1 /*- 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if.c 8.5 (Berkeley) 1/9/95 30 * $FreeBSD$ 31 */ 32 33 #include "opt_compat.h" 34 #include "opt_inet6.h" 35 #include "opt_inet.h" 36 37 #include <sys/param.h> 38 #include <sys/types.h> 39 #include <sys/conf.h> 40 #include <sys/malloc.h> 41 #include <sys/sbuf.h> 42 #include <sys/bus.h> 43 #include <sys/mbuf.h> 44 #include <sys/systm.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/protosw.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/refcount.h> 53 #include <sys/module.h> 54 #include <sys/rwlock.h> 55 #include <sys/sockio.h> 56 #include <sys/syslog.h> 57 #include <sys/sysctl.h> 58 #include <sys/taskqueue.h> 59 #include <sys/domain.h> 60 #include <sys/jail.h> 61 #include <sys/priv.h> 62 63 #include <machine/stdarg.h> 64 #include <vm/uma.h> 65 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/if.h> 69 #include <net/if_arp.h> 70 #include <net/if_clone.h> 71 #include <net/if_dl.h> 72 #include <net/if_types.h> 73 #include <net/if_var.h> 74 #include <net/if_media.h> 75 #include <net/if_vlan_var.h> 76 #include <net/radix.h> 77 #include <net/route.h> 78 #include <net/vnet.h> 79 80 #if defined(INET) || defined(INET6) 81 #include <net/ethernet.h> 82 #include <netinet/in.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_carp.h> 86 #ifdef INET 87 #include <netinet/if_ether.h> 88 #endif /* INET */ 89 #ifdef INET6 90 #include <netinet6/in6_var.h> 91 #include <netinet6/in6_ifattach.h> 92 #endif /* INET6 */ 93 #endif /* INET || INET6 */ 94 95 #include <security/mac/mac_framework.h> 96 97 #ifdef COMPAT_FREEBSD32 98 #include <sys/mount.h> 99 #include <compat/freebsd32/freebsd32.h> 100 #endif 101 102 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 103 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 104 105 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 106 &ifqmaxlen, 0, "max send queue size"); 107 108 /* Log link state change events */ 109 static int log_link_state_change = 1; 110 111 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 112 &log_link_state_change, 0, 113 "log interface link state change events"); 114 115 /* Interface description */ 116 static unsigned int ifdescr_maxlen = 1024; 117 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 118 &ifdescr_maxlen, 0, 119 "administrative maximum length for interface description"); 120 121 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 122 123 /* global sx for non-critical path ifdescr */ 124 static struct sx ifdescr_sx; 125 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 126 127 void (*bridge_linkstate_p)(struct ifnet *ifp); 128 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 129 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 130 /* These are external hooks for CARP. */ 131 void (*carp_linkstate_p)(struct ifnet *ifp); 132 void (*carp_demote_adj_p)(int, char *); 133 int (*carp_master_p)(struct ifaddr *); 134 #if defined(INET) || defined(INET6) 135 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 136 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 137 const struct sockaddr *sa); 138 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 139 int (*carp_attach_p)(struct ifaddr *, int); 140 void (*carp_detach_p)(struct ifaddr *); 141 #endif 142 #ifdef INET 143 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 144 #endif 145 #ifdef INET6 146 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 147 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 148 const struct in6_addr *taddr); 149 #endif 150 151 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 152 153 /* 154 * XXX: Style; these should be sorted alphabetically, and unprototyped 155 * static functions should be prototyped. Currently they are sorted by 156 * declaration order. 157 */ 158 static void if_attachdomain(void *); 159 static void if_attachdomain1(struct ifnet *); 160 static int ifconf(u_long, caddr_t); 161 static void if_freemulti(struct ifmultiaddr *); 162 static void if_grow(void); 163 static void if_route(struct ifnet *, int flag, int fam); 164 static int if_setflag(struct ifnet *, int, int, int *, int); 165 static int if_transmit(struct ifnet *ifp, struct mbuf *m); 166 static void if_unroute(struct ifnet *, int flag, int fam); 167 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 168 static int if_rtdel(struct radix_node *, void *); 169 static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *); 170 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 171 static void do_link_state_change(void *, int); 172 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 173 static int if_getgroupmembers(struct ifgroupreq *); 174 static void if_delgroups(struct ifnet *); 175 static void if_attach_internal(struct ifnet *, int, struct if_clone *); 176 static void if_detach_internal(struct ifnet *, int, struct if_clone **); 177 178 #ifdef INET6 179 /* 180 * XXX: declare here to avoid to include many inet6 related files.. 181 * should be more generalized? 182 */ 183 extern void nd6_setmtu(struct ifnet *); 184 #endif 185 186 VNET_DEFINE(int, if_index); 187 int ifqmaxlen = IFQ_MAXLEN; 188 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 189 VNET_DEFINE(struct ifgrouphead, ifg_head); 190 191 static VNET_DEFINE(int, if_indexlim) = 8; 192 193 /* Table of ifnet by index. */ 194 VNET_DEFINE(struct ifnet **, ifindex_table); 195 196 #define V_if_indexlim VNET(if_indexlim) 197 #define V_ifindex_table VNET(ifindex_table) 198 199 /* 200 * The global network interface list (V_ifnet) and related state (such as 201 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and 202 * an rwlock. Either may be acquired shared to stablize the list, but both 203 * must be acquired writable to modify the list. This model allows us to 204 * both stablize the interface list during interrupt thread processing, but 205 * also to stablize it over long-running ioctls, without introducing priority 206 * inversions and deadlocks. 207 */ 208 struct rwlock ifnet_rwlock; 209 RW_SYSINIT_FLAGS(ifnet_rw, &ifnet_rwlock, "ifnet_rw", RW_RECURSE); 210 struct sx ifnet_sxlock; 211 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 212 213 /* 214 * The allocation of network interfaces is a rather non-atomic affair; we 215 * need to select an index before we are ready to expose the interface for 216 * use, so will use this pointer value to indicate reservation. 217 */ 218 #define IFNET_HOLD (void *)(uintptr_t)(-1) 219 220 static if_com_alloc_t *if_com_alloc[256]; 221 static if_com_free_t *if_com_free[256]; 222 223 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 224 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 225 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 226 227 struct ifnet * 228 ifnet_byindex_locked(u_short idx) 229 { 230 231 if (idx > V_if_index) 232 return (NULL); 233 if (V_ifindex_table[idx] == IFNET_HOLD) 234 return (NULL); 235 return (V_ifindex_table[idx]); 236 } 237 238 struct ifnet * 239 ifnet_byindex(u_short idx) 240 { 241 struct ifnet *ifp; 242 243 IFNET_RLOCK_NOSLEEP(); 244 ifp = ifnet_byindex_locked(idx); 245 IFNET_RUNLOCK_NOSLEEP(); 246 return (ifp); 247 } 248 249 struct ifnet * 250 ifnet_byindex_ref(u_short idx) 251 { 252 struct ifnet *ifp; 253 254 IFNET_RLOCK_NOSLEEP(); 255 ifp = ifnet_byindex_locked(idx); 256 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) { 257 IFNET_RUNLOCK_NOSLEEP(); 258 return (NULL); 259 } 260 if_ref(ifp); 261 IFNET_RUNLOCK_NOSLEEP(); 262 return (ifp); 263 } 264 265 /* 266 * Allocate an ifindex array entry; return 0 on success or an error on 267 * failure. 268 */ 269 static u_short 270 ifindex_alloc(void) 271 { 272 u_short idx; 273 274 IFNET_WLOCK_ASSERT(); 275 retry: 276 /* 277 * Try to find an empty slot below V_if_index. If we fail, take the 278 * next slot. 279 */ 280 for (idx = 1; idx <= V_if_index; idx++) { 281 if (V_ifindex_table[idx] == NULL) 282 break; 283 } 284 285 /* Catch if_index overflow. */ 286 if (idx >= V_if_indexlim) { 287 if_grow(); 288 goto retry; 289 } 290 if (idx > V_if_index) 291 V_if_index = idx; 292 return (idx); 293 } 294 295 static void 296 ifindex_free_locked(u_short idx) 297 { 298 299 IFNET_WLOCK_ASSERT(); 300 301 V_ifindex_table[idx] = NULL; 302 while (V_if_index > 0 && 303 V_ifindex_table[V_if_index] == NULL) 304 V_if_index--; 305 } 306 307 static void 308 ifindex_free(u_short idx) 309 { 310 311 IFNET_WLOCK(); 312 ifindex_free_locked(idx); 313 IFNET_WUNLOCK(); 314 } 315 316 static void 317 ifnet_setbyindex_locked(u_short idx, struct ifnet *ifp) 318 { 319 320 IFNET_WLOCK_ASSERT(); 321 322 V_ifindex_table[idx] = ifp; 323 } 324 325 static void 326 ifnet_setbyindex(u_short idx, struct ifnet *ifp) 327 { 328 329 IFNET_WLOCK(); 330 ifnet_setbyindex_locked(idx, ifp); 331 IFNET_WUNLOCK(); 332 } 333 334 struct ifaddr * 335 ifaddr_byindex(u_short idx) 336 { 337 struct ifaddr *ifa; 338 339 IFNET_RLOCK_NOSLEEP(); 340 ifa = ifnet_byindex_locked(idx)->if_addr; 341 if (ifa != NULL) 342 ifa_ref(ifa); 343 IFNET_RUNLOCK_NOSLEEP(); 344 return (ifa); 345 } 346 347 /* 348 * Network interface utility routines. 349 * 350 * Routines with ifa_ifwith* names take sockaddr *'s as 351 * parameters. 352 */ 353 354 static void 355 vnet_if_init(const void *unused __unused) 356 { 357 358 TAILQ_INIT(&V_ifnet); 359 TAILQ_INIT(&V_ifg_head); 360 IFNET_WLOCK(); 361 if_grow(); /* create initial table */ 362 IFNET_WUNLOCK(); 363 vnet_if_clone_init(); 364 } 365 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 366 NULL); 367 368 #ifdef VIMAGE 369 static void 370 vnet_if_uninit(const void *unused __unused) 371 { 372 373 VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " 374 "not empty", __func__, __LINE__, &V_ifnet)); 375 VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " 376 "not empty", __func__, __LINE__, &V_ifg_head)); 377 378 free((caddr_t)V_ifindex_table, M_IFNET); 379 } 380 VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, 381 vnet_if_uninit, NULL); 382 #endif 383 384 static void 385 if_grow(void) 386 { 387 int oldlim; 388 u_int n; 389 struct ifnet **e; 390 391 IFNET_WLOCK_ASSERT(); 392 oldlim = V_if_indexlim; 393 IFNET_WUNLOCK(); 394 n = (oldlim << 1) * sizeof(*e); 395 e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); 396 IFNET_WLOCK(); 397 if (V_if_indexlim != oldlim) { 398 free(e, M_IFNET); 399 return; 400 } 401 if (V_ifindex_table != NULL) { 402 memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); 403 free((caddr_t)V_ifindex_table, M_IFNET); 404 } 405 V_if_indexlim <<= 1; 406 V_ifindex_table = e; 407 } 408 409 /* 410 * Allocate a struct ifnet and an index for an interface. A layer 2 411 * common structure will also be allocated if an allocation routine is 412 * registered for the passed type. 413 */ 414 struct ifnet * 415 if_alloc(u_char type) 416 { 417 struct ifnet *ifp; 418 u_short idx; 419 420 ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO); 421 IFNET_WLOCK(); 422 idx = ifindex_alloc(); 423 ifnet_setbyindex_locked(idx, IFNET_HOLD); 424 IFNET_WUNLOCK(); 425 ifp->if_index = idx; 426 ifp->if_type = type; 427 ifp->if_alloctype = type; 428 if (if_com_alloc[type] != NULL) { 429 ifp->if_l2com = if_com_alloc[type](type, ifp); 430 if (ifp->if_l2com == NULL) { 431 free(ifp, M_IFNET); 432 ifindex_free(idx); 433 return (NULL); 434 } 435 } 436 437 IF_ADDR_LOCK_INIT(ifp); 438 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 439 ifp->if_afdata_initialized = 0; 440 IF_AFDATA_LOCK_INIT(ifp); 441 TAILQ_INIT(&ifp->if_addrhead); 442 TAILQ_INIT(&ifp->if_multiaddrs); 443 TAILQ_INIT(&ifp->if_groups); 444 #ifdef MAC 445 mac_ifnet_init(ifp); 446 #endif 447 ifq_init(&ifp->if_snd, ifp); 448 449 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 450 for (int i = 0; i < IFCOUNTERS; i++) 451 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 452 ifp->if_get_counter = if_get_counter_default; 453 ifnet_setbyindex(ifp->if_index, ifp); 454 return (ifp); 455 } 456 457 /* 458 * Do the actual work of freeing a struct ifnet, and layer 2 common 459 * structure. This call is made when the last reference to an 460 * interface is released. 461 */ 462 static void 463 if_free_internal(struct ifnet *ifp) 464 { 465 466 KASSERT((ifp->if_flags & IFF_DYING), 467 ("if_free_internal: interface not dying")); 468 469 if (if_com_free[ifp->if_alloctype] != NULL) 470 if_com_free[ifp->if_alloctype](ifp->if_l2com, 471 ifp->if_alloctype); 472 473 #ifdef MAC 474 mac_ifnet_destroy(ifp); 475 #endif /* MAC */ 476 if (ifp->if_description != NULL) 477 free(ifp->if_description, M_IFDESCR); 478 IF_AFDATA_DESTROY(ifp); 479 IF_ADDR_LOCK_DESTROY(ifp); 480 ifq_delete(&ifp->if_snd); 481 482 for (int i = 0; i < IFCOUNTERS; i++) 483 counter_u64_free(ifp->if_counters[i]); 484 485 free(ifp, M_IFNET); 486 } 487 488 /* 489 * Deregister an interface and free the associated storage. 490 */ 491 void 492 if_free(struct ifnet *ifp) 493 { 494 495 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 496 497 CURVNET_SET_QUIET(ifp->if_vnet); 498 IFNET_WLOCK(); 499 KASSERT(ifp == ifnet_byindex_locked(ifp->if_index), 500 ("%s: freeing unallocated ifnet", ifp->if_xname)); 501 502 ifindex_free_locked(ifp->if_index); 503 IFNET_WUNLOCK(); 504 505 if (refcount_release(&ifp->if_refcount)) 506 if_free_internal(ifp); 507 CURVNET_RESTORE(); 508 } 509 510 /* 511 * Interfaces to keep an ifnet type-stable despite the possibility of the 512 * driver calling if_free(). If there are additional references, we defer 513 * freeing the underlying data structure. 