ifa_addr = (struct sockaddr *)sdl; 711 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 712 ifa->ifa_netmask = (struct sockaddr *)sdl; 713 sdl->sdl_len = masklen; 714 while (namelen != 0) 715 sdl->sdl_data[--namelen] = 0xff; 716 TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 717 /* Reliably crash if used uninitialized. */ 718 ifp->if_broadcastaddr = NULL; 719 720 #if defined(INET) || defined(INET6) 721 /* Use defaults for TSO, if nothing is set */ 722 if (ifp->if_hw_tsomax == 0 && 723 ifp->if_hw_tsomaxsegcount == 0 && 724 ifp->if_hw_tsomaxsegsize == 0) { 725 /* 726 * The TSO defaults needs to be such that an 727 * NFS mbuf list of 35 mbufs totalling just 728 * below 64K works and that a chain of mbufs 729 * can be defragged into at most 32 segments: 730 */ 731 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 732 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 733 ifp->if_hw_tsomaxsegcount = 35; 734 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 735 736 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 737 if (ifp->if_capabilities & IFCAP_TSO) { 738 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 739 ifp->if_hw_tsomax, 740 ifp->if_hw_tsomaxsegcount, 741 ifp->if_hw_tsomaxsegsize); 742 } 743 } 744 /* 745 * If the "if_hw_tsomax" limit is set, check if it is 746 * too small: 747 */ 748 KASSERT(ifp->if_hw_tsomax == 0 || 749 ifp->if_hw_tsomax >= (IP_MAXPACKET / 8), 750 ("%s: if_hw_tsomax is outside of range", __func__)); 751 #endif 752 } 753 #ifdef VIMAGE 754 else { 755 /* 756 * Update the interface index in the link layer address 757 * of the interface. 758 */ 759 for (ifa = ifp->if_addr; ifa != NULL; 760 ifa = TAILQ_NEXT(ifa, ifa_link)) { 761 if (ifa->ifa_addr->sa_family == AF_LINK) { 762 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 763 sdl->sdl_index = ifp->if_index; 764 } 765 } 766 } 767 #endif 768 769 IFNET_WLOCK(); 770 TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 771 #ifdef VIMAGE 772 curvnet->vnet_ifcnt++; 773 #endif 774 IFNET_WUNLOCK(); 775 776 if (domain_init_status >= 2) 777 if_attachdomain1(ifp); 778 779 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 780 if (IS_DEFAULT_VNET(curvnet)) 781 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 782 783 /* Announce the interface. */ 784 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 785 } 786 787 static void 788 if_attachdomain(void *dummy) 789 { 790 struct ifnet *ifp; 791 792 TAILQ_FOREACH(ifp, &V_ifnet, if_link) 793 if_attachdomain1(ifp); 794 } 795 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 796 if_attachdomain, NULL); 797 798 static void 799 if_attachdomain1(struct ifnet *ifp) 800 { 801 struct domain *dp; 802 803 /* 804 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 805 * cannot lock ifp->if_afdata initialization, entirely. 806 */ 807 if (IF_AFDATA_TRYLOCK(ifp) == 0) 808 return; 809 if (ifp->if_afdata_initialized >= domain_init_status) { 810 IF_AFDATA_UNLOCK(ifp); 811 log(LOG_WARNING, "%s called more than once on %s\n", 812 __func__, ifp->if_xname); 813 return; 814 } 815 ifp->if_afdata_initialized = domain_init_status; 816 IF_AFDATA_UNLOCK(ifp); 817 818 /* address family dependent data region */ 819 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 820 for (dp = domains; dp; dp = dp->dom_next) { 821 if (dp->dom_ifattach) 822 ifp->if_afdata[dp->dom_family] = 823 (*dp->dom_ifattach)(ifp); 824 } 825 } 826 827 /* 828 * Remove any unicast or broadcast network addresses from an interface. 829 */ 830 void 831 if_purgeaddrs(struct ifnet *ifp) 832 { 833 struct ifaddr *ifa, *next; 834 835 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 836 if (ifa->ifa_addr->sa_family == AF_LINK) 837 continue; 838 #ifdef INET 839 /* XXX: Ugly!! ad hoc just for INET */ 840 if (ifa->ifa_addr->sa_family == AF_INET) { 841 struct ifaliasreq ifr; 842 843 bzero(&ifr, sizeof(ifr)); 844 ifr.ifra_addr = *ifa->ifa_addr; 845 if (ifa->ifa_dstaddr) 846 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 847 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 848 NULL) == 0) 849 continue; 850 } 851 #endif /* INET */ 852 #ifdef INET6 853 if (ifa->ifa_addr->sa_family == AF_INET6) { 854 in6_purgeaddr(ifa); 855 /* ifp_addrhead is already updated */ 856 continue; 857 } 858 #endif /* INET6 */ 859 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 860 ifa_free(ifa); 861 } 862 } 863 864 /* 865 * Remove any multicast network addresses from an interface when an ifnet 866 * is going away. 867 */ 868 static void 869 if_purgemaddrs(struct ifnet *ifp) 870 { 871 struct ifmultiaddr *ifma; 872 struct ifmultiaddr *next; 873 874 IF_ADDR_WLOCK(ifp); 875 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 876 if_delmulti_locked(ifp, ifma, 1); 877 IF_ADDR_WUNLOCK(ifp); 878 } 879 880 /* 881 * Detach an interface, removing it from the list of "active" interfaces. 882 * If vmove flag is set on entry to if_detach_internal(), perform only a 883 * limited subset of cleanup tasks, given that we are moving an ifnet from 884 * one vnet to another, where it must be fully operational. 885 * 886 * XXXRW: There are some significant questions about event ordering, and 887 * how to prevent things from starting to use the interface during detach. 888 */ 889 void 890 if_detach(struct ifnet *ifp) 891 { 892 893 CURVNET_SET_QUIET(ifp->if_vnet); 894 if_detach_internal(ifp, 0); 895 CURVNET_RESTORE(); 896 } 897 898 static void 899 if_detach_internal(struct ifnet *ifp, int vmove) 900 { 901 struct ifaddr *ifa; 902 struct radix_node_head *rnh; 903 int i, j; 904 struct domain *dp; 905 struct ifnet *iter; 906 int found = 0; 907 908 IFNET_WLOCK(); 909 TAILQ_FOREACH(iter, &V_ifnet, if_link) 910 if (iter == ifp) { 911 TAILQ_REMOVE(&V_ifnet, ifp, if_link); 912 found = 1; 913 break; 914 } 915 #ifdef VIMAGE 916 if (found) 917 curvnet->vnet_ifcnt--; 918 #endif 919 IFNET_WUNLOCK(); 920 if (!found) { 921 if (vmove) 922 panic("%s: ifp=%p not on the ifnet tailq %p", 923 __func__, ifp, &V_ifnet); 924 else 925 return; /* XXX this should panic as well? */ 926 } 927 928 /* 929 * Remove/wait for pending events. 930 */ 931 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 932 933 /* 934 * Remove routes and flush queues. 935 */ 936 if_down(ifp); 937 #ifdef ALTQ 938 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 939 altq_disable(&ifp->if_snd); 940 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 941 altq_detach(&ifp->if_snd); 942 #endif 943 944 if_purgeaddrs(ifp); 945 946 #ifdef INET 947 in_ifdetach(ifp); 948 #endif 949 950 #ifdef INET6 951 /* 952 * Remove all IPv6 kernel structs related to ifp. This should be done 953 * before removing routing entries below, since IPv6 interface direct 954 * routes are expected to be removed by the IPv6-specific kernel API. 955 * Otherwise, the kernel will detect some inconsistency and bark it. 956 */ 957 in6_ifdetach(ifp); 958 #endif 959 if_purgemaddrs(ifp); 960 961 /* Announce that the interface is gone. */ 962 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 963 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 964 if (IS_DEFAULT_VNET(curvnet)) 965 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 966 967 if (!vmove) { 968 /* 969 * Prevent further calls into the device driver via ifnet. 970 */ 971 if_dead(ifp); 972 973 /* 974 * Remove link ifaddr pointer and maybe decrement if_index. 975 * Clean up all addresses. 976 */ 977 ifp->if_addr = NULL; 978 979 /* We can now free link ifaddr. */ 980 if (!TAILQ_EMPTY(&ifp->if_addrhead)) { 981 ifa = TAILQ_FIRST(&ifp->if_addrhead); 982 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 983 ifa_free(ifa); 984 } 985 } 986 987 /* 988 * Delete all remaining routes using this interface 989 * Unfortuneatly the only way to do this is to slog through 990 * the entire routing table looking for routes which point 991 * to this interface...oh well... 992 */ 993 for (i = 1; i <= AF_MAX; i++) { 994 for (j = 0; j < rt_numfibs; j++) { 995 rnh = rt_tables_get_rnh(j, i); 996 if (rnh == NULL) 997 continue; 998 RADIX_NODE_HEAD_LOCK(rnh); 999 (void) rnh->rnh_walktree(rnh, if_rtdel, ifp); 1000 RADIX_NODE_HEAD_UNLOCK(rnh); 1001 } 1002 } 1003 1004 if_delgroups(ifp); 1005 1006 /* 1007 * We cannot hold the lock over dom_ifdetach calls as they might 1008 * sleep, for example trying to drain a callout, thus open up the 1009 * theoretical race with re-attaching. 1010 */ 1011 IF_AFDATA_LOCK(ifp); 1012 i = ifp->if_afdata_initialized; 1013 ifp->if_afdata_initialized = 0; 1014 IF_AFDATA_UNLOCK(ifp); 1015 for (dp = domains; i > 0 && dp; dp = dp->dom_next) { 1016 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 1017 (*dp->dom_ifdetach)(ifp, 1018 ifp->if_afdata[dp->dom_family]); 1019 } 1020 } 1021 1022 #ifdef VIMAGE 1023 /* 1024 * if_vmove() performs a limited version of if_detach() in current 1025 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1026 * An attempt is made to shrink if_index in current vnet, find an 1027 * unused if_index in target vnet and calls if_grow() if necessary, 1028 * and finally find an unused if_xname for the target vnet. 1029 */ 1030 void 1031 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1032 { 1033 u_short idx; 1034 1035 /* 1036 * Detach from current vnet, but preserve LLADDR info, do not 1037 * mark as dead etc. so that the ifnet can be reattached later. 1038 */ 1039 if_detach_internal(ifp, 1); 1040 1041 /* 1042 * Unlink the ifnet from ifindex_table[] in current vnet, and shrink 1043 * the if_index for that vnet if possible. 1044 * 1045 * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, 1046 * or we'd lock on one vnet and unlock on another. 1047 */ 1048 IFNET_WLOCK(); 1049 ifindex_free_locked(ifp->if_index); 1050 IFNET_WUNLOCK(); 1051 1052 /* 1053 * Perform interface-specific reassignment tasks, if provided by 1054 * the driver. 