1 /*- 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if.c 8.5 (Berkeley) 1/9/95 30 * $FreeBSD$ 31 */ 32 33 #include "opt_compat.h" 34 #include "opt_inet6.h" 35 #include "opt_inet.h" 36 37 #include <sys/param.h> 38 #include <sys/types.h> 39 #include <sys/conf.h> 40 #include <sys/malloc.h> 41 #include <sys/sbuf.h> 42 #include <sys/bus.h> 43 #include <sys/mbuf.h> 44 #include <sys/systm.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/protosw.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/refcount.h> 53 #include <sys/module.h> 54 #include <sys/rwlock.h> 55 #include <sys/sockio.h> 56 #include <sys/syslog.h> 57 #include <sys/sysctl.h> 58 #include <sys/taskqueue.h> 59 #include <sys/domain.h> 60 #include <sys/jail.h> 61 #include <sys/priv.h> 62 63 #include <machine/stdarg.h> 64 #include <vm/uma.h> 65 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/if.h> 69 #include <net/if_arp.h> 70 #include <net/if_clone.h> 71 #include <net/if_dl.h> 72 #include <net/if_types.h> 73 #include <net/if_var.h> 74 #include <net/if_media.h> 75 #include <net/if_vlan_var.h> 76 #include <net/radix.h> 77 #include <net/route.h> 78 #include <net/vnet.h> 79 80 #if defined(INET) || defined(INET6) 81 #include <net/ethernet.h> 82 #include <netinet/in.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_carp.h> 86 #ifdef INET 87 #include <netinet/if_ether.h> 88 #endif /* INET */ 89 #ifdef INET6 90 #include <netinet6/in6_var.h> 91 #include <netinet6/in6_ifattach.h> 92 #endif /* INET6 */ 93 #endif /* INET || INET6 */ 94 95 #include <security/mac/mac_framework.h> 96 97 #ifdef COMPAT_FREEBSD32 98 #include <sys/mount.h> 99 #include <compat/freebsd32/freebsd32.h> 100 #endif 101 102 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 103 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 104 105 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 106 &ifqmaxlen, 0, "max send queue size"); 107 108 /* Log link state change events */ 109 static int log_link_state_change = 1; 110 111 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 112 &log_link_state_change, 0, 113 "log interface link state change events"); 114 115 /* Interface description */ 116 static unsigned int ifdescr_maxlen = 1024; 117 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 118 &ifdescr_maxlen, 0, 119 "administrative maximum length for interface description"); 120 121 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 122 123 /* global sx for non-critical path ifdescr */ 124 static struct sx ifdescr_sx; 125 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 126 127 void (*bridge_linkstate_p)(struct ifnet *ifp); 128 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 129 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 130 /* These are external hooks for CARP. */ 131 void (*carp_linkstate_p)(struct ifnet *ifp); 132 void (*carp_demote_adj_p)(int, char *); 133 int (*carp_master_p)(struct ifaddr *); 134 #if defined(INET) || defined(INET6) 135 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 136 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 137 const struct sockaddr *sa); 138 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 139 int (*carp_attach_p)(struct ifaddr *, int); 140 void (*carp_detach_p)(struct ifaddr *); 141 #endif 142 #ifdef INET 143 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 144 #endif 145 #ifdef INET6 146 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 147 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 148 const struct in6_addr *taddr); 149 #endif 150 151 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 152 153 /* 154 * XXX: Style; these should be sorted alphabetically, and unprototyped 155 * static functions should be prototyped. Currently they are sorted by 156 * declaration order. 157 */ 158 static void if_attachdomain(void *); 159 static void if_attachdomain1(struct ifnet *); 160 static int ifconf(u_long, caddr_t); 161 static void if_freemulti(struct ifmultiaddr *); 162 static void if_grow(void); 163 static void if_input_default(struct ifnet *, struct mbuf *); 164 static int if_requestencap_default(struct ifnet *, struct if_encap_req *); 165 static void if_route(struct ifnet *, int flag, int fam); 166 static int if_setflag(struct ifnet *, int, int, int *, int); 167 static int if_transmit(struct ifnet *ifp, struct mbuf *m); 168 static void if_unroute(struct ifnet *, int flag, int fam); 169 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 170 static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *); 171 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 172 static void do_link_state_change(void *, int); 173 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 174 static int if_getgroupmembers(struct ifgroupreq *); 175 static void if_delgroups(struct ifnet *); 176 static void if_attach_internal(struct ifnet *, int, struct if_clone *); 177 static int if_detach_internal(struct ifnet *, int, struct if_clone **); 178 179 #ifdef INET6 180 /* 181 * XXX: declare here to avoid to include many inet6 related files.. 182 * should be more generalized? 183 */ 184 extern void nd6_setmtu(struct ifnet *); 185 #endif 186 187 /* ipsec helper hooks */ 188 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); 189 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); 190 191 VNET_DEFINE(int, if_index); 192 int ifqmaxlen = IFQ_MAXLEN; 193 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 194 VNET_DEFINE(struct ifgrouphead, ifg_head); 195 196 static VNET_DEFINE(int, if_indexlim) = 8; 197 198 /* Table of ifnet by index. */ 199 VNET_DEFINE(struct ifnet **, ifindex_table); 200 201 #define V_if_indexlim VNET(if_indexlim) 202 #define V_ifindex_table VNET(ifindex_table) 203 204 /* 205 * The global network interface list (V_ifnet) and related state (such as 206 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and 207 * an rwlock. Either may be acquired shared to stablize the list, but both 208 * must be acquired writable to modify the list. This model allows us to 209 * both stablize the interface list during interrupt thread processing, but 210 * also to stablize it over long-running ioctls, without introducing priority 211 * inversions and deadlocks. 212 */ 213 struct rwlock ifnet_rwlock; 214 RW_SYSINIT_FLAGS(ifnet_rw, &ifnet_rwlock, "ifnet_rw", RW_RECURSE); 215 struct sx ifnet_sxlock; 216 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 217 218 /* 219 * The allocation of network interfaces is a rather non-atomic affair; we 220 * need to select an index before we are ready to expose the interface for 221 * use, so will use this pointer value to indicate reservation. 222 */ 223 #define IFNET_HOLD (void *)(uintptr_t)(-1) 224 225 static if_com_alloc_t *if_com_alloc[256]; 226 static if_com_free_t *if_com_free[256]; 227 228 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 229 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 230 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 231 232 struct ifnet * 233 ifnet_byindex_locked(u_short idx) 234 { 235 236 if (idx > V_if_index) 237 return (NULL); 238 if (V_ifindex_table[idx] == IFNET_HOLD) 239 return (NULL); 240 return (V_ifindex_table[idx]); 241 } 242 243 struct ifnet * 244 ifnet_byindex(u_short idx) 245 { 246 struct ifnet *ifp; 247 248 IFNET_RLOCK_NOSLEEP(); 249 ifp = ifnet_byindex_locked(idx); 250 IFNET_RUNLOCK_NOSLEEP(); 251 return (ifp); 252 } 253 254 struct ifnet * 255 ifnet_byindex_ref(u_short idx) 256 { 257 struct ifnet *ifp; 258 259 IFNET_RLOCK_NOSLEEP(); 260 ifp = ifnet_byindex_locked(idx); 261 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) { 262 IFNET_RUNLOCK_NOSLEEP(); 263 return (NULL); 264 } 265 if_ref(ifp); 266 IFNET_RUNLOCK_NOSLEEP(); 267 return (ifp); 268 } 269 270 /* 271 * Allocate an ifindex array entry; return 0 on success or an error on 272 * failure. 273 */ 274 static u_short 275 ifindex_alloc(void) 276 { 277 u_short idx; 278 279 IFNET_WLOCK_ASSERT(); 280 retry: 281 /* 282 * Try to find an empty slot below V_if_index. If we fail, take the 283 * next slot. 284 */ 285 for (idx = 1; idx <= V_if_index; idx++) { 286 if (V_ifindex_table[idx] == NULL) 287 break; 288 } 289 290 /* Catch if_index overflow. */ 291 if (idx >= V_if_indexlim) { 292 if_grow(); 293 goto retry; 294 } 295 if (idx > V_if_index) 296 V_if_index = idx; 297 return (idx); 298 } 299 300 static void 301 ifindex_free_locked(u_short idx) 302 { 303 304 IFNET_WLOCK_ASSERT(); 305 306 V_ifindex_table[idx] = NULL; 307 while (V_if_index > 0 && 308 V_ifindex_table[V_if_index] == NULL) 309 V_if_index--; 310 } 311 312 static void 313 ifindex_free(u_short idx) 314 { 315 316 IFNET_WLOCK(); 317 ifindex_free_locked(idx); 318 IFNET_WUNLOCK(); 319 } 320 321 static void 322 ifnet_setbyindex_locked(u_short idx, struct ifnet *ifp) 323 { 324 325 IFNET_WLOCK_ASSERT(); 326 327 V_ifindex_table[idx] = ifp; 328 } 329 330 static void 331 ifnet_setbyindex(u_short idx, struct ifnet *ifp) 332 { 333 334 IFNET_WLOCK(); 335 ifnet_setbyindex_locked(idx, ifp); 336 IFNET_WUNLOCK(); 337 } 338 339 struct ifaddr * 340 ifaddr_byindex(u_short idx) 341 { 342 struct ifnet *ifp; 343 struct ifaddr *ifa = NULL; 344 345 IFNET_RLOCK_NOSLEEP(); 346 ifp = ifnet_byindex_locked(idx); 347 if (ifp != NULL && (ifa = ifp->if_addr) != NULL) 348 ifa_ref(ifa); 349 IFNET_RUNLOCK_NOSLEEP(); 350 return (ifa); 351 } 352 353 /* 354 * Network interface utility routines. 355 * 356 * Routines with ifa_ifwith* names take sockaddr *'s as 357 * parameters. 358 */ 359 360 static void 361 vnet_if_init(const void *unused __unused) 362 { 363 364 TAILQ_INIT(&V_ifnet); 365 TAILQ_INIT(&V_ifg_head); 366 IFNET_WLOCK(); 367 if_grow(); /* create initial table */ 368 IFNET_WUNLOCK(); 369 vnet_if_clone_init(); 370 } 371 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 372 NULL); 373 374 #ifdef VIMAGE 375 static void 376 vnet_if_uninit(const void *unused __unused) 377 { 378 379 VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " 380 "not empty", __func__, __LINE__, &V_ifnet)); 381 VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " 382 "not empty", __func__, __LINE__, &V_ifg_head)); 383 384 free((caddr_t)V_ifindex_table, M_IFNET); 385 } 386 VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, 387 vnet_if_uninit, NULL); 388 #endif 389 390 static void 391 if_grow(void) 392 { 393 int oldlim; 394 u_int n; 395 struct ifnet **e; 396 397 IFNET_WLOCK_ASSERT(); 398 oldlim = V_if_indexlim; 399 IFNET_WUNLOCK(); 400 n = (oldlim << 1) * sizeof(*e); 401 e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); 402 IFNET_WLOCK(); 403 if (V_if_indexlim != oldlim) { 404 free(e, M_IFNET); 405 return; 406 } 407 if (V_ifindex_table != NULL) { 408 memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); 409 free((caddr_t)V_ifindex_table, M_IFNET); 410 } 411 V_if_indexlim <<= 1; 412 V_ifindex_table = e; 413 } 414 415 /* 416 * Allocate a struct ifnet and an index for an interface. A layer 2 417 * common structure will also be allocated if an allocation routine is 418 * registered for the passed type. 419 */ 420 struct ifnet * 421 if_alloc(u_char type) 422 { 423 struct ifnet *ifp; 424 u_short idx; 425 426 ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO); 427 IFNET_WLOCK(); 428 idx = ifindex_alloc(); 429 ifnet_setbyindex_locked(idx, IFNET_HOLD); 430 IFNET_WUNLOCK(); 431 ifp->if_index = idx; 432 ifp->if_type = type; 433 ifp->if_alloctype = type; 434 if (if_com_alloc[type] != NULL) { 435 ifp->if_l2com = if_com_alloc[type](type, ifp); 436 if (ifp->if_l2com == NULL) { 437 free(ifp, M_IFNET); 438 ifindex_free(idx); 439 return (NULL); 440 } 441 } 442 443 IF_ADDR_LOCK_INIT(ifp); 444 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 445 ifp->if_afdata_initialized = 0; 446 IF_AFDATA_LOCK_INIT(ifp); 447 TAILQ_INIT(&ifp->if_addrhead); 448 TAILQ_INIT(&ifp->if_multiaddrs); 449 TAILQ_INIT(&ifp->if_groups); 450 #ifdef MAC 451 mac_ifnet_init(ifp); 452 #endif 453 ifq_init(&ifp->if_snd, ifp); 454 455 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 456 for (int i = 0; i < IFCOUNTERS; i++) 457 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 458 ifp->if_get_counter = if_get_counter_default; 459 ifnet_setbyindex(ifp->if_index, ifp); 460 return (ifp); 461 } 462 463 /* 464 * Do the actual work of freeing a struct ifnet, and layer 2 common 465 * structure. This call is made when the last reference to an 466 * interface is released. 