514 */ 515 void 516 if_ref(struct ifnet *ifp) 517 { 518 519 /* We don't assert the ifnet list lock here, but arguably should. */ 520 refcount_acquire(&ifp->if_refcount); 521 } 522 523 void 524 if_rele(struct ifnet *ifp) 525 { 526 527 if (!refcount_release(&ifp->if_refcount)) 528 return; 529 if_free_internal(ifp); 530 } 531 532 void 533 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 534 { 535 536 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 537 538 if (ifq->ifq_maxlen == 0) 539 ifq->ifq_maxlen = ifqmaxlen; 540 541 ifq->altq_type = 0; 542 ifq->altq_disc = NULL; 543 ifq->altq_flags &= ALTQF_CANTCHANGE; 544 ifq->altq_tbr = NULL; 545 ifq->altq_ifp = ifp; 546 } 547 548 void 549 ifq_delete(struct ifaltq *ifq) 550 { 551 mtx_destroy(&ifq->ifq_mtx); 552 } 553 554 /* 555 * Perform generic interface initalization tasks and attach the interface 556 * to the list of "active" interfaces. If vmove flag is set on entry 557 * to if_attach_internal(), perform only a limited subset of initialization 558 * tasks, given that we are moving from one vnet to another an ifnet which 559 * has already been fully initialized. 560 * 561 * Note that if_detach_internal() removes group membership unconditionally 562 * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. 563 * Thus, when if_vmove() is applied to a cloned interface, group membership 564 * is lost while a cloned one always joins a group whose name is 565 * ifc->ifc_name. To recover this after if_detach_internal() and 566 * if_attach_internal(), the cloner should be specified to 567 * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() 568 * attempts to join a group whose name is ifc->ifc_name. 569 * 570 * XXX: 571 * - The decision to return void and thus require this function to 572 * succeed is questionable. 573 * - We should probably do more sanity checking. For instance we don't 574 * do anything to insure if_xname is unique or non-empty. 575 */ 576 void 577 if_attach(struct ifnet *ifp) 578 { 579 580 if_attach_internal(ifp, 0, NULL); 581 } 582 583 /* 584 * Compute the least common TSO limit. 585 */ 586 void 587 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 588 { 589 /* 590 * 1) If there is no limit currently, take the limit from 591 * the network adapter. 592 * 593 * 2) If the network adapter has a limit below the current 594 * limit, apply it. 595 */ 596 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 597 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 598 pmax->tsomaxbytes = ifp->if_hw_tsomax; 599 } 600 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 601 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 602 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 603 } 604 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 605 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 606 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 607 } 608 } 609 610 /* 611 * Update TSO limit of a network adapter. 612 * 613 * Returns zero if no change. Else non-zero. 614 */ 615 int 616 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 617 { 618 int retval = 0; 619 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 620 ifp->if_hw_tsomax = pmax->tsomaxbytes; 621 retval++; 622 } 623 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 624 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 625 retval++; 626 } 627 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 628 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 629 retval++; 630 } 631 return (retval); 632 } 633 634 static void 635 if_attach_internal(struct ifnet *ifp, int vmove, struct if_clone *ifc) 636 { 637 unsigned socksize, ifasize; 638 int namelen, masklen; 639 struct sockaddr_dl *sdl; 640 struct ifaddr *ifa; 641 642 if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) 643 panic ("%s: BUG: if_attach called without if_alloc'd input()\n", 644 ifp->if_xname); 645 646 #ifdef VIMAGE 647 ifp->if_vnet = curvnet; 648 if (ifp->if_home_vnet == NULL) 649 ifp->if_home_vnet = curvnet; 650 #endif 651 652 if_addgroup(ifp, IFG_ALL); 653 654 /* Restore group membership for cloned interfaces. */ 655 if (vmove && ifc != NULL) 656 if_clone_addgroup(ifp, ifc); 657 658 getmicrotime(&ifp->if_lastchange); 659 ifp->if_epoch = time_uptime; 660 661 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 662 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 663 ("transmit and qflush must both either be set or both be NULL")); 664 if (ifp->if_transmit == NULL) { 665 ifp->if_transmit = if_transmit; 666 ifp->if_qflush = if_qflush; 667 } 668 669 if (!vmove) { 670 #ifdef MAC 671 mac_ifnet_create(ifp); 672 #endif 673 674 /* 675 * Create a Link Level name for this device. 676 */ 677 namelen = strlen(ifp->if_xname); 678 /* 679 * Always save enough space for any possiable name so we 680 * can do a rename in place later. 681 */ 682 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 683 socksize = masklen + ifp->if_addrlen; 684 if (socksize < sizeof(*sdl)) 685 socksize = sizeof(*sdl); 686 socksize = roundup2(socksize, sizeof(long)); 687 ifasize = sizeof(*ifa) + 2 * socksize; 688 ifa = ifa_alloc(ifasize, M_WAITOK); 689 sdl = (struct sockaddr_dl *)(ifa + 1); 690 sdl->sdl_len = socksize; 691 sdl->sdl_family = AF_LINK; 692 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 693 sdl->sdl_nlen = namelen; 694 sdl->sdl_index = ifp->if_index; 695 sdl->sdl_type = ifp->if_type; 696 ifp->if_addr = ifa; 697 ifa->ifa_ifp = ifp; 698 ifa->ifa_rtrequest = link_rtrequest; 699 ifa->ifa_addr = (struct sockaddr *)sdl; 700 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 701 ifa->ifa_netmask = (struct sockaddr *)sdl; 702 sdl->sdl_len = masklen; 703 while (namelen != 0) 704 sdl->sdl_data[--namelen] = 0xff; 705 TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 706 /* Reliably crash if used uninitialized. */ 707 ifp->if_broadcastaddr = NULL; 708 709 #if defined(INET) || defined(INET6) 710 /* Use defaults for TSO, if nothing is set */ 711 if (ifp->if_hw_tsomax == 0 && 712 ifp->if_hw_tsomaxsegcount == 0 && 713 ifp->if_hw_tsomaxsegsize == 0) { 714 /* 715 * The TSO defaults needs to be such that an 716 * NFS mbuf list of 35 mbufs totalling just 717 * below 64K works and that a chain of mbufs 718 * can be defragged into at most 32 segments: 719 */ 720 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 721 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 722 ifp->if_hw_tsomaxsegcount = 35; 723 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 724 725 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 726 if (ifp->if_capabilities & IFCAP_TSO) { 727 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 728 ifp->if_hw_tsomax, 729 ifp->if_hw_tsomaxsegcount, 730 ifp->if_hw_tsomaxsegsize); 731 } 732 } 733 #endif 734 } 735 #ifdef VIMAGE 736 else { 737 /* 738 * Update the interface index in the link layer address 739 * of the interface. 740 */ 741 for (ifa = ifp->if_addr; ifa != NULL; 742 ifa = TAILQ_NEXT(ifa, ifa_link)) { 743 if (ifa->ifa_addr->sa_family == AF_LINK) { 744 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 745 sdl->sdl_index = ifp->if_index; 746 } 747 } 748 } 749 #endif 750 751 IFNET_WLOCK(); 752 TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 753 #ifdef VIMAGE 754 curvnet->vnet_ifcnt++; 755 #endif 756 IFNET_WUNLOCK(); 757 758 if (domain_init_status >= 2) 759 if_attachdomain1(ifp); 760 761 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 762 if (IS_DEFAULT_VNET(curvnet)) 763 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 764 765 /* Announce the interface. */ 766 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 767 } 768 769 static void 770 if_attachdomain(void *dummy) 771 { 772 struct ifnet *ifp; 773 774 TAILQ_FOREACH(ifp, &V_ifnet, if_link) 775 if_attachdomain1(ifp); 776 } 777 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 778 if_attachdomain, NULL); 779 780 static void 781 if_attachdomain1(struct ifnet *ifp) 782 { 783 struct domain *dp; 784 785 /* 786 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 787 * cannot lock ifp->if_afdata initialization, entirely. 788 */ 789 if (IF_AFDATA_TRYLOCK(ifp) == 0) 790 return; 791 if (ifp->if_afdata_initialized >= domain_init_status) { 792 IF_AFDATA_UNLOCK(ifp); 793 log(LOG_WARNING, "%s called more than once on %s\n", 794 __func__, ifp->if_xname); 795 return; 796 } 797 ifp->if_afdata_initialized = domain_init_status; 798 IF_AFDATA_UNLOCK(ifp); 799 800 /* address family dependent data region */ 801 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 802 for (dp = domains; dp; dp = dp->dom_next) { 803 if (dp->dom_ifattach) 804 ifp->if_afdata[dp->dom_family] = 805 (*dp->dom_ifattach)(ifp); 806 } 807 } 808 809 /* 810 * Remove any unicast or broadcast network addresses from an interface. 811 */ 812 void 813 if_purgeaddrs(struct ifnet *ifp) 814 { 815 struct ifaddr *ifa, *next; 816 817 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 818 if (ifa->ifa_addr->sa_family == AF_LINK) 819 continue; 820 #ifdef INET 821 /* XXX: Ugly!! ad hoc just for INET */ 822 if (ifa->ifa_addr->sa_family == AF_INET) { 823 struct ifaliasreq ifr; 824 825 bzero(&ifr, sizeof(ifr)); 826 ifr.ifra_addr = *ifa->ifa_addr; 827 if (ifa->ifa_dstaddr) 828 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 829 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 830 NULL) == 0) 831 continue; 832 } 833 #endif /* INET */ 834 #ifdef INET6 835 if (ifa->ifa_addr->sa_family == AF_INET6) { 836 in6_purgeaddr(ifa); 837 /* ifp_addrhead is already updated */ 838 continue; 839 } 840 #endif /* INET6 */ 841 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 842 ifa_free(ifa); 843 } 844 } 845 846 /* 847 * Remove any multicast network addresses from an interface when an ifnet 848 * is going away. 849 */ 850 static void 851 if_purgemaddrs(struct ifnet *ifp) 852 { 853 struct ifmultiaddr *ifma; 854 struct ifmultiaddr *next; 855 856 IF_ADDR_WLOCK(ifp); 857 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 858 if_delmulti_locked(ifp, ifma, 1); 859 IF_ADDR_WUNLOCK(ifp); 860 } 861 862 /* 863 * Detach an interface, removing it from the list of "active" interfaces. 864 * If vmove flag is set on entry to if_detach_internal(), perform only a 865 * limited subset of cleanup tasks, given that we are moving an ifnet from 866 * one vnet to another, where it must be fully operational. 867 * 868 * XXXRW: There are some significant questions about event ordering, and 869 * how to prevent things from starting to use the interface during detach. 870 */ 871 void 872 if_detach(struct ifnet *ifp) 873 { 874 875 CURVNET_SET_QUIET(ifp->if_vnet); 876 if_detach_internal(ifp, 0, NULL); 877 CURVNET_RESTORE(); 878 } 879 880 static void 881 if_detach_internal(struct ifnet *ifp, int vmove, struct if_clone **ifcp) 882 { 883 struct ifaddr *ifa; 884 struct radix_node_head *rnh; 885 int i, j; 886 struct domain *dp; 887 struct ifnet *iter; 888 int found = 0; 889 890 IFNET_WLOCK(); 891 TAILQ_FOREACH(iter, &V_ifnet, if_link) 892 if (iter == ifp) { 893 TAILQ_REMOVE(&V_ifnet, ifp, if_link); 894 found = 1; 895 break; 896 } 897 #ifdef VIMAGE 898 if (found) 899 curvnet->vnet_ifcnt--; 900 #endif 901 IFNET_WUNLOCK(); 902 if (!found) { 903 if (vmove) 904 panic("%s: ifp=%p not on the ifnet tailq %p", 905 __func__, ifp, &V_ifnet); 906 else 907 return; /* XXX this should panic as well? */ 908 } 909 910 /* Check if this is a cloned interface or not. */ 911 if (vmove && ifcp != NULL) 912 *ifcp = if_clone_findifc(ifp); 913 914 /* 915 * Remove/wait for pending events. 916 */ 917 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 918 919 /* 920 * Remove routes and flush queues. 921 */ 922 if_down(ifp); 923 #ifdef ALTQ 924 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 925 altq_disable(&ifp->if_snd); 926 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 927 altq_detach(&ifp->if_snd); 928 #endif 929 930 if_purgeaddrs(ifp); 931 932 #ifdef INET 933 in_ifdetach(ifp); 934 #endif 935 936 #ifdef INET6 937 /* 938 * Remove all IPv6 kernel structs related to ifp. This should be done 939 * before removing routing entries below, since IPv6 interface direct 940 * routes are expected to be removed by the IPv6-specific kernel API. 941 * Otherwise, the kernel will detect some inconsistency and bark it. 942 */ 943 in6_ifdetach(ifp); 944 #endif 945 if_purgemaddrs(ifp); 946 947 /* Announce that the interface is gone. */ 948 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 949 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 950 if (IS_DEFAULT_VNET(curvnet)) 951 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 952 953 if (!vmove) { 954 /* 955 * Prevent further calls into the device driver via ifnet. 956 */ 957 if_dead(ifp); 958 959 /* 960 * Remove link ifaddr pointer and maybe decrement if_index. 961 * Clean up all addresses. 