1055 */ 1056 if (ifp->if_reassign != NULL) 1057 ifp->if_reassign(ifp, new_vnet, NULL); 1058 1059 /* 1060 * Switch to the context of the target vnet. 1061 */ 1062 CURVNET_SET_QUIET(new_vnet); 1063 1064 IFNET_WLOCK(); 1065 if (ifindex_alloc_locked(&idx) != 0) { 1066 IFNET_WUNLOCK(); 1067 panic("if_index overflow"); 1068 } 1069 ifp->if_index = idx; 1070 ifnet_setbyindex_locked(ifp->if_index, ifp); 1071 IFNET_WUNLOCK(); 1072 1073 if_attach_internal(ifp, 1); 1074 1075 CURVNET_RESTORE(); 1076 } 1077 1078 /* 1079 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1080 */ 1081 static int 1082 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1083 { 1084 struct prison *pr; 1085 struct ifnet *difp; 1086 1087 /* Try to find the prison within our visibility. */ 1088 sx_slock(&allprison_lock); 1089 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1090 sx_sunlock(&allprison_lock); 1091 if (pr == NULL) 1092 return (ENXIO); 1093 prison_hold_locked(pr); 1094 mtx_unlock(&pr->pr_mtx); 1095 1096 /* Do not try to move the iface from and to the same prison. */ 1097 if (pr->pr_vnet == ifp->if_vnet) { 1098 prison_free(pr); 1099 return (EEXIST); 1100 } 1101 1102 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1103 /* XXX Lock interfaces to avoid races. */ 1104 CURVNET_SET_QUIET(pr->pr_vnet); 1105 difp = ifunit(ifname); 1106 CURVNET_RESTORE(); 1107 if (difp != NULL) { 1108 prison_free(pr); 1109 return (EEXIST); 1110 } 1111 1112 /* Move the interface into the child jail/vnet. */ 1113 if_vmove(ifp, pr->pr_vnet); 1114 1115 /* Report the new if_xname back to the userland. */ 1116 sprintf(ifname, "%s", ifp->if_xname); 1117 1118 prison_free(pr); 1119 return (0); 1120 } 1121 1122 static int 1123 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1124 { 1125 struct prison *pr; 1126 struct vnet *vnet_dst; 1127 struct ifnet *ifp; 1128 1129 /* Try to find the prison within our visibility. */ 1130 sx_slock(&allprison_lock); 1131 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1132 sx_sunlock(&allprison_lock); 1133 if (pr == NULL) 1134 return (ENXIO); 1135 prison_hold_locked(pr); 1136 mtx_unlock(&pr->pr_mtx); 1137 1138 /* Make sure the named iface exists in the source prison/vnet. */ 1139 CURVNET_SET(pr->pr_vnet); 1140 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1141 if (ifp == NULL) { 1142 CURVNET_RESTORE(); 1143 prison_free(pr); 1144 return (ENXIO); 1145 } 1146 1147 /* Do not try to move the iface from and to the same prison. */ 1148 vnet_dst = TD_TO_VNET(td); 1149 if (vnet_dst == ifp->if_vnet) { 1150 CURVNET_RESTORE(); 1151 prison_free(pr); 1152 return (EEXIST); 1153 } 1154 1155 /* Get interface back from child jail/vnet. */ 1156 if_vmove(ifp, vnet_dst); 1157 CURVNET_RESTORE(); 1158 1159 /* Report the new if_xname back to the userland. */ 1160 sprintf(ifname, "%s", ifp->if_xname); 1161 1162 prison_free(pr); 1163 return (0); 1164 } 1165 #endif /* VIMAGE */ 1166 1167 /* 1168 * Add a group to an interface 1169 */ 1170 int 1171 if_addgroup(struct ifnet *ifp, const char *groupname) 1172 { 1173 struct ifg_list *ifgl; 1174 struct ifg_group *ifg = NULL; 1175 struct ifg_member *ifgm; 1176 int new = 0; 1177 1178 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1179 groupname[strlen(groupname) - 1] <= '9') 1180 return (EINVAL); 1181 1182 IFNET_WLOCK(); 1183 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1184 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1185 IFNET_WUNLOCK(); 1186 return (EEXIST); 1187 } 1188 1189 if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP, 1190 M_NOWAIT)) == NULL) { 1191 IFNET_WUNLOCK(); 1192 return (ENOMEM); 1193 } 1194 1195 if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member), 1196 M_TEMP, M_NOWAIT)) == NULL) { 1197 free(ifgl, M_TEMP); 1198 IFNET_WUNLOCK(); 1199 return (ENOMEM); 1200 } 1201 1202 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1203 if (!strcmp(ifg->ifg_group, groupname)) 1204 break; 1205 1206 if (ifg == NULL) { 1207 if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group), 1208 M_TEMP, M_NOWAIT)) == NULL) { 1209 free(ifgl, M_TEMP); 1210 free(ifgm, M_TEMP); 1211 IFNET_WUNLOCK(); 1212 return (ENOMEM); 1213 } 1214 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1215 ifg->ifg_refcnt = 0; 1216 TAILQ_INIT(&ifg->ifg_members); 1217 TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1218 new = 1; 1219 } 1220 1221 ifg->ifg_refcnt++; 1222 ifgl->ifgl_group = ifg; 1223 ifgm->ifgm_ifp = ifp; 1224 1225 IF_ADDR_WLOCK(ifp); 1226 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1227 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1228 IF_ADDR_WUNLOCK(ifp); 1229 1230 IFNET_WUNLOCK(); 1231 1232 if (new) 1233 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1234 EVENTHANDLER_INVOKE(group_change_event, groupname); 1235 1236 return (0); 1237 } 1238 1239 /* 1240 * Remove a group from an interface 1241 */ 1242 int 1243 if_delgroup(struct ifnet *ifp, const char *groupname) 1244 { 1245 struct ifg_list *ifgl; 1246 struct ifg_member *ifgm; 1247 1248 IFNET_WLOCK(); 1249 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1250 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 1251 break; 1252 if (ifgl == NULL) { 1253 IFNET_WUNLOCK(); 1254 return (ENOENT); 1255 } 1256 1257 IF_ADDR_WLOCK(ifp); 1258 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1259 IF_ADDR_WUNLOCK(ifp); 1260 1261 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1262 if (ifgm->ifgm_ifp == ifp) 1263 break; 1264 1265 if (ifgm != NULL) { 1266 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 1267 free(ifgm, M_TEMP); 1268 } 1269 1270 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1271 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1272 IFNET_WUNLOCK(); 1273 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1274 free(ifgl->ifgl_group, M_TEMP); 1275 } else 1276 IFNET_WUNLOCK(); 1277 1278 free(ifgl, M_TEMP); 1279 1280 EVENTHANDLER_INVOKE(group_change_event, groupname); 1281 1282 return (0); 1283 } 1284 1285 /* 1286 * Remove an interface from all groups 1287 */ 1288 static void 1289 if_delgroups(struct ifnet *ifp) 1290 { 1291 struct ifg_list *ifgl; 1292 struct ifg_member *ifgm; 1293 char groupname[IFNAMSIZ]; 1294 1295 IFNET_WLOCK(); 1296 while (!TAILQ_EMPTY(&ifp->if_groups)) { 1297 ifgl = TAILQ_FIRST(&ifp->if_groups); 1298 1299 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1300 1301 IF_ADDR_WLOCK(ifp); 1302 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1303 IF_ADDR_WUNLOCK(ifp); 1304 1305 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1306 if (ifgm->ifgm_ifp == ifp) 1307 break; 1308 1309 if (ifgm != NULL) { 1310 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1311 ifgm_next); 1312 free(ifgm, M_TEMP); 1313 } 1314 1315 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1316 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1317 IFNET_WUNLOCK(); 1318 EVENTHANDLER_INVOKE(group_detach_event, 1319 ifgl->ifgl_group); 1320 free(ifgl->ifgl_group, M_TEMP); 1321 } else 1322 IFNET_WUNLOCK(); 1323 1324 free(ifgl, M_TEMP); 1325 1326 EVENTHANDLER_INVOKE(group_change_event, groupname); 1327 1328 IFNET_WLOCK(); 1329 } 1330 IFNET_WUNLOCK(); 1331 } 1332 1333 /* 1334 * Stores all groups from an interface in memory pointed 1335 * to by data 1336 */ 1337 static int 1338 if_getgroup(struct ifgroupreq *data, struct ifnet *ifp) 1339 { 1340 int len, error; 1341 struct ifg_list *ifgl; 1342 struct ifg_req ifgrq, *ifgp; 1343 struct ifgroupreq *ifgr = data; 1344 1345 if (ifgr->ifgr_len == 0) { 1346 IF_ADDR_RLOCK(ifp); 1347 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1348 ifgr->ifgr_len += sizeof(struct ifg_req); 1349 IF_ADDR_RUNLOCK(ifp); 1350 return (0); 1351 } 1352 1353 len = ifgr->ifgr_len; 1354 ifgp = ifgr->ifgr_groups; 1355 /* XXX: wire */ 1356 IF_ADDR_RLOCK(ifp); 1357 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1358 if (len < sizeof(ifgrq)) { 1359 IF_ADDR_RUNLOCK(ifp); 1360 return (EINVAL); 1361 } 1362 bzero(&ifgrq, sizeof ifgrq); 1363 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1364 sizeof(ifgrq.ifgrq_group)); 1365 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1366 IF_ADDR_RUNLOCK(ifp); 1367 return (error); 1368 } 1369 len -= sizeof(ifgrq); 1370 ifgp++; 1371 } 1372 IF_ADDR_RUNLOCK(ifp); 1373 1374 return (0); 1375 } 1376 1377 /* 1378 * Stores all members of a group in memory pointed to by data 1379 */ 1380 static int 1381 if_getgroupmembers(struct ifgroupreq *data) 1382 { 1383 struct ifgroupreq *ifgr = data; 1384 struct ifg_group *ifg; 1385 struct ifg_member *ifgm; 1386 struct ifg_req ifgrq, *ifgp; 1387 int len, error; 1388 1389 IFNET_RLOCK(); 1390 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1391 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1392 break; 1393 if (ifg == NULL) { 1394 IFNET_RUNLOCK(); 1395 return (ENOENT); 1396 } 1397 1398 if (ifgr->ifgr_len == 0) { 1399 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1400 ifgr->ifgr_len += sizeof(ifgrq); 1401 IFNET_RUNLOCK(); 1402 return (0); 1403 } 1404 1405 len = ifgr->ifgr_len; 1406 ifgp = ifgr->ifgr_groups; 1407 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1408 if (len < sizeof(ifgrq)) { 1409 IFNET_RUNLOCK(); 1410 return (EINVAL); 1411 } 1412 bzero(&ifgrq, sizeof ifgrq); 1413 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1414 sizeof(ifgrq.ifgrq_member)); 1415 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1416 IFNET_RUNLOCK(); 1417 return (error); 1418 } 1419 len -= sizeof(ifgrq); 1420 ifgp++; 1421 } 1422 IFNET_RUNLOCK(); 1423 1424 return (0); 1425 } 1426 1427 /* 1428 * Delete Routes for a Network Interface 1429 * 1430 * Called for each routing entry via the rnh->rnh_walktree() call above 1431 * to delete all route entries referencing a detaching network interface. 1432 * 1433 * Arguments: 1434 * rn pointer to node in the routing table 1435 * arg argument passed to rnh->rnh_walktree() - detaching interface 1436 * 1437 * Returns: 1438 * 0 successful 1439 * errno failed - reason indicated 1440 * 1441 */ 1442 static int 1443 if_rtdel(struct radix_node *rn, void *arg) 1444 { 1445 struct rtentry *rt = (struct rtentry *)rn; 1446 struct ifnet *ifp = arg; 1447 int err; 1448 1449 if (rt->rt_ifp == ifp) { 1450 1451 /* 1452 * Protect (sorta) against walktree recursion problems 1453 * with cloned routes 1454 */ 1455 if ((rt->rt_flags & RTF_UP) == 0) 1456 return (0); 1457 1458 err = rtrequest_fib(RTM_DELETE, rt_key(rt), rt->rt_gateway, 1459 rt_mask(rt), 1460 rt->rt_flags|RTF_RNH_LOCKED|RTF_PINNED, 1461 (struct rtentry **) NULL, rt->rt_fibnum); 1462 if (err) { 1463 log(LOG_WARNING, "if_rtdel: error %d\n", err); 1464 } 1465 } 1466 1467 return (0); 1468 } 1469 1470 /* 1471 * Return counter values from counter(9)s stored in ifnet. 1472 */ 1473 uint64_t 1474 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1475 { 1476 1477 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1478 1479 return (counter_u64_fetch(ifp->if_counters[cnt])); 1480 } 1481 1482 /* 1483 * Increase an ifnet counter. Usually used for counters shared 1484 * between the stack and a driver, but function supports them all. 1485 */ 1486 void 1487 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1488 { 1489 1490 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1491 1492 counter_u64_add(ifp->if_counters[cnt], inc); 1493 } 1494 1495 /* 1496 * Copy data from ifnet to userland API structure if_data. 1497 */ 1498 void 1499 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1500 { 1501 1502 ifd->ifi_type = ifp->if_type; 1503 ifd->ifi_physical = 0; 1504 ifd->ifi_addrlen = ifp->if_addrlen; 1505 ifd->ifi_hdrlen = ifp->if_hdrlen; 1506 ifd->ifi_link_state = ifp->if_link_state; 1507 ifd->ifi_vhid = 0; 1508 ifd->ifi_datalen = sizeof(struct if_data); 1509 ifd->ifi_mtu = ifp->if_mtu; 1510 ifd->ifi_metric = ifp->if_metric; 1511 ifd->ifi_baudrate = ifp->if_baudrate; 1512 ifd->ifi_hwassist = ifp->if_hwassist; 1513 ifd->ifi_epoch = ifp->if_epoch; 1514 ifd->ifi_lastchange = ifp->if_lastchange; 1515 1516 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1517 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1518 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1519 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1520 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1521 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1522 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1523 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1524 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1525 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1526 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1527 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1528 } 1529 1530 /* 1531 * Wrapper functions for struct ifnet address list locking macros. These are 1532 * used by kernel modules to avoid encoding programming interface or binary 1533 * interface assumptions that may be violated when kernel-internal locking 1534 * approaches change. 