467 */ 468 static void 469 if_free_internal(struct ifnet *ifp) 470 { 471 472 KASSERT((ifp->if_flags & IFF_DYING), 473 ("if_free_internal: interface not dying")); 474 475 if (if_com_free[ifp->if_alloctype] != NULL) 476 if_com_free[ifp->if_alloctype](ifp->if_l2com, 477 ifp->if_alloctype); 478 479 #ifdef MAC 480 mac_ifnet_destroy(ifp); 481 #endif /* MAC */ 482 if (ifp->if_description != NULL) 483 free(ifp->if_description, M_IFDESCR); 484 IF_AFDATA_DESTROY(ifp); 485 IF_ADDR_LOCK_DESTROY(ifp); 486 ifq_delete(&ifp->if_snd); 487 488 for (int i = 0; i < IFCOUNTERS; i++) 489 counter_u64_free(ifp->if_counters[i]); 490 491 free(ifp, M_IFNET); 492 } 493 494 /* 495 * Deregister an interface and free the associated storage. 496 */ 497 void 498 if_free(struct ifnet *ifp) 499 { 500 501 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 502 503 CURVNET_SET_QUIET(ifp->if_vnet); 504 IFNET_WLOCK(); 505 KASSERT(ifp == ifnet_byindex_locked(ifp->if_index), 506 ("%s: freeing unallocated ifnet", ifp->if_xname)); 507 508 ifindex_free_locked(ifp->if_index); 509 IFNET_WUNLOCK(); 510 511 if (refcount_release(&ifp->if_refcount)) 512 if_free_internal(ifp); 513 CURVNET_RESTORE(); 514 } 515 516 /* 517 * Interfaces to keep an ifnet type-stable despite the possibility of the 518 * driver calling if_free(). If there are additional references, we defer 519 * freeing the underlying data structure. 520 */ 521 void 522 if_ref(struct ifnet *ifp) 523 { 524 525 /* We don't assert the ifnet list lock here, but arguably should. */ 526 refcount_acquire(&ifp->if_refcount); 527 } 528 529 void 530 if_rele(struct ifnet *ifp) 531 { 532 533 if (!refcount_release(&ifp->if_refcount)) 534 return; 535 if_free_internal(ifp); 536 } 537 538 void 539 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 540 { 541 542 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 543 544 if (ifq->ifq_maxlen == 0) 545 ifq->ifq_maxlen = ifqmaxlen; 546 547 ifq->altq_type = 0; 548 ifq->altq_disc = NULL; 549 ifq->altq_flags &= ALTQF_CANTCHANGE; 550 ifq->altq_tbr = NULL; 551 ifq->altq_ifp = ifp; 552 } 553 554 void 555 ifq_delete(struct ifaltq *ifq) 556 { 557 mtx_destroy(&ifq->ifq_mtx); 558 } 559 560 /* 561 * Perform generic interface initalization tasks and attach the interface 562 * to the list of "active" interfaces. If vmove flag is set on entry 563 * to if_attach_internal(), perform only a limited subset of initialization 564 * tasks, given that we are moving from one vnet to another an ifnet which 565 * has already been fully initialized. 566 * 567 * Note that if_detach_internal() removes group membership unconditionally 568 * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. 569 * Thus, when if_vmove() is applied to a cloned interface, group membership 570 * is lost while a cloned one always joins a group whose name is 571 * ifc->ifc_name. To recover this after if_detach_internal() and 572 * if_attach_internal(), the cloner should be specified to 573 * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() 574 * attempts to join a group whose name is ifc->ifc_name. 575 * 576 * XXX: 577 * - The decision to return void and thus require this function to 578 * succeed is questionable. 579 * - We should probably do more sanity checking. For instance we don't 580 * do anything to insure if_xname is unique or non-empty. 581 */ 582 void 583 if_attach(struct ifnet *ifp) 584 { 585 586 if_attach_internal(ifp, 0, NULL); 587 } 588 589 /* 590 * Compute the least common TSO limit. 591 */ 592 void 593 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 594 { 595 /* 596 * 1) If there is no limit currently, take the limit from 597 * the network adapter. 598 * 599 * 2) If the network adapter has a limit below the current 600 * limit, apply it. 601 */ 602 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 603 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 604 pmax->tsomaxbytes = ifp->if_hw_tsomax; 605 } 606 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 607 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 608 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 609 } 610 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 611 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 612 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 613 } 614 } 615 616 /* 617 * Update TSO limit of a network adapter. 618 * 619 * Returns zero if no change. Else non-zero. 620 */ 621 int 622 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 623 { 624 int retval = 0; 625 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 626 ifp->if_hw_tsomax = pmax->tsomaxbytes; 627 retval++; 628 } 629 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 630 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 631 retval++; 632 } 633 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 634 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 635 retval++; 636 } 637 return (retval); 638 } 639 640 static void 641 if_attach_internal(struct ifnet *ifp, int vmove, struct if_clone *ifc) 642 { 643 unsigned socksize, ifasize; 644 int namelen, masklen; 645 struct sockaddr_dl *sdl; 646 struct ifaddr *ifa; 647 648 if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) 649 panic ("%s: BUG: if_attach called without if_alloc'd input()\n", 650 ifp->if_xname); 651 652 #ifdef VIMAGE 653 ifp->if_vnet = curvnet; 654 if (ifp->if_home_vnet == NULL) 655 ifp->if_home_vnet = curvnet; 656 #endif 657 658 if_addgroup(ifp, IFG_ALL); 659 660 /* Restore group membership for cloned interfaces. */ 661 if (vmove && ifc != NULL) 662 if_clone_addgroup(ifp, ifc); 663 664 getmicrotime(&ifp->if_lastchange); 665 ifp->if_epoch = time_uptime; 666 667 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 668 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 669 ("transmit and qflush must both either be set or both be NULL")); 670 if (ifp->if_transmit == NULL) { 671 ifp->if_transmit = if_transmit; 672 ifp->if_qflush = if_qflush; 673 } 674 if (ifp->if_input == NULL) 675 ifp->if_input = if_input_default; 676 677 if (ifp->if_requestencap == NULL) 678 ifp->if_requestencap = if_requestencap_default; 679 680 if (!vmove) { 681 #ifdef MAC 682 mac_ifnet_create(ifp); 683 #endif 684 685 /* 686 * Create a Link Level name for this device. 687 */ 688 namelen = strlen(ifp->if_xname); 689 /* 690 * Always save enough space for any possiable name so we 691 * can do a rename in place later. 692 */ 693 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 694 socksize = masklen + ifp->if_addrlen; 695 if (socksize < sizeof(*sdl)) 696 socksize = sizeof(*sdl); 697 socksize = roundup2(socksize, sizeof(long)); 698 ifasize = sizeof(*ifa) + 2 * socksize; 699 ifa = ifa_alloc(ifasize, M_WAITOK); 700 sdl = (struct sockaddr_dl *)(ifa + 1); 701 sdl->sdl_len = socksize; 702 sdl->sdl_family = AF_LINK; 703 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 704 sdl->sdl_nlen = namelen; 705 sdl->sdl_index = ifp->if_index; 706 sdl->sdl_type = ifp->if_type; 707 ifp->if_addr = ifa; 708 ifa->ifa_ifp = ifp; 709 ifa->ifa_rtrequest = link_rtrequest; 710 ifa->ifa_addr = (struct sockaddr *)sdl; 711 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 712 ifa->ifa_netmask = (struct sockaddr *)sdl; 713 sdl->sdl_len = masklen; 714 while (namelen != 0) 715 sdl->sdl_data[--namelen] = 0xff; 716 TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 717 /* Reliably crash if used uninitialized. */ 718 ifp->if_broadcastaddr = NULL; 719 720 #if defined(INET) || defined(INET6) 721 /* Use defaults for TSO, if nothing is set */ 722 if (ifp->if_hw_tsomax == 0 && 723 ifp->if_hw_tsomaxsegcount == 0 && 724 ifp->if_hw_tsomaxsegsize == 0) { 725 /* 726 * The TSO defaults needs to be such that an 727 * NFS mbuf list of 35 mbufs totalling just 728 * below 64K works and that a chain of mbufs 729 * can be defragged into at most 32 segments: 730 */ 731 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 732 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 733 ifp->if_hw_tsomaxsegcount = 35; 734 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 735 736 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 737 if (ifp->if_capabilities & IFCAP_TSO) { 738 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 739 ifp->if_hw_tsomax, 740 ifp->if_hw_tsomaxsegcount, 741 ifp->if_hw_tsomaxsegsize); 742 } 743 } 744 #endif 745 } 746 #ifdef VIMAGE 747 else { 748 /* 749 * Update the interface index in the link layer address 750 * of the interface. 751 */ 752 for (ifa = ifp->if_addr; ifa != NULL; 753 ifa = TAILQ_NEXT(ifa, ifa_link)) { 754 if (ifa->ifa_addr->sa_family == AF_LINK) { 755 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 756 sdl->sdl_index = ifp->if_index; 757 } 758 } 759 } 760 #endif 761 762 IFNET_WLOCK(); 763 TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 764 #ifdef VIMAGE 765 curvnet->vnet_ifcnt++; 766 #endif 767 IFNET_WUNLOCK(); 768 769 if (domain_init_status >= 2) 770 if_attachdomain1(ifp); 771 772 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 773 if (IS_DEFAULT_VNET(curvnet)) 774 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 775 776 /* Announce the interface. */ 777 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 778 } 779 780 static void 781 if_attachdomain(void *dummy) 782 { 783 struct ifnet *ifp; 784 785 TAILQ_FOREACH(ifp, &V_ifnet, if_link) 786 if_attachdomain1(ifp); 787 } 788 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 789 if_attachdomain, NULL); 790 791 static void 792 if_attachdomain1(struct ifnet *ifp) 793 { 794 struct domain *dp; 795 796 /* 797 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 798 * cannot lock ifp->if_afdata initialization, entirely. 