962 */ 963 ifp->if_addr = NULL; 964 965 /* We can now free link ifaddr. */ 966 if (!TAILQ_EMPTY(&ifp->if_addrhead)) { 967 ifa = TAILQ_FIRST(&ifp->if_addrhead); 968 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 969 ifa_free(ifa); 970 } 971 } 972 973 /* 974 * Delete all remaining routes using this interface 975 * Unfortuneatly the only way to do this is to slog through 976 * the entire routing table looking for routes which point 977 * to this interface...oh well... 978 */ 979 for (i = 1; i <= AF_MAX; i++) { 980 for (j = 0; j < rt_numfibs; j++) { 981 rnh = rt_tables_get_rnh(j, i); 982 if (rnh == NULL) 983 continue; 984 RADIX_NODE_HEAD_LOCK(rnh); 985 (void) rnh->rnh_walktree(rnh, if_rtdel, ifp); 986 RADIX_NODE_HEAD_UNLOCK(rnh); 987 } 988 } 989 990 if_delgroups(ifp); 991 992 /* 993 * We cannot hold the lock over dom_ifdetach calls as they might 994 * sleep, for example trying to drain a callout, thus open up the 995 * theoretical race with re-attaching. 996 */ 997 IF_AFDATA_LOCK(ifp); 998 i = ifp->if_afdata_initialized; 999 ifp->if_afdata_initialized = 0; 1000 IF_AFDATA_UNLOCK(ifp); 1001 for (dp = domains; i > 0 && dp; dp = dp->dom_next) { 1002 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 1003 (*dp->dom_ifdetach)(ifp, 1004 ifp->if_afdata[dp->dom_family]); 1005 } 1006 } 1007 1008 #ifdef VIMAGE 1009 /* 1010 * if_vmove() performs a limited version of if_detach() in current 1011 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1012 * An attempt is made to shrink if_index in current vnet, find an 1013 * unused if_index in target vnet and calls if_grow() if necessary, 1014 * and finally find an unused if_xname for the target vnet. 1015 */ 1016 void 1017 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1018 { 1019 struct if_clone *ifc; 1020 1021 /* 1022 * Detach from current vnet, but preserve LLADDR info, do not 1023 * mark as dead etc. so that the ifnet can be reattached later. 1024 */ 1025 if_detach_internal(ifp, 1, &ifc); 1026 1027 /* 1028 * Unlink the ifnet from ifindex_table[] in current vnet, and shrink 1029 * the if_index for that vnet if possible. 1030 * 1031 * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, 1032 * or we'd lock on one vnet and unlock on another. 1033 */ 1034 IFNET_WLOCK(); 1035 ifindex_free_locked(ifp->if_index); 1036 IFNET_WUNLOCK(); 1037 1038 /* 1039 * Perform interface-specific reassignment tasks, if provided by 1040 * the driver. 1041 */ 1042 if (ifp->if_reassign != NULL) 1043 ifp->if_reassign(ifp, new_vnet, NULL); 1044 1045 /* 1046 * Switch to the context of the target vnet. 1047 */ 1048 CURVNET_SET_QUIET(new_vnet); 1049 1050 IFNET_WLOCK(); 1051 ifp->if_index = ifindex_alloc(); 1052 ifnet_setbyindex_locked(ifp->if_index, ifp); 1053 IFNET_WUNLOCK(); 1054 1055 if_attach_internal(ifp, 1, ifc); 1056 1057 CURVNET_RESTORE(); 1058 } 1059 1060 /* 1061 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1062 */ 1063 static int 1064 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1065 { 1066 struct prison *pr; 1067 struct ifnet *difp; 1068 1069 /* Try to find the prison within our visibility. */ 1070 sx_slock(&allprison_lock); 1071 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1072 sx_sunlock(&allprison_lock); 1073 if (pr == NULL) 1074 return (ENXIO); 1075 prison_hold_locked(pr); 1076 mtx_unlock(&pr->pr_mtx); 1077 1078 /* Do not try to move the iface from and to the same prison. */ 1079 if (pr->pr_vnet == ifp->if_vnet) { 1080 prison_free(pr); 1081 return (EEXIST); 1082 } 1083 1084 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1085 /* XXX Lock interfaces to avoid races. */ 1086 CURVNET_SET_QUIET(pr->pr_vnet); 1087 difp = ifunit(ifname); 1088 CURVNET_RESTORE(); 1089 if (difp != NULL) { 1090 prison_free(pr); 1091 return (EEXIST); 1092 } 1093 1094 /* Move the interface into the child jail/vnet. */ 1095 if_vmove(ifp, pr->pr_vnet); 1096 1097 /* Report the new if_xname back to the userland. */ 1098 sprintf(ifname, "%s", ifp->if_xname); 1099 1100 prison_free(pr); 1101 return (0); 1102 } 1103 1104 static int 1105 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1106 { 1107 struct prison *pr; 1108 struct vnet *vnet_dst; 1109 struct ifnet *ifp; 1110 1111 /* Try to find the prison within our visibility. */ 1112 sx_slock(&allprison_lock); 1113 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1114 sx_sunlock(&allprison_lock); 1115 if (pr == NULL) 1116 return (ENXIO); 1117 prison_hold_locked(pr); 1118 mtx_unlock(&pr->pr_mtx); 1119 1120 /* Make sure the named iface exists in the source prison/vnet. */ 1121 CURVNET_SET(pr->pr_vnet); 1122 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1123 if (ifp == NULL) { 1124 CURVNET_RESTORE(); 1125 prison_free(pr); 1126 return (ENXIO); 1127 } 1128 1129 /* Do not try to move the iface from and to the same prison. */ 1130 vnet_dst = TD_TO_VNET(td); 1131 if (vnet_dst == ifp->if_vnet) { 1132 CURVNET_RESTORE(); 1133 prison_free(pr); 1134 return (EEXIST); 1135 } 1136 1137 /* Get interface back from child jail/vnet. */ 1138 if_vmove(ifp, vnet_dst); 1139 CURVNET_RESTORE(); 1140 1141 /* Report the new if_xname back to the userland. */ 1142 sprintf(ifname, "%s", ifp->if_xname); 1143 1144 prison_free(pr); 1145 return (0); 1146 } 1147 #endif /* VIMAGE */ 1148 1149 /* 1150 * Add a group to an interface 1151 */ 1152 int 1153 if_addgroup(struct ifnet *ifp, const char *groupname) 1154 { 1155 struct ifg_list *ifgl; 1156 struct ifg_group *ifg = NULL; 1157 struct ifg_member *ifgm; 1158 int new = 0; 1159 1160 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1161 groupname[strlen(groupname) - 1] <= '9') 1162 return (EINVAL); 1163 1164 IFNET_WLOCK(); 1165 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1166 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1167 IFNET_WUNLOCK(); 1168 return (EEXIST); 1169 } 1170 1171 if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP, 1172 M_NOWAIT)) == NULL) { 1173 IFNET_WUNLOCK(); 1174 return (ENOMEM); 1175 } 1176 1177 if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member), 1178 M_TEMP, M_NOWAIT)) == NULL) { 1179 free(ifgl, M_TEMP); 1180 IFNET_WUNLOCK(); 1181 return (ENOMEM); 1182 } 1183 1184 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1185 if (!strcmp(ifg->ifg_group, groupname)) 1186 break; 1187 1188 if (ifg == NULL) { 1189 if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group), 1190 M_TEMP, M_NOWAIT)) == NULL) { 1191 free(ifgl, M_TEMP); 1192 free(ifgm, M_TEMP); 1193 IFNET_WUNLOCK(); 1194 return (ENOMEM); 1195 } 1196 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1197 ifg->ifg_refcnt = 0; 1198 TAILQ_INIT(&ifg->ifg_members); 1199 TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1200 new = 1; 1201 } 1202 1203 ifg->ifg_refcnt++; 1204 ifgl->ifgl_group = ifg; 1205 ifgm->ifgm_ifp = ifp; 1206 1207 IF_ADDR_WLOCK(ifp); 1208 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1209 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1210 IF_ADDR_WUNLOCK(ifp); 1211 1212 IFNET_WUNLOCK(); 1213 1214 if (new) 1215 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1216 EVENTHANDLER_INVOKE(group_change_event, groupname); 1217 1218 return (0); 1219 } 1220 1221 /* 1222 * Remove a group from an interface 1223 */ 1224 int 1225 if_delgroup(struct ifnet *ifp, const char *groupname) 1226 { 1227 struct ifg_list *ifgl; 1228 struct ifg_member *ifgm; 1229 1230 IFNET_WLOCK(); 1231 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1232 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 1233 break; 1234 if (ifgl == NULL) { 1235 IFNET_WUNLOCK(); 1236 return (ENOENT); 1237 } 1238 1239 IF_ADDR_WLOCK(ifp); 1240 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1241 IF_ADDR_WUNLOCK(ifp); 1242 1243 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1244 if (ifgm->ifgm_ifp == ifp) 1245 break; 1246 1247 if (ifgm != NULL) { 1248 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 1249 free(ifgm, M_TEMP); 1250 } 1251 1252 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1253 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1254 IFNET_WUNLOCK(); 1255 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1256 free(ifgl->ifgl_group, M_TEMP); 1257 } else 1258 IFNET_WUNLOCK(); 1259 1260 free(ifgl, M_TEMP); 1261 1262 EVENTHANDLER_INVOKE(group_change_event, groupname); 1263 1264 return (0); 1265 } 1266 1267 /* 1268 * Remove an interface from all groups 1269 */ 1270 static void 1271 if_delgroups(struct ifnet *ifp) 1272 { 1273 struct ifg_list *ifgl; 1274 struct ifg_member *ifgm; 1275 char groupname[IFNAMSIZ]; 1276 1277 IFNET_WLOCK(); 1278 while (!TAILQ_EMPTY(&ifp->if_groups)) { 1279 ifgl = TAILQ_FIRST(&ifp->if_groups); 1280 1281 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1282 1283 IF_ADDR_WLOCK(ifp); 1284 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1285 IF_ADDR_WUNLOCK(ifp); 1286 1287 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1288 if (ifgm->ifgm_ifp == ifp) 1289 break; 1290 1291 if (ifgm != NULL) { 1292 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1293 ifgm_next); 1294 free(ifgm, M_TEMP); 1295 } 1296 1297 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1298 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1299 IFNET_WUNLOCK(); 1300 EVENTHANDLER_INVOKE(group_detach_event, 1301 ifgl->ifgl_group); 1302 free(ifgl->ifgl_group, M_TEMP); 1303 } else 1304 IFNET_WUNLOCK(); 1305 1306 free(ifgl, M_TEMP); 1307 1308 EVENTHANDLER_INVOKE(group_change_event, groupname); 1309 1310 IFNET_WLOCK(); 1311 } 1312 IFNET_WUNLOCK(); 1313 } 1314 1315 /* 1316 * Stores all groups from an interface in memory pointed 1317 * to by data 1318 */ 1319 static int 1320 if_getgroup(struct ifgroupreq *data, struct ifnet *ifp) 1321 { 1322 int len, error; 1323 struct ifg_list *ifgl; 1324 struct ifg_req ifgrq, *ifgp; 1325 struct ifgroupreq *ifgr = data; 1326 1327 if (ifgr->ifgr_len == 0) { 1328 IF_ADDR_RLOCK(ifp); 1329 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1330 ifgr->ifgr_len += sizeof(struct ifg_req); 1331 IF_ADDR_RUNLOCK(ifp); 1332 return (0); 1333 } 1334 1335 len = ifgr->ifgr_len; 1336 ifgp = ifgr->ifgr_groups; 1337 /* XXX: wire */ 1338 IF_ADDR_RLOCK(ifp); 1339 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1340 if (len < sizeof(ifgrq)) { 1341 IF_ADDR_RUNLOCK(ifp); 1342 return (EINVAL); 1343 } 1344 bzero(&ifgrq, sizeof ifgrq); 1345 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1346 sizeof(ifgrq.ifgrq_group)); 1347 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1348 IF_ADDR_RUNLOCK(ifp); 1349 return (error); 1350 } 1351 len -= sizeof(ifgrq); 1352 ifgp++; 1353 } 1354 IF_ADDR_RUNLOCK(ifp); 1355 1356 return (0); 1357 } 1358 1359 /* 1360 * Stores all members of a group in memory pointed to by data 1361 */ 1362 static int 1363 if_getgroupmembers(struct ifgroupreq *data) 1364 { 1365 struct ifgroupreq *ifgr = data; 1366 struct ifg_group *ifg; 1367 struct ifg_member *ifgm; 1368 struct ifg_req ifgrq, *ifgp; 1369 int len, error; 1370 1371 IFNET_RLOCK(); 1372 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1373 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1374 break; 1375 if (ifg == NULL) { 1376 IFNET_RUNLOCK(); 1377 return (ENOENT); 1378 } 1379 1380 if (ifgr->ifgr_len == 0) { 1381 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1382 ifgr->ifgr_len += sizeof(ifgrq); 1383 IFNET_RUNLOCK(); 1384 return (0); 1385 } 1386 1387 len = ifgr->ifgr_len; 1388 ifgp = ifgr->ifgr_groups; 1389 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1390 if (len < sizeof(ifgrq)) { 1391 IFNET_RUNLOCK(); 1392 return (EINVAL); 1393 } 1394 bzero(&ifgrq, sizeof ifgrq); 1395 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1396 sizeof(ifgrq.ifgrq_member)); 1397 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1398 IFNET_RUNLOCK(); 1399 return (error); 1400 } 1401 len -= sizeof(ifgrq); 1402 ifgp++; 1403 } 1404 IFNET_RUNLOCK(); 1405 1406 return (0); 1407 } 1408 1409 /* 1410 * Delete Routes for a Network Interface 1411 * 1412 * Called for each routing entry via the rnh->rnh_walktree() call above 1413 * to delete all route entries referencing a detaching network interface. 1414 * 1415 * Arguments: 1416 * rn pointer to node in the routing table 1417 * arg argument passed to rnh->rnh_walktree() - detaching interface 1418 * 1419 * Returns: 1420 * 0 successful 1421 * errno failed - reason indicated 1422 * 1423 */ 1424 static int 1425 if_rtdel(struct radix_node *rn, void *arg) 1426 { 1427 struct rtentry *rt = (struct rtentry *)rn; 1428 struct ifnet *ifp = arg; 1429 int err; 1430 1431 if (rt->rt_ifp == ifp) { 1432 1433 /* 1434 * Protect (sorta) against walktree recursion problems 1435 * with cloned routes 1436 */ 1437 if ((rt->rt_flags & RTF_UP) == 0) 1438 return (0); 1439 1440 err = rtrequest_fib(RTM_DELETE, rt_key(rt), rt->rt_gateway, 1441 rt_mask(rt), 1442 rt->rt_flags|RTF_RNH_LOCKED|RTF_PINNED, 1443 (struct rtentry **) NULL, rt->rt_fibnum); 1444 if (err) { 1445 log(LOG_WARNING, "if_rtdel: error %d\n", err); 1446 } 1447 } 1448 1449 return (0); 1450 } 1451 1452 /* 1453 * Return counter values from counter(9)s stored in ifnet. 