1535 */ 1536 void 1537 if_addr_rlock(struct ifnet *ifp) 1538 { 1539 1540 IF_ADDR_RLOCK(ifp); 1541 } 1542 1543 void 1544 if_addr_runlock(struct ifnet *ifp) 1545 { 1546 1547 IF_ADDR_RUNLOCK(ifp); 1548 } 1549 1550 void 1551 if_maddr_rlock(if_t ifp) 1552 { 1553 1554 IF_ADDR_RLOCK((struct ifnet *)ifp); 1555 } 1556 1557 void 1558 if_maddr_runlock(if_t ifp) 1559 { 1560 1561 IF_ADDR_RUNLOCK((struct ifnet *)ifp); 1562 } 1563 1564 /* 1565 * Initialization, destruction and refcounting functions for ifaddrs. 1566 */ 1567 struct ifaddr * 1568 ifa_alloc(size_t size, int flags) 1569 { 1570 struct ifaddr *ifa; 1571 1572 KASSERT(size >= sizeof(struct ifaddr), 1573 ("%s: invalid size %zu", __func__, size)); 1574 1575 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1576 if (ifa == NULL) 1577 return (NULL); 1578 1579 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1580 goto fail; 1581 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1582 goto fail; 1583 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1584 goto fail; 1585 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1586 goto fail; 1587 1588 refcount_init(&ifa->ifa_refcnt, 1); 1589 1590 return (ifa); 1591 1592 fail: 1593 /* free(NULL) is okay */ 1594 counter_u64_free(ifa->ifa_opackets); 1595 counter_u64_free(ifa->ifa_ipackets); 1596 counter_u64_free(ifa->ifa_obytes); 1597 counter_u64_free(ifa->ifa_ibytes); 1598 free(ifa, M_IFADDR); 1599 1600 return (NULL); 1601 } 1602 1603 void 1604 ifa_ref(struct ifaddr *ifa) 1605 { 1606 1607 refcount_acquire(&ifa->ifa_refcnt); 1608 } 1609 1610 void 1611 ifa_free(struct ifaddr *ifa) 1612 { 1613 1614 if (refcount_release(&ifa->ifa_refcnt)) { 1615 counter_u64_free(ifa->ifa_opackets); 1616 counter_u64_free(ifa->ifa_ipackets); 1617 counter_u64_free(ifa->ifa_obytes); 1618 counter_u64_free(ifa->ifa_ibytes); 1619 free(ifa, M_IFADDR); 1620 } 1621 } 1622 1623 int 1624 ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1625 { 1626 int error = 0; 1627 struct rtentry *rt = NULL; 1628 struct rt_addrinfo info; 1629 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1630 1631 bzero(&info, sizeof(info)); 1632 info.rti_ifp = V_loif; 1633 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1634 info.rti_info[RTAX_DST] = ia; 1635 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1636 error = rtrequest1_fib(RTM_ADD, &info, &rt, ifa->ifa_ifp->if_fib); 1637 1638 if (error == 0 && rt != NULL) { 1639 RT_LOCK(rt); 1640 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 1641 ifa->ifa_ifp->if_type; 1642 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 1643 ifa->ifa_ifp->if_index; 1644 RT_REMREF(rt); 1645 RT_UNLOCK(rt); 1646 } else if (error != 0) 1647 log(LOG_DEBUG, "%s: insertion failed: %u\n", __func__, error); 1648 1649 return (error); 1650 } 1651 1652 int 1653 ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1654 { 1655 int error = 0; 1656 struct rt_addrinfo info; 1657 struct sockaddr_dl null_sdl; 1658 1659 bzero(&null_sdl, sizeof(null_sdl)); 1660 null_sdl.sdl_len = sizeof(null_sdl); 1661 null_sdl.sdl_family = AF_LINK; 1662 null_sdl.sdl_type = ifa->ifa_ifp->if_type; 1663 null_sdl.sdl_index = ifa->ifa_ifp->if_index; 1664 bzero(&info, sizeof(info)); 1665 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1666 info.rti_info[RTAX_DST] = ia; 1667 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1668 error = rtrequest1_fib(RTM_DELETE, &info, NULL, ifa->ifa_ifp->if_fib); 1669 1670 if (error != 0) 1671 log(LOG_DEBUG, "%s: deletion failed: %u\n", __func__, error); 1672 1673 return (error); 1674 } 1675 1676 int 1677 ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *sa, int fib) 1678 { 1679 struct rtentry *rt; 1680 1681 rt = rtalloc1_fib(sa, 0, 0, fib); 1682 if (rt == NULL) { 1683 log(LOG_DEBUG, "%s: fail", __func__); 1684 return (EHOSTUNREACH); 1685 } 1686 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 1687 ifa->ifa_ifp->if_type; 1688 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 1689 ifa->ifa_ifp->if_index; 1690 RTFREE_LOCKED(rt); 1691 1692 return (0); 1693 } 1694 1695 /* 1696 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1697 * structs used to represent other address families, it is necessary 1698 * to perform a different comparison. 1699 */ 1700 1701 #define sa_dl_equal(a1, a2) \ 1702 ((((struct sockaddr_dl *)(a1))->sdl_len == \ 1703 ((struct sockaddr_dl *)(a2))->sdl_len) && \ 1704 (bcmp(LLADDR((struct sockaddr_dl *)(a1)), \ 1705 LLADDR((struct sockaddr_dl *)(a2)), \ 1706 ((struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1707 1708 /* 1709 * Locate an interface based on a complete address. 1710 */ 1711 /*ARGSUSED*/ 1712 static struct ifaddr * 1713 ifa_ifwithaddr_internal(struct sockaddr *addr, int getref) 1714 { 1715 struct ifnet *ifp; 1716 struct ifaddr *ifa; 1717 1718 IFNET_RLOCK_NOSLEEP(); 1719 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1720 IF_ADDR_RLOCK(ifp); 1721 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1722 if (ifa->ifa_addr->sa_family != addr->sa_family) 1723 continue; 1724 if (sa_equal(addr, ifa->ifa_addr)) { 1725 if (getref) 1726 ifa_ref(ifa); 1727 IF_ADDR_RUNLOCK(ifp); 1728 goto done; 1729 } 1730 /* IP6 doesn't have broadcast */ 1731 if ((ifp->if_flags & IFF_BROADCAST) && 1732 ifa->ifa_broadaddr && 1733 ifa->ifa_broadaddr->sa_len != 0 && 1734 sa_equal(ifa->ifa_broadaddr, addr)) { 1735 if (getref) 1736 ifa_ref(ifa); 1737 IF_ADDR_RUNLOCK(ifp); 1738 goto done; 1739 } 1740 } 1741 IF_ADDR_RUNLOCK(ifp); 1742 } 1743 ifa = NULL; 1744 done: 1745 IFNET_RUNLOCK_NOSLEEP(); 1746 return (ifa); 1747 } 1748 1749 struct ifaddr * 1750 ifa_ifwithaddr(struct sockaddr *addr) 1751 { 1752 1753 return (ifa_ifwithaddr_internal(addr, 1)); 1754 } 1755 1756 int 1757 ifa_ifwithaddr_check(struct sockaddr *addr) 1758 { 1759 1760 return (ifa_ifwithaddr_internal(addr, 0) != NULL); 1761 } 1762 1763 /* 1764 * Locate an interface based on the broadcast address. 1765 */ 1766 /* ARGSUSED */ 1767 struct ifaddr * 1768 ifa_ifwithbroadaddr(struct sockaddr *addr, int fibnum) 1769 { 1770 struct ifnet *ifp; 1771 struct ifaddr *ifa; 1772 1773 IFNET_RLOCK_NOSLEEP(); 1774 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1775 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1776 continue; 1777 IF_ADDR_RLOCK(ifp); 1778 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1779 if (ifa->ifa_addr->sa_family != addr->sa_family) 1780 continue; 1781 if ((ifp->if_flags & IFF_BROADCAST) && 1782 ifa->ifa_broadaddr && 1783 ifa->ifa_broadaddr->sa_len != 0 && 1784 sa_equal(ifa->ifa_broadaddr, addr)) { 1785 ifa_ref(ifa); 1786 IF_ADDR_RUNLOCK(ifp); 1787 goto done; 1788 } 1789 } 1790 IF_ADDR_RUNLOCK(ifp); 1791 } 1792 ifa = NULL; 1793 done: 1794 IFNET_RUNLOCK_NOSLEEP(); 1795 return (ifa); 1796 } 1797 1798 /* 1799 * Locate the point to point interface with a given destination address. 1800 */ 1801 /*ARGSUSED*/ 1802 struct ifaddr * 1803 ifa_ifwithdstaddr(struct sockaddr *addr, int fibnum) 1804 { 1805 struct ifnet *ifp; 1806 struct ifaddr *ifa; 1807 1808 IFNET_RLOCK_NOSLEEP(); 1809 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1810 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1811 continue; 1812 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1813 continue; 1814 IF_ADDR_RLOCK(ifp); 1815 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1816 if (ifa->ifa_addr->sa_family != addr->sa_family) 1817 continue; 1818 if (ifa->ifa_dstaddr != NULL && 1819 sa_equal(addr, ifa->ifa_dstaddr)) { 1820 ifa_ref(ifa); 1821 IF_ADDR_RUNLOCK(ifp); 1822 goto done; 1823 } 1824 } 1825 IF_ADDR_RUNLOCK(ifp); 1826 } 1827 ifa = NULL; 1828 done: 1829 IFNET_RUNLOCK_NOSLEEP(); 1830 return (ifa); 1831 } 1832 1833 /* 1834 * Find an interface on a specific network. If many, choice 1835 * is most specific found. 1836 */ 1837 struct ifaddr * 1838 ifa_ifwithnet(struct sockaddr *addr, int ignore_ptp, int fibnum) 1839 { 1840 struct ifnet *ifp; 1841 struct ifaddr *ifa; 1842 struct ifaddr *ifa_maybe = NULL; 1843 u_int af = addr->sa_family; 1844 char *addr_data = addr->sa_data, *cplim; 1845 1846 /* 1847 * AF_LINK addresses can be looked up directly by their index number, 1848 * so do that if we can. 1849 */ 1850 if (af == AF_LINK) { 1851 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1852 if (sdl->sdl_index && sdl->sdl_index <= V_if_index) 1853 return (ifaddr_byindex(sdl->sdl_index)); 1854 } 1855 1856 /* 1857 * Scan though each interface, looking for ones that have addresses 1858 * in this address family and the requested fib. Maintain a reference 1859 * on ifa_maybe once we find one, as we release the IF_ADDR_RLOCK() that 1860 * kept it stable when we move onto the next interface. 1861 */ 1862 IFNET_RLOCK_NOSLEEP(); 1863 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1864 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1865 continue; 1866 IF_ADDR_RLOCK(ifp); 1867 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1868 char *cp, *cp2, *cp3; 1869 1870 if (ifa->ifa_addr->sa_family != af) 1871 next: continue; 1872 if (af == AF_INET && 1873 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1874 /* 1875 * This is a bit broken as it doesn't 1876 * take into account that the remote end may 1877 * be a single node in the network we are 1878 * looking for. 1879 * The trouble is that we don't know the 1880 * netmask for the remote end. 1881 */ 1882 if (ifa->ifa_dstaddr != NULL && 1883 sa_equal(addr, ifa->ifa_dstaddr)) { 1884 ifa_ref(ifa); 1885 IF_ADDR_RUNLOCK(ifp); 1886 goto done; 1887 } 1888 } else { 1889 /* 1890 * Scan all the bits in the ifa's address. 1891 * If a bit dissagrees with what we are 1892 * looking for, mask it with the netmask 1893 * to see if it really matters. 