799 */ 800 if (IF_AFDATA_TRYLOCK(ifp) == 0) 801 return; 802 if (ifp->if_afdata_initialized >= domain_init_status) { 803 IF_AFDATA_UNLOCK(ifp); 804 log(LOG_WARNING, "%s called more than once on %s\n", 805 __func__, ifp->if_xname); 806 return; 807 } 808 ifp->if_afdata_initialized = domain_init_status; 809 IF_AFDATA_UNLOCK(ifp); 810 811 /* address family dependent data region */ 812 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 813 for (dp = domains; dp; dp = dp->dom_next) { 814 if (dp->dom_ifattach) 815 ifp->if_afdata[dp->dom_family] = 816 (*dp->dom_ifattach)(ifp); 817 } 818 } 819 820 /* 821 * Remove any unicast or broadcast network addresses from an interface. 822 */ 823 void 824 if_purgeaddrs(struct ifnet *ifp) 825 { 826 struct ifaddr *ifa, *next; 827 828 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 829 if (ifa->ifa_addr->sa_family == AF_LINK) 830 continue; 831 #ifdef INET 832 /* XXX: Ugly!! ad hoc just for INET */ 833 if (ifa->ifa_addr->sa_family == AF_INET) { 834 struct ifaliasreq ifr; 835 836 bzero(&ifr, sizeof(ifr)); 837 ifr.ifra_addr = *ifa->ifa_addr; 838 if (ifa->ifa_dstaddr) 839 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 840 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 841 NULL) == 0) 842 continue; 843 } 844 #endif /* INET */ 845 #ifdef INET6 846 if (ifa->ifa_addr->sa_family == AF_INET6) { 847 in6_purgeaddr(ifa); 848 /* ifp_addrhead is already updated */ 849 continue; 850 } 851 #endif /* INET6 */ 852 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 853 ifa_free(ifa); 854 } 855 } 856 857 /* 858 * Remove any multicast network addresses from an interface when an ifnet 859 * is going away. 860 */ 861 static void 862 if_purgemaddrs(struct ifnet *ifp) 863 { 864 struct ifmultiaddr *ifma; 865 struct ifmultiaddr *next; 866 867 IF_ADDR_WLOCK(ifp); 868 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 869 if_delmulti_locked(ifp, ifma, 1); 870 IF_ADDR_WUNLOCK(ifp); 871 } 872 873 /* 874 * Detach an interface, removing it from the list of "active" interfaces. 875 * If vmove flag is set on entry to if_detach_internal(), perform only a 876 * limited subset of cleanup tasks, given that we are moving an ifnet from 877 * one vnet to another, where it must be fully operational. 878 * 879 * XXXRW: There are some significant questions about event ordering, and 880 * how to prevent things from starting to use the interface during detach. 881 */ 882 void 883 if_detach(struct ifnet *ifp) 884 { 885 886 CURVNET_SET_QUIET(ifp->if_vnet); 887 if_detach_internal(ifp, 0, NULL); 888 CURVNET_RESTORE(); 889 } 890 891 static int 892 if_detach_internal(struct ifnet *ifp, int vmove, struct if_clone **ifcp) 893 { 894 struct ifaddr *ifa; 895 int i; 896 struct domain *dp; 897 struct ifnet *iter; 898 int found = 0; 899 900 IFNET_WLOCK(); 901 TAILQ_FOREACH(iter, &V_ifnet, if_link) 902 if (iter == ifp) { 903 TAILQ_REMOVE(&V_ifnet, ifp, if_link); 904 found = 1; 905 break; 906 } 907 #ifdef VIMAGE 908 if (found) 909 curvnet->vnet_ifcnt--; 910 #endif 911 IFNET_WUNLOCK(); 912 if (!found) { 913 /* 914 * While we would want to panic here, we cannot 915 * guarantee that the interface is indeed still on 916 * the list given we don't hold locks all the way. 917 */ 918 return (ENOENT); 919 #if 0 920 if (vmove) 921 panic("%s: ifp=%p not on the ifnet tailq %p", 922 __func__, ifp, &V_ifnet); 923 else 924 return; /* XXX this should panic as well? */ 925 #endif 926 } 927 928 /* Check if this is a cloned interface or not. */ 929 if (vmove && ifcp != NULL) 930 *ifcp = if_clone_findifc(ifp); 931 932 /* 933 * Remove/wait for pending events. 934 */ 935 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 936 937 /* 938 * Remove routes and flush queues. 939 */ 940 if_down(ifp); 941 #ifdef ALTQ 942 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 943 altq_disable(&ifp->if_snd); 944 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 945 altq_detach(&ifp->if_snd); 946 #endif 947 948 if_purgeaddrs(ifp); 949 950 #ifdef INET 951 in_ifdetach(ifp); 952 #endif 953 954 #ifdef INET6 955 /* 956 * Remove all IPv6 kernel structs related to ifp. This should be done 957 * before removing routing entries below, since IPv6 interface direct 958 * routes are expected to be removed by the IPv6-specific kernel API. 959 * Otherwise, the kernel will detect some inconsistency and bark it. 960 */ 961 in6_ifdetach(ifp); 962 #endif 963 if_purgemaddrs(ifp); 964 965 /* Announce that the interface is gone. */ 966 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 967 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 968 if (IS_DEFAULT_VNET(curvnet)) 969 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 970 971 if (!vmove) { 972 /* 973 * Prevent further calls into the device driver via ifnet. 974 */ 975 if_dead(ifp); 976 977 /* 978 * Remove link ifaddr pointer and maybe decrement if_index. 979 * Clean up all addresses. 980 */ 981 ifp->if_addr = NULL; 982 983 /* We can now free link ifaddr. */ 984 if (!TAILQ_EMPTY(&ifp->if_addrhead)) { 985 ifa = TAILQ_FIRST(&ifp->if_addrhead); 986 TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); 987 ifa_free(ifa); 988 } 989 } 990 991 rt_flushifroutes(ifp); 992 if_delgroups(ifp); 993 994 /* 995 * We cannot hold the lock over dom_ifdetach calls as they might 996 * sleep, for example trying to drain a callout, thus open up the 997 * theoretical race with re-attaching. 998 */ 999 IF_AFDATA_LOCK(ifp); 1000 i = ifp->if_afdata_initialized; 1001 ifp->if_afdata_initialized = 0; 1002 IF_AFDATA_UNLOCK(ifp); 1003 for (dp = domains; i > 0 && dp; dp = dp->dom_next) { 1004 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 1005 (*dp->dom_ifdetach)(ifp, 1006 ifp->if_afdata[dp->dom_family]); 1007 } 1008 1009 return (0); 1010 } 1011 1012 #ifdef VIMAGE 1013 /* 1014 * if_vmove() performs a limited version of if_detach() in current 1015 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1016 * An attempt is made to shrink if_index in current vnet, find an 1017 * unused if_index in target vnet and calls if_grow() if necessary, 1018 * and finally find an unused if_xname for the target vnet. 1019 */ 1020 void 1021 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1022 { 1023 struct if_clone *ifc; 1024 int rc; 1025 1026 /* 1027 * Detach from current vnet, but preserve LLADDR info, do not 1028 * mark as dead etc. so that the ifnet can be reattached later. 1029 * If we cannot find it, we lost the race to someone else. 1030 */ 1031 rc = if_detach_internal(ifp, 1, &ifc); 1032 if (rc != 0) 1033 return; 1034 1035 /* 1036 * Unlink the ifnet from ifindex_table[] in current vnet, and shrink 1037 * the if_index for that vnet if possible. 1038 * 1039 * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, 1040 * or we'd lock on one vnet and unlock on another. 1041 */ 1042 IFNET_WLOCK(); 1043 ifindex_free_locked(ifp->if_index); 1044 IFNET_WUNLOCK(); 1045 1046 /* 1047 * Perform interface-specific reassignment tasks, if provided by 1048 * the driver. 1049 */ 1050 if (ifp->if_reassign != NULL) 1051 ifp->if_reassign(ifp, new_vnet, NULL); 1052 1053 /* 1054 * Switch to the context of the target vnet. 1055 */ 1056 CURVNET_SET_QUIET(new_vnet); 1057 1058 IFNET_WLOCK(); 1059 ifp->if_index = ifindex_alloc(); 1060 ifnet_setbyindex_locked(ifp->if_index, ifp); 1061 IFNET_WUNLOCK(); 1062 1063 if_attach_internal(ifp, 1, ifc); 1064 1065 CURVNET_RESTORE(); 1066 } 1067 1068 /* 1069 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1070 */ 1071 static int 1072 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1073 { 1074 struct prison *pr; 1075 struct ifnet *difp; 1076 1077 /* Try to find the prison within our visibility. */ 1078 sx_slock(&allprison_lock); 1079 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1080 sx_sunlock(&allprison_lock); 1081 if (pr == NULL) 1082 return (ENXIO); 1083 prison_hold_locked(pr); 1084 mtx_unlock(&pr->pr_mtx); 1085 1086 /* Do not try to move the iface from and to the same prison. */ 1087 if (pr->pr_vnet == ifp->if_vnet) { 1088 prison_free(pr); 1089 return (EEXIST); 1090 } 1091 1092 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1093 /* XXX Lock interfaces to avoid races. */ 1094 CURVNET_SET_QUIET(pr->pr_vnet); 1095 difp = ifunit(ifname); 1096 CURVNET_RESTORE(); 1097 if (difp != NULL) { 1098 prison_free(pr); 1099 return (EEXIST); 1100 } 1101 1102 /* Move the interface into the child jail/vnet. */ 1103 if_vmove(ifp, pr->pr_vnet); 1104 1105 /* Report the new if_xname back to the userland. */ 1106 sprintf(ifname, "%s", ifp->if_xname); 1107 1108 prison_free(pr); 1109 return (0); 1110 } 1111 1112 static int 1113 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1114 { 1115 struct prison *pr; 1116 struct vnet *vnet_dst; 1117 struct ifnet *ifp; 1118 1119 /* Try to find the prison within our visibility. */ 1120 sx_slock(&allprison_lock); 1121 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1122 sx_sunlock(&allprison_lock); 1123 if (pr == NULL) 1124 return (ENXIO); 1125 prison_hold_locked(pr); 1126 mtx_unlock(&pr->pr_mtx); 1127 1128 /* Make sure the named iface exists in the source prison/vnet. */ 1129 CURVNET_SET(pr->pr_vnet); 1130 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1131 if (ifp == NULL) { 1132 CURVNET_RESTORE(); 1133 prison_free(pr); 1134 return (ENXIO); 1135 } 1136 1137 /* Do not try to move the iface from and to the same prison. */ 1138 vnet_dst = TD_TO_VNET(td); 1139 if (vnet_dst == ifp->if_vnet) { 1140 CURVNET_RESTORE(); 1141 prison_free(pr); 1142 return (EEXIST); 1143 } 1144 1145 /* Get interface back from child jail/vnet. */ 1146 if_vmove(ifp, vnet_dst); 1147 CURVNET_RESTORE(); 1148 1149 /* Report the new if_xname back to the userland. */ 1150 sprintf(ifname, "%s", ifp->if_xname); 1151 1152 prison_free(pr); 1153 return (0); 1154 } 1155 #endif /* VIMAGE */ 1156 1157 /* 1158 * Add a group to an interface 1159 */ 1160 int 1161 if_addgroup(struct ifnet *ifp, const char *groupname) 1162 { 1163 struct ifg_list *ifgl; 1164 struct ifg_group *ifg = NULL; 1165 struct ifg_member *ifgm; 1166 int new = 0; 1167 1168 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1169 groupname[strlen(groupname) - 1] <= '9') 1170 return (EINVAL); 1171 1172 IFNET_WLOCK(); 1173 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1174 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1175 IFNET_WUNLOCK(); 1176 return (EEXIST); 1177 } 1178 1179 if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP, 1180 M_NOWAIT)) == NULL) { 1181 IFNET_WUNLOCK(); 1182 return (ENOMEM); 1183 } 1184 1185 if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member), 1186 M_TEMP, M_NOWAIT)) == NULL) { 1187 free(ifgl, M_TEMP); 1188 IFNET_WUNLOCK(); 1189 return (ENOMEM); 1190 } 1191 1192 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1193 if (!strcmp(ifg->ifg_group, groupname)) 1194 break; 1195 1196 if (ifg == NULL) { 1197 if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group), 1198 M_TEMP, M_NOWAIT)) == NULL) { 1199 free(ifgl, M_TEMP); 1200 free(ifgm, M_TEMP); 1201 IFNET_WUNLOCK(); 1202 return (ENOMEM); 1203 } 1204 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1205 ifg->ifg_refcnt = 0; 1206 TAILQ_INIT(&ifg->ifg_members); 1207 TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1208 new = 1; 1209 } 1210 1211 ifg->ifg_refcnt++; 1212 ifgl->ifgl_group = ifg; 1213 ifgm->ifgm_ifp = ifp; 1214 1215 IF_ADDR_WLOCK(ifp); 1216 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1217 