1454 */ 1455 uint64_t 1456 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1457 { 1458 1459 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1460 1461 return (counter_u64_fetch(ifp->if_counters[cnt])); 1462 } 1463 1464 /* 1465 * Increase an ifnet counter. Usually used for counters shared 1466 * between the stack and a driver, but function supports them all. 1467 */ 1468 void 1469 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1470 { 1471 1472 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1473 1474 counter_u64_add(ifp->if_counters[cnt], inc); 1475 } 1476 1477 /* 1478 * Copy data from ifnet to userland API structure if_data. 1479 */ 1480 void 1481 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1482 { 1483 1484 ifd->ifi_type = ifp->if_type; 1485 ifd->ifi_physical = 0; 1486 ifd->ifi_addrlen = ifp->if_addrlen; 1487 ifd->ifi_hdrlen = ifp->if_hdrlen; 1488 ifd->ifi_link_state = ifp->if_link_state; 1489 ifd->ifi_vhid = 0; 1490 ifd->ifi_datalen = sizeof(struct if_data); 1491 ifd->ifi_mtu = ifp->if_mtu; 1492 ifd->ifi_metric = ifp->if_metric; 1493 ifd->ifi_baudrate = ifp->if_baudrate; 1494 ifd->ifi_hwassist = ifp->if_hwassist; 1495 ifd->ifi_epoch = ifp->if_epoch; 1496 ifd->ifi_lastchange = ifp->if_lastchange; 1497 1498 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1499 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1500 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1501 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1502 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1503 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1504 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1505 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1506 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1507 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1508 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1509 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1510 } 1511 1512 /* 1513 * Wrapper functions for struct ifnet address list locking macros. These are 1514 * used by kernel modules to avoid encoding programming interface or binary 1515 * interface assumptions that may be violated when kernel-internal locking 1516 * approaches change. 1517 */ 1518 void 1519 if_addr_rlock(struct ifnet *ifp) 1520 { 1521 1522 IF_ADDR_RLOCK(ifp); 1523 } 1524 1525 void 1526 if_addr_runlock(struct ifnet *ifp) 1527 { 1528 1529 IF_ADDR_RUNLOCK(ifp); 1530 } 1531 1532 void 1533 if_maddr_rlock(if_t ifp) 1534 { 1535 1536 IF_ADDR_RLOCK((struct ifnet *)ifp); 1537 } 1538 1539 void 1540 if_maddr_runlock(if_t ifp) 1541 { 1542 1543 IF_ADDR_RUNLOCK((struct ifnet *)ifp); 1544 } 1545 1546 /* 1547 * Initialization, destruction and refcounting functions for ifaddrs. 1548 */ 1549 struct ifaddr * 1550 ifa_alloc(size_t size, int flags) 1551 { 1552 struct ifaddr *ifa; 1553 1554 KASSERT(size >= sizeof(struct ifaddr), 1555 ("%s: invalid size %zu", __func__, size)); 1556 1557 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1558 if (ifa == NULL) 1559 return (NULL); 1560 1561 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1562 goto fail; 1563 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1564 goto fail; 1565 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1566 goto fail; 1567 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1568 goto fail; 1569 1570 refcount_init(&ifa->ifa_refcnt, 1); 1571 1572 return (ifa); 1573 1574 fail: 1575 /* free(NULL) is okay */ 1576 counter_u64_free(ifa->ifa_opackets); 1577 counter_u64_free(ifa->ifa_ipackets); 1578 counter_u64_free(ifa->ifa_obytes); 1579 counter_u64_free(ifa->ifa_ibytes); 1580 free(ifa, M_IFADDR); 1581 1582 return (NULL); 1583 } 1584 1585 void 1586 ifa_ref(struct ifaddr *ifa) 1587 { 1588 1589 refcount_acquire(&ifa->ifa_refcnt); 1590 } 1591 1592 void 1593 ifa_free(struct ifaddr *ifa) 1594 { 1595 1596 if (refcount_release(&ifa->ifa_refcnt)) { 1597 counter_u64_free(ifa->ifa_opackets); 1598 counter_u64_free(ifa->ifa_ipackets); 1599 counter_u64_free(ifa->ifa_obytes); 1600 counter_u64_free(ifa->ifa_ibytes); 1601 free(ifa, M_IFADDR); 1602 } 1603 } 1604 1605 int 1606 ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1607 { 1608 int error = 0; 1609 struct rtentry *rt = NULL; 1610 struct rt_addrinfo info; 1611 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1612 1613 bzero(&info, sizeof(info)); 1614 info.rti_ifp = V_loif; 1615 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1616 info.rti_info[RTAX_DST] = ia; 1617 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1618 error = rtrequest1_fib(RTM_ADD, &info, &rt, ifa->ifa_ifp->if_fib); 1619 1620 if (error == 0 && rt != NULL) { 1621 RT_LOCK(rt); 1622 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 1623 ifa->ifa_ifp->if_type; 1624 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 1625 ifa->ifa_ifp->if_index; 1626 RT_REMREF(rt); 1627 RT_UNLOCK(rt); 1628 } else if (error != 0) 1629 log(LOG_DEBUG, "%s: insertion failed: %u\n", __func__, error); 1630 1631 return (error); 1632 } 1633 1634 int 1635 ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1636 { 1637 int error = 0; 1638 struct rt_addrinfo info; 1639 struct sockaddr_dl null_sdl; 1640 1641 bzero(&null_sdl, sizeof(null_sdl)); 1642 null_sdl.sdl_len = sizeof(null_sdl); 1643 null_sdl.sdl_family = AF_LINK; 1644 null_sdl.sdl_type = ifa->ifa_ifp->if_type; 1645 null_sdl.sdl_index = ifa->ifa_ifp->if_index; 1646 bzero(&info, sizeof(info)); 1647 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1648 info.rti_info[RTAX_DST] = ia; 1649 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1650 error = rtrequest1_fib(RTM_DELETE, &info, NULL, ifa->ifa_ifp->if_fib); 1651 1652 if (error != 0) 1653 log(LOG_DEBUG, "%s: deletion failed: %u\n", __func__, error); 1654 1655 return (error); 1656 } 1657 1658 int 1659 ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *sa, int fib) 1660 { 1661 struct rtentry *rt; 1662 1663 rt = rtalloc1_fib(sa, 0, 0, fib); 1664 if (rt == NULL) { 1665 log(LOG_DEBUG, "%s: fail", __func__); 1666 return (EHOSTUNREACH); 1667 } 1668 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 1669 ifa->ifa_ifp->if_type; 1670 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 1671 ifa->ifa_ifp->if_index; 1672 RTFREE_LOCKED(rt); 1673 1674 return (0); 1675 } 1676 1677 /* 1678 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1679 * structs used to represent other address families, it is necessary 1680 * to perform a different comparison. 1681 */ 1682 1683 #define sa_dl_equal(a1, a2) \ 1684 ((((struct sockaddr_dl *)(a1))->sdl_len == \ 1685 ((struct sockaddr_dl *)(a2))->sdl_len) && \ 1686 (bcmp(LLADDR((struct sockaddr_dl *)(a1)), \ 1687 LLADDR((struct sockaddr_dl *)(a2)), \ 1688 ((struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1689 1690 /* 1691 * Locate an interface based on a complete address. 1692 */ 1693 /*ARGSUSED*/ 1694 static struct ifaddr * 1695 ifa_ifwithaddr_internal(struct sockaddr *addr, int getref) 1696 { 1697 struct ifnet *ifp; 1698 struct ifaddr *ifa; 1699 1700 IFNET_RLOCK_NOSLEEP(); 1701 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1702 IF_ADDR_RLOCK(ifp); 1703 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1704 if (ifa->ifa_addr->sa_family != addr->sa_family) 1705 continue; 1706 if (sa_equal(addr, ifa->ifa_addr)) { 1707 if (getref) 1708 ifa_ref(ifa); 1709 IF_ADDR_RUNLOCK(ifp); 1710 goto done; 1711 } 1712 /* IP6 doesn't have broadcast */ 1713 if ((ifp->if_flags & IFF_BROADCAST) && 1714 ifa->ifa_broadaddr && 1715 ifa->ifa_broadaddr->sa_len != 0 && 1716 sa_equal(ifa->ifa_broadaddr, addr)) { 1717 if (getref) 1718 ifa_ref(ifa); 1719 IF_ADDR_RUNLOCK(ifp); 1720 goto done; 1721 } 1722 } 1723 IF_ADDR_RUNLOCK(ifp); 1724 } 1725 ifa = NULL; 1726 done: 1727 IFNET_RUNLOCK_NOSLEEP(); 1728 return (ifa); 1729 } 1730 1731 struct ifaddr * 1732 ifa_ifwithaddr(struct sockaddr *addr) 1733 { 1734 1735 return (ifa_ifwithaddr_internal(addr, 1)); 1736 } 1737 1738 int 1739 ifa_ifwithaddr_check(struct sockaddr *addr) 1740 { 1741 1742 return (ifa_ifwithaddr_internal(addr, 0) != NULL); 1743 } 1744 1745 /* 1746 * Locate an interface based on the broadcast address. 1747 */ 1748 /* ARGSUSED */ 1749 struct ifaddr * 1750 ifa_ifwithbroadaddr(struct sockaddr *addr, int fibnum) 1751 { 1752 struct ifnet *ifp; 1753 struct ifaddr *ifa; 1754 1755 IFNET_RLOCK_NOSLEEP(); 1756 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1757 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1758 continue; 1759 IF_ADDR_RLOCK(ifp); 1760 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1761 if (ifa->ifa_addr->sa_family != addr->sa_family) 1762 continue; 1763 if ((ifp->if_flags & IFF_BROADCAST) && 1764 ifa->ifa_broadaddr && 1765 ifa->ifa_broadaddr->sa_len != 0 && 1766 sa_equal(ifa->ifa_broadaddr, addr)) { 1767 ifa_ref(ifa); 1768 IF_ADDR_RUNLOCK(ifp); 1769 goto done; 1770 } 1771 } 1772 IF_ADDR_RUNLOCK(ifp); 1773 } 1774 ifa = NULL; 1775 done: 1776 IFNET_RUNLOCK_NOSLEEP(); 1777 return (ifa); 1778 } 1779 1780 /* 1781 * Locate the point to point interface with a given destination address. 1782 */ 1783 /*ARGSUSED*/ 1784 struct ifaddr * 1785 ifa_ifwithdstaddr(struct sockaddr *addr, int fibnum) 1786 { 1787 struct ifnet *ifp; 1788 struct ifaddr *ifa; 1789 1790 IFNET_RLOCK_NOSLEEP(); 1791 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1792 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1793 continue; 1794 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1795 continue; 1796 IF_ADDR_RLOCK(ifp); 1797 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1798 if (ifa->ifa_addr->sa_family != addr->sa_family) 1799 continue; 1800 if (ifa->ifa_dstaddr != NULL && 1801 sa_equal(addr, ifa->ifa_dstaddr)) { 1802 ifa_ref(ifa); 1803 IF_ADDR_RUNLOCK(ifp); 1804 goto done; 1805 } 1806 } 1807 IF_ADDR_RUNLOCK(ifp); 1808 } 1809 ifa = NULL; 1810 done: 1811 IFNET_RUNLOCK_NOSLEEP(); 1812 return (ifa); 1813 } 1814 1815 /* 1816 * Find an interface on a specific network. If many, choice 1817 * is most specific found. 1818 */ 1819 struct ifaddr * 1820 ifa_ifwithnet(struct sockaddr *addr, int ignore_ptp, int fibnum) 1821 { 1822 struct ifnet *ifp; 1823 struct ifaddr *ifa; 1824 struct ifaddr *ifa_maybe = NULL; 1825 u_int af = addr->sa_family; 1826 char *addr_data = addr->sa_data, *cplim; 1827 1828 /* 1829 * AF_LINK addresses can be looked up directly by their index number, 1830 * so do that if we can. 1831 */ 1832 if (af == AF_LINK) { 1833 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1834 if (sdl->sdl_index && sdl->sdl_index <= V_if_index) 1835 return (ifaddr_byindex(sdl->sdl_index)); 1836 } 1837 1838 /* 1839 * Scan though each interface, looking for ones that have addresses 1840 * in this address family and the requested fib. Maintain a reference 1841 * on ifa_maybe once we find one, as we release the IF_ADDR_RLOCK() that 1842 * kept it stable when we move onto the next interface. 1843 */ 1844 IFNET_RLOCK_NOSLEEP(); 1845 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1846 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1847 continue; 1848 IF_ADDR_RLOCK(ifp); 1849 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1850 char *cp, *cp2, *cp3; 1851 1852 if (ifa->ifa_addr->sa_family != af) 1853 next: continue; 1854 if (af == AF_INET && 1855 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1856 /* 1857 * This is a bit broken as it doesn't 1858 * take into account that the remote end may 1859 * be a single node in the network we are 1860 * looking for. 1861 * The trouble is that we don't know the 1862 * netmask for the remote end. 1863 */ 1864 if (ifa->ifa_dstaddr != NULL && 1865 sa_equal(addr, ifa->ifa_dstaddr)) { 1866 ifa_ref(ifa); 1867 IF_ADDR_RUNLOCK(ifp); 1868 goto done; 1869 } 1870 } else { 1871 /* 1872 * Scan all the bits in the ifa's address. 1873 * If a bit dissagrees with what we are 1874 * looking for, mask it with the netmask 1875 * to see if it really matters. 1876 * (A byte at a time) 1877 */ 1878 if (ifa->ifa_netmask == 0) 1879 continue; 1880 cp = addr_data; 1881 cp2 = ifa->ifa_addr->sa_data; 1882 cp3 = ifa->ifa_netmask->sa_data; 1883 cplim = ifa->ifa_netmask->sa_len 1884 + (char *)ifa->ifa_netmask; 1885 while (cp3 < cplim) 1886 if ((*cp++ ^ *cp2++) & *cp3++) 1887 goto next; /* next address! */ 1888 /* 1889 * If the netmask of what we just found 1890 * is more specific than what we had before 1891 * (if we had one), or if the virtual status 1892 * of new prefix is better than of the old one, 1893 * then remember the new one before continuing 1894 * to search for an even better one. 1895 */ 1896 if (ifa_maybe == NULL || 1897 ifa_preferred(ifa_maybe, ifa) || 1898 rn_refines((caddr_t)ifa->ifa_netmask, 1899 (caddr_t)ifa_maybe->ifa_netmask)) { 1900 if (ifa_maybe != NULL) 1901 ifa_free(ifa_maybe); 1902 ifa_maybe = ifa; 1903 ifa_ref(ifa_maybe); 1904 } 1905 } 1906 } 1907 IF_ADDR_RUNLOCK(ifp); 1908 } 1909 ifa = ifa_maybe; 1910 ifa_maybe = NULL; 1911 done: 1912 IFNET_RUNLOCK_NOSLEEP(); 1913 if (ifa_maybe != NULL) 1914 ifa_free(ifa_maybe); 1915 return (ifa); 1916 } 1917 1918 /* 1919 * Find an interface address specific to an interface best matching 1920 * a given address. 1921 */ 1922 struct ifaddr * 1923 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1924 { 1925 struct ifaddr *ifa; 1926 char *cp, *cp2, *cp3; 1927 char *cplim; 1928 struct ifaddr *ifa_maybe = NULL; 1929 u_int af = addr->sa_family; 1930 1931 if (af >= AF_MAX) 1932 return (NULL); 1933 IF_ADDR_RLOCK(ifp); 1934 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1935 if (ifa->ifa_addr->sa_family != af) 1936 continue; 1937 if (ifa_maybe == NULL) 1938 ifa_maybe = ifa; 1939 if (ifa->ifa_netmask == 0) { 1940 if (sa_equal(addr, ifa->ifa_addr) || 1941 (ifa->ifa_dstaddr && 1942 sa_equal(addr, ifa->ifa_dstaddr))) 1943 goto done; 1944 continue; 1945 } 1946 if (ifp->if_flags & IFF_POINTOPOINT) { 1947 if (sa_equal(addr, ifa->ifa_dstaddr)) 1948 goto done; 1949 } else { 1950 cp = addr->sa_data; 1951 cp2 = ifa->ifa_addr->sa_data; 1952 cp3 = ifa->ifa_netmask->sa_data; 1953 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1954 for (; cp3 < cplim; cp3++) 1955 if ((*cp++ ^ *cp2++) & *cp3) 1956 break; 1957 if (cp3 == cplim) 1958 goto done; 1959 } 1960 } 1961 ifa = ifa_maybe; 1962 done: 1963 if (ifa != NULL) 1964 ifa_ref(ifa); 1965 IF_ADDR_RUNLOCK(ifp); 1966 return (ifa); 1967 } 1968 1969 /* 1970 * See whether new ifa is better than current one: 1971 * 1) A non-virtual one is preferred over virtual. 