1894 * (A byte at a time) 1895 */ 1896 if (ifa->ifa_netmask == 0) 1897 continue; 1898 cp = addr_data; 1899 cp2 = ifa->ifa_addr->sa_data; 1900 cp3 = ifa->ifa_netmask->sa_data; 1901 cplim = ifa->ifa_netmask->sa_len 1902 + (char *)ifa->ifa_netmask; 1903 while (cp3 < cplim) 1904 if ((*cp++ ^ *cp2++) & *cp3++) 1905 goto next; /* next address! */ 1906 /* 1907 * If the netmask of what we just found 1908 * is more specific than what we had before 1909 * (if we had one), or if the virtual status 1910 * of new prefix is better than of the old one, 1911 * then remember the new one before continuing 1912 * to search for an even better one. 1913 */ 1914 if (ifa_maybe == NULL || 1915 ifa_preferred(ifa_maybe, ifa) || 1916 rn_refines((caddr_t)ifa->ifa_netmask, 1917 (caddr_t)ifa_maybe->ifa_netmask)) { 1918 if (ifa_maybe != NULL) 1919 ifa_free(ifa_maybe); 1920 ifa_maybe = ifa; 1921 ifa_ref(ifa_maybe); 1922 } 1923 } 1924 } 1925 IF_ADDR_RUNLOCK(ifp); 1926 } 1927 ifa = ifa_maybe; 1928 ifa_maybe = NULL; 1929 done: 1930 IFNET_RUNLOCK_NOSLEEP(); 1931 if (ifa_maybe != NULL) 1932 ifa_free(ifa_maybe); 1933 return (ifa); 1934 } 1935 1936 /* 1937 * Find an interface address specific to an interface best matching 1938 * a given address. 1939 */ 1940 struct ifaddr * 1941 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1942 { 1943 struct ifaddr *ifa; 1944 char *cp, *cp2, *cp3; 1945 char *cplim; 1946 struct ifaddr *ifa_maybe = NULL; 1947 u_int af = addr->sa_family; 1948 1949 if (af >= AF_MAX) 1950 return (NULL); 1951 IF_ADDR_RLOCK(ifp); 1952 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1953 if (ifa->ifa_addr->sa_family != af) 1954 continue; 1955 if (ifa_maybe == NULL) 1956 ifa_maybe = ifa; 1957 if (ifa->ifa_netmask == 0) { 1958 if (sa_equal(addr, ifa->ifa_addr) || 1959 (ifa->ifa_dstaddr && 1960 sa_equal(addr, ifa->ifa_dstaddr))) 1961 goto done; 1962 continue; 1963 } 1964 if (ifp->if_flags & IFF_POINTOPOINT) { 1965 if (sa_equal(addr, ifa->ifa_dstaddr)) 1966 goto done; 1967 } else { 1968 cp = addr->sa_data; 1969 cp2 = ifa->ifa_addr->sa_data; 1970 cp3 = ifa->ifa_netmask->sa_data; 1971 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1972 for (; cp3 < cplim; cp3++) 1973 if ((*cp++ ^ *cp2++) & *cp3) 1974 break; 1975 if (cp3 == cplim) 1976 goto done; 1977 } 1978 } 1979 ifa = ifa_maybe; 1980 done: 1981 if (ifa != NULL) 1982 ifa_ref(ifa); 1983 IF_ADDR_RUNLOCK(ifp); 1984 return (ifa); 1985 } 1986 1987 /* 1988 * See whether new ifa is better than current one: 1989 * 1) A non-virtual one is preferred over virtual. 1990 * 2) A virtual in master state preferred over any other state. 1991 * 1992 * Used in several address selecting functions. 1993 */ 1994 int 1995 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 1996 { 1997 1998 return (cur->ifa_carp && (!next->ifa_carp || 1999 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 2000 } 2001 2002 #include <net/if_llatbl.h> 2003 2004 /* 2005 * Default action when installing a route with a Link Level gateway. 2006 * Lookup an appropriate real ifa to point to. 2007 * This should be moved to /sys/net/link.c eventually. 2008 */ 2009 static void 2010 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 2011 { 2012 struct ifaddr *ifa, *oifa; 2013 struct sockaddr *dst; 2014 struct ifnet *ifp; 2015 2016 RT_LOCK_ASSERT(rt); 2017 2018 if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || 2019 ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) 2020 return; 2021 ifa = ifaof_ifpforaddr(dst, ifp); 2022 if (ifa) { 2023 oifa = rt->rt_ifa; 2024 rt->rt_ifa = ifa; 2025 ifa_free(oifa); 2026 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2027 ifa->ifa_rtrequest(cmd, rt, info); 2028 } 2029 } 2030 2031 struct sockaddr_dl * 2032 link_alloc_sdl(size_t size, int flags) 2033 { 2034 2035 return (malloc(size, M_TEMP, flags)); 2036 } 2037 2038 void 2039 link_free_sdl(struct sockaddr *sa) 2040 { 2041 free(sa, M_TEMP); 2042 } 2043 2044 /* 2045 * Fills in given sdl with interface basic info. 2046 * Returns pointer to filled sdl. 2047 */ 2048 struct sockaddr_dl * 2049 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2050 { 2051 struct sockaddr_dl *sdl; 2052 2053 sdl = (struct sockaddr_dl *)paddr; 2054 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2055 sdl->sdl_len = sizeof(struct sockaddr_dl); 2056 sdl->sdl_family = AF_LINK; 2057 sdl->sdl_index = ifp->if_index; 2058 sdl->sdl_type = iftype; 2059 2060 return (sdl); 2061 } 2062 2063 /* 2064 * Mark an interface down and notify protocols of 2065 * the transition. 2066 */ 2067 static void 2068 if_unroute(struct ifnet *ifp, int flag, int fam) 2069 { 2070 struct ifaddr *ifa; 2071 2072 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 2073 2074 ifp->if_flags &= ~flag; 2075 getmicrotime(&ifp->if_lastchange); 2076 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2077 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2078 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2079 ifp->if_qflush(ifp); 2080 2081 if (ifp->if_carp) 2082 (*carp_linkstate_p)(ifp); 2083 rt_ifmsg(ifp); 2084 } 2085 2086 /* 2087 * Mark an interface up and notify protocols of 2088 * the transition. 2089 */ 2090 static void 2091 if_route(struct ifnet *ifp, int flag, int fam) 2092 { 2093 struct ifaddr *ifa; 2094 2095 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 2096 2097 ifp->if_flags |= flag; 2098 getmicrotime(&ifp->if_lastchange); 2099 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2100 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2101 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2102 if (ifp->if_carp) 2103 (*carp_linkstate_p)(ifp); 2104 rt_ifmsg(ifp); 2105 #ifdef INET6 2106 in6_if_up(ifp); 2107 #endif 2108 } 2109 2110 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2111 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2112 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2113 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2114 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2115 int (*vlan_setcookie_p)(struct ifnet *, void *); 2116 void *(*vlan_cookie_p)(struct ifnet *); 2117 2118 /* 2119 * Handle a change in the interface link state. To avoid LORs 2120 * between driver lock and upper layer locks, as well as possible 2121 * recursions, we post event to taskqueue, and all job 2122 * is done in static do_link_state_change(). 2123 */ 2124 void 2125 if_link_state_change(struct ifnet *ifp, int link_state) 2126 { 2127 /* Return if state hasn't changed. */ 2128 if (ifp->if_link_state == link_state) 2129 return; 2130 2131 ifp->if_link_state = link_state; 2132 2133 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2134 } 2135 2136 static void 2137 do_link_state_change(void *arg, int pending) 2138 { 2139 struct ifnet *ifp = (struct ifnet *)arg; 2140 int link_state = ifp->if_link_state; 2141 CURVNET_SET(ifp->if_vnet); 2142 2143 /* Notify that the link state has changed. */ 2144 rt_ifmsg(ifp); 2145 if (ifp->if_vlantrunk != NULL) 2146 (*vlan_link_state_p)(ifp); 2147 2148 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2149 IFP2AC(ifp)->ac_netgraph != NULL) 2150 (*ng_ether_link_state_p)(ifp, link_state); 2151 if (ifp->if_carp) 2152 (*carp_linkstate_p)(ifp); 2153 if (ifp->if_bridge) 2154 (*bridge_linkstate_p)(ifp); 2155 if (ifp->if_lagg) 2156 (*lagg_linkstate_p)(ifp, link_state); 2157 2158 if (IS_DEFAULT_VNET(curvnet)) 2159 devctl_notify("IFNET", ifp->if_xname, 2160 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2161 NULL); 2162 if (pending > 1) 2163 if_printf(ifp, "%d link states coalesced\n", pending); 2164 if (log_link_state_change) 2165 log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname, 2166 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2167 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, ifp->if_link_state); 2168 CURVNET_RESTORE(); 2169 } 2170 2171 /* 2172 * Mark an interface down and notify protocols of 2173 * the transition. 2174 */ 2175 void 2176 if_down(struct ifnet *ifp) 2177 { 2178 2179 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2180 } 2181 2182 /* 2183 * Mark an interface up and notify protocols of 2184 * the transition. 2185 */ 2186 void 2187 if_up(struct ifnet *ifp) 2188 { 2189 2190 if_route(ifp, IFF_UP, AF_UNSPEC); 2191 } 2192 2193 /* 2194 * Flush an interface queue. 2195 */ 2196 void 2197 if_qflush(struct ifnet *ifp) 2198 { 2199 struct mbuf *m, *n; 2200 struct ifaltq *ifq; 2201 2202 ifq = &ifp->if_snd; 2203 IFQ_LOCK(ifq); 2204 #ifdef ALTQ 2205 if (ALTQ_IS_ENABLED(ifq)) 2206 ALTQ_PURGE(ifq); 2207 #endif 2208 n = ifq->ifq_head; 2209 while ((m = n) != 0) { 2210 n = m->m_nextpkt; 2211 m_freem(m); 2212 } 2213 ifq->ifq_head = 0; 2214 ifq->ifq_tail = 0; 2215 ifq->ifq_len = 0; 2216 IFQ_UNLOCK(ifq); 2217 } 2218 2219 /* 2220 * Map interface name to interface structure pointer, with or without 2221 * returning a reference. 2222 */ 2223 struct ifnet * 2224 ifunit_ref(const char *name) 2225 { 2226 struct ifnet *ifp; 2227 2228 IFNET_RLOCK_NOSLEEP(); 2229 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2230 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2231 !(ifp->if_flags & IFF_DYING)) 2232 break; 2233 } 2234 if (ifp != NULL) 2235 if_ref(ifp); 2236 IFNET_RUNLOCK_NOSLEEP(); 2237 return (ifp); 2238 } 2239 2240 struct ifnet * 2241 ifunit(const char *name) 2242 { 2243 struct ifnet *ifp; 2244 2245 IFNET_RLOCK_NOSLEEP(); 2246 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2247 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2248 break; 2249 } 2250 IFNET_RUNLOCK_NOSLEEP(); 2251 return (ifp); 2252 } 2253 2254 /* 2255 * Hardware specific interface ioctls. 2256 */ 2257 static int 2258 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2259 { 2260 struct ifreq *ifr; 2261 int error = 0; 2262 int new_flags, temp_flags; 2263 size_t namelen, onamelen; 2264 size_t descrlen; 2265 char *descrbuf, *odescrbuf; 2266 char new_name[IFNAMSIZ]; 2267 struct ifaddr *ifa; 2268 struct sockaddr_dl *sdl; 2269 2270 ifr = (struct ifreq *)data; 2271 switch (cmd) { 2272 case SIOCGIFINDEX: 2273 ifr->ifr_index = ifp->if_index; 2274 break; 2275 2276 case SIOCGIFFLAGS: 2277 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2278 ifr->ifr_flags = temp_flags & 0xffff; 2279 ifr->ifr_flagshigh = temp_flags >> 16; 2280 break; 2281 2282 case SIOCGIFCAP: 2283 ifr->ifr_reqcap = ifp->if_capabilities; 2284 ifr->ifr_curcap = ifp->if_capenable; 2285 break; 2286 2287 #ifdef MAC 2288 case SIOCGIFMAC: 2289 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2290 break; 2291 #endif 2292 2293 case SIOCGIFMETRIC: 2294 ifr->ifr_metric = ifp->if_metric; 2295 break; 2296 2297 case SIOCGIFMTU: 2298 ifr->ifr_mtu = ifp->if_mtu; 2299 break; 2300 2301 case SIOCGIFPHYS: 2302 /* XXXGL: did this ever worked? */ 2303 ifr->ifr_phys = 0; 2304 break; 2305 2306 case SIOCGIFDESCR: 2307 error = 0; 2308 sx_slock(&ifdescr_sx); 2309 if (ifp->if_description == NULL) 2310 error = ENOMSG; 2311 else { 2312 /* space for terminating nul */ 2313 descrlen = strlen(ifp->if_description) + 1; 2314 if (ifr->ifr_buffer.length < descrlen) 2315 ifr->ifr_buffer.buffer = NULL; 2316 else 2317 error = copyout(ifp->if_description, 2318 ifr->ifr_buffer.buffer, descrlen); 2319 ifr->ifr_buffer.length = descrlen; 2320 } 2321 sx_sunlock(&ifdescr_sx); 2322 break; 2323 2324 case SIOCSIFDESCR: 2325 error = priv_check(td, PRIV_NET_SETIFDESCR); 2326 if (error) 2327 return (error); 2328 2329 /* 2330 * Copy only (length-1) bytes to make sure that 2331 * if_description is always nul terminated. The 