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1218 IF_ADDR_WUNLOCK(ifp); 1219 1220 IFNET_WUNLOCK(); 1221 1222 if (new) 1223 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1224 EVENTHANDLER_INVOKE(group_change_event, groupname); 1225 1226 return (0); 1227 } 1228 1229 /* 1230 * Remove a group from an interface 1231 */ 1232 int 1233 if_delgroup(struct ifnet *ifp, const char *groupname) 1234 { 1235 struct ifg_list *ifgl; 1236 struct ifg_member *ifgm; 1237 1238 IFNET_WLOCK(); 1239 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1240 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 1241 break; 1242 if (ifgl == NULL) { 1243 IFNET_WUNLOCK(); 1244 return (ENOENT); 1245 } 1246 1247 IF_ADDR_WLOCK(ifp); 1248 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1249 IF_ADDR_WUNLOCK(ifp); 1250 1251 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1252 if (ifgm->ifgm_ifp == ifp) 1253 break; 1254 1255 if (ifgm != NULL) { 1256 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 1257 free(ifgm, M_TEMP); 1258 } 1259 1260 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1261 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1262 IFNET_WUNLOCK(); 1263 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1264 free(ifgl->ifgl_group, M_TEMP); 1265 } else 1266 IFNET_WUNLOCK(); 1267 1268 free(ifgl, M_TEMP); 1269 1270 EVENTHANDLER_INVOKE(group_change_event, groupname); 1271 1272 return (0); 1273 } 1274 1275 /* 1276 * Remove an interface from all groups 1277 */ 1278 static void 1279 if_delgroups(struct ifnet *ifp) 1280 { 1281 struct ifg_list *ifgl; 1282 struct ifg_member *ifgm; 1283 char groupname[IFNAMSIZ]; 1284 1285 IFNET_WLOCK(); 1286 while (!TAILQ_EMPTY(&ifp->if_groups)) { 1287 ifgl = TAILQ_FIRST(&ifp->if_groups); 1288 1289 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1290 1291 IF_ADDR_WLOCK(ifp); 1292 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1293 IF_ADDR_WUNLOCK(ifp); 1294 1295 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1296 if (ifgm->ifgm_ifp == ifp) 1297 break; 1298 1299 if (ifgm != NULL) { 1300 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1301 ifgm_next); 1302 free(ifgm, M_TEMP); 1303 } 1304 1305 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1306 TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); 1307 IFNET_WUNLOCK(); 1308 EVENTHANDLER_INVOKE(group_detach_event, 1309 ifgl->ifgl_group); 1310 free(ifgl->ifgl_group, M_TEMP); 1311 } else 1312 IFNET_WUNLOCK(); 1313 1314 free(ifgl, M_TEMP); 1315 1316 EVENTHANDLER_INVOKE(group_change_event, groupname); 1317 1318 IFNET_WLOCK(); 1319 } 1320 IFNET_WUNLOCK(); 1321 } 1322 1323 /* 1324 * Stores all groups from an interface in memory pointed 1325 * to by data 1326 */ 1327 static int 1328 if_getgroup(struct ifgroupreq *data, struct ifnet *ifp) 1329 { 1330 int len, error; 1331 struct ifg_list *ifgl; 1332 struct ifg_req ifgrq, *ifgp; 1333 struct ifgroupreq *ifgr = data; 1334 1335 if (ifgr->ifgr_len == 0) { 1336 IF_ADDR_RLOCK(ifp); 1337 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1338 ifgr->ifgr_len += sizeof(struct ifg_req); 1339 IF_ADDR_RUNLOCK(ifp); 1340 return (0); 1341 } 1342 1343 len = ifgr->ifgr_len; 1344 ifgp = ifgr->ifgr_groups; 1345 /* XXX: wire */ 1346 IF_ADDR_RLOCK(ifp); 1347 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1348 if (len < sizeof(ifgrq)) { 1349 IF_ADDR_RUNLOCK(ifp); 1350 return (EINVAL); 1351 } 1352 bzero(&ifgrq, sizeof ifgrq); 1353 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1354 sizeof(ifgrq.ifgrq_group)); 1355 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1356 IF_ADDR_RUNLOCK(ifp); 1357 return (error); 1358 } 1359 len -= sizeof(ifgrq); 1360 ifgp++; 1361 } 1362 IF_ADDR_RUNLOCK(ifp); 1363 1364 return (0); 1365 } 1366 1367 /* 1368 * Stores all members of a group in memory pointed to by data 1369 */ 1370 static int 1371 if_getgroupmembers(struct ifgroupreq *data) 1372 { 1373 struct ifgroupreq *ifgr = data; 1374 struct ifg_group *ifg; 1375 struct ifg_member *ifgm; 1376 struct ifg_req ifgrq, *ifgp; 1377 int len, error; 1378 1379 IFNET_RLOCK(); 1380 TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1381 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1382 break; 1383 if (ifg == NULL) { 1384 IFNET_RUNLOCK(); 1385 return (ENOENT); 1386 } 1387 1388 if (ifgr->ifgr_len == 0) { 1389 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1390 ifgr->ifgr_len += sizeof(ifgrq); 1391 IFNET_RUNLOCK(); 1392 return (0); 1393 } 1394 1395 len = ifgr->ifgr_len; 1396 ifgp = ifgr->ifgr_groups; 1397 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1398 if (len < sizeof(ifgrq)) { 1399 IFNET_RUNLOCK(); 1400 return (EINVAL); 1401 } 1402 bzero(&ifgrq, sizeof ifgrq); 1403 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1404 sizeof(ifgrq.ifgrq_member)); 1405 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1406 IFNET_RUNLOCK(); 1407 return (error); 1408 } 1409 len -= sizeof(ifgrq); 1410 ifgp++; 1411 } 1412 IFNET_RUNLOCK(); 1413 1414 return (0); 1415 } 1416 1417 /* 1418 * Return counter values from counter(9)s stored in ifnet. 1419 */ 1420 uint64_t 1421 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1422 { 1423 1424 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1425 1426 return (counter_u64_fetch(ifp->if_counters[cnt])); 1427 } 1428 1429 /* 1430 * Increase an ifnet counter. Usually used for counters shared 1431 * between the stack and a driver, but function supports them all. 1432 */ 1433 void 1434 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1435 { 1436 1437 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1438 1439 counter_u64_add(ifp->if_counters[cnt], inc); 1440 } 1441 1442 /* 1443 * Copy data from ifnet to userland API structure if_data. 1444 */ 1445 void 1446 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1447 { 1448 1449 ifd->ifi_type = ifp->if_type; 1450 ifd->ifi_physical = 0; 1451 ifd->ifi_addrlen = ifp->if_addrlen; 1452 ifd->ifi_hdrlen = ifp->if_hdrlen; 1453 ifd->ifi_link_state = ifp->if_link_state; 1454 ifd->ifi_vhid = 0; 1455 ifd->ifi_datalen = sizeof(struct if_data); 1456 ifd->ifi_mtu = ifp->if_mtu; 1457 ifd->ifi_metric = ifp->if_metric; 1458 ifd->ifi_baudrate = ifp->if_baudrate; 1459 ifd->ifi_hwassist = ifp->if_hwassist; 1460 ifd->ifi_epoch = ifp->if_epoch; 1461 ifd->ifi_lastchange = ifp->if_lastchange; 1462 1463 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1464 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1465 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1466 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1467 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1468 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1469 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1470 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1471 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1472 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1473 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1474 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1475 } 1476 1477 /* 1478 * Wrapper functions for struct ifnet address list locking macros. These are 1479 * used by kernel modules to avoid encoding programming interface or binary 1480 * interface assumptions that may be violated when kernel-internal locking 1481 * approaches change. 1482 */ 1483 void 1484 if_addr_rlock(struct ifnet *ifp) 1485 { 1486 1487 IF_ADDR_RLOCK(ifp); 1488 } 1489 1490 void 1491 if_addr_runlock(struct ifnet *ifp) 1492 { 1493 1494 IF_ADDR_RUNLOCK(ifp); 1495 } 1496 1497 void 1498 if_maddr_rlock(if_t ifp) 1499 { 1500 1501 IF_ADDR_RLOCK((struct ifnet *)ifp); 1502 } 1503 1504 void 1505 if_maddr_runlock(if_t ifp) 1506 { 1507 1508 IF_ADDR_RUNLOCK((struct ifnet *)ifp); 1509 } 1510 1511 /* 1512 * Initialization, destruction and refcounting functions for ifaddrs. 1513 */ 1514 struct ifaddr * 1515 ifa_alloc(size_t size, int flags) 1516 { 1517 struct ifaddr *ifa; 1518 1519 KASSERT(size >= sizeof(struct ifaddr), 1520 ("%s: invalid size %zu", __func__, size)); 1521 1522 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1523 if (ifa == NULL) 1524 return (NULL); 1525 1526 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1527 goto fail; 1528 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1529 goto fail; 1530 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1531 goto fail; 1532 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1533 goto fail; 1534 1535 refcount_init(&ifa->ifa_refcnt, 1); 1536 1537 return (ifa); 1538 1539 fail: 1540 /* free(NULL) is okay */ 1541 counter_u64_free(ifa->ifa_opackets); 1542 counter_u64_free(ifa->ifa_ipackets); 1543 counter_u64_free(ifa->ifa_obytes); 1544 counter_u64_free(ifa->ifa_ibytes); 1545 free(ifa, M_IFADDR); 1546 1547 return (NULL); 1548 } 1549 1550 void 1551 ifa_ref(struct ifaddr *ifa) 1552 { 1553 1554 refcount_acquire(&ifa->ifa_refcnt); 1555 } 1556 1557 void 1558 ifa_free(struct ifaddr *ifa) 1559 { 1560 1561 if (refcount_release(&ifa->ifa_refcnt)) { 1562 counter_u64_free(ifa->ifa_opackets); 1563 counter_u64_free(ifa->ifa_ipackets); 1564 counter_u64_free(ifa->ifa_obytes); 1565 counter_u64_free(ifa->ifa_ibytes); 1566 free(ifa, M_IFADDR); 1567 } 1568 } 1569 1570 static int 1571 ifa_maintain_loopback_route(int cmd, const char *otype, struct ifaddr *ifa, 1572 struct sockaddr *ia) 1573 { 1574 int error; 1575 struct rt_addrinfo info; 1576 struct sockaddr_dl null_sdl; 1577 struct ifnet *ifp; 1578 1579 ifp = ifa->ifa_ifp; 1580 1581 bzero(&info, sizeof(info)); 1582 if (cmd != RTM_DELETE) 1583 info.rti_ifp = V_loif; 1584 info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; 1585 info.rti_info[RTAX_DST] = ia; 1586 info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; 1587 link_init_sdl(ifp, (struct sockaddr *)&null_sdl, ifp->if_type); 1588 1589 error = rtrequest1_fib(cmd, &info, NULL, ifp->if_fib); 1590 1591 if (error != 0) 1592 log(LOG_DEBUG, "%s: %s failed for interface %s: %u\n", 1593 __func__, otype, if_name(ifp), error); 1594 1595 return (error); 1596 } 1597 1598 int 1599 ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1600 { 1601 1602 return (ifa_maintain_loopback_route(RTM_ADD, "insertion", ifa, ia)); 1603 } 1604 1605 int 1606 ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1607 { 1608 1609 return (ifa_maintain_loopback_route(RTM_DELETE, "deletion", ifa, ia)); 1610 } 1611 1612 int 1613 ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) 1614 { 1615 1616 return (ifa_maintain_loopback_route(RTM_CHANGE, "switch", ifa, ia)); 1617 } 1618 1619 /* 1620 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1621 * structs used to represent other address families, it is necessary 1622 * to perform a different comparison. 1623 */ 1624 1625 #define sa_dl_equal(a1, a2) \ 1626 ((((const struct sockaddr_dl *)(a1))->sdl_len == \ 1627 ((const struct sockaddr_dl *)(a2))->sdl_len) && \ 1628 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \ 1629 CLLADDR((const struct sockaddr_dl *)(a2)), \ 1630 ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1631 1632 /* 1633 * Locate an interface based on a complete address. 