1972 * 2) A virtual in master state preferred over any other state. 1973 * 1974 * Used in several address selecting functions. 1975 */ 1976 int 1977 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 1978 { 1979 1980 return (cur->ifa_carp && (!next->ifa_carp || 1981 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 1982 } 1983 1984 #include <net/if_llatbl.h> 1985 1986 /* 1987 * Default action when installing a route with a Link Level gateway. 1988 * Lookup an appropriate real ifa to point to. 1989 * This should be moved to /sys/net/link.c eventually. 1990 */ 1991 static void 1992 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 1993 { 1994 struct ifaddr *ifa, *oifa; 1995 struct sockaddr *dst; 1996 struct ifnet *ifp; 1997 1998 if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || 1999 ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) 2000 return; 2001 ifa = ifaof_ifpforaddr(dst, ifp); 2002 if (ifa) { 2003 oifa = rt->rt_ifa; 2004 rt->rt_ifa = ifa; 2005 ifa_free(oifa); 2006 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2007 ifa->ifa_rtrequest(cmd, rt, info); 2008 } 2009 } 2010 2011 struct sockaddr_dl * 2012 link_alloc_sdl(size_t size, int flags) 2013 { 2014 2015 return (malloc(size, M_TEMP, flags)); 2016 } 2017 2018 void 2019 link_free_sdl(struct sockaddr *sa) 2020 { 2021 free(sa, M_TEMP); 2022 } 2023 2024 /* 2025 * Fills in given sdl with interface basic info. 2026 * Returns pointer to filled sdl. 2027 */ 2028 struct sockaddr_dl * 2029 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2030 { 2031 struct sockaddr_dl *sdl; 2032 2033 sdl = (struct sockaddr_dl *)paddr; 2034 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2035 sdl->sdl_len = sizeof(struct sockaddr_dl); 2036 sdl->sdl_family = AF_LINK; 2037 sdl->sdl_index = ifp->if_index; 2038 sdl->sdl_type = iftype; 2039 2040 return (sdl); 2041 } 2042 2043 /* 2044 * Mark an interface down and notify protocols of 2045 * the transition. 2046 */ 2047 static void 2048 if_unroute(struct ifnet *ifp, int flag, int fam) 2049 { 2050 struct ifaddr *ifa; 2051 2052 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 2053 2054 ifp->if_flags &= ~flag; 2055 getmicrotime(&ifp->if_lastchange); 2056 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2057 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2058 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2059 ifp->if_qflush(ifp); 2060 2061 if (ifp->if_carp) 2062 (*carp_linkstate_p)(ifp); 2063 rt_ifmsg(ifp); 2064 } 2065 2066 /* 2067 * Mark an interface up and notify protocols of 2068 * the transition. 2069 */ 2070 static void 2071 if_route(struct ifnet *ifp, int flag, int fam) 2072 { 2073 struct ifaddr *ifa; 2074 2075 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 2076 2077 ifp->if_flags |= flag; 2078 getmicrotime(&ifp->if_lastchange); 2079 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2080 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2081 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2082 if (ifp->if_carp) 2083 (*carp_linkstate_p)(ifp); 2084 rt_ifmsg(ifp); 2085 #ifdef INET6 2086 in6_if_up(ifp); 2087 #endif 2088 } 2089 2090 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2091 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2092 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2093 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2094 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2095 int (*vlan_setcookie_p)(struct ifnet *, void *); 2096 void *(*vlan_cookie_p)(struct ifnet *); 2097 2098 /* 2099 * Handle a change in the interface link state. To avoid LORs 2100 * between driver lock and upper layer locks, as well as possible 2101 * recursions, we post event to taskqueue, and all job 2102 * is done in static do_link_state_change(). 2103 */ 2104 void 2105 if_link_state_change(struct ifnet *ifp, int link_state) 2106 { 2107 /* Return if state hasn't changed. */ 2108 if (ifp->if_link_state == link_state) 2109 return; 2110 2111 ifp->if_link_state = link_state; 2112 2113 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2114 } 2115 2116 static void 2117 do_link_state_change(void *arg, int pending) 2118 { 2119 struct ifnet *ifp = (struct ifnet *)arg; 2120 int link_state = ifp->if_link_state; 2121 CURVNET_SET(ifp->if_vnet); 2122 2123 /* Notify that the link state has changed. */ 2124 rt_ifmsg(ifp); 2125 if (ifp->if_vlantrunk != NULL) 2126 (*vlan_link_state_p)(ifp); 2127 2128 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2129 ifp->if_l2com != NULL) 2130 (*ng_ether_link_state_p)(ifp, link_state); 2131 if (ifp->if_carp) 2132 (*carp_linkstate_p)(ifp); 2133 if (ifp->if_bridge) 2134 (*bridge_linkstate_p)(ifp); 2135 if (ifp->if_lagg) 2136 (*lagg_linkstate_p)(ifp, link_state); 2137 2138 if (IS_DEFAULT_VNET(curvnet)) 2139 devctl_notify("IFNET", ifp->if_xname, 2140 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2141 NULL); 2142 if (pending > 1) 2143 if_printf(ifp, "%d link states coalesced\n", pending); 2144 if (log_link_state_change) 2145 log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname, 2146 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2147 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, ifp->if_link_state); 2148 CURVNET_RESTORE(); 2149 } 2150 2151 /* 2152 * Mark an interface down and notify protocols of 2153 * the transition. 2154 */ 2155 void 2156 if_down(struct ifnet *ifp) 2157 { 2158 2159 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2160 } 2161 2162 /* 2163 * Mark an interface up and notify protocols of 2164 * the transition. 2165 */ 2166 void 2167 if_up(struct ifnet *ifp) 2168 { 2169 2170 if_route(ifp, IFF_UP, AF_UNSPEC); 2171 } 2172 2173 /* 2174 * Flush an interface queue. 2175 */ 2176 void 2177 if_qflush(struct ifnet *ifp) 2178 { 2179 struct mbuf *m, *n; 2180 struct ifaltq *ifq; 2181 2182 ifq = &ifp->if_snd; 2183 IFQ_LOCK(ifq); 2184 #ifdef ALTQ 2185 if (ALTQ_IS_ENABLED(ifq)) 2186 ALTQ_PURGE(ifq); 2187 #endif 2188 n = ifq->ifq_head; 2189 while ((m = n) != 0) { 2190 n = m->m_nextpkt; 2191 m_freem(m); 2192 } 2193 ifq->ifq_head = 0; 2194 ifq->ifq_tail = 0; 2195 ifq->ifq_len = 0; 2196 IFQ_UNLOCK(ifq); 2197 } 2198 2199 /* 2200 * Map interface name to interface structure pointer, with or without 2201 * returning a reference. 2202 */ 2203 struct ifnet * 2204 ifunit_ref(const char *name) 2205 { 2206 struct ifnet *ifp; 2207 2208 IFNET_RLOCK_NOSLEEP(); 2209 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2210 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2211 !(ifp->if_flags & IFF_DYING)) 2212 break; 2213 } 2214 if (ifp != NULL) 2215 if_ref(ifp); 2216 IFNET_RUNLOCK_NOSLEEP(); 2217 return (ifp); 2218 } 2219 2220 struct ifnet * 2221 ifunit(const char *name) 2222 { 2223 struct ifnet *ifp; 2224 2225 IFNET_RLOCK_NOSLEEP(); 2226 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2227 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2228 break; 2229 } 2230 IFNET_RUNLOCK_NOSLEEP(); 2231 return (ifp); 2232 } 2233 2234 /* 2235 * Hardware specific interface ioctls. 2236 */ 2237 static int 2238 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2239 { 2240 struct ifreq *ifr; 2241 int error = 0; 2242 int new_flags, temp_flags; 2243 size_t namelen, onamelen; 2244 size_t descrlen; 2245 char *descrbuf, *odescrbuf; 2246 char new_name[IFNAMSIZ]; 2247 struct ifaddr *ifa; 2248 struct sockaddr_dl *sdl; 2249 2250 ifr = (struct ifreq *)data; 2251 switch (cmd) { 2252 case SIOCGIFINDEX: 2253 ifr->ifr_index = ifp->if_index; 2254 break; 2255 2256 case SIOCGIFFLAGS: 2257 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2258 ifr->ifr_flags = temp_flags & 0xffff; 2259 ifr->ifr_flagshigh = temp_flags >> 16; 2260 break; 2261 2262 case SIOCGIFCAP: 2263 ifr->ifr_reqcap = ifp->if_capabilities; 2264 ifr->ifr_curcap = ifp->if_capenable; 2265 break; 2266 2267 #ifdef MAC 2268 case SIOCGIFMAC: 2269 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2270 break; 2271 #endif 2272 2273 case SIOCGIFMETRIC: 2274 ifr->ifr_metric = ifp->if_metric; 2275 break; 2276 2277 case SIOCGIFMTU: 2278 ifr->ifr_mtu = ifp->if_mtu; 2279 break; 2280 2281 case SIOCGIFPHYS: 2282 /* XXXGL: did this ever worked? */ 2283 ifr->ifr_phys = 0; 2284 break; 2285 2286 case SIOCGIFDESCR: 2287 error = 0; 2288 sx_slock(&ifdescr_sx); 2289 if (ifp->if_description == NULL) 2290 error = ENOMSG; 2291 else { 2292 /* space for terminating nul */ 2293 descrlen = strlen(ifp->if_description) + 1; 2294 if (ifr->ifr_buffer.length < descrlen) 2295 ifr->ifr_buffer.buffer = NULL; 2296 else 2297 error = copyout(ifp->if_description, 2298 ifr->ifr_buffer.buffer, descrlen); 2299 ifr->ifr_buffer.length = descrlen; 2300 } 2301 sx_sunlock(&ifdescr_sx); 2302 break; 2303 2304 case SIOCSIFDESCR: 2305 error = priv_check(td, PRIV_NET_SETIFDESCR); 2306 if (error) 2307 return (error); 2308 2309 /* 2310 * Copy only (length-1) bytes to make sure that 2311 * if_description is always nul terminated. The 2312 * length parameter is supposed to count the 2313 * terminating nul in. 2314 */ 2315 if (ifr->ifr_buffer.length > ifdescr_maxlen) 2316 return (ENAMETOOLONG); 2317 else if (ifr->ifr_buffer.length == 0) 2318 descrbuf = NULL; 2319 else { 2320 descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR, 2321 M_WAITOK | M_ZERO); 2322 error = copyin(ifr->ifr_buffer.buffer, descrbuf, 2323 ifr->ifr_buffer.length - 1); 2324 if (error) { 2325 free(descrbuf, M_IFDESCR); 2326 break; 2327 } 2328 } 2329 2330 sx_xlock(&ifdescr_sx); 2331 odescrbuf = ifp->if_description; 2332 ifp->if_description = descrbuf; 2333 sx_xunlock(&ifdescr_sx); 2334 2335 getmicrotime(&ifp->if_lastchange); 2336 free(odescrbuf, M_IFDESCR); 2337 break; 2338 2339 case SIOCGIFFIB: 2340 ifr->ifr_fib = ifp->if_fib; 2341 break; 2342 2343 case SIOCSIFFIB: 2344 error = priv_check(td, PRIV_NET_SETIFFIB); 2345 if (error) 2346 return (error); 2347 if (ifr->ifr_fib >= rt_numfibs) 2348 return (EINVAL); 2349 2350 ifp->if_fib = ifr->ifr_fib; 2351 break; 2352 2353 case SIOCSIFFLAGS: 2354 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2355 if (error) 2356 return (error); 2357 /* 2358 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2359 * check, so we don't need special handling here yet. 2360 */ 2361 new_flags = (ifr->ifr_flags & 0xffff) | 2362 (ifr->ifr_flagshigh << 16); 2363 if (ifp->if_flags & IFF_UP && 2364 (new_flags & IFF_UP) == 0) { 2365 if_down(ifp); 2366 } else if (new_flags & IFF_UP && 2367 (ifp->if_flags & IFF_UP) == 0) { 2368 if_up(ifp); 2369 } 2370 /* See if permanently promiscuous mode bit is about to flip */ 2371 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2372 if (new_flags & IFF_PPROMISC) 2373 ifp->if_flags |= IFF_PROMISC; 2374 else if (ifp->if_pcount == 0) 2375 ifp->if_flags &= ~IFF_PROMISC; 2376 log(LOG_INFO, "%s: permanently promiscuous mode %s\n", 2377 ifp->if_xname, 2378 (new_flags & IFF_PPROMISC) ? "enabled" : "disabled"); 2379 } 2380 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2381 (new_flags &~ IFF_CANTCHANGE); 2382 if (ifp->if_ioctl) { 2383 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2384 } 2385 getmicrotime(&ifp->if_lastchange); 2386 break; 2387 2388 case SIOCSIFCAP: 2389 error = priv_check(td, PRIV_NET_SETIFCAP); 2390 if (error) 2391 return (error); 2392 if (ifp->if_ioctl == NULL) 2393 return (EOPNOTSUPP); 2394 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2395 return (EINVAL); 2396 error = (*ifp->if_ioctl)(ifp, cmd, data); 2397 if (error == 0) 2398 getmicrotime(&ifp->if_lastchange); 2399 break; 2400 2401 #ifdef MAC 2402 case SIOCSIFMAC: 2403 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2404 break; 2405 #endif 2406 2407 case SIOCSIFNAME: 2408 error = priv_check(td, PRIV_NET_SETIFNAME); 2409 if (error) 2410 return (error); 2411 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 2412 if (error != 0) 2413 return (error); 2414 if (new_name[0] == '\0') 2415 return (EINVAL); 2416 if (ifunit(new_name) != NULL) 2417 return (EEXIST); 2418 2419 /* 2420 * XXX: Locking. Nothing else seems to lock if_flags, 2421 * and there are numerous other races with the 2422 * ifunit() checks not being atomic with namespace 2423 * changes (renames, vmoves, if_attach, etc). 2424 */ 2425 ifp->if_flags |= IFF_RENAMING; 2426 2427 /* Announce the departure of the interface. */ 2428 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 2429 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 2430 2431 log(LOG_INFO, "%s: changing name to '%s'\n", 2432 ifp->if_xname, new_name); 2433 2434 IF_ADDR_WLOCK(ifp); 2435 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 2436 ifa = ifp->if_addr; 2437 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 2438 namelen = strlen(new_name); 2439 onamelen = sdl->sdl_nlen; 2440 /* 2441 * Move the address if needed. This is safe because we 2442 * allocate space for a name of length IFNAMSIZ when we 2443 * create this in if_attach(). 