2332 * length parameter is supposed to count the 2333 * terminating nul in. 2334 */ 2335 if (ifr->ifr_buffer.length > ifdescr_maxlen) 2336 return (ENAMETOOLONG); 2337 else if (ifr->ifr_buffer.length == 0) 2338 descrbuf = NULL; 2339 else { 2340 descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR, 2341 M_WAITOK | M_ZERO); 2342 error = copyin(ifr->ifr_buffer.buffer, descrbuf, 2343 ifr->ifr_buffer.length - 1); 2344 if (error) { 2345 free(descrbuf, M_IFDESCR); 2346 break; 2347 } 2348 } 2349 2350 sx_xlock(&ifdescr_sx); 2351 odescrbuf = ifp->if_description; 2352 ifp->if_description = descrbuf; 2353 sx_xunlock(&ifdescr_sx); 2354 2355 getmicrotime(&ifp->if_lastchange); 2356 free(odescrbuf, M_IFDESCR); 2357 break; 2358 2359 case SIOCGIFFIB: 2360 ifr->ifr_fib = ifp->if_fib; 2361 break; 2362 2363 case SIOCSIFFIB: 2364 error = priv_check(td, PRIV_NET_SETIFFIB); 2365 if (error) 2366 return (error); 2367 if (ifr->ifr_fib >= rt_numfibs) 2368 return (EINVAL); 2369 2370 ifp->if_fib = ifr->ifr_fib; 2371 break; 2372 2373 case SIOCSIFFLAGS: 2374 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2375 if (error) 2376 return (error); 2377 /* 2378 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2379 * check, so we don't need special handling here yet. 2380 */ 2381 new_flags = (ifr->ifr_flags & 0xffff) | 2382 (ifr->ifr_flagshigh << 16); 2383 if (ifp->if_flags & IFF_UP && 2384 (new_flags & IFF_UP) == 0) { 2385 if_down(ifp); 2386 } else if (new_flags & IFF_UP && 2387 (ifp->if_flags & IFF_UP) == 0) { 2388 if_up(ifp); 2389 } 2390 /* See if permanently promiscuous mode bit is about to flip */ 2391 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2392 if (new_flags & IFF_PPROMISC) 2393 ifp->if_flags |= IFF_PROMISC; 2394 else if (ifp->if_pcount == 0) 2395 ifp->if_flags &= ~IFF_PROMISC; 2396 log(LOG_INFO, "%s: permanently promiscuous mode %s\n", 2397 ifp->if_xname, 2398 (new_flags & IFF_PPROMISC) ? "enabled" : "disabled"); 2399 } 2400 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2401 (new_flags &~ IFF_CANTCHANGE); 2402 if (ifp->if_ioctl) { 2403 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2404 } 2405 getmicrotime(&ifp->if_lastchange); 2406 break; 2407 2408 case SIOCSIFCAP: 2409 error = priv_check(td, PRIV_NET_SETIFCAP); 2410 if (error) 2411 return (error); 2412 if (ifp->if_ioctl == NULL) 2413 return (EOPNOTSUPP); 2414 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2415 return (EINVAL); 2416 error = (*ifp->if_ioctl)(ifp, cmd, data); 2417 if (error == 0) 2418 getmicrotime(&ifp->if_lastchange); 2419 break; 2420 2421 #ifdef MAC 2422 case SIOCSIFMAC: 2423 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2424 break; 2425 #endif 2426 2427 case SIOCSIFNAME: 2428 error = priv_check(td, PRIV_NET_SETIFNAME); 2429 if (error) 2430 return (error); 2431 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 2432 if (error != 0) 2433 return (error); 2434 if (new_name[0] == '\0') 2435 return (EINVAL); 2436 if (ifunit(new_name) != NULL) 2437 return (EEXIST); 2438 2439 /* 2440 * XXX: Locking. Nothing else seems to lock if_flags, 2441 * and there are numerous other races with the 2442 * ifunit() checks not being atomic with namespace 2443 * changes (renames, vmoves, if_attach, etc). 2444 */ 2445 ifp->if_flags |= IFF_RENAMING; 2446 2447 /* Announce the departure of the interface. */ 2448 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 2449 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 2450 2451 log(LOG_INFO, "%s: changing name to '%s'\n", 2452 ifp->if_xname, new_name); 2453 2454 IF_ADDR_WLOCK(ifp); 2455 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 2456 ifa = ifp->if_addr; 2457 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 2458 namelen = strlen(new_name); 2459 onamelen = sdl->sdl_nlen; 2460 /* 2461 * Move the address if needed. This is safe because we 2462 * allocate space for a name of length IFNAMSIZ when we 2463 * create this in if_attach(). 2464 */ 2465 if (namelen != onamelen) { 2466 bcopy(sdl->sdl_data + onamelen, 2467 sdl->sdl_data + namelen, sdl->sdl_alen); 2468 } 2469 bcopy(new_name, sdl->sdl_data, namelen); 2470 sdl->sdl_nlen = namelen; 2471 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 2472 bzero(sdl->sdl_data, onamelen); 2473 while (namelen != 0) 2474 sdl->sdl_data[--namelen] = 0xff; 2475 IF_ADDR_WUNLOCK(ifp); 2476 2477 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 2478 /* Announce the return of the interface. */ 2479 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 2480 2481 ifp->if_flags &= ~IFF_RENAMING; 2482 break; 2483 2484 #ifdef VIMAGE 2485 case SIOCSIFVNET: 2486 error = priv_check(td, PRIV_NET_SETIFVNET); 2487 if (error) 2488 return (error); 2489 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2490 break; 2491 #endif 2492 2493 case SIOCSIFMETRIC: 2494 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2495 if (error) 2496 return (error); 2497 ifp->if_metric = ifr->ifr_metric; 2498 getmicrotime(&ifp->if_lastchange); 2499 break; 2500 2501 case SIOCSIFPHYS: 2502 error = priv_check(td, PRIV_NET_SETIFPHYS); 2503 if (error) 2504 return (error); 2505 if (ifp->if_ioctl == NULL) 2506 return (EOPNOTSUPP); 2507 error = (*ifp->if_ioctl)(ifp, cmd, data); 2508 if (error == 0) 2509 getmicrotime(&ifp->if_lastchange); 2510 break; 2511 2512 case SIOCSIFMTU: 2513 { 2514 u_long oldmtu = ifp->if_mtu; 2515 2516 error = priv_check(td, PRIV_NET_SETIFMTU); 2517 if (error) 2518 return (error); 2519 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2520 return (EINVAL); 2521 if (ifp->if_ioctl == NULL) 2522 return (EOPNOTSUPP); 2523 error = (*ifp->if_ioctl)(ifp, cmd, data); 2524 if (error == 0) { 2525 getmicrotime(&ifp->if_lastchange); 2526 rt_ifmsg(ifp); 2527 } 2528 /* 2529 * If the link MTU changed, do network layer specific procedure. 2530 */ 2531 if (ifp->if_mtu != oldmtu) { 2532 #ifdef INET6 2533 nd6_setmtu(ifp); 2534 #endif 2535 } 2536 break; 2537 } 2538 2539 case SIOCADDMULTI: 2540 case SIOCDELMULTI: 2541 if (cmd == SIOCADDMULTI) 2542 error = priv_check(td, PRIV_NET_ADDMULTI); 2543 else 2544 error = priv_check(td, PRIV_NET_DELMULTI); 2545 if (error) 2546 return (error); 2547 2548 /* Don't allow group membership on non-multicast interfaces. */ 2549 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2550 return (EOPNOTSUPP); 2551 2552 /* Don't let users screw up protocols' entries. */ 2553 if (ifr->ifr_addr.sa_family != AF_LINK) 2554 return (EINVAL); 2555 2556 if (cmd == SIOCADDMULTI) { 2557 struct ifmultiaddr *ifma; 2558 2559 /* 2560 * Userland is only permitted to join groups once 2561 * via the if_addmulti() KPI, because it cannot hold 2562 * struct ifmultiaddr * between calls. It may also 2563 * lose a race while we check if the membership 2564 * already exists. 2565 */ 2566 IF_ADDR_RLOCK(ifp); 2567 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2568 IF_ADDR_RUNLOCK(ifp); 2569 if (ifma != NULL) 2570 error = EADDRINUSE; 2571 else 2572 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2573 } else { 2574 error = if_delmulti(ifp, &ifr->ifr_addr); 2575 } 2576 if (error == 0) 2577 getmicrotime(&ifp->if_lastchange); 2578 break; 2579 2580 case SIOCSIFPHYADDR: 2581 case SIOCDIFPHYADDR: 2582 #ifdef INET6 2583 case SIOCSIFPHYADDR_IN6: 2584 #endif 2585 case SIOCSIFMEDIA: 2586 case SIOCSIFGENERIC: 2587 error = priv_check(td, PRIV_NET_HWIOCTL); 2588 if (error) 2589 return (error); 2590 if (ifp->if_ioctl == NULL) 2591 return (EOPNOTSUPP); 2592 error = (*ifp->if_ioctl)(ifp, cmd, data); 2593 if (error == 0) 2594 getmicrotime(&ifp->if_lastchange); 2595 break; 2596 2597 case SIOCGIFSTATUS: 2598 case SIOCGIFPSRCADDR: 2599 case SIOCGIFPDSTADDR: 2600 case SIOCGIFMEDIA: 2601 case SIOCGIFGENERIC: 2602 if (ifp->if_ioctl == NULL) 2603 return (EOPNOTSUPP); 2604 error = (*ifp->if_ioctl)(ifp, cmd, data); 2605 break; 2606 2607 case SIOCSIFLLADDR: 2608 error = priv_check(td, PRIV_NET_SETLLADDR); 2609 if (error) 2610 return (error); 2611 error = if_setlladdr(ifp, 2612 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2613 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 2614 break; 2615 2616 case SIOCAIFGROUP: 2617 { 2618 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2619 2620 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2621 if (error) 2622 return (error); 2623 if ((error = if_addgroup(ifp, ifgr->ifgr_group))) 2624 return (error); 2625 break; 2626 } 2627 2628 case SIOCGIFGROUP: 2629 if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp))) 2630 return (error); 2631 break; 2632 2633 case SIOCDIFGROUP: 2634 { 2635 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2636 2637 error = priv_check(td, PRIV_NET_DELIFGROUP); 2638 if (error) 2639 return (error); 2640 if ((error = if_delgroup(ifp, ifgr->ifgr_group))) 2641 return (error); 2642 break; 2643 } 2644 2645 default: 2646 error = ENOIOCTL; 2647 break; 2648 } 2649 return (error); 2650 } 2651 2652 #ifdef COMPAT_FREEBSD32 2653 struct ifconf32 { 2654 int32_t ifc_len; 2655 union { 2656 uint32_t ifcu_buf; 2657 uint32_t ifcu_req; 2658 } ifc_ifcu; 2659 }; 2660 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 2661 #endif 2662 2663 /* 2664 * Interface ioctls. 2665 */ 2666 int 2667 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2668 { 2669 struct ifnet *ifp; 2670 struct ifreq *ifr; 2671 int error; 2672 int oif_flags; 2673 2674 CURVNET_SET(so->so_vnet); 2675 switch (cmd) { 2676 case SIOCGIFCONF: 2677 error = ifconf(cmd, data); 2678 CURVNET_RESTORE(); 2679 return (error); 2680 2681 #ifdef COMPAT_FREEBSD32 2682 case SIOCGIFCONF32: 2683 { 2684 struct ifconf32 *ifc32; 2685 struct ifconf ifc; 2686 2687 ifc32 = (struct ifconf32 *)data; 2688 ifc.ifc_len = ifc32->ifc_len; 2689 ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2690 2691 error = ifconf(SIOCGIFCONF, (void *)&ifc); 2692 CURVNET_RESTORE(); 2693 if (error == 0) 2694 ifc32->ifc_len = ifc.ifc_len; 2695 return (error); 2696 } 2697 #endif 2698 } 2699 ifr = (struct ifreq *)data; 2700 2701 switch (cmd) { 2702 #ifdef VIMAGE 2703 case SIOCSIFRVNET: 2704 error = priv_check(td, PRIV_NET_SETIFVNET); 2705 if (error == 0) 2706 error = if_vmove_reclaim(td, ifr->ifr_name, 2707 ifr->ifr_jid); 2708 CURVNET_RESTORE(); 2709 return (error); 2710 #endif 2711 case SIOCIFCREATE: 2712 case SIOCIFCREATE2: 2713 error = priv_check(td, PRIV_NET_IFCREATE); 2714 if (error == 0) 2715 error = if_clone_create(ifr->ifr_name, 2716 sizeof(ifr->ifr_name), 2717 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL); 2718 CURVNET_RESTORE(); 2719 return (error); 2720 case SIOCIFDESTROY: 2721 error = priv_check(td, PRIV_NET_IFDESTROY); 2722 if (error == 0) 2723 error = if_clone_destroy(ifr->ifr_name); 2724 CURVNET_RESTORE(); 2725 return (error); 2726 2727 case SIOCIFGCLONERS: 2728 error = if_clone_list((struct if_clonereq *)data); 2729 CURVNET_RESTORE(); 2730 return (error); 2731 case SIOCGIFGMEMB: 2732 error = if_getgroupmembers((struct ifgroupreq *)data); 2733 CURVNET_RESTORE(); 2734 return (error); 2735 #if defined(INET) || defined(INET6) 2736 case SIOCSVH: 2737 case SIOCGVH: 2738 if (carp_ioctl_p == NULL) 2739 error = EPROTONOSUPPORT; 2740 else 2741 error = (*carp_ioctl_p)(ifr, cmd, td); 2742 CURVNET_RESTORE(); 2743 return (error); 2744 #endif 2745 } 2746 2747 ifp = ifunit_ref(ifr->ifr_name); 2748 if (ifp == NULL) { 2749 CURVNET_RESTORE(); 2750 return (ENXIO); 2751 } 2752 2753 error = ifhwioctl(cmd, ifp, data, td); 2754 if (error != ENOIOCTL) { 2755 if_rele(ifp); 2756 CURVNET_RESTORE(); 2757 return (error); 2758 } 2759 2760 oif_flags = ifp->if_flags; 2761 if (so->so_proto == NULL) { 2762 if_rele(ifp); 2763 CURVNET_RESTORE(); 2764 return (EOPNOTSUPP); 2765 } 2766 2767 /* 2768 * Pass the request on to the socket control method, and if the 2769 * latter returns EOPNOTSUPP, directly to the interface. 