1634 */ 1635 /*ARGSUSED*/ 1636 static struct ifaddr * 1637 ifa_ifwithaddr_internal(const struct sockaddr *addr, int getref) 1638 { 1639 struct ifnet *ifp; 1640 struct ifaddr *ifa; 1641 1642 IFNET_RLOCK_NOSLEEP(); 1643 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1644 IF_ADDR_RLOCK(ifp); 1645 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1646 if (ifa->ifa_addr->sa_family != addr->sa_family) 1647 continue; 1648 if (sa_equal(addr, ifa->ifa_addr)) { 1649 if (getref) 1650 ifa_ref(ifa); 1651 IF_ADDR_RUNLOCK(ifp); 1652 goto done; 1653 } 1654 /* IP6 doesn't have broadcast */ 1655 if ((ifp->if_flags & IFF_BROADCAST) && 1656 ifa->ifa_broadaddr && 1657 ifa->ifa_broadaddr->sa_len != 0 && 1658 sa_equal(ifa->ifa_broadaddr, addr)) { 1659 if (getref) 1660 ifa_ref(ifa); 1661 IF_ADDR_RUNLOCK(ifp); 1662 goto done; 1663 } 1664 } 1665 IF_ADDR_RUNLOCK(ifp); 1666 } 1667 ifa = NULL; 1668 done: 1669 IFNET_RUNLOCK_NOSLEEP(); 1670 return (ifa); 1671 } 1672 1673 struct ifaddr * 1674 ifa_ifwithaddr(const struct sockaddr *addr) 1675 { 1676 1677 return (ifa_ifwithaddr_internal(addr, 1)); 1678 } 1679 1680 int 1681 ifa_ifwithaddr_check(const struct sockaddr *addr) 1682 { 1683 1684 return (ifa_ifwithaddr_internal(addr, 0) != NULL); 1685 } 1686 1687 /* 1688 * Locate an interface based on the broadcast address. 1689 */ 1690 /* ARGSUSED */ 1691 struct ifaddr * 1692 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) 1693 { 1694 struct ifnet *ifp; 1695 struct ifaddr *ifa; 1696 1697 IFNET_RLOCK_NOSLEEP(); 1698 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1699 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1700 continue; 1701 IF_ADDR_RLOCK(ifp); 1702 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1703 if (ifa->ifa_addr->sa_family != addr->sa_family) 1704 continue; 1705 if ((ifp->if_flags & IFF_BROADCAST) && 1706 ifa->ifa_broadaddr && 1707 ifa->ifa_broadaddr->sa_len != 0 && 1708 sa_equal(ifa->ifa_broadaddr, addr)) { 1709 ifa_ref(ifa); 1710 IF_ADDR_RUNLOCK(ifp); 1711 goto done; 1712 } 1713 } 1714 IF_ADDR_RUNLOCK(ifp); 1715 } 1716 ifa = NULL; 1717 done: 1718 IFNET_RUNLOCK_NOSLEEP(); 1719 return (ifa); 1720 } 1721 1722 /* 1723 * Locate the point to point interface with a given destination address. 1724 */ 1725 /*ARGSUSED*/ 1726 struct ifaddr * 1727 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) 1728 { 1729 struct ifnet *ifp; 1730 struct ifaddr *ifa; 1731 1732 IFNET_RLOCK_NOSLEEP(); 1733 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1734 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1735 continue; 1736 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1737 continue; 1738 IF_ADDR_RLOCK(ifp); 1739 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1740 if (ifa->ifa_addr->sa_family != addr->sa_family) 1741 continue; 1742 if (ifa->ifa_dstaddr != NULL && 1743 sa_equal(addr, ifa->ifa_dstaddr)) { 1744 ifa_ref(ifa); 1745 IF_ADDR_RUNLOCK(ifp); 1746 goto done; 1747 } 1748 } 1749 IF_ADDR_RUNLOCK(ifp); 1750 } 1751 ifa = NULL; 1752 done: 1753 IFNET_RUNLOCK_NOSLEEP(); 1754 return (ifa); 1755 } 1756 1757 /* 1758 * Find an interface on a specific network. If many, choice 1759 * is most specific found. 1760 */ 1761 struct ifaddr * 1762 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) 1763 { 1764 struct ifnet *ifp; 1765 struct ifaddr *ifa; 1766 struct ifaddr *ifa_maybe = NULL; 1767 u_int af = addr->sa_family; 1768 const char *addr_data = addr->sa_data, *cplim; 1769 1770 /* 1771 * AF_LINK addresses can be looked up directly by their index number, 1772 * so do that if we can. 1773 */ 1774 if (af == AF_LINK) { 1775 const struct sockaddr_dl *sdl = (const struct sockaddr_dl *)addr; 1776 if (sdl->sdl_index && sdl->sdl_index <= V_if_index) 1777 return (ifaddr_byindex(sdl->sdl_index)); 1778 } 1779 1780 /* 1781 * Scan though each interface, looking for ones that have addresses 1782 * in this address family and the requested fib. Maintain a reference 1783 * on ifa_maybe once we find one, as we release the IF_ADDR_RLOCK() that 1784 * kept it stable when we move onto the next interface. 1785 */ 1786 IFNET_RLOCK_NOSLEEP(); 1787 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1788 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1789 continue; 1790 IF_ADDR_RLOCK(ifp); 1791 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1792 const char *cp, *cp2, *cp3; 1793 1794 if (ifa->ifa_addr->sa_family != af) 1795 next: continue; 1796 if (af == AF_INET && 1797 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1798 /* 1799 * This is a bit broken as it doesn't 1800 * take into account that the remote end may 1801 * be a single node in the network we are 1802 * looking for. 1803 * The trouble is that we don't know the 1804 * netmask for the remote end. 1805 */ 1806 if (ifa->ifa_dstaddr != NULL && 1807 sa_equal(addr, ifa->ifa_dstaddr)) { 1808 ifa_ref(ifa); 1809 IF_ADDR_RUNLOCK(ifp); 1810 goto done; 1811 } 1812 } else { 1813 /* 1814 * Scan all the bits in the ifa's address. 1815 * If a bit dissagrees with what we are 1816 * looking for, mask it with the netmask 1817 * to see if it really matters. 1818 * (A byte at a time) 1819 */ 1820 if (ifa->ifa_netmask == 0) 1821 continue; 1822 cp = addr_data; 1823 cp2 = ifa->ifa_addr->sa_data; 1824 cp3 = ifa->ifa_netmask->sa_data; 1825 cplim = ifa->ifa_netmask->sa_len 1826 + (char *)ifa->ifa_netmask; 1827 while (cp3 < cplim) 1828 if ((*cp++ ^ *cp2++) & *cp3++) 1829 goto next; /* next address! */ 1830 /* 1831 * If the netmask of what we just found 1832 * is more specific than what we had before 1833 * (if we had one), or if the virtual status 1834 * of new prefix is better than of the old one, 1835 * then remember the new one before continuing 1836 * to search for an even better one. 1837 */ 1838 if (ifa_maybe == NULL || 1839 ifa_preferred(ifa_maybe, ifa) || 1840 rn_refines((caddr_t)ifa->ifa_netmask, 1841 (caddr_t)ifa_maybe->ifa_netmask)) { 1842 if (ifa_maybe != NULL) 1843 ifa_free(ifa_maybe); 1844 ifa_maybe = ifa; 1845 ifa_ref(ifa_maybe); 1846 } 1847 } 1848 } 1849 IF_ADDR_RUNLOCK(ifp); 1850 } 1851 ifa = ifa_maybe; 1852 ifa_maybe = NULL; 1853 done: 1854 IFNET_RUNLOCK_NOSLEEP(); 1855 if (ifa_maybe != NULL) 1856 ifa_free(ifa_maybe); 1857 return (ifa); 1858 } 1859 1860 /* 1861 * Find an interface address specific to an interface best matching 1862 * a given address. 1863 */ 1864 struct ifaddr * 1865 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 1866 { 1867 struct ifaddr *ifa; 1868 const char *cp, *cp2, *cp3; 1869 char *cplim; 1870 struct ifaddr *ifa_maybe = NULL; 1871 u_int af = addr->sa_family; 1872 1873 if (af >= AF_MAX) 1874 return (NULL); 1875 IF_ADDR_RLOCK(ifp); 1876 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1877 if (ifa->ifa_addr->sa_family != af) 1878 continue; 1879 if (ifa_maybe == NULL) 1880 ifa_maybe = ifa; 1881 if (ifa->ifa_netmask == 0) { 1882 if (sa_equal(addr, ifa->ifa_addr) || 1883 (ifa->ifa_dstaddr && 1884 sa_equal(addr, ifa->ifa_dstaddr))) 1885 goto done; 1886 continue; 1887 } 1888 if (ifp->if_flags & IFF_POINTOPOINT) { 1889 if (sa_equal(addr, ifa->ifa_dstaddr)) 1890 goto done; 1891 } else { 1892 cp = addr->sa_data; 1893 cp2 = ifa->ifa_addr->sa_data; 1894 cp3 = ifa->ifa_netmask->sa_data; 1895 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1896 for (; cp3 < cplim; cp3++) 1897 if ((*cp++ ^ *cp2++) & *cp3) 1898 break; 1899 if (cp3 == cplim) 1900 goto done; 1901 } 1902 } 1903 ifa = ifa_maybe; 1904 done: 1905 if (ifa != NULL) 1906 ifa_ref(ifa); 1907 IF_ADDR_RUNLOCK(ifp); 1908 return (ifa); 1909 } 1910 1911 /* 1912 * See whether new ifa is better than current one: 1913 * 1) A non-virtual one is preferred over virtual. 1914 * 2) A virtual in master state preferred over any other state. 1915 * 1916 * Used in several address selecting functions. 1917 */ 1918 int 1919 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 1920 { 1921 1922 return (cur->ifa_carp && (!next->ifa_carp || 1923 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 1924 } 1925 1926 #include <net/if_llatbl.h> 1927 1928 /* 1929 * Default action when installing a route with a Link Level gateway. 1930 * Lookup an appropriate real ifa to point to. 1931 * This should be moved to /sys/net/link.c eventually. 1932 */ 1933 static void 1934 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 1935 { 1936 struct ifaddr *ifa, *oifa; 1937 struct sockaddr *dst; 1938 struct ifnet *ifp; 1939 1940 if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || 1941 ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) 1942 return; 1943 ifa = ifaof_ifpforaddr(dst, ifp); 1944 if (ifa) { 1945 oifa = rt->rt_ifa; 1946 rt->rt_ifa = ifa; 1947 ifa_free(oifa); 1948 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1949 ifa->ifa_rtrequest(cmd, rt, info); 1950 } 1951 } 1952 1953 struct sockaddr_dl * 1954 link_alloc_sdl(size_t size, int flags) 1955 { 1956 1957 return (malloc(size, M_TEMP, flags)); 1958 } 1959 1960 void 1961 link_free_sdl(struct sockaddr *sa) 1962 { 1963 free(sa, M_TEMP); 1964 } 1965 1966 /* 1967 * Fills in given sdl with interface basic info. 1968 * Returns pointer to filled sdl. 1969 */ 1970 struct sockaddr_dl * 1971 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 1972 { 1973 struct sockaddr_dl *sdl; 1974 1975 sdl = (struct sockaddr_dl *)paddr; 1976 memset(sdl, 0, sizeof(struct sockaddr_dl)); 1977 sdl->sdl_len = sizeof(struct sockaddr_dl); 1978 sdl->sdl_family = AF_LINK; 1979 sdl->sdl_index = ifp->if_index; 1980 sdl->sdl_type = iftype; 1981 1982 return (sdl); 1983 } 1984 1985 /* 1986 * Mark an interface down and notify protocols of 1987 * the transition. 1988 */ 1989 static void 1990 if_unroute(struct ifnet *ifp, int flag, int fam) 1991 { 1992 struct ifaddr *ifa; 1993 1994 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 1995 1996 ifp->if_flags &= ~flag; 1997 getmicrotime(&ifp->if_lastchange); 1998 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 1999 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2000 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2001 ifp->if_qflush(ifp); 2002 2003 if (ifp->if_carp) 2004 (*carp_linkstate_p)(ifp); 2005 rt_ifmsg(ifp); 2006 } 2007 2008 /* 2009 * Mark an interface up and notify protocols of 2010 * the transition. 2011 */ 2012 static void 2013 if_route(struct ifnet *ifp, int flag, int fam) 2014 { 2015 struct ifaddr *ifa; 2016 2017 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 2018 2019 ifp->if_flags |= flag; 2020 getmicrotime(&ifp->if_lastchange); 2021 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 2022 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 2023 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2024 if (ifp->if_carp) 2025 (*carp_linkstate_p)(ifp); 2026 rt_ifmsg(ifp); 2027 #ifdef INET6 2028 in6_if_up(ifp); 2029 #endif 2030 } 2031 2032 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2033 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2034 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2035 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2036 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2037 int (*vlan_setcookie_p)(struct ifnet *, void *); 2038 void *(*vlan_cookie_p)(struct ifnet *); 2039 2040 /* 2041 * Handle a change in the interface link state. To avoid LORs 2042 * between driver lock and upper layer locks, as well as possible 2043 * recursions, we post event to taskqueue, and all job 2044 * is done in static do_link_state_change(). 