2444 */ 2445 if (namelen != onamelen) { 2446 bcopy(sdl->sdl_data + onamelen, 2447 sdl->sdl_data + namelen, sdl->sdl_alen); 2448 } 2449 bcopy(new_name, sdl->sdl_data, namelen); 2450 sdl->sdl_nlen = namelen; 2451 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 2452 bzero(sdl->sdl_data, onamelen); 2453 while (namelen != 0) 2454 sdl->sdl_data[--namelen] = 0xff; 2455 IF_ADDR_WUNLOCK(ifp); 2456 2457 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 2458 /* Announce the return of the interface. */ 2459 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 2460 2461 ifp->if_flags &= ~IFF_RENAMING; 2462 break; 2463 2464 #ifdef VIMAGE 2465 case SIOCSIFVNET: 2466 error = priv_check(td, PRIV_NET_SETIFVNET); 2467 if (error) 2468 return (error); 2469 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2470 break; 2471 #endif 2472 2473 case SIOCSIFMETRIC: 2474 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2475 if (error) 2476 return (error); 2477 ifp->if_metric = ifr->ifr_metric; 2478 getmicrotime(&ifp->if_lastchange); 2479 break; 2480 2481 case SIOCSIFPHYS: 2482 error = priv_check(td, PRIV_NET_SETIFPHYS); 2483 if (error) 2484 return (error); 2485 if (ifp->if_ioctl == NULL) 2486 return (EOPNOTSUPP); 2487 error = (*ifp->if_ioctl)(ifp, cmd, data); 2488 if (error == 0) 2489 getmicrotime(&ifp->if_lastchange); 2490 break; 2491 2492 case SIOCSIFMTU: 2493 { 2494 u_long oldmtu = ifp->if_mtu; 2495 2496 error = priv_check(td, PRIV_NET_SETIFMTU); 2497 if (error) 2498 return (error); 2499 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2500 return (EINVAL); 2501 if (ifp->if_ioctl == NULL) 2502 return (EOPNOTSUPP); 2503 error = (*ifp->if_ioctl)(ifp, cmd, data); 2504 if (error == 0) { 2505 getmicrotime(&ifp->if_lastchange); 2506 rt_ifmsg(ifp); 2507 } 2508 /* 2509 * If the link MTU changed, do network layer specific procedure. 2510 */ 2511 if (ifp->if_mtu != oldmtu) { 2512 #ifdef INET6 2513 nd6_setmtu(ifp); 2514 #endif 2515 rt_updatemtu(ifp); 2516 } 2517 break; 2518 } 2519 2520 case SIOCADDMULTI: 2521 case SIOCDELMULTI: 2522 if (cmd == SIOCADDMULTI) 2523 error = priv_check(td, PRIV_NET_ADDMULTI); 2524 else 2525 error = priv_check(td, PRIV_NET_DELMULTI); 2526 if (error) 2527 return (error); 2528 2529 /* Don't allow group membership on non-multicast interfaces. */ 2530 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2531 return (EOPNOTSUPP); 2532 2533 /* Don't let users screw up protocols' entries. */ 2534 if (ifr->ifr_addr.sa_family != AF_LINK) 2535 return (EINVAL); 2536 2537 if (cmd == SIOCADDMULTI) { 2538 struct ifmultiaddr *ifma; 2539 2540 /* 2541 * Userland is only permitted to join groups once 2542 * via the if_addmulti() KPI, because it cannot hold 2543 * struct ifmultiaddr * between calls. It may also 2544 * lose a race while we check if the membership 2545 * already exists. 2546 */ 2547 IF_ADDR_RLOCK(ifp); 2548 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2549 IF_ADDR_RUNLOCK(ifp); 2550 if (ifma != NULL) 2551 error = EADDRINUSE; 2552 else 2553 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2554 } else { 2555 error = if_delmulti(ifp, &ifr->ifr_addr); 2556 } 2557 if (error == 0) 2558 getmicrotime(&ifp->if_lastchange); 2559 break; 2560 2561 case SIOCSIFPHYADDR: 2562 case SIOCDIFPHYADDR: 2563 #ifdef INET6 2564 case SIOCSIFPHYADDR_IN6: 2565 #endif 2566 case SIOCSIFMEDIA: 2567 case SIOCSIFGENERIC: 2568 error = priv_check(td, PRIV_NET_HWIOCTL); 2569 if (error) 2570 return (error); 2571 if (ifp->if_ioctl == NULL) 2572 return (EOPNOTSUPP); 2573 error = (*ifp->if_ioctl)(ifp, cmd, data); 2574 if (error == 0) 2575 getmicrotime(&ifp->if_lastchange); 2576 break; 2577 2578 case SIOCGIFSTATUS: 2579 case SIOCGIFPSRCADDR: 2580 case SIOCGIFPDSTADDR: 2581 case SIOCGIFMEDIA: 2582 case SIOCGIFGENERIC: 2583 if (ifp->if_ioctl == NULL) 2584 return (EOPNOTSUPP); 2585 error = (*ifp->if_ioctl)(ifp, cmd, data); 2586 break; 2587 2588 case SIOCSIFLLADDR: 2589 error = priv_check(td, PRIV_NET_SETLLADDR); 2590 if (error) 2591 return (error); 2592 error = if_setlladdr(ifp, 2593 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2594 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 2595 break; 2596 2597 case SIOCAIFGROUP: 2598 { 2599 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2600 2601 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2602 if (error) 2603 return (error); 2604 if ((error = if_addgroup(ifp, ifgr->ifgr_group))) 2605 return (error); 2606 break; 2607 } 2608 2609 case SIOCGIFGROUP: 2610 if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp))) 2611 return (error); 2612 break; 2613 2614 case SIOCDIFGROUP: 2615 { 2616 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2617 2618 error = priv_check(td, PRIV_NET_DELIFGROUP); 2619 if (error) 2620 return (error); 2621 if ((error = if_delgroup(ifp, ifgr->ifgr_group))) 2622 return (error); 2623 break; 2624 } 2625 2626 default: 2627 error = ENOIOCTL; 2628 break; 2629 } 2630 return (error); 2631 } 2632 2633 #ifdef COMPAT_FREEBSD32 2634 struct ifconf32 { 2635 int32_t ifc_len; 2636 union { 2637 uint32_t ifcu_buf; 2638 uint32_t ifcu_req; 2639 } ifc_ifcu; 2640 }; 2641 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 2642 #endif 2643 2644 /* 2645 * Interface ioctls. 2646 */ 2647 int 2648 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2649 { 2650 struct ifnet *ifp; 2651 struct ifreq *ifr; 2652 int error; 2653 int oif_flags; 2654 2655 CURVNET_SET(so->so_vnet); 2656 switch (cmd) { 2657 case SIOCGIFCONF: 2658 error = ifconf(cmd, data); 2659 CURVNET_RESTORE(); 2660 return (error); 2661 2662 #ifdef COMPAT_FREEBSD32 2663 case SIOCGIFCONF32: 2664 { 2665 struct ifconf32 *ifc32; 2666 struct ifconf ifc; 2667 2668 ifc32 = (struct ifconf32 *)data; 2669 ifc.ifc_len = ifc32->ifc_len; 2670 ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2671 2672 error = ifconf(SIOCGIFCONF, (void *)&ifc); 2673 CURVNET_RESTORE(); 2674 if (error == 0) 2675 ifc32->ifc_len = ifc.ifc_len; 2676 return (error); 2677 } 2678 #endif 2679 } 2680 ifr = (struct ifreq *)data; 2681 2682 switch (cmd) { 2683 #ifdef VIMAGE 2684 case SIOCSIFRVNET: 2685 error = priv_check(td, PRIV_NET_SETIFVNET); 2686 if (error == 0) 2687 error = if_vmove_reclaim(td, ifr->ifr_name, 2688 ifr->ifr_jid); 2689 CURVNET_RESTORE(); 2690 return (error); 2691 #endif 2692 case SIOCIFCREATE: 2693 case SIOCIFCREATE2: 2694 error = priv_check(td, PRIV_NET_IFCREATE); 2695 if (error == 0) 2696 error = if_clone_create(ifr->ifr_name, 2697 sizeof(ifr->ifr_name), 2698 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL); 2699 CURVNET_RESTORE(); 2700 return (error); 2701 case SIOCIFDESTROY: 2702 error = priv_check(td, PRIV_NET_IFDESTROY); 2703 if (error == 0) 2704 error = if_clone_destroy(ifr->ifr_name); 2705 CURVNET_RESTORE(); 2706 return (error); 2707 2708 case SIOCIFGCLONERS: 2709 error = if_clone_list((struct if_clonereq *)data); 2710 CURVNET_RESTORE(); 2711 return (error); 2712 case SIOCGIFGMEMB: 2713 error = if_getgroupmembers((struct ifgroupreq *)data); 2714 CURVNET_RESTORE(); 2715 return (error); 2716 #if defined(INET) || defined(INET6) 2717 case SIOCSVH: 2718 case SIOCGVH: 2719 if (carp_ioctl_p == NULL) 2720 error = EPROTONOSUPPORT; 2721 else 2722 error = (*carp_ioctl_p)(ifr, cmd, td); 2723 CURVNET_RESTORE(); 2724 return (error); 2725 #endif 2726 } 2727 2728 ifp = ifunit_ref(ifr->ifr_name); 2729 if (ifp == NULL) { 2730 CURVNET_RESTORE(); 2731 return (ENXIO); 2732 } 2733 2734 error = ifhwioctl(cmd, ifp, data, td); 2735 if (error != ENOIOCTL) { 2736 if_rele(ifp); 2737 CURVNET_RESTORE(); 2738 return (error); 2739 } 2740 2741 oif_flags = ifp->if_flags; 2742 if (so->so_proto == NULL) { 2743 if_rele(ifp); 2744 CURVNET_RESTORE(); 2745 return (EOPNOTSUPP); 2746 } 2747 2748 /* 2749 * Pass the request on to the socket control method, and if the 2750 * latter returns EOPNOTSUPP, directly to the interface. 2751 * 2752 * Make an exception for the legacy SIOCSIF* requests. Drivers 2753 * trust SIOCSIFADDR et al to come from an already privileged 2754 * layer, and do not perform any credentials checks or input 2755 * validation. 2756 */ 2757 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, 2758 ifp, td)); 2759 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 2760 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 2761 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 2762 error = (*ifp->if_ioctl)(ifp, cmd, data); 2763 2764 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 2765 #ifdef INET6 2766 if (ifp->if_flags & IFF_UP) 2767 in6_if_up(ifp); 2768 #endif 2769 } 2770 if_rele(ifp); 2771 CURVNET_RESTORE(); 2772 return (error); 2773 } 2774 2775 /* 2776 * The code common to handling reference counted flags, 2777 * e.g., in ifpromisc() and if_allmulti(). 2778 * The "pflag" argument can specify a permanent mode flag to check, 2779 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 2780 * 2781 * Only to be used on stack-owned flags, not driver-owned flags. 2782 */ 2783 static int 2784 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 2785 { 2786 struct ifreq ifr; 2787 int error; 2788 int oldflags, oldcount; 2789 2790 /* Sanity checks to catch programming errors */ 2791 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 2792 ("%s: setting driver-owned flag %d", __func__, flag)); 2793 2794 if (onswitch) 2795 KASSERT(*refcount >= 0, 2796 ("%s: increment negative refcount %d for flag %d", 2797 __func__, *refcount, flag)); 2798 else 2799 KASSERT(*refcount > 0, 2800 ("%s: decrement non-positive refcount %d for flag %d", 2801 __func__, *refcount, flag)); 2802 2803 /* In case this mode is permanent, just touch refcount */ 2804 if (ifp->if_flags & pflag) { 2805 *refcount += onswitch ? 1 : -1; 2806 return (0); 2807 } 2808 2809 /* Save ifnet parameters for if_ioctl() may fail */ 2810 oldcount = *refcount; 2811 oldflags = ifp->if_flags; 2812 2813 /* 2814 * See if we aren't the only and touching refcount is enough. 2815 * Actually toggle interface flag if we are the first or last. 2816 */ 2817 if (onswitch) { 2818 if ((*refcount)++) 2819 return (0); 2820 ifp->if_flags |= flag; 2821 } else { 2822 if (--(*refcount)) 2823 return (0); 2824 ifp->if_flags &= ~flag; 2825 } 2826 2827 /* Call down the driver since we've changed interface flags */ 2828 if (ifp->if_ioctl == NULL) { 2829 error = EOPNOTSUPP; 2830 goto recover; 2831 } 2832 ifr.ifr_flags = ifp->if_flags & 0xffff; 2833 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2834 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 2835 if (error) 2836 goto recover; 2837 /* Notify userland that interface flags have changed */ 2838 rt_ifmsg(ifp); 2839 return (0); 2840 2841 recover: 2842 /* Recover after driver error */ 2843 *refcount = oldcount; 2844 ifp->if_flags = oldflags; 2845 return (error); 2846 } 2847 2848 /* 2849 * Set/clear promiscuous mode on interface ifp based on the truth value 2850 * of pswitch. The calls are reference counted so that only the first 2851 * "on" request actually has an effect, as does the final "off" request. 2852 * Results are undefined if the "off" and "on" requests are not matched. 2853 */ 2854 int 2855 ifpromisc(struct ifnet *ifp, int pswitch) 2856 { 2857 int error; 2858 int oldflags = ifp->if_flags; 2859 2860 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 2861 &ifp->if_pcount, pswitch); 2862 /* If promiscuous mode status has changed, log a message */ 2863 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC)) 2864 log(LOG_INFO, "%s: promiscuous mode %s\n", 2865 ifp->if_xname, 2866 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 2867 return (error); 2868 } 2869 2870 /* 2871 * Return interface configuration 2872 * of system. List may be used 2873 * in later ioctl's (above) to get 2874 * other information. 2875 */ 2876 /*ARGSUSED*/ 2877 static int 2878 ifconf(u_long cmd, caddr_t data) 2879 { 2880 struct ifconf *ifc = (struct ifconf *)data; 2881 struct ifnet *ifp; 2882 struct ifaddr *ifa; 2883 struct ifreq ifr; 2884 struct sbuf *sb; 2885 int error, full = 0, valid_len, max_len; 2886 2887 /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ 2888 max_len = MAXPHYS - 1; 2889 2890 /* Prevent hostile input from being able to crash the system */ 2891 if (ifc->ifc_len <= 0) 2892 return (EINVAL); 2893 2894 again: 2895 if (ifc->ifc_len <= max_len) { 2896 max_len = ifc->ifc_len; 2897 full = 1; 2898 } 2899 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 2900 max_len = 0; 2901 valid_len = 0; 2902 2903 IFNET_RLOCK(); 2904 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2905 int addrs; 2906 2907 /* 2908 * Zero the ifr_name buffer to make sure we don't 2909 * disclose the contents of the stack. 