2770 * 2771 * Make an exception for the legacy SIOCSIF* requests. Drivers 2772 * trust SIOCSIFADDR et al to come from an already privileged 2773 * layer, and do not perform any credentials checks or input 2774 * validation. 2775 */ 2776 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, 2777 ifp, td)); 2778 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 2779 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 2780 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 2781 error = (*ifp->if_ioctl)(ifp, cmd, data); 2782 2783 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 2784 #ifdef INET6 2785 if (ifp->if_flags & IFF_UP) 2786 in6_if_up(ifp); 2787 #endif 2788 } 2789 if_rele(ifp); 2790 CURVNET_RESTORE(); 2791 return (error); 2792 } 2793 2794 /* 2795 * The code common to handling reference counted flags, 2796 * e.g., in ifpromisc() and if_allmulti(). 2797 * The "pflag" argument can specify a permanent mode flag to check, 2798 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 2799 * 2800 * Only to be used on stack-owned flags, not driver-owned flags. 2801 */ 2802 static int 2803 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 2804 { 2805 struct ifreq ifr; 2806 int error; 2807 int oldflags, oldcount; 2808 2809 /* Sanity checks to catch programming errors */ 2810 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 2811 ("%s: setting driver-owned flag %d", __func__, flag)); 2812 2813 if (onswitch) 2814 KASSERT(*refcount >= 0, 2815 ("%s: increment negative refcount %d for flag %d", 2816 __func__, *refcount, flag)); 2817 else 2818 KASSERT(*refcount > 0, 2819 ("%s: decrement non-positive refcount %d for flag %d", 2820 __func__, *refcount, flag)); 2821 2822 /* In case this mode is permanent, just touch refcount */ 2823 if (ifp->if_flags & pflag) { 2824 *refcount += onswitch ? 1 : -1; 2825 return (0); 2826 } 2827 2828 /* Save ifnet parameters for if_ioctl() may fail */ 2829 oldcount = *refcount; 2830 oldflags = ifp->if_flags; 2831 2832 /* 2833 * See if we aren't the only and touching refcount is enough. 2834 * Actually toggle interface flag if we are the first or last. 2835 */ 2836 if (onswitch) { 2837 if ((*refcount)++) 2838 return (0); 2839 ifp->if_flags |= flag; 2840 } else { 2841 if (--(*refcount)) 2842 return (0); 2843 ifp->if_flags &= ~flag; 2844 } 2845 2846 /* Call down the driver since we've changed interface flags */ 2847 if (ifp->if_ioctl == NULL) { 2848 error = EOPNOTSUPP; 2849 goto recover; 2850 } 2851 ifr.ifr_flags = ifp->if_flags & 0xffff; 2852 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2853 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 2854 if (error) 2855 goto recover; 2856 /* Notify userland that interface flags have changed */ 2857 rt_ifmsg(ifp); 2858 return (0); 2859 2860 recover: 2861 /* Recover after driver error */ 2862 *refcount = oldcount; 2863 ifp->if_flags = oldflags; 2864 return (error); 2865 } 2866 2867 /* 2868 * Set/clear promiscuous mode on interface ifp based on the truth value 2869 * of pswitch. The calls are reference counted so that only the first 2870 * "on" request actually has an effect, as does the final "off" request. 2871 * Results are undefined if the "off" and "on" requests are not matched. 2872 */ 2873 int 2874 ifpromisc(struct ifnet *ifp, int pswitch) 2875 { 2876 int error; 2877 int oldflags = ifp->if_flags; 2878 2879 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 2880 &ifp->if_pcount, pswitch); 2881 /* If promiscuous mode status has changed, log a message */ 2882 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC)) 2883 log(LOG_INFO, "%s: promiscuous mode %s\n", 2884 ifp->if_xname, 2885 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 2886 return (error); 2887 } 2888 2889 /* 2890 * Return interface configuration 2891 * of system. List may be used 2892 * in later ioctl's (above) to get 2893 * other information. 2894 */ 2895 /*ARGSUSED*/ 2896 static int 2897 ifconf(u_long cmd, caddr_t data) 2898 { 2899 struct ifconf *ifc = (struct ifconf *)data; 2900 struct ifnet *ifp; 2901 struct ifaddr *ifa; 2902 struct ifreq ifr; 2903 struct sbuf *sb; 2904 int error, full = 0, valid_len, max_len; 2905 2906 /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ 2907 max_len = MAXPHYS - 1; 2908 2909 /* Prevent hostile input from being able to crash the system */ 2910 if (ifc->ifc_len <= 0) 2911 return (EINVAL); 2912 2913 again: 2914 if (ifc->ifc_len <= max_len) { 2915 max_len = ifc->ifc_len; 2916 full = 1; 2917 } 2918 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 2919 max_len = 0; 2920 valid_len = 0; 2921 2922 IFNET_RLOCK(); 2923 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2924 int addrs; 2925 2926 /* 2927 * Zero the ifr_name buffer to make sure we don't 2928 * disclose the contents of the stack. 2929 */ 2930 memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name)); 2931 2932 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 2933 >= sizeof(ifr.ifr_name)) { 2934 sbuf_delete(sb); 2935 IFNET_RUNLOCK(); 2936 return (ENAMETOOLONG); 2937 } 2938 2939 addrs = 0; 2940 IF_ADDR_RLOCK(ifp); 2941 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2942 struct sockaddr *sa = ifa->ifa_addr; 2943 2944 if (prison_if(curthread->td_ucred, sa) != 0) 2945 continue; 2946 addrs++; 2947 if (sa->sa_len <= sizeof(*sa)) { 2948 ifr.ifr_addr = *sa; 2949 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2950 max_len += sizeof(ifr); 2951 } else { 2952 sbuf_bcat(sb, &ifr, 2953 offsetof(struct ifreq, ifr_addr)); 2954 max_len += offsetof(struct ifreq, ifr_addr); 2955 sbuf_bcat(sb, sa, sa->sa_len); 2956 max_len += sa->sa_len; 2957 } 2958 2959 if (sbuf_error(sb) == 0) 2960 valid_len = sbuf_len(sb); 2961 } 2962 IF_ADDR_RUNLOCK(ifp); 2963 if (addrs == 0) { 2964 bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); 2965 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2966 max_len += sizeof(ifr); 2967 2968 if (sbuf_error(sb) == 0) 2969 valid_len = sbuf_len(sb); 2970 } 2971 } 2972 IFNET_RUNLOCK(); 2973 2974 /* 2975 * If we didn't allocate enough space (uncommon), try again. If 2976 * we have already allocated as much space as we are allowed, 2977 * return what we've got. 2978 */ 2979 if (valid_len != max_len && !full) { 2980 sbuf_delete(sb); 2981 goto again; 2982 } 2983 2984 ifc->ifc_len = valid_len; 2985 sbuf_finish(sb); 2986 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 2987 sbuf_delete(sb); 2988 return (error); 2989 } 2990 2991 /* 2992 * Just like ifpromisc(), but for all-multicast-reception mode. 2993 */ 2994 int 2995 if_allmulti(struct ifnet *ifp, int onswitch) 2996 { 2997 2998 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 2999 } 3000 3001 struct ifmultiaddr * 3002 if_findmulti(struct ifnet *ifp, struct sockaddr *sa) 3003 { 3004 struct ifmultiaddr *ifma; 3005 3006 IF_ADDR_LOCK_ASSERT(ifp); 3007 3008 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3009 if (sa->sa_family == AF_LINK) { 3010 if (sa_dl_equal(ifma->ifma_addr, sa)) 3011 break; 3012 } else { 3013 if (sa_equal(ifma->ifma_addr, sa)) 3014 break; 3015 } 3016 } 3017 3018 return ifma; 3019 } 3020 3021 /* 3022 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 3023 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 3024 * the ifnet multicast address list here, so the caller must do that and 3025 * other setup work (such as notifying the device driver). The reference 3026 * count is initialized to 1. 3027 */ 3028 static struct ifmultiaddr * 3029 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 3030 int mflags) 3031 { 3032 struct ifmultiaddr *ifma; 3033 struct sockaddr *dupsa; 3034 3035 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3036 M_ZERO); 3037 if (ifma == NULL) 3038 return (NULL); 3039 3040 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3041 if (dupsa == NULL) { 3042 free(ifma, M_IFMADDR); 3043 return (NULL); 3044 } 3045 bcopy(sa, dupsa, sa->sa_len); 3046 ifma->ifma_addr = dupsa; 3047 3048 ifma->ifma_ifp = ifp; 3049 ifma->ifma_refcount = 1; 3050 ifma->ifma_protospec = NULL; 3051 3052 if (llsa == NULL) { 3053 ifma->ifma_lladdr = NULL; 3054 return (ifma); 3055 } 3056 3057 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3058 if (dupsa == NULL) { 3059 free(ifma->ifma_addr, M_IFMADDR); 3060 free(ifma, M_IFMADDR); 3061 return (NULL); 3062 } 3063 bcopy(llsa, dupsa, llsa->sa_len); 3064 ifma->ifma_lladdr = dupsa; 3065 3066 return (ifma); 3067 } 3068 3069 /* 3070 * if_freemulti: free ifmultiaddr structure and possibly attached related 3071 * addresses. The caller is responsible for implementing reference 3072 * counting, notifying the driver, handling routing messages, and releasing 3073 * any dependent link layer state. 3074 */ 3075 static void 3076 if_freemulti(struct ifmultiaddr *ifma) 3077 { 3078 3079 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3080 ifma->ifma_refcount)); 3081 3082 if (ifma->ifma_lladdr != NULL) 3083 free(ifma->ifma_lladdr, M_IFMADDR); 3084 free(ifma->ifma_addr, M_IFMADDR); 3085 free(ifma, M_IFMADDR); 3086 } 3087 3088 /* 3089 * Register an additional multicast address with a network interface. 3090 * 3091 * - If the address is already present, bump the reference count on the 3092 * address and return. 3093 * - If the address is not link-layer, look up a link layer address. 3094 * - Allocate address structures for one or both addresses, and attach to the 3095 * multicast address list on the interface. If automatically adding a link 3096 * layer address, the protocol address will own a reference to the link 3097 * layer address, to be freed when it is freed. 3098 * - Notify the network device driver of an addition to the multicast address 3099 * list. 3100 * 3101 * 'sa' points to caller-owned memory with the desired multicast address. 3102 * 3103 * 'retifma' will be used to return a pointer to the resulting multicast 3104 * address reference, if desired. 3105 */ 3106 int 3107 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3108 struct ifmultiaddr **retifma) 3109 { 3110 struct ifmultiaddr *ifma, *ll_ifma; 3111 struct sockaddr *llsa; 3112 struct sockaddr_dl sdl; 3113 int error; 3114 3115 /* 3116 * If the address is already present, return a new reference to it; 3117 * otherwise, allocate storage and set up a new address. 