2045 */ 2046 void 2047 if_link_state_change(struct ifnet *ifp, int link_state) 2048 { 2049 /* Return if state hasn't changed. */ 2050 if (ifp->if_link_state == link_state) 2051 return; 2052 2053 ifp->if_link_state = link_state; 2054 2055 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2056 } 2057 2058 static void 2059 do_link_state_change(void *arg, int pending) 2060 { 2061 struct ifnet *ifp = (struct ifnet *)arg; 2062 int link_state = ifp->if_link_state; 2063 CURVNET_SET(ifp->if_vnet); 2064 2065 /* Notify that the link state has changed. */ 2066 rt_ifmsg(ifp); 2067 if (ifp->if_vlantrunk != NULL) 2068 (*vlan_link_state_p)(ifp); 2069 2070 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2071 ifp->if_l2com != NULL) 2072 (*ng_ether_link_state_p)(ifp, link_state); 2073 if (ifp->if_carp) 2074 (*carp_linkstate_p)(ifp); 2075 if (ifp->if_bridge) 2076 (*bridge_linkstate_p)(ifp); 2077 if (ifp->if_lagg) 2078 (*lagg_linkstate_p)(ifp, link_state); 2079 2080 if (IS_DEFAULT_VNET(curvnet)) 2081 devctl_notify("IFNET", ifp->if_xname, 2082 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2083 NULL); 2084 if (pending > 1) 2085 if_printf(ifp, "%d link states coalesced\n", pending); 2086 if (log_link_state_change) 2087 log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname, 2088 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2089 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, ifp->if_link_state); 2090 CURVNET_RESTORE(); 2091 } 2092 2093 /* 2094 * Mark an interface down and notify protocols of 2095 * the transition. 2096 */ 2097 void 2098 if_down(struct ifnet *ifp) 2099 { 2100 2101 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2102 } 2103 2104 /* 2105 * Mark an interface up and notify protocols of 2106 * the transition. 2107 */ 2108 void 2109 if_up(struct ifnet *ifp) 2110 { 2111 2112 if_route(ifp, IFF_UP, AF_UNSPEC); 2113 } 2114 2115 /* 2116 * Flush an interface queue. 2117 */ 2118 void 2119 if_qflush(struct ifnet *ifp) 2120 { 2121 struct mbuf *m, *n; 2122 struct ifaltq *ifq; 2123 2124 ifq = &ifp->if_snd; 2125 IFQ_LOCK(ifq); 2126 #ifdef ALTQ 2127 if (ALTQ_IS_ENABLED(ifq)) 2128 ALTQ_PURGE(ifq); 2129 #endif 2130 n = ifq->ifq_head; 2131 while ((m = n) != 0) { 2132 n = m->m_nextpkt; 2133 m_freem(m); 2134 } 2135 ifq->ifq_head = 0; 2136 ifq->ifq_tail = 0; 2137 ifq->ifq_len = 0; 2138 IFQ_UNLOCK(ifq); 2139 } 2140 2141 /* 2142 * Map interface name to interface structure pointer, with or without 2143 * returning a reference. 2144 */ 2145 struct ifnet * 2146 ifunit_ref(const char *name) 2147 { 2148 struct ifnet *ifp; 2149 2150 IFNET_RLOCK_NOSLEEP(); 2151 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2152 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2153 !(ifp->if_flags & IFF_DYING)) 2154 break; 2155 } 2156 if (ifp != NULL) 2157 if_ref(ifp); 2158 IFNET_RUNLOCK_NOSLEEP(); 2159 return (ifp); 2160 } 2161 2162 struct ifnet * 2163 ifunit(const char *name) 2164 { 2165 struct ifnet *ifp; 2166 2167 IFNET_RLOCK_NOSLEEP(); 2168 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2169 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2170 break; 2171 } 2172 IFNET_RUNLOCK_NOSLEEP(); 2173 return (ifp); 2174 } 2175 2176 /* 2177 * Hardware specific interface ioctls. 2178 */ 2179 static int 2180 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2181 { 2182 struct ifreq *ifr; 2183 int error = 0; 2184 int new_flags, temp_flags; 2185 size_t namelen, onamelen; 2186 size_t descrlen; 2187 char *descrbuf, *odescrbuf; 2188 char new_name[IFNAMSIZ]; 2189 struct ifaddr *ifa; 2190 struct sockaddr_dl *sdl; 2191 2192 ifr = (struct ifreq *)data; 2193 switch (cmd) { 2194 case SIOCGIFINDEX: 2195 ifr->ifr_index = ifp->if_index; 2196 break; 2197 2198 case SIOCGIFFLAGS: 2199 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2200 ifr->ifr_flags = temp_flags & 0xffff; 2201 ifr->ifr_flagshigh = temp_flags >> 16; 2202 break; 2203 2204 case SIOCGIFCAP: 2205 ifr->ifr_reqcap = ifp->if_capabilities; 2206 ifr->ifr_curcap = ifp->if_capenable; 2207 break; 2208 2209 #ifdef MAC 2210 case SIOCGIFMAC: 2211 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2212 break; 2213 #endif 2214 2215 case SIOCGIFMETRIC: 2216 ifr->ifr_metric = ifp->if_metric; 2217 break; 2218 2219 case SIOCGIFMTU: 2220 ifr->ifr_mtu = ifp->if_mtu; 2221 break; 2222 2223 case SIOCGIFPHYS: 2224 /* XXXGL: did this ever worked? */ 2225 ifr->ifr_phys = 0; 2226 break; 2227 2228 case SIOCGIFDESCR: 2229 error = 0; 2230 sx_slock(&ifdescr_sx); 2231 if (ifp->if_description == NULL) 2232 error = ENOMSG; 2233 else { 2234 /* space for terminating nul */ 2235 descrlen = strlen(ifp->if_description) + 1; 2236 if (ifr->ifr_buffer.length < descrlen) 2237 ifr->ifr_buffer.buffer = NULL; 2238 else 2239 error = copyout(ifp->if_description, 2240 ifr->ifr_buffer.buffer, descrlen); 2241 ifr->ifr_buffer.length = descrlen; 2242 } 2243 sx_sunlock(&ifdescr_sx); 2244 break; 2245 2246 case SIOCSIFDESCR: 2247 error = priv_check(td, PRIV_NET_SETIFDESCR); 2248 if (error) 2249 return (error); 2250 2251 /* 2252 * Copy only (length-1) bytes to make sure that 2253 * if_description is always nul terminated. The 2254 * length parameter is supposed to count the 2255 * terminating nul in. 2256 */ 2257 if (ifr->ifr_buffer.length > ifdescr_maxlen) 2258 return (ENAMETOOLONG); 2259 else if (ifr->ifr_buffer.length == 0) 2260 descrbuf = NULL; 2261 else { 2262 descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR, 2263 M_WAITOK | M_ZERO); 2264 error = copyin(ifr->ifr_buffer.buffer, descrbuf, 2265 ifr->ifr_buffer.length - 1); 2266 if (error) { 2267 free(descrbuf, M_IFDESCR); 2268 break; 2269 } 2270 } 2271 2272 sx_xlock(&ifdescr_sx); 2273 odescrbuf = ifp->if_description; 2274 ifp->if_description = descrbuf; 2275 sx_xunlock(&ifdescr_sx); 2276 2277 getmicrotime(&ifp->if_lastchange); 2278 free(odescrbuf, M_IFDESCR); 2279 break; 2280 2281 case SIOCGIFFIB: 2282 ifr->ifr_fib = ifp->if_fib; 2283 break; 2284 2285 case SIOCSIFFIB: 2286 error = priv_check(td, PRIV_NET_SETIFFIB); 2287 if (error) 2288 return (error); 2289 if (ifr->ifr_fib >= rt_numfibs) 2290 return (EINVAL); 2291 2292 ifp->if_fib = ifr->ifr_fib; 2293 break; 2294 2295 case SIOCSIFFLAGS: 2296 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2297 if (error) 2298 return (error); 2299 /* 2300 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2301 * check, so we don't need special handling here yet. 2302 */ 2303 new_flags = (ifr->ifr_flags & 0xffff) | 2304 (ifr->ifr_flagshigh << 16); 2305 if (ifp->if_flags & IFF_UP && 2306 (new_flags & IFF_UP) == 0) { 2307 if_down(ifp); 2308 } else if (new_flags & IFF_UP && 2309 (ifp->if_flags & IFF_UP) == 0) { 2310 if_up(ifp); 2311 } 2312 /* See if permanently promiscuous mode bit is about to flip */ 2313 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2314 if (new_flags & IFF_PPROMISC) 2315 ifp->if_flags |= IFF_PROMISC; 2316 else if (ifp->if_pcount == 0) 2317 ifp->if_flags &= ~IFF_PROMISC; 2318 log(LOG_INFO, "%s: permanently promiscuous mode %s\n", 2319 ifp->if_xname, 2320 (new_flags & IFF_PPROMISC) ? "enabled" : "disabled"); 2321 } 2322 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2323 (new_flags &~ IFF_CANTCHANGE); 2324 if (ifp->if_ioctl) { 2325 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2326 } 2327 getmicrotime(&ifp->if_lastchange); 2328 break; 2329 2330 case SIOCSIFCAP: 2331 error = priv_check(td, PRIV_NET_SETIFCAP); 2332 if (error) 2333 return (error); 2334 if (ifp->if_ioctl == NULL) 2335 return (EOPNOTSUPP); 2336 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2337 return (EINVAL); 2338 error = (*ifp->if_ioctl)(ifp, cmd, data); 2339 if (error == 0) 2340 getmicrotime(&ifp->if_lastchange); 2341 break; 2342 2343 #ifdef MAC 2344 case SIOCSIFMAC: 2345 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2346 break; 2347 #endif 2348 2349 case SIOCSIFNAME: 2350 error = priv_check(td, PRIV_NET_SETIFNAME); 2351 if (error) 2352 return (error); 2353 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 2354 if (error != 0) 2355 return (error); 2356 if (new_name[0] == '\0') 2357 return (EINVAL); 2358 if (ifunit(new_name) != NULL) 2359 return (EEXIST); 2360 2361 /* 2362 * XXX: Locking. Nothing else seems to lock if_flags, 2363 * and there are numerous other races with the 2364 * ifunit() checks not being atomic with namespace 2365 * changes (renames, vmoves, if_attach, etc). 2366 */ 2367 ifp->if_flags |= IFF_RENAMING; 2368 2369 /* Announce the departure of the interface. */ 2370 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 2371 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 2372 2373 log(LOG_INFO, "%s: changing name to '%s'\n", 2374 ifp->if_xname, new_name); 2375 2376 IF_ADDR_WLOCK(ifp); 2377 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 2378 ifa = ifp->if_addr; 2379 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 2380 namelen = strlen(new_name); 2381 onamelen = sdl->sdl_nlen; 2382 /* 2383 * Move the address if needed. This is safe because we 2384 * allocate space for a name of length IFNAMSIZ when we 2385 * create this in if_attach(). 2386 */ 2387 if (namelen != onamelen) { 2388 bcopy(sdl->sdl_data + onamelen, 2389 sdl->sdl_data + namelen, sdl->sdl_alen); 2390 } 2391 bcopy(new_name, sdl->sdl_data, namelen); 2392 sdl->sdl_nlen = namelen; 2393 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 2394 bzero(sdl->sdl_data, onamelen); 2395 while (namelen != 0) 2396 sdl->sdl_data[--namelen] = 0xff; 2397 IF_ADDR_WUNLOCK(ifp); 2398 2399 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 2400 /* Announce the return of the interface. */ 2401 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 2402 2403 ifp->if_flags &= ~IFF_RENAMING; 2404 break; 2405 2406 #ifdef VIMAGE 2407 case SIOCSIFVNET: 2408 error = priv_check(td, PRIV_NET_SETIFVNET); 2409 if (error) 2410 return (error); 2411 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2412 break; 2413 #endif 2414 2415 case SIOCSIFMETRIC: 2416 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2417 if (error) 2418 return (error); 2419 ifp->if_metric = ifr->ifr_metric; 2420 getmicrotime(&ifp->if_lastchange); 2421 break; 2422 2423 case SIOCSIFPHYS: 2424 error = priv_check(td, PRIV_NET_SETIFPHYS); 2425 if (error) 2426 return (error); 2427 if (ifp->if_ioctl == NULL) 2428 return (EOPNOTSUPP); 2429 error = (*ifp->if_ioctl)(ifp, cmd, data); 2430 if (error == 0) 2431 getmicrotime(&ifp->if_lastchange); 2432 break; 2433 2434 case SIOCSIFMTU: 2435 { 2436 u_long oldmtu = ifp->if_mtu; 2437 2438 error = priv_check(td, PRIV_NET_SETIFMTU); 2439 if (error) 2440 return (error); 2441 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2442 return (EINVAL); 2443 if (ifp->if_ioctl == NULL) 2444 return (EOPNOTSUPP); 2445 error = (*ifp->if_ioctl)(ifp, cmd, data); 2446 if (error == 0) { 2447 getmicrotime(&ifp->if_lastchange); 2448 rt_ifmsg(ifp); 2449 } 2450 /* 2451 * If the link MTU changed, do network layer specific procedure. 