2910 */ 2911 memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name)); 2912 2913 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 2914 >= sizeof(ifr.ifr_name)) { 2915 sbuf_delete(sb); 2916 IFNET_RUNLOCK(); 2917 return (ENAMETOOLONG); 2918 } 2919 2920 addrs = 0; 2921 IF_ADDR_RLOCK(ifp); 2922 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2923 struct sockaddr *sa = ifa->ifa_addr; 2924 2925 if (prison_if(curthread->td_ucred, sa) != 0) 2926 continue; 2927 addrs++; 2928 if (sa->sa_len <= sizeof(*sa)) { 2929 ifr.ifr_addr = *sa; 2930 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2931 max_len += sizeof(ifr); 2932 } else { 2933 sbuf_bcat(sb, &ifr, 2934 offsetof(struct ifreq, ifr_addr)); 2935 max_len += offsetof(struct ifreq, ifr_addr); 2936 sbuf_bcat(sb, sa, sa->sa_len); 2937 max_len += sa->sa_len; 2938 } 2939 2940 if (sbuf_error(sb) == 0) 2941 valid_len = sbuf_len(sb); 2942 } 2943 IF_ADDR_RUNLOCK(ifp); 2944 if (addrs == 0) { 2945 bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); 2946 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2947 max_len += sizeof(ifr); 2948 2949 if (sbuf_error(sb) == 0) 2950 valid_len = sbuf_len(sb); 2951 } 2952 } 2953 IFNET_RUNLOCK(); 2954 2955 /* 2956 * If we didn't allocate enough space (uncommon), try again. If 2957 * we have already allocated as much space as we are allowed, 2958 * return what we've got. 2959 */ 2960 if (valid_len != max_len && !full) { 2961 sbuf_delete(sb); 2962 goto again; 2963 } 2964 2965 ifc->ifc_len = valid_len; 2966 sbuf_finish(sb); 2967 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 2968 sbuf_delete(sb); 2969 return (error); 2970 } 2971 2972 /* 2973 * Just like ifpromisc(), but for all-multicast-reception mode. 2974 */ 2975 int 2976 if_allmulti(struct ifnet *ifp, int onswitch) 2977 { 2978 2979 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 2980 } 2981 2982 struct ifmultiaddr * 2983 if_findmulti(struct ifnet *ifp, struct sockaddr *sa) 2984 { 2985 struct ifmultiaddr *ifma; 2986 2987 IF_ADDR_LOCK_ASSERT(ifp); 2988 2989 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2990 if (sa->sa_family == AF_LINK) { 2991 if (sa_dl_equal(ifma->ifma_addr, sa)) 2992 break; 2993 } else { 2994 if (sa_equal(ifma->ifma_addr, sa)) 2995 break; 2996 } 2997 } 2998 2999 return ifma; 3000 } 3001 3002 /* 3003 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 3004 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 3005 * the ifnet multicast address list here, so the caller must do that and 3006 * other setup work (such as notifying the device driver). The reference 3007 * count is initialized to 1. 3008 */ 3009 static struct ifmultiaddr * 3010 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 3011 int mflags) 3012 { 3013 struct ifmultiaddr *ifma; 3014 struct sockaddr *dupsa; 3015 3016 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3017 M_ZERO); 3018 if (ifma == NULL) 3019 return (NULL); 3020 3021 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3022 if (dupsa == NULL) { 3023 free(ifma, M_IFMADDR); 3024 return (NULL); 3025 } 3026 bcopy(sa, dupsa, sa->sa_len); 3027 ifma->ifma_addr = dupsa; 3028 3029 ifma->ifma_ifp = ifp; 3030 ifma->ifma_refcount = 1; 3031 ifma->ifma_protospec = NULL; 3032 3033 if (llsa == NULL) { 3034 ifma->ifma_lladdr = NULL; 3035 return (ifma); 3036 } 3037 3038 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3039 if (dupsa == NULL) { 3040 free(ifma->ifma_addr, M_IFMADDR); 3041 free(ifma, M_IFMADDR); 3042 return (NULL); 3043 } 3044 bcopy(llsa, dupsa, llsa->sa_len); 3045 ifma->ifma_lladdr = dupsa; 3046 3047 return (ifma); 3048 } 3049 3050 /* 3051 * if_freemulti: free ifmultiaddr structure and possibly attached related 3052 * addresses. The caller is responsible for implementing reference 3053 * counting, notifying the driver, handling routing messages, and releasing 3054 * any dependent link layer state. 3055 */ 3056 static void 3057 if_freemulti(struct ifmultiaddr *ifma) 3058 { 3059 3060 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3061 ifma->ifma_refcount)); 3062 3063 if (ifma->ifma_lladdr != NULL) 3064 free(ifma->ifma_lladdr, M_IFMADDR); 3065 free(ifma->ifma_addr, M_IFMADDR); 3066 free(ifma, M_IFMADDR); 3067 } 3068 3069 /* 3070 * Register an additional multicast address with a network interface. 3071 * 3072 * - If the address is already present, bump the reference count on the 3073 * address and return. 3074 * - If the address is not link-layer, look up a link layer address. 3075 * - Allocate address structures for one or both addresses, and attach to the 3076 * multicast address list on the interface. If automatically adding a link 3077 * layer address, the protocol address will own a reference to the link 3078 * layer address, to be freed when it is freed. 3079 * - Notify the network device driver of an addition to the multicast address 3080 * list. 3081 * 3082 * 'sa' points to caller-owned memory with the desired multicast address. 3083 * 3084 * 'retifma' will be used to return a pointer to the resulting multicast 3085 * address reference, if desired. 3086 */ 3087 int 3088 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3089 struct ifmultiaddr **retifma) 3090 { 3091 struct ifmultiaddr *ifma, *ll_ifma; 3092 struct sockaddr *llsa; 3093 struct sockaddr_dl sdl; 3094 int error; 3095 3096 /* 3097 * If the address is already present, return a new reference to it; 3098 * otherwise, allocate storage and set up a new address. 3099 */ 3100 IF_ADDR_WLOCK(ifp); 3101 ifma = if_findmulti(ifp, sa); 3102 if (ifma != NULL) { 3103 ifma->ifma_refcount++; 3104 if (retifma != NULL) 3105 *retifma = ifma; 3106 IF_ADDR_WUNLOCK(ifp); 3107 return (0); 3108 } 3109 3110 /* 3111 * The address isn't already present; resolve the protocol address 3112 * into a link layer address, and then look that up, bump its 3113 * refcount or allocate an ifma for that also. 3114 * Most link layer resolving functions returns address data which 3115 * fits inside default sockaddr_dl structure. However callback 3116 * can allocate another sockaddr structure, in that case we need to 3117 * free it later. 3118 */ 3119 llsa = NULL; 3120 ll_ifma = NULL; 3121 if (ifp->if_resolvemulti != NULL) { 3122 /* Provide called function with buffer size information */ 3123 sdl.sdl_len = sizeof(sdl); 3124 llsa = (struct sockaddr *)&sdl; 3125 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3126 if (error) 3127 goto unlock_out; 3128 } 3129 3130 /* 3131 * Allocate the new address. Don't hook it up yet, as we may also 3132 * need to allocate a link layer multicast address. 3133 */ 3134 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3135 if (ifma == NULL) { 3136 error = ENOMEM; 3137 goto free_llsa_out; 3138 } 3139 3140 /* 3141 * If a link layer address is found, we'll need to see if it's 3142 * already present in the address list, or allocate is as well. 3143 * When this block finishes, the link layer address will be on the 3144 * list. 3145 */ 3146 if (llsa != NULL) { 3147 ll_ifma = if_findmulti(ifp, llsa); 3148 if (ll_ifma == NULL) { 3149 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3150 if (ll_ifma == NULL) { 3151 --ifma->ifma_refcount; 3152 if_freemulti(ifma); 3153 error = ENOMEM; 3154 goto free_llsa_out; 3155 } 3156 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3157 ifma_link); 3158 } else 3159 ll_ifma->ifma_refcount++; 3160 ifma->ifma_llifma = ll_ifma; 3161 } 3162 3163 /* 3164 * We now have a new multicast address, ifma, and possibly a new or 3165 * referenced link layer address. Add the primary address to the 3166 * ifnet address list. 3167 */ 3168 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3169 3170 if (retifma != NULL) 3171 *retifma = ifma; 3172 3173 /* 3174 * Must generate the message while holding the lock so that 'ifma' 3175 * pointer is still valid. 3176 */ 3177 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3178 IF_ADDR_WUNLOCK(ifp); 3179 3180 /* 3181 * We are certain we have added something, so call down to the 3182 * interface to let them know about it. 3183 */ 3184 if (ifp->if_ioctl != NULL) { 3185 (void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3186 } 3187 3188 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3189 link_free_sdl(llsa); 3190 3191 return (0); 3192 3193 free_llsa_out: 3194 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3195 link_free_sdl(llsa); 3196 3197 unlock_out: 3198 IF_ADDR_WUNLOCK(ifp); 3199 return (error); 3200 } 3201 3202 /* 3203 * Delete a multicast group membership by network-layer group address. 3204 * 3205 * Returns ENOENT if the entry could not be found. If ifp no longer 3206 * exists, results are undefined. This entry point should only be used 3207 * from subsystems which do appropriate locking to hold ifp for the 3208 * duration of the call. 3209 * Network-layer protocol domains must use if_delmulti_ifma(). 3210 */ 3211 int 3212 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3213 { 3214 struct ifmultiaddr *ifma; 3215 int lastref; 3216 #ifdef INVARIANTS 3217 struct ifnet *oifp; 3218 3219 IFNET_RLOCK_NOSLEEP(); 3220 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3221 if (ifp == oifp) 3222 break; 3223 if (ifp != oifp) 3224 ifp = NULL; 3225 IFNET_RUNLOCK_NOSLEEP(); 3226 3227 KASSERT(ifp != NULL, ("%s: ifnet went away", __func__)); 3228 #endif 3229 if (ifp == NULL) 3230 return (ENOENT); 3231 3232 IF_ADDR_WLOCK(ifp); 3233 lastref = 0; 3234 ifma = if_findmulti(ifp, sa); 3235 if (ifma != NULL) 3236 lastref = if_delmulti_locked(ifp, ifma, 0); 3237 IF_ADDR_WUNLOCK(ifp); 3238 3239 if (ifma == NULL) 3240 return (ENOENT); 3241 3242 if (lastref && ifp->if_ioctl != NULL) { 3243 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3244 } 3245 3246 return (0); 3247 } 3248 3249 /* 3250 * Delete all multicast group membership for an interface. 3251 * Should be used to quickly flush all multicast filters. 3252 */ 3253 void 3254 if_delallmulti(struct ifnet *ifp) 3255 { 3256 struct ifmultiaddr *ifma; 3257 struct ifmultiaddr *next; 3258 3259 IF_ADDR_WLOCK(ifp); 3260 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3261 if_delmulti_locked(ifp, ifma, 0); 3262 IF_ADDR_WUNLOCK(ifp); 3263 } 3264 3265 /* 3266 * Delete a multicast group membership by group membership pointer. 3267 * Network-layer protocol domains must use this routine. 3268 * 3269 * It is safe to call this routine if the ifp disappeared. 3270 */ 3271 void 3272 if_delmulti_ifma(struct ifmultiaddr *ifma) 3273 { 3274 struct ifnet *ifp; 3275 int lastref; 3276 3277 ifp = ifma->ifma_ifp; 3278 #ifdef DIAGNOSTIC 3279 if (ifp == NULL) { 3280 printf("%s: ifma_ifp seems to be detached\n", __func__); 3281 } else { 3282 struct ifnet *oifp; 3283 3284 IFNET_RLOCK_NOSLEEP(); 3285 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3286 if (ifp == oifp) 3287 break; 3288 if (ifp != oifp) { 3289 printf("%s: ifnet %p disappeared\n", __func__, ifp); 3290 ifp = NULL; 3291 } 3292 IFNET_RUNLOCK_NOSLEEP(); 3293 } 3294 #endif 3295 /* 3296 * If and only if the ifnet instance exists: Acquire the address lock. 3297 */ 3298 if (ifp != NULL) 3299 IF_ADDR_WLOCK(ifp); 3300 3301 lastref = if_delmulti_locked(ifp, ifma, 0); 3302 3303 if (ifp != NULL) { 3304 /* 3305 * If and only if the ifnet instance exists: 3306 * Release the address lock. 3307 * If the group was left: update the hardware hash filter. 3308 */ 3309 IF_ADDR_WUNLOCK(ifp); 3310 if (lastref && ifp->if_ioctl != NULL) { 3311 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3312 } 3313 } 3314 } 3315 3316 /* 3317 * Perform deletion of network-layer and/or link-layer multicast address. 3318 * 3319 * Return 0 if the reference count was decremented. 3320 * Return 1 if the final reference was released, indicating that the 3321 * hardware hash filter should be reprogrammed. 3322 */ 3323 static int 3324 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3325 { 3326 struct ifmultiaddr *ll_ifma; 3327 3328 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3329 KASSERT(ifma->ifma_ifp == ifp, 3330 ("%s: inconsistent ifp %p", __func__, ifp)); 3331 IF_ADDR_WLOCK_ASSERT(ifp); 3332 } 3333 3334 ifp = ifma->ifma_ifp; 3335 3336 /* 3337 * If the ifnet is detaching, null out references to ifnet, 3338 * so that upper protocol layers will notice, and not attempt 3339 * to obtain locks for an ifnet which no longer exists. The 3340 * routing socket announcement must happen before the ifnet 3341 * instance is detached from the system. 3342 */ 3343 if (detaching) { 3344 #ifdef DIAGNOSTIC 3345 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3346 #endif 3347 /* 3348 * ifp may already be nulled out if we are being reentered 3349 * to delete the ll_ifma. 3350 */ 3351 if (ifp != NULL) { 3352 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3353 ifma->ifma_ifp = NULL; 3354 } 3355 } 3356 3357 if (--ifma->ifma_refcount > 0) 3358 return 0; 3359 3360 /* 3361 * If this ifma is a network-layer ifma, a link-layer ifma may 3362 * have been associated with it. Release it first if so. 3363 */ 3364 ll_ifma = ifma->ifma_llifma; 3365 if (ll_ifma != NULL) { 3366 KASSERT(ifma->ifma_lladdr != NULL, 3367 ("%s: llifma w/o lladdr", __func__)); 3368 if (detaching) 3369 ll_ifma->ifma_ifp = NULL; /* XXX */ 3370 if (--ll_ifma->ifma_refcount == 0) { 3371 if (ifp != NULL) { 3372 TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, 3373 ifma_link); 3374 } 3375 if_freemulti(ll_ifma); 3376 } 3377 } 3378 3379 if (ifp != NULL) 3380 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 3381 3382 if_freemulti(ifma); 3383 3384 /* 3385 * The last reference to this instance of struct ifmultiaddr 3386 * was released; the hardware should be notified of this change. 3387 */ 3388 return 1; 3389 } 3390 3391 /* 3392 * Set the link layer address on an interface. 3393 * 3394 * At this time we only support certain types of interfaces, 3395 * and we don't allow the length of the address to change. 