3118 */ 3119 IF_ADDR_WLOCK(ifp); 3120 ifma = if_findmulti(ifp, sa); 3121 if (ifma != NULL) { 3122 ifma->ifma_refcount++; 3123 if (retifma != NULL) 3124 *retifma = ifma; 3125 IF_ADDR_WUNLOCK(ifp); 3126 return (0); 3127 } 3128 3129 /* 3130 * The address isn't already present; resolve the protocol address 3131 * into a link layer address, and then look that up, bump its 3132 * refcount or allocate an ifma for that also. 3133 * Most link layer resolving functions returns address data which 3134 * fits inside default sockaddr_dl structure. However callback 3135 * can allocate another sockaddr structure, in that case we need to 3136 * free it later. 3137 */ 3138 llsa = NULL; 3139 ll_ifma = NULL; 3140 if (ifp->if_resolvemulti != NULL) { 3141 /* Provide called function with buffer size information */ 3142 sdl.sdl_len = sizeof(sdl); 3143 llsa = (struct sockaddr *)&sdl; 3144 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3145 if (error) 3146 goto unlock_out; 3147 } 3148 3149 /* 3150 * Allocate the new address. Don't hook it up yet, as we may also 3151 * need to allocate a link layer multicast address. 3152 */ 3153 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3154 if (ifma == NULL) { 3155 error = ENOMEM; 3156 goto free_llsa_out; 3157 } 3158 3159 /* 3160 * If a link layer address is found, we'll need to see if it's 3161 * already present in the address list, or allocate is as well. 3162 * When this block finishes, the link layer address will be on the 3163 * list. 3164 */ 3165 if (llsa != NULL) { 3166 ll_ifma = if_findmulti(ifp, llsa); 3167 if (ll_ifma == NULL) { 3168 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3169 if (ll_ifma == NULL) { 3170 --ifma->ifma_refcount; 3171 if_freemulti(ifma); 3172 error = ENOMEM; 3173 goto free_llsa_out; 3174 } 3175 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3176 ifma_link); 3177 } else 3178 ll_ifma->ifma_refcount++; 3179 ifma->ifma_llifma = ll_ifma; 3180 } 3181 3182 /* 3183 * We now have a new multicast address, ifma, and possibly a new or 3184 * referenced link layer address. Add the primary address to the 3185 * ifnet address list. 3186 */ 3187 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3188 3189 if (retifma != NULL) 3190 *retifma = ifma; 3191 3192 /* 3193 * Must generate the message while holding the lock so that 'ifma' 3194 * pointer is still valid. 3195 */ 3196 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3197 IF_ADDR_WUNLOCK(ifp); 3198 3199 /* 3200 * We are certain we have added something, so call down to the 3201 * interface to let them know about it. 3202 */ 3203 if (ifp->if_ioctl != NULL) { 3204 (void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3205 } 3206 3207 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3208 link_free_sdl(llsa); 3209 3210 return (0); 3211 3212 free_llsa_out: 3213 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3214 link_free_sdl(llsa); 3215 3216 unlock_out: 3217 IF_ADDR_WUNLOCK(ifp); 3218 return (error); 3219 } 3220 3221 /* 3222 * Delete a multicast group membership by network-layer group address. 3223 * 3224 * Returns ENOENT if the entry could not be found. If ifp no longer 3225 * exists, results are undefined. This entry point should only be used 3226 * from subsystems which do appropriate locking to hold ifp for the 3227 * duration of the call. 3228 * Network-layer protocol domains must use if_delmulti_ifma(). 3229 */ 3230 int 3231 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3232 { 3233 struct ifmultiaddr *ifma; 3234 int lastref; 3235 #ifdef INVARIANTS 3236 struct ifnet *oifp; 3237 3238 IFNET_RLOCK_NOSLEEP(); 3239 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3240 if (ifp == oifp) 3241 break; 3242 if (ifp != oifp) 3243 ifp = NULL; 3244 IFNET_RUNLOCK_NOSLEEP(); 3245 3246 KASSERT(ifp != NULL, ("%s: ifnet went away", __func__)); 3247 #endif 3248 if (ifp == NULL) 3249 return (ENOENT); 3250 3251 IF_ADDR_WLOCK(ifp); 3252 lastref = 0; 3253 ifma = if_findmulti(ifp, sa); 3254 if (ifma != NULL) 3255 lastref = if_delmulti_locked(ifp, ifma, 0); 3256 IF_ADDR_WUNLOCK(ifp); 3257 3258 if (ifma == NULL) 3259 return (ENOENT); 3260 3261 if (lastref && ifp->if_ioctl != NULL) { 3262 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3263 } 3264 3265 return (0); 3266 } 3267 3268 /* 3269 * Delete all multicast group membership for an interface. 3270 * Should be used to quickly flush all multicast filters. 3271 */ 3272 void 3273 if_delallmulti(struct ifnet *ifp) 3274 { 3275 struct ifmultiaddr *ifma; 3276 struct ifmultiaddr *next; 3277 3278 IF_ADDR_WLOCK(ifp); 3279 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3280 if_delmulti_locked(ifp, ifma, 0); 3281 IF_ADDR_WUNLOCK(ifp); 3282 } 3283 3284 /* 3285 * Delete a multicast group membership by group membership pointer. 3286 * Network-layer protocol domains must use this routine. 3287 * 3288 * It is safe to call this routine if the ifp disappeared. 3289 */ 3290 void 3291 if_delmulti_ifma(struct ifmultiaddr *ifma) 3292 { 3293 struct ifnet *ifp; 3294 int lastref; 3295 3296 ifp = ifma->ifma_ifp; 3297 #ifdef DIAGNOSTIC 3298 if (ifp == NULL) { 3299 printf("%s: ifma_ifp seems to be detached\n", __func__); 3300 } else { 3301 struct ifnet *oifp; 3302 3303 IFNET_RLOCK_NOSLEEP(); 3304 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3305 if (ifp == oifp) 3306 break; 3307 if (ifp != oifp) { 3308 printf("%s: ifnet %p disappeared\n", __func__, ifp); 3309 ifp = NULL; 3310 } 3311 IFNET_RUNLOCK_NOSLEEP(); 3312 } 3313 #endif 3314 /* 3315 * If and only if the ifnet instance exists: Acquire the address lock. 3316 */ 3317 if (ifp != NULL) 3318 IF_ADDR_WLOCK(ifp); 3319 3320 lastref = if_delmulti_locked(ifp, ifma, 0); 3321 3322 if (ifp != NULL) { 3323 /* 3324 * If and only if the ifnet instance exists: 3325 * Release the address lock. 3326 * If the group was left: update the hardware hash filter. 3327 */ 3328 IF_ADDR_WUNLOCK(ifp); 3329 if (lastref && ifp->if_ioctl != NULL) { 3330 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3331 } 3332 } 3333 } 3334 3335 /* 3336 * Perform deletion of network-layer and/or link-layer multicast address. 3337 * 3338 * Return 0 if the reference count was decremented. 3339 * Return 1 if the final reference was released, indicating that the 3340 * hardware hash filter should be reprogrammed. 3341 */ 3342 static int 3343 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3344 { 3345 struct ifmultiaddr *ll_ifma; 3346 3347 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3348 KASSERT(ifma->ifma_ifp == ifp, 3349 ("%s: inconsistent ifp %p", __func__, ifp)); 3350 IF_ADDR_WLOCK_ASSERT(ifp); 3351 } 3352 3353 ifp = ifma->ifma_ifp; 3354 3355 /* 3356 * If the ifnet is detaching, null out references to ifnet, 3357 * so that upper protocol layers will notice, and not attempt 3358 * to obtain locks for an ifnet which no longer exists. The 3359 * routing socket announcement must happen before the ifnet 3360 * instance is detached from the system. 3361 */ 3362 if (detaching) { 3363 #ifdef DIAGNOSTIC 3364 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3365 #endif 3366 /* 3367 * ifp may already be nulled out if we are being reentered 3368 * to delete the ll_ifma. 3369 */ 3370 if (ifp != NULL) { 3371 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3372 ifma->ifma_ifp = NULL; 3373 } 3374 } 3375 3376 if (--ifma->ifma_refcount > 0) 3377 return 0; 3378 3379 /* 3380 * If this ifma is a network-layer ifma, a link-layer ifma may 3381 * have been associated with it. Release it first if so. 3382 */ 3383 ll_ifma = ifma->ifma_llifma; 3384 if (ll_ifma != NULL) { 3385 KASSERT(ifma->ifma_lladdr != NULL, 3386 ("%s: llifma w/o lladdr", __func__)); 3387 if (detaching) 3388 ll_ifma->ifma_ifp = NULL; /* XXX */ 3389 if (--ll_ifma->ifma_refcount == 0) { 3390 if (ifp != NULL) { 3391 TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, 3392 ifma_link); 3393 } 3394 if_freemulti(ll_ifma); 3395 } 3396 } 3397 3398 if (ifp != NULL) 3399 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 3400 3401 if_freemulti(ifma); 3402 3403 /* 3404 * The last reference to this instance of struct ifmultiaddr 3405 * was released; the hardware should be notified of this change. 3406 */ 3407 return 1; 3408 } 3409 3410 /* 3411 * Set the link layer address on an interface. 3412 * 3413 * At this time we only support certain types of interfaces, 3414 * and we don't allow the length of the address to change. 3415 */ 3416 int 3417 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3418 { 3419 struct sockaddr_dl *sdl; 3420 struct ifaddr *ifa; 3421 struct ifreq ifr; 3422 3423 IF_ADDR_RLOCK(ifp); 3424 ifa = ifp->if_addr; 3425 if (ifa == NULL) { 3426 IF_ADDR_RUNLOCK(ifp); 3427 return (EINVAL); 3428 } 3429 ifa_ref(ifa); 3430 IF_ADDR_RUNLOCK(ifp); 3431 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3432 if (sdl == NULL) { 3433 ifa_free(ifa); 3434 return (EINVAL); 3435 } 3436 if (len != sdl->sdl_alen) { /* don't allow length to change */ 3437 ifa_free(ifa); 3438 return (EINVAL); 3439 } 3440 switch (ifp->if_type) { 3441 case IFT_ETHER: 3442 case IFT_FDDI: 3443 case IFT_XETHER: 3444 case IFT_ISO88025: 3445 case IFT_L2VLAN: 3446 case IFT_BRIDGE: 3447 case IFT_ARCNET: 3448 case IFT_IEEE8023ADLAG: 3449 case IFT_IEEE80211: 3450 bcopy(lladdr, LLADDR(sdl), len); 3451 ifa_free(ifa); 3452 break; 3453 default: 3454 ifa_free(ifa); 3455 return (ENODEV); 3456 } 3457 3458 /* 3459 * If the interface is already up, we need 3460 * to re-init it in order to reprogram its 3461 * address filter. 3462 */ 3463 if ((ifp->if_flags & IFF_UP) != 0) { 3464 if (ifp->if_ioctl) { 3465 ifp->if_flags &= ~IFF_UP; 3466 ifr.ifr_flags = ifp->if_flags & 0xffff; 3467 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3468 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3469 ifp->if_flags |= IFF_UP; 3470 ifr.ifr_flags = ifp->if_flags & 0xffff; 3471 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3472 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3473 } 3474 #ifdef INET 3475 /* 3476 * Also send gratuitous ARPs to notify other nodes about 3477 * the address change. 3478 */ 3479 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3480 if (ifa->ifa_addr->sa_family == AF_INET) 3481 arp_ifinit(ifp, ifa); 3482 } 3483 #endif 3484 } 3485 return (0); 3486 } 3487 3488 /* 3489 * The name argument must be a pointer to storage which will last as 3490 * long as the interface does. For physical devices, the result of 3491 * device_get_name(dev) is a good choice and for pseudo-devices a 3492 * static string works well. 3493 */ 3494 void 3495 if_initname(struct ifnet *ifp, const char *name, int unit) 3496 { 3497 ifp->if_dname = name; 3498 ifp->if_dunit = unit; 3499 if (unit != IF_DUNIT_NONE) 3500 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 3501 else 3502 strlcpy(ifp->if_xname, name, IFNAMSIZ); 3503 } 3504 3505 int 3506 if_printf(struct ifnet *ifp, const char * fmt, ...) 3507 { 3508 va_list ap; 3509 int retval; 3510 3511 retval = printf("%s: ", ifp->if_xname); 3512 va_start(ap, fmt); 3513 retval += vprintf(fmt, ap); 3514 va_end(ap); 3515 return (retval); 3516 } 3517 3518 void 3519 if_start(struct ifnet *ifp) 3520 { 3521 3522 (*(ifp)->if_start)(ifp); 3523 } 3524 3525 /* 3526 * Backwards compatibility interface for drivers 3527 * that have not implemented it 3528 */ 3529 static int 3530 if_transmit(struct ifnet *ifp, struct mbuf *m) 3531 { 3532 int error; 3533 3534 IFQ_HANDOFF(ifp, m, error); 3535 return (error); 3536 } 3537 3538 int 3539 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 3540 { 3541 int active = 0; 3542 3543 IF_LOCK(ifq); 3544 if (_IF_QFULL(ifq)) { 3545 IF_UNLOCK(ifq); 3546 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 3547 m_freem(m); 3548 return (0); 3549 } 3550 if (ifp != NULL) { 3551 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 3552 if (m->m_flags & (M_BCAST|M_MCAST)) 3553 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3554 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 3555 } 3556 _IF_ENQUEUE(ifq, m); 3557 IF_UNLOCK(ifq); 3558 if (ifp != NULL && !active) 3559 (*(ifp)->if_start)(ifp); 3560 return (1); 3561 } 3562 3563 void 3564 if_register_com_alloc(u_char type, 3565 if_com_alloc_t *a, if_com_free_t *f) 3566 { 3567 3568 KASSERT(if_com_alloc[type] == NULL, 3569 ("if_register_com_alloc: %d already registered", type)); 3570 KASSERT(if_com_free[type] == NULL, 3571 ("if_register_com_alloc: %d free already registered", type)); 3572 3573 if_com_alloc[type] = a; 3574 if_com_free[type] = f; 3575 } 3576 3577 void 3578 if_deregister_com_alloc(u_char type) 3579 { 3580 3581 KASSERT(if_com_alloc[type] != NULL, 3582 ("if_deregister_com_alloc: %d not registered", type)); 3583 KASSERT(if_com_free[type] != NULL, 3584 ("if_deregister_com_alloc: %d free not registered", type)); 3585 if_com_alloc[type] = NULL; 3586 if_com_free[type] = NULL; 3587 } 3588 3589 /* API for driver access to network stack owned ifnet.*/ 3590 uint64_t 3591 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 3592 { 3593 uint64_t oldbrate; 3594 3595 oldbrate = ifp->if_baudrate; 3596 ifp->if_baudrate = baudrate; 3597 return (oldbrate); 3598 } 3599 3600 uint64_t 3601 if_getbaudrate(if_t ifp) 3602 { 3603 3604 return (((struct ifnet *)ifp)->if_baudrate); 3605 } 3606 3607 int 3608 if_setcapabilities(if_t ifp, int capabilities) 3609 { 3610 ((struct ifnet *)ifp)->if_capabilities = capabilities; 3611 return (0); 3612 } 3613 3614 int 3615 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 3616 { 3617 ((struct ifnet *)ifp)->if_capabilities |= setbit; 3618 ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; 3619 3620 return (0); 3621 } 3622 3623 int 3624 if_getcapabilities(if_t ifp) 3625 { 3626 return ((struct ifnet *)ifp)->if_capabilities; 3627 } 3628 3629 int 3630 if_setcapenable(if_t ifp, int capabilities) 3631 { 3632 ((struct ifnet *)ifp)->if_capenable = capabilities; 3633 return (0); 3634 } 3635 3636 int 3637 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 3638 { 3639 if(setcap) 3640 ((struct ifnet *)ifp)->if_capenable |= setcap; 3641 if(clearcap) 3642 ((struct ifnet *)ifp)->if_capenable &= ~clearcap; 3643 3644 return (0); 3645 } 3646 3647 const char * 3648 if_getdname(if_t ifp) 3649 { 3650 return ((struct ifnet *)ifp)->if_dname; 3651 } 3652 3653 int 3654 if_togglecapenable(if_t ifp, int togglecap) 3655 { 3656 ((struct ifnet *)ifp)->if_capenable ^= togglecap; 3657 return (0); 3658 } 3659 3660 int 3661 if_getcapenable(if_t ifp) 3662 { 3663 return ((struct ifnet *)ifp)->if_capenable; 3664 } 3665 3666 /* 3667 * This is largely undesirable because it ties ifnet to a device, but does 3668 * provide flexiblity for an embedded product vendor. Should be used with 3669 * the understanding that it violates the interface boundaries, and should be 3670 * a last resort only. 3671 */ 3672 int 3673 if_setdev(if_t ifp, void *dev) 3674 { 3675 return (0); 3676 } 3677 3678 int 3679 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 3680 { 3681 ((struct ifnet *)ifp)->if_drv_flags |= set_flags; 3682 ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; 3683 3684 return (0); 3685 } 3686 3687 int 3688 if_getdrvflags(if_t ifp) 3689 { 3690 return ((struct ifnet *)ifp)->if_drv_flags; 3691 } 3692 3693 int 3694 if_setdrvflags(if_t ifp, int flags) 3695 { 3696 ((struct ifnet *)ifp)->if_drv_flags = flags; 3697 return (0); 3698 } 3699 3700 3701 int 3702 if_setflags(if_t ifp, int flags) 3703 { 3704 ((struct ifnet *)ifp)->if_flags = flags; 3705 return (0); 3706 } 3707 3708 int 3709 if_setflagbits(if_t ifp, int set, int clear) 3710 { 3711 ((struct ifnet *)ifp)->if_flags |= set; 3712 ((struct ifnet *)ifp)->if_flags &= ~clear; 3713 3714 return (0); 3715 } 3716 3717 int 3718 if_getflags(if_t ifp) 3719 { 3720 return ((struct ifnet *)ifp)->if_flags; 3721 } 3722 3723 int 3724 if_clearhwassist(if_t ifp) 3725 { 3726 ((struct ifnet *)ifp)->if_hwassist = 0; 3727 return (0); 3728 } 3729 3730 int 3731 if_sethwassistbits(if_t ifp, int toset, int toclear) 3732 { 3733 ((struct ifnet *)ifp)->if_hwassist |= toset; 3734 ((struct ifnet *)ifp)->if_hwassist &= ~toclear; 3735 3736 return (0); 3737 } 3738 3739 int 3740 if_sethwassist(if_t ifp, int hwassist_bit) 3741 { 3742 ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; 3743 return (0); 3744 } 3745 3746 int 3747 if_gethwassist(if_t ifp) 3748 { 3749 return ((struct ifnet *)ifp)->if_hwassist; 3750 } 3751 3752 int 3753 if_setmtu(if_t ifp, int mtu) 3754 { 3755 ((struct ifnet *)ifp)->if_mtu = mtu; 3756 return (0); 3757 } 3758 3759 int 3760 if_getmtu(if_t ifp) 3761 { 3762 return ((struct ifnet *)ifp)->if_mtu; 3763 } 3764 3765 int 3766 if_setsoftc(if_t ifp, void *softc) 3767 { 3768 ((struct ifnet *)ifp)->if_softc = softc; 3769 return (0); 3770 } 3771 3772 void * 3773 if_getsoftc(if_t ifp) 3774 { 3775 return ((struct ifnet *)ifp)->if_softc; 3776 } 3777 3778 void 3779 if_setrcvif(struct mbuf *m, if_t ifp) 3780 { 3781 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 3782 } 3783 3784 void 3785 if_setvtag(struct mbuf *m, uint16_t tag) 3786 { 3787 m->m_pkthdr.ether_vtag = tag; 3788 } 3789 3790 uint16_t 3791 if_getvtag(struct mbuf *m) 3792 { 3793 3794 return (m->m_pkthdr.ether_vtag); 3795 } 3796 3797 int 3798 if_sendq_empty(if_t ifp) 3799 { 3800 return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); 3801 } 3802 3803 struct ifaddr * 3804 if_getifaddr(if_t ifp) 3805 { 3806 return ((struct ifnet *)ifp)->if_addr; 3807 } 3808 3809 int 3810 if_getamcount(if_t ifp) 3811 { 3812 return ((struct ifnet *)ifp)->if_amcount; 3813 } 3814 3815 3816 int 3817 if_setsendqready(if_t ifp) 3818 { 3819 IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); 3820 return (0); 3821 } 3822 3823 int 3824 if_setsendqlen(if_t ifp, int tx_desc_count) 3825 { 3826 IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); 3827 ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; 3828 3829 return (0); 3830 } 3831 3832 int 3833 if_vlantrunkinuse(if_t ifp) 3834 { 3835 return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; 3836 } 3837 3838 int 3839 if_input(if_t ifp, struct mbuf* sendmp) 3840 { 3841 (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); 3842 return (0); 3843 3844 } 3845 3846 /* XXX */ 3847 #ifndef ETH_ADDR_LEN 3848 #define ETH_ADDR_LEN 6 3849 #endif 3850 3851 int 3852 if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max) 3853 { 3854 struct ifmultiaddr *ifma; 3855 uint8_t *lmta = (uint8_t *)mta; 3856 int mcnt = 0; 3857 3858 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3859 if (ifma->ifma_addr->sa_family != AF_LINK) 3860 continue; 3861 3862 if (mcnt == max) 3863 break; 3864 3865 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 3866 &lmta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); 3867 mcnt++; 3868 } 3869 *cnt = mcnt; 3870 3871 return (0); 3872 } 3873 3874 int 3875 if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max) 3876 { 3877 int error; 3878 3879 if_maddr_rlock(ifp); 3880 error = if_setupmultiaddr(ifp, mta, cnt, max); 3881 if_maddr_runlock(ifp); 3882 return (error); 3883 } 3884 3885 int 3886 if_multiaddr_count(if_t ifp, int max) 3887 { 3888 struct ifmultiaddr *ifma; 3889 int count; 3890 3891 count = 0; 3892 if_maddr_rlock(ifp); 3893 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3894 if (ifma->ifma_addr->sa_family != AF_LINK) 3895 continue; 3896 count++; 3897 if (count == max) 3898 break; 3899 } 3900 if_maddr_runlock(ifp); 3901 return (count); 3902 } 3903 3904 struct mbuf * 3905 if_dequeue(if_t ifp) 3906 { 3907 struct mbuf *m; 3908 IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); 3909 3910 return (m); 3911 } 3912 3913 int 3914 if_sendq_prepend(if_t ifp, struct mbuf *m) 3915 { 3916 IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); 3917 return (0); 3918 } 3919 3920 int 3921 if_setifheaderlen(if_t ifp, int len) 3922 { 3923 ((struct ifnet *)ifp)->if_hdrlen = len; 3924 return (0); 3925 } 3926 3927 caddr_t 3928 if_getlladdr(if_t ifp) 3929 { 3930 return (IF_LLADDR((struct ifnet *)ifp)); 3931 } 3932 3933 void * 3934 if_gethandle(u_char type) 3935 { 3936 return (if_alloc(type)); 3937 } 3938 3939 void 3940 if_bpfmtap(if_t ifh, struct mbuf *m) 3941 { 3942 struct ifnet *ifp = (struct ifnet *)ifh; 3943 3944 BPF_MTAP(ifp, m); 3945 } 3946 3947 void 3948 if_etherbpfmtap(if_t ifh, struct mbuf *m) 3949 { 3950 struct ifnet *ifp = (struct ifnet *)ifh; 3951 3952 ETHER_BPF_MTAP(ifp, m); 3953 } 3954 3955 void 3956 if_vlancap(if_t ifh) 3957 { 3958 struct ifnet *ifp = (struct ifnet *)ifh; 3959 VLAN_CAPABILITIES(ifp); 3960 } 3961 3962 void 3963 if_setinitfn(if_t ifp, void (*init_fn)(void *)) 3964 { 3965 ((struct ifnet *)ifp)->if_init = init_fn; 3966 } 3967 3968 void 3969 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) 3970 { 3971 ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; 3972 } 3973 3974 void 3975 if_setstartfn(if_t ifp, void (*start_fn)(if_t)) 3976 { 3977 ((struct ifnet *)ifp)->if_start = (void *)start_fn; 3978 } 3979 3980 void 3981 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 3982 { 3983 ((struct ifnet *)ifp)->if_transmit = start_fn; 3984 } 3985 3986 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 3987 { 3988 ((struct ifnet *)ifp)->if_qflush = flush_fn; 3989 3990 } 3991 3992 void 3993 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 3994 { 3995 3996 ifp->if_get_counter = fn; 3997 } 3998 3999 /* Revisit these - These are inline functions originally. */ 4000 int 4001 drbr_inuse_drv(if_t ifh, struct buf_ring *br) 4002 { 4003 return drbr_inuse_drv(ifh, br); 4004 } 4005 4006 struct mbuf* 4007 drbr_dequeue_drv(if_t ifh, struct buf_ring *br) 4008 { 4009 return drbr_dequeue(ifh, br); 4010 } 4011 4012 int 4013 drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br) 4014 { 4015 return drbr_needs_enqueue(ifh, br); 4016 } 4017 4018 int 4019 drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m) 4020 { 4021 return drbr_enqueue(ifh, br, m); 4022 4023 } 4024