2452 */ 2453 if (ifp->if_mtu != oldmtu) { 2454 #ifdef INET6 2455 nd6_setmtu(ifp); 2456 #endif 2457 rt_updatemtu(ifp); 2458 } 2459 break; 2460 } 2461 2462 case SIOCADDMULTI: 2463 case SIOCDELMULTI: 2464 if (cmd == SIOCADDMULTI) 2465 error = priv_check(td, PRIV_NET_ADDMULTI); 2466 else 2467 error = priv_check(td, PRIV_NET_DELMULTI); 2468 if (error) 2469 return (error); 2470 2471 /* Don't allow group membership on non-multicast interfaces. */ 2472 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2473 return (EOPNOTSUPP); 2474 2475 /* Don't let users screw up protocols' entries. */ 2476 if (ifr->ifr_addr.sa_family != AF_LINK) 2477 return (EINVAL); 2478 2479 if (cmd == SIOCADDMULTI) { 2480 struct ifmultiaddr *ifma; 2481 2482 /* 2483 * Userland is only permitted to join groups once 2484 * via the if_addmulti() KPI, because it cannot hold 2485 * struct ifmultiaddr * between calls. It may also 2486 * lose a race while we check if the membership 2487 * already exists. 2488 */ 2489 IF_ADDR_RLOCK(ifp); 2490 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2491 IF_ADDR_RUNLOCK(ifp); 2492 if (ifma != NULL) 2493 error = EADDRINUSE; 2494 else 2495 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2496 } else { 2497 error = if_delmulti(ifp, &ifr->ifr_addr); 2498 } 2499 if (error == 0) 2500 getmicrotime(&ifp->if_lastchange); 2501 break; 2502 2503 case SIOCSIFPHYADDR: 2504 case SIOCDIFPHYADDR: 2505 #ifdef INET6 2506 case SIOCSIFPHYADDR_IN6: 2507 #endif 2508 case SIOCSIFMEDIA: 2509 case SIOCSIFGENERIC: 2510 error = priv_check(td, PRIV_NET_HWIOCTL); 2511 if (error) 2512 return (error); 2513 if (ifp->if_ioctl == NULL) 2514 return (EOPNOTSUPP); 2515 error = (*ifp->if_ioctl)(ifp, cmd, data); 2516 if (error == 0) 2517 getmicrotime(&ifp->if_lastchange); 2518 break; 2519 2520 case SIOCGIFSTATUS: 2521 case SIOCGIFPSRCADDR: 2522 case SIOCGIFPDSTADDR: 2523 case SIOCGIFMEDIA: 2524 case SIOCGIFXMEDIA: 2525 case SIOCGIFGENERIC: 2526 if (ifp->if_ioctl == NULL) 2527 return (EOPNOTSUPP); 2528 error = (*ifp->if_ioctl)(ifp, cmd, data); 2529 break; 2530 2531 case SIOCSIFLLADDR: 2532 error = priv_check(td, PRIV_NET_SETLLADDR); 2533 if (error) 2534 return (error); 2535 error = if_setlladdr(ifp, 2536 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2537 break; 2538 2539 case SIOCAIFGROUP: 2540 { 2541 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2542 2543 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2544 if (error) 2545 return (error); 2546 if ((error = if_addgroup(ifp, ifgr->ifgr_group))) 2547 return (error); 2548 break; 2549 } 2550 2551 case SIOCGIFGROUP: 2552 if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp))) 2553 return (error); 2554 break; 2555 2556 case SIOCDIFGROUP: 2557 { 2558 struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; 2559 2560 error = priv_check(td, PRIV_NET_DELIFGROUP); 2561 if (error) 2562 return (error); 2563 if ((error = if_delgroup(ifp, ifgr->ifgr_group))) 2564 return (error); 2565 break; 2566 } 2567 2568 default: 2569 error = ENOIOCTL; 2570 break; 2571 } 2572 return (error); 2573 } 2574 2575 #ifdef COMPAT_FREEBSD32 2576 struct ifconf32 { 2577 int32_t ifc_len; 2578 union { 2579 uint32_t ifcu_buf; 2580 uint32_t ifcu_req; 2581 } ifc_ifcu; 2582 }; 2583 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 2584 #endif 2585 2586 /* 2587 * Interface ioctls. 2588 */ 2589 int 2590 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2591 { 2592 struct ifnet *ifp; 2593 struct ifreq *ifr; 2594 int error; 2595 int oif_flags; 2596 2597 CURVNET_SET(so->so_vnet); 2598 switch (cmd) { 2599 case SIOCGIFCONF: 2600 error = ifconf(cmd, data); 2601 CURVNET_RESTORE(); 2602 return (error); 2603 2604 #ifdef COMPAT_FREEBSD32 2605 case SIOCGIFCONF32: 2606 { 2607 struct ifconf32 *ifc32; 2608 struct ifconf ifc; 2609 2610 ifc32 = (struct ifconf32 *)data; 2611 ifc.ifc_len = ifc32->ifc_len; 2612 ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2613 2614 error = ifconf(SIOCGIFCONF, (void *)&ifc); 2615 CURVNET_RESTORE(); 2616 if (error == 0) 2617 ifc32->ifc_len = ifc.ifc_len; 2618 return (error); 2619 } 2620 #endif 2621 } 2622 ifr = (struct ifreq *)data; 2623 2624 switch (cmd) { 2625 #ifdef VIMAGE 2626 case SIOCSIFRVNET: 2627 error = priv_check(td, PRIV_NET_SETIFVNET); 2628 if (error == 0) 2629 error = if_vmove_reclaim(td, ifr->ifr_name, 2630 ifr->ifr_jid); 2631 CURVNET_RESTORE(); 2632 return (error); 2633 #endif 2634 case SIOCIFCREATE: 2635 case SIOCIFCREATE2: 2636 error = priv_check(td, PRIV_NET_IFCREATE); 2637 if (error == 0) 2638 error = if_clone_create(ifr->ifr_name, 2639 sizeof(ifr->ifr_name), 2640 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL); 2641 CURVNET_RESTORE(); 2642 return (error); 2643 case SIOCIFDESTROY: 2644 error = priv_check(td, PRIV_NET_IFDESTROY); 2645 if (error == 0) 2646 error = if_clone_destroy(ifr->ifr_name); 2647 CURVNET_RESTORE(); 2648 return (error); 2649 2650 case SIOCIFGCLONERS: 2651 error = if_clone_list((struct if_clonereq *)data); 2652 CURVNET_RESTORE(); 2653 return (error); 2654 case SIOCGIFGMEMB: 2655 error = if_getgroupmembers((struct ifgroupreq *)data); 2656 CURVNET_RESTORE(); 2657 return (error); 2658 #if defined(INET) || defined(INET6) 2659 case SIOCSVH: 2660 case SIOCGVH: 2661 if (carp_ioctl_p == NULL) 2662 error = EPROTONOSUPPORT; 2663 else 2664 error = (*carp_ioctl_p)(ifr, cmd, td); 2665 CURVNET_RESTORE(); 2666 return (error); 2667 #endif 2668 } 2669 2670 ifp = ifunit_ref(ifr->ifr_name); 2671 if (ifp == NULL) { 2672 CURVNET_RESTORE(); 2673 return (ENXIO); 2674 } 2675 2676 error = ifhwioctl(cmd, ifp, data, td); 2677 if (error != ENOIOCTL) { 2678 if_rele(ifp); 2679 CURVNET_RESTORE(); 2680 return (error); 2681 } 2682 2683 oif_flags = ifp->if_flags; 2684 if (so->so_proto == NULL) { 2685 if_rele(ifp); 2686 CURVNET_RESTORE(); 2687 return (EOPNOTSUPP); 2688 } 2689 2690 /* 2691 * Pass the request on to the socket control method, and if the 2692 * latter returns EOPNOTSUPP, directly to the interface. 2693 * 2694 * Make an exception for the legacy SIOCSIF* requests. Drivers 2695 * trust SIOCSIFADDR et al to come from an already privileged 2696 * layer, and do not perform any credentials checks or input 2697 * validation. 2698 */ 2699 error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, 2700 ifp, td)); 2701 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 2702 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 2703 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 2704 error = (*ifp->if_ioctl)(ifp, cmd, data); 2705 2706 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 2707 #ifdef INET6 2708 if (ifp->if_flags & IFF_UP) 2709 in6_if_up(ifp); 2710 #endif 2711 } 2712 if_rele(ifp); 2713 CURVNET_RESTORE(); 2714 return (error); 2715 } 2716 2717 /* 2718 * The code common to handling reference counted flags, 2719 * e.g., in ifpromisc() and if_allmulti(). 2720 * The "pflag" argument can specify a permanent mode flag to check, 2721 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 2722 * 2723 * Only to be used on stack-owned flags, not driver-owned flags. 2724 */ 2725 static int 2726 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 2727 { 2728 struct ifreq ifr; 2729 int error; 2730 int oldflags, oldcount; 2731 2732 /* Sanity checks to catch programming errors */ 2733 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 2734 ("%s: setting driver-owned flag %d", __func__, flag)); 2735 2736 if (onswitch) 2737 KASSERT(*refcount >= 0, 2738 ("%s: increment negative refcount %d for flag %d", 2739 __func__, *refcount, flag)); 2740 else 2741 KASSERT(*refcount > 0, 2742 ("%s: decrement non-positive refcount %d for flag %d", 2743 __func__, *refcount, flag)); 2744 2745 /* In case this mode is permanent, just touch refcount */ 2746 if (ifp->if_flags & pflag) { 2747 *refcount += onswitch ? 1 : -1; 2748 return (0); 2749 } 2750 2751 /* Save ifnet parameters for if_ioctl() may fail */ 2752 oldcount = *refcount; 2753 oldflags = ifp->if_flags; 2754 2755 /* 2756 * See if we aren't the only and touching refcount is enough. 2757 * Actually toggle interface flag if we are the first or last. 2758 */ 2759 if (onswitch) { 2760 if ((*refcount)++) 2761 return (0); 2762 ifp->if_flags |= flag; 2763 } else { 2764 if (--(*refcount)) 2765 return (0); 2766 ifp->if_flags &= ~flag; 2767 } 2768 2769 /* Call down the driver since we've changed interface flags */ 2770 if (ifp->if_ioctl == NULL) { 2771 error = EOPNOTSUPP; 2772 goto recover; 2773 } 2774 ifr.ifr_flags = ifp->if_flags & 0xffff; 2775 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2776 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 2777 if (error) 2778 goto recover; 2779 /* Notify userland that interface flags have changed */ 2780 rt_ifmsg(ifp); 2781 return (0); 2782 2783 recover: 2784 /* Recover after driver error */ 2785 *refcount = oldcount; 2786 ifp->if_flags = oldflags; 2787 return (error); 2788 } 2789 2790 /* 2791 * Set/clear promiscuous mode on interface ifp based on the truth value 2792 * of pswitch. The calls are reference counted so that only the first 2793 * "on" request actually has an effect, as does the final "off" request. 2794 * Results are undefined if the "off" and "on" requests are not matched. 2795 */ 2796 int 2797 ifpromisc(struct ifnet *ifp, int pswitch) 2798 { 2799 int error; 2800 int oldflags = ifp->if_flags; 2801 2802 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 2803 &ifp->if_pcount, pswitch); 2804 /* If promiscuous mode status has changed, log a message */ 2805 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC)) 2806 log(LOG_INFO, "%s: promiscuous mode %s\n", 2807 ifp->if_xname, 2808 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 2809 return (error); 2810 } 2811 2812 /* 2813 * Return interface configuration 2814 * of system. List may be used 2815 * in later ioctl's (above) to get 2816 * other information. 2817 */ 2818 /*ARGSUSED*/ 2819 static int 2820 ifconf(u_long cmd, caddr_t data) 2821 { 2822 struct ifconf *ifc = (struct ifconf *)data; 2823 struct ifnet *ifp; 2824 struct ifaddr *ifa; 2825 struct ifreq ifr; 2826 struct sbuf *sb; 2827 int error, full = 0, valid_len, max_len; 2828 2829 /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ 2830 max_len = MAXPHYS - 1; 2831 2832 /* Prevent hostile input from being able to crash the system */ 2833 if (ifc->ifc_len <= 0) 2834 return (EINVAL); 2835 2836 again: 2837 if (ifc->ifc_len <= max_len) { 2838 max_len = ifc->ifc_len; 2839 full = 1; 2840 } 2841 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 2842 max_len = 0; 2843 valid_len = 0; 2844 2845 IFNET_RLOCK(); 2846 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2847 int addrs; 2848 2849 /* 2850 * Zero the ifr_name buffer to make sure we don't 2851 * disclose the contents of the stack. 