3396 */ 3397 int 3398 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3399 { 3400 struct sockaddr_dl *sdl; 3401 struct ifaddr *ifa; 3402 struct ifreq ifr; 3403 3404 IF_ADDR_RLOCK(ifp); 3405 ifa = ifp->if_addr; 3406 if (ifa == NULL) { 3407 IF_ADDR_RUNLOCK(ifp); 3408 return (EINVAL); 3409 } 3410 ifa_ref(ifa); 3411 IF_ADDR_RUNLOCK(ifp); 3412 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3413 if (sdl == NULL) { 3414 ifa_free(ifa); 3415 return (EINVAL); 3416 } 3417 if (len != sdl->sdl_alen) { /* don't allow length to change */ 3418 ifa_free(ifa); 3419 return (EINVAL); 3420 } 3421 switch (ifp->if_type) { 3422 case IFT_ETHER: 3423 case IFT_FDDI: 3424 case IFT_XETHER: 3425 case IFT_ISO88025: 3426 case IFT_L2VLAN: 3427 case IFT_BRIDGE: 3428 case IFT_ARCNET: 3429 case IFT_IEEE8023ADLAG: 3430 case IFT_IEEE80211: 3431 bcopy(lladdr, LLADDR(sdl), len); 3432 ifa_free(ifa); 3433 break; 3434 default: 3435 ifa_free(ifa); 3436 return (ENODEV); 3437 } 3438 3439 /* 3440 * If the interface is already up, we need 3441 * to re-init it in order to reprogram its 3442 * address filter. 3443 */ 3444 if ((ifp->if_flags & IFF_UP) != 0) { 3445 if (ifp->if_ioctl) { 3446 ifp->if_flags &= ~IFF_UP; 3447 ifr.ifr_flags = ifp->if_flags & 0xffff; 3448 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3449 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3450 ifp->if_flags |= IFF_UP; 3451 ifr.ifr_flags = ifp->if_flags & 0xffff; 3452 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3453 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3454 } 3455 #ifdef INET 3456 /* 3457 * Also send gratuitous ARPs to notify other nodes about 3458 * the address change. 3459 */ 3460 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3461 if (ifa->ifa_addr->sa_family == AF_INET) 3462 arp_ifinit(ifp, ifa); 3463 } 3464 #endif 3465 } 3466 return (0); 3467 } 3468 3469 /* 3470 * The name argument must be a pointer to storage which will last as 3471 * long as the interface does. For physical devices, the result of 3472 * device_get_name(dev) is a good choice and for pseudo-devices a 3473 * static string works well. 3474 */ 3475 void 3476 if_initname(struct ifnet *ifp, const char *name, int unit) 3477 { 3478 ifp->if_dname = name; 3479 ifp->if_dunit = unit; 3480 if (unit != IF_DUNIT_NONE) 3481 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 3482 else 3483 strlcpy(ifp->if_xname, name, IFNAMSIZ); 3484 } 3485 3486 int 3487 if_printf(struct ifnet *ifp, const char * fmt, ...) 3488 { 3489 va_list ap; 3490 int retval; 3491 3492 retval = printf("%s: ", ifp->if_xname); 3493 va_start(ap, fmt); 3494 retval += vprintf(fmt, ap); 3495 va_end(ap); 3496 return (retval); 3497 } 3498 3499 void 3500 if_start(struct ifnet *ifp) 3501 { 3502 3503 (*(ifp)->if_start)(ifp); 3504 } 3505 3506 /* 3507 * Backwards compatibility interface for drivers 3508 * that have not implemented it 3509 */ 3510 static int 3511 if_transmit(struct ifnet *ifp, struct mbuf *m) 3512 { 3513 int error; 3514 3515 IFQ_HANDOFF(ifp, m, error); 3516 return (error); 3517 } 3518 3519 int 3520 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 3521 { 3522 int active = 0; 3523 3524 IF_LOCK(ifq); 3525 if (_IF_QFULL(ifq)) { 3526 IF_UNLOCK(ifq); 3527 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 3528 m_freem(m); 3529 return (0); 3530 } 3531 if (ifp != NULL) { 3532 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 3533 if (m->m_flags & (M_BCAST|M_MCAST)) 3534 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3535 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 3536 } 3537 _IF_ENQUEUE(ifq, m); 3538 IF_UNLOCK(ifq); 3539 if (ifp != NULL && !active) 3540 (*(ifp)->if_start)(ifp); 3541 return (1); 3542 } 3543 3544 void 3545 if_register_com_alloc(u_char type, 3546 if_com_alloc_t *a, if_com_free_t *f) 3547 { 3548 3549 KASSERT(if_com_alloc[type] == NULL, 3550 ("if_register_com_alloc: %d already registered", type)); 3551 KASSERT(if_com_free[type] == NULL, 3552 ("if_register_com_alloc: %d free already registered", type)); 3553 3554 if_com_alloc[type] = a; 3555 if_com_free[type] = f; 3556 } 3557 3558 void 3559 if_deregister_com_alloc(u_char type) 3560 { 3561 3562 KASSERT(if_com_alloc[type] != NULL, 3563 ("if_deregister_com_alloc: %d not registered", type)); 3564 KASSERT(if_com_free[type] != NULL, 3565 ("if_deregister_com_alloc: %d free not registered", type)); 3566 if_com_alloc[type] = NULL; 3567 if_com_free[type] = NULL; 3568 } 3569 3570 /* API for driver access to network stack owned ifnet.*/ 3571 uint64_t 3572 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 3573 { 3574 uint64_t oldbrate; 3575 3576 oldbrate = ifp->if_baudrate; 3577 ifp->if_baudrate = baudrate; 3578 return (oldbrate); 3579 } 3580 3581 uint64_t 3582 if_getbaudrate(if_t ifp) 3583 { 3584 3585 return (((struct ifnet *)ifp)->if_baudrate); 3586 } 3587 3588 int 3589 if_setcapabilities(if_t ifp, int capabilities) 3590 { 3591 ((struct ifnet *)ifp)->if_capabilities = capabilities; 3592 return (0); 3593 } 3594 3595 int 3596 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 3597 { 3598 ((struct ifnet *)ifp)->if_capabilities |= setbit; 3599 ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; 3600 3601 return (0); 3602 } 3603 3604 int 3605 if_getcapabilities(if_t ifp) 3606 { 3607 return ((struct ifnet *)ifp)->if_capabilities; 3608 } 3609 3610 int 3611 if_setcapenable(if_t ifp, int capabilities) 3612 { 3613 ((struct ifnet *)ifp)->if_capenable = capabilities; 3614 return (0); 3615 } 3616 3617 int 3618 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 3619 { 3620 if(setcap) 3621 ((struct ifnet *)ifp)->if_capenable |= setcap; 3622 if(clearcap) 3623 ((struct ifnet *)ifp)->if_capenable &= ~clearcap; 3624 3625 return (0); 3626 } 3627 3628 const char * 3629 if_getdname(if_t ifp) 3630 { 3631 return ((struct ifnet *)ifp)->if_dname; 3632 } 3633 3634 int 3635 if_togglecapenable(if_t ifp, int togglecap) 3636 { 3637 ((struct ifnet *)ifp)->if_capenable ^= togglecap; 3638 return (0); 3639 } 3640 3641 int 3642 if_getcapenable(if_t ifp) 3643 { 3644 return ((struct ifnet *)ifp)->if_capenable; 3645 } 3646 3647 /* 3648 * This is largely undesirable because it ties ifnet to a device, but does 3649 * provide flexiblity for an embedded product vendor. Should be used with 3650 * the understanding that it violates the interface boundaries, and should be 3651 * a last resort only. 3652 */ 3653 int 3654 if_setdev(if_t ifp, void *dev) 3655 { 3656 return (0); 3657 } 3658 3659 int 3660 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 3661 { 3662 ((struct ifnet *)ifp)->if_drv_flags |= set_flags; 3663 ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; 3664 3665 return (0); 3666 } 3667 3668 int 3669 if_getdrvflags(if_t ifp) 3670 { 3671 return ((struct ifnet *)ifp)->if_drv_flags; 3672 } 3673 3674 int 3675 if_setdrvflags(if_t ifp, int flags) 3676 { 3677 ((struct ifnet *)ifp)->if_drv_flags = flags; 3678 return (0); 3679 } 3680 3681 3682 int 3683 if_setflags(if_t ifp, int flags) 3684 { 3685 ((struct ifnet *)ifp)->if_flags = flags; 3686 return (0); 3687 } 3688 3689 int 3690 if_setflagbits(if_t ifp, int set, int clear) 3691 { 3692 ((struct ifnet *)ifp)->if_flags |= set; 3693 ((struct ifnet *)ifp)->if_flags &= ~clear; 3694 3695 return (0); 3696 } 3697 3698 int 3699 if_getflags(if_t ifp) 3700 { 3701 return ((struct ifnet *)ifp)->if_flags; 3702 } 3703 3704 int 3705 if_clearhwassist(if_t ifp) 3706 { 3707 ((struct ifnet *)ifp)->if_hwassist = 0; 3708 return (0); 3709 } 3710 3711 int 3712 if_sethwassistbits(if_t ifp, int toset, int toclear) 3713 { 3714 ((struct ifnet *)ifp)->if_hwassist |= toset; 3715 ((struct ifnet *)ifp)->if_hwassist &= ~toclear; 3716 3717 return (0); 3718 } 3719 3720 int 3721 if_sethwassist(if_t ifp, int hwassist_bit) 3722 { 3723 ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; 3724 return (0); 3725 } 3726 3727 int 3728 if_gethwassist(if_t ifp) 3729 { 3730 return ((struct ifnet *)ifp)->if_hwassist; 3731 } 3732 3733 int 3734 if_setmtu(if_t ifp, int mtu) 3735 { 3736 ((struct ifnet *)ifp)->if_mtu = mtu; 3737 return (0); 3738 } 3739 3740 int 3741 if_getmtu(if_t ifp) 3742 { 3743 return ((struct ifnet *)ifp)->if_mtu; 3744 } 3745 3746 int 3747 if_getmtu_family(if_t ifp, int family) 3748 { 3749 struct domain *dp; 3750 3751 for (dp = domains; dp; dp = dp->dom_next) { 3752 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 3753 return (dp->dom_ifmtu((struct ifnet *)ifp)); 3754 } 3755 3756 return (((struct ifnet *)ifp)->if_mtu); 3757 } 3758 3759 int 3760 if_setsoftc(if_t ifp, void *softc) 3761 { 3762 ((struct ifnet *)ifp)->if_softc = softc; 3763 return (0); 3764 } 3765 3766 void * 3767 if_getsoftc(if_t ifp) 3768 { 3769 return ((struct ifnet *)ifp)->if_softc; 3770 } 3771 3772 void 3773 if_setrcvif(struct mbuf *m, if_t ifp) 3774 { 3775 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 3776 } 3777 3778 void 3779 if_setvtag(struct mbuf *m, uint16_t tag) 3780 { 3781 m->m_pkthdr.ether_vtag = tag; 3782 } 3783 3784 uint16_t 3785 if_getvtag(struct mbuf *m) 3786 { 3787 3788 return (m->m_pkthdr.ether_vtag); 3789 } 3790 3791 int 3792 if_sendq_empty(if_t ifp) 3793 { 3794 return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); 3795 } 3796 3797 struct ifaddr * 3798 if_getifaddr(if_t ifp) 3799 { 3800 return ((struct ifnet *)ifp)->if_addr; 3801 } 3802 3803 int 3804 if_getamcount(if_t ifp) 3805 { 3806 return ((struct ifnet *)ifp)->if_amcount; 3807 } 3808 3809 3810 int 3811 if_setsendqready(if_t ifp) 3812 { 3813 IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); 3814 return (0); 3815 } 3816 3817 int 3818 if_setsendqlen(if_t ifp, int tx_desc_count) 3819 { 3820 IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); 3821 ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; 3822 3823 return (0); 3824 } 3825 3826 int 3827 if_vlantrunkinuse(if_t ifp) 3828 { 3829 return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; 3830 } 3831 3832 int 3833 if_input(if_t ifp, struct mbuf* sendmp) 3834 { 3835 (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); 3836 return (0); 3837 3838 } 3839 3840 /* XXX */ 3841 #ifndef ETH_ADDR_LEN 3842 #define ETH_ADDR_LEN 6 3843 #endif 3844 3845 int 3846 if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max) 3847 { 3848 struct ifmultiaddr *ifma; 3849 uint8_t *lmta = (uint8_t *)mta; 3850 int mcnt = 0; 3851 3852 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3853 if (ifma->ifma_addr->sa_family != AF_LINK) 3854 continue; 3855 3856 if (mcnt == max) 3857 break; 3858 3859 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 3860 &lmta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); 3861 mcnt++; 3862 } 3863 *cnt = mcnt; 3864 3865 return (0); 3866 } 3867 3868 int 3869 if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max) 3870 { 3871 int error; 3872 3873 if_maddr_rlock(ifp); 3874 error = if_setupmultiaddr(ifp, mta, cnt, max); 3875 if_maddr_runlock(ifp); 3876 return (error); 3877 } 3878 3879 int 3880 if_multiaddr_count(if_t ifp, int max) 3881 { 3882 struct ifmultiaddr *ifma; 3883 int count; 3884 3885 count = 0; 3886 if_maddr_rlock(ifp); 3887 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3888 if (ifma->ifma_addr->sa_family != AF_LINK) 3889 continue; 3890 count++; 3891 if (count == max) 3892 break; 3893 } 3894 if_maddr_runlock(ifp); 3895 return (count); 3896 } 3897 3898 struct mbuf * 3899 if_dequeue(if_t ifp) 3900 { 3901 struct mbuf *m; 3902 IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); 3903 3904 return (m); 3905 } 3906 3907 int 3908 if_sendq_prepend(if_t ifp, struct mbuf *m) 3909 { 3910 IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); 3911 return (0); 3912 } 3913 3914 int 3915 if_setifheaderlen(if_t ifp, int len) 3916 { 3917 ((struct ifnet *)ifp)->if_hdrlen = len; 3918 return (0); 3919 } 3920 3921 caddr_t 3922 if_getlladdr(if_t ifp) 3923 { 3924 return (IF_LLADDR((struct ifnet *)ifp)); 3925 } 3926 3927 void * 3928 if_gethandle(u_char type) 3929 { 3930 return (if_alloc(type)); 3931 } 3932 3933 void 3934 if_bpfmtap(if_t ifh, struct mbuf *m) 3935 { 3936 struct ifnet *ifp = (struct ifnet *)ifh; 3937 3938 BPF_MTAP(ifp, m); 3939 } 3940 3941 void 3942 if_etherbpfmtap(if_t ifh, struct mbuf *m) 3943 { 3944 struct ifnet *ifp = (struct ifnet *)ifh; 3945 3946 ETHER_BPF_MTAP(ifp, m); 3947 } 3948 3949 void 3950 if_vlancap(if_t ifh) 3951 { 3952 struct ifnet *ifp = (struct ifnet *)ifh; 3953 VLAN_CAPABILITIES(ifp); 3954 } 3955 3956 void 3957 if_setinitfn(if_t ifp, void (*init_fn)(void *)) 3958 { 3959 ((struct ifnet *)ifp)->if_init = init_fn; 3960 } 3961 3962 void 3963 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) 3964 { 3965 ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; 3966 } 3967 3968 void 3969 if_setstartfn(if_t ifp, void (*start_fn)(if_t)) 3970 { 3971 ((struct ifnet *)ifp)->if_start = (void *)start_fn; 3972 } 3973 3974 void 3975 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 3976 { 3977 ((struct ifnet *)ifp)->if_transmit = start_fn; 3978 } 3979 3980 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 3981 { 3982 ((struct ifnet *)ifp)->if_qflush = flush_fn; 3983 3984 } 3985 3986 void 3987 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 3988 { 3989 3990 ifp->if_get_counter = fn; 3991 } 3992 3993 /* Revisit these - These are inline functions originally. */ 3994 int 3995 drbr_inuse_drv(if_t ifh, struct buf_ring *br) 3996 { 3997 return drbr_inuse_drv(ifh, br); 3998 } 3999 4000 struct mbuf* 4001 drbr_dequeue_drv(if_t ifh, struct buf_ring *br) 4002 { 4003 return drbr_dequeue(ifh, br); 4004 } 4005 4006 int 4007 drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br) 4008 { 4009 return drbr_needs_enqueue(ifh, br); 4010 } 4011 4012 int 4013 drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m) 4014 { 4015 return drbr_enqueue(ifh, br, m); 4016 4017 } 4018