2852 */ 2853 memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name)); 2854 2855 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 2856 >= sizeof(ifr.ifr_name)) { 2857 sbuf_delete(sb); 2858 IFNET_RUNLOCK(); 2859 return (ENAMETOOLONG); 2860 } 2861 2862 addrs = 0; 2863 IF_ADDR_RLOCK(ifp); 2864 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2865 struct sockaddr *sa = ifa->ifa_addr; 2866 2867 if (prison_if(curthread->td_ucred, sa) != 0) 2868 continue; 2869 addrs++; 2870 if (sa->sa_len <= sizeof(*sa)) { 2871 ifr.ifr_addr = *sa; 2872 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2873 max_len += sizeof(ifr); 2874 } else { 2875 sbuf_bcat(sb, &ifr, 2876 offsetof(struct ifreq, ifr_addr)); 2877 max_len += offsetof(struct ifreq, ifr_addr); 2878 sbuf_bcat(sb, sa, sa->sa_len); 2879 max_len += sa->sa_len; 2880 } 2881 2882 if (sbuf_error(sb) == 0) 2883 valid_len = sbuf_len(sb); 2884 } 2885 IF_ADDR_RUNLOCK(ifp); 2886 if (addrs == 0) { 2887 bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); 2888 sbuf_bcat(sb, &ifr, sizeof(ifr)); 2889 max_len += sizeof(ifr); 2890 2891 if (sbuf_error(sb) == 0) 2892 valid_len = sbuf_len(sb); 2893 } 2894 } 2895 IFNET_RUNLOCK(); 2896 2897 /* 2898 * If we didn't allocate enough space (uncommon), try again. If 2899 * we have already allocated as much space as we are allowed, 2900 * return what we've got. 2901 */ 2902 if (valid_len != max_len && !full) { 2903 sbuf_delete(sb); 2904 goto again; 2905 } 2906 2907 ifc->ifc_len = valid_len; 2908 sbuf_finish(sb); 2909 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 2910 sbuf_delete(sb); 2911 return (error); 2912 } 2913 2914 /* 2915 * Just like ifpromisc(), but for all-multicast-reception mode. 2916 */ 2917 int 2918 if_allmulti(struct ifnet *ifp, int onswitch) 2919 { 2920 2921 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 2922 } 2923 2924 struct ifmultiaddr * 2925 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) 2926 { 2927 struct ifmultiaddr *ifma; 2928 2929 IF_ADDR_LOCK_ASSERT(ifp); 2930 2931 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2932 if (sa->sa_family == AF_LINK) { 2933 if (sa_dl_equal(ifma->ifma_addr, sa)) 2934 break; 2935 } else { 2936 if (sa_equal(ifma->ifma_addr, sa)) 2937 break; 2938 } 2939 } 2940 2941 return ifma; 2942 } 2943 2944 /* 2945 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 2946 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 2947 * the ifnet multicast address list here, so the caller must do that and 2948 * other setup work (such as notifying the device driver). The reference 2949 * count is initialized to 1. 2950 */ 2951 static struct ifmultiaddr * 2952 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 2953 int mflags) 2954 { 2955 struct ifmultiaddr *ifma; 2956 struct sockaddr *dupsa; 2957 2958 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 2959 M_ZERO); 2960 if (ifma == NULL) 2961 return (NULL); 2962 2963 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 2964 if (dupsa == NULL) { 2965 free(ifma, M_IFMADDR); 2966 return (NULL); 2967 } 2968 bcopy(sa, dupsa, sa->sa_len); 2969 ifma->ifma_addr = dupsa; 2970 2971 ifma->ifma_ifp = ifp; 2972 ifma->ifma_refcount = 1; 2973 ifma->ifma_protospec = NULL; 2974 2975 if (llsa == NULL) { 2976 ifma->ifma_lladdr = NULL; 2977 return (ifma); 2978 } 2979 2980 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 2981 if (dupsa == NULL) { 2982 free(ifma->ifma_addr, M_IFMADDR); 2983 free(ifma, M_IFMADDR); 2984 return (NULL); 2985 } 2986 bcopy(llsa, dupsa, llsa->sa_len); 2987 ifma->ifma_lladdr = dupsa; 2988 2989 return (ifma); 2990 } 2991 2992 /* 2993 * if_freemulti: free ifmultiaddr structure and possibly attached related 2994 * addresses. The caller is responsible for implementing reference 2995 * counting, notifying the driver, handling routing messages, and releasing 2996 * any dependent link layer state. 2997 */ 2998 static void 2999 if_freemulti(struct ifmultiaddr *ifma) 3000 { 3001 3002 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3003 ifma->ifma_refcount)); 3004 3005 if (ifma->ifma_lladdr != NULL) 3006 free(ifma->ifma_lladdr, M_IFMADDR); 3007 free(ifma->ifma_addr, M_IFMADDR); 3008 free(ifma, M_IFMADDR); 3009 } 3010 3011 /* 3012 * Register an additional multicast address with a network interface. 3013 * 3014 * - If the address is already present, bump the reference count on the 3015 * address and return. 3016 * - If the address is not link-layer, look up a link layer address. 3017 * - Allocate address structures for one or both addresses, and attach to the 3018 * multicast address list on the interface. If automatically adding a link 3019 * layer address, the protocol address will own a reference to the link 3020 * layer address, to be freed when it is freed. 3021 * - Notify the network device driver of an addition to the multicast address 3022 * list. 3023 * 3024 * 'sa' points to caller-owned memory with the desired multicast address. 3025 * 3026 * 'retifma' will be used to return a pointer to the resulting multicast 3027 * address reference, if desired. 3028 */ 3029 int 3030 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3031 struct ifmultiaddr **retifma) 3032 { 3033 struct ifmultiaddr *ifma, *ll_ifma; 3034 struct sockaddr *llsa; 3035 struct sockaddr_dl sdl; 3036 int error; 3037 3038 /* 3039 * If the address is already present, return a new reference to it; 3040 * otherwise, allocate storage and set up a new address. 3041 */ 3042 IF_ADDR_WLOCK(ifp); 3043 ifma = if_findmulti(ifp, sa); 3044 if (ifma != NULL) { 3045 ifma->ifma_refcount++; 3046 if (retifma != NULL) 3047 *retifma = ifma; 3048 IF_ADDR_WUNLOCK(ifp); 3049 return (0); 3050 } 3051 3052 /* 3053 * The address isn't already present; resolve the protocol address 3054 * into a link layer address, and then look that up, bump its 3055 * refcount or allocate an ifma for that also. 3056 * Most link layer resolving functions returns address data which 3057 * fits inside default sockaddr_dl structure. However callback 3058 * can allocate another sockaddr structure, in that case we need to 3059 * free it later. 3060 */ 3061 llsa = NULL; 3062 ll_ifma = NULL; 3063 if (ifp->if_resolvemulti != NULL) { 3064 /* Provide called function with buffer size information */ 3065 sdl.sdl_len = sizeof(sdl); 3066 llsa = (struct sockaddr *)&sdl; 3067 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3068 if (error) 3069 goto unlock_out; 3070 } 3071 3072 /* 3073 * Allocate the new address. Don't hook it up yet, as we may also 3074 * need to allocate a link layer multicast address. 3075 */ 3076 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3077 if (ifma == NULL) { 3078 error = ENOMEM; 3079 goto free_llsa_out; 3080 } 3081 3082 /* 3083 * If a link layer address is found, we'll need to see if it's 3084 * already present in the address list, or allocate is as well. 3085 * When this block finishes, the link layer address will be on the 3086 * list. 3087 */ 3088 if (llsa != NULL) { 3089 ll_ifma = if_findmulti(ifp, llsa); 3090 if (ll_ifma == NULL) { 3091 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3092 if (ll_ifma == NULL) { 3093 --ifma->ifma_refcount; 3094 if_freemulti(ifma); 3095 error = ENOMEM; 3096 goto free_llsa_out; 3097 } 3098 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3099 ifma_link); 3100 } else 3101 ll_ifma->ifma_refcount++; 3102 ifma->ifma_llifma = ll_ifma; 3103 } 3104 3105 /* 3106 * We now have a new multicast address, ifma, and possibly a new or 3107 * referenced link layer address. Add the primary address to the 3108 * ifnet address list. 3109 */ 3110 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3111 3112 if (retifma != NULL) 3113 *retifma = ifma; 3114 3115 /* 3116 * Must generate the message while holding the lock so that 'ifma' 3117 * pointer is still valid. 3118 */ 3119 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3120 IF_ADDR_WUNLOCK(ifp); 3121 3122 /* 3123 * We are certain we have added something, so call down to the 3124 * interface to let them know about it. 3125 */ 3126 if (ifp->if_ioctl != NULL) { 3127 (void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3128 } 3129 3130 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3131 link_free_sdl(llsa); 3132 3133 return (0); 3134 3135 free_llsa_out: 3136 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3137 link_free_sdl(llsa); 3138 3139 unlock_out: 3140 IF_ADDR_WUNLOCK(ifp); 3141 return (error); 3142 } 3143 3144 /* 3145 * Delete a multicast group membership by network-layer group address. 3146 * 3147 * Returns ENOENT if the entry could not be found. If ifp no longer 3148 * exists, results are undefined. This entry point should only be used 3149 * from subsystems which do appropriate locking to hold ifp for the 3150 * duration of the call. 3151 * Network-layer protocol domains must use if_delmulti_ifma(). 3152 */ 3153 int 3154 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3155 { 3156 struct ifmultiaddr *ifma; 3157 int lastref; 3158 #ifdef INVARIANTS 3159 struct ifnet *oifp; 3160 3161 IFNET_RLOCK_NOSLEEP(); 3162 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3163 if (ifp == oifp) 3164 break; 3165 if (ifp != oifp) 3166 ifp = NULL; 3167 IFNET_RUNLOCK_NOSLEEP(); 3168 3169 KASSERT(ifp != NULL, ("%s: ifnet went away", __func__)); 3170 #endif 3171 if (ifp == NULL) 3172 return (ENOENT); 3173 3174 IF_ADDR_WLOCK(ifp); 3175 lastref = 0; 3176 ifma = if_findmulti(ifp, sa); 3177 if (ifma != NULL) 3178 lastref = if_delmulti_locked(ifp, ifma, 0); 3179 IF_ADDR_WUNLOCK(ifp); 3180 3181 if (ifma == NULL) 3182 return (ENOENT); 3183 3184 if (lastref && ifp->if_ioctl != NULL) { 3185 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3186 } 3187 3188 return (0); 3189 } 3190 3191 /* 3192 * Delete all multicast group membership for an interface. 3193 * Should be used to quickly flush all multicast filters. 3194 */ 3195 void 3196 if_delallmulti(struct ifnet *ifp) 3197 { 3198 struct ifmultiaddr *ifma; 3199 struct ifmultiaddr *next; 3200 3201 IF_ADDR_WLOCK(ifp); 3202 TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3203 if_delmulti_locked(ifp, ifma, 0); 3204 IF_ADDR_WUNLOCK(ifp); 3205 } 3206 3207 /* 3208 * Delete a multicast group membership by group membership pointer. 3209 * Network-layer protocol domains must use this routine. 3210 * 3211 * It is safe to call this routine if the ifp disappeared. 3212 */ 3213 void 3214 if_delmulti_ifma(struct ifmultiaddr *ifma) 3215 { 3216 struct ifnet *ifp; 3217 int lastref; 3218 3219 ifp = ifma->ifma_ifp; 3220 #ifdef DIAGNOSTIC 3221 if (ifp == NULL) { 3222 printf("%s: ifma_ifp seems to be detached\n", __func__); 3223 } else { 3224 struct ifnet *oifp; 3225 3226 IFNET_RLOCK_NOSLEEP(); 3227 TAILQ_FOREACH(oifp, &V_ifnet, if_link) 3228 if (ifp == oifp) 3229 break; 3230 if (ifp != oifp) { 3231 printf("%s: ifnet %p disappeared\n", __func__, ifp); 3232 ifp = NULL; 3233 } 3234 IFNET_RUNLOCK_NOSLEEP(); 3235 } 3236 #endif 3237 /* 3238 * If and only if the ifnet instance exists: Acquire the address lock. 3239 */ 3240 if (ifp != NULL) 3241 IF_ADDR_WLOCK(ifp); 3242 3243 lastref = if_delmulti_locked(ifp, ifma, 0); 3244 3245 if (ifp != NULL) { 3246 /* 3247 * If and only if the ifnet instance exists: 3248 * Release the address lock. 3249 * If the group was left: update the hardware hash filter. 3250 */ 3251 IF_ADDR_WUNLOCK(ifp); 3252 if (lastref && ifp->if_ioctl != NULL) { 3253 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3254 } 3255 } 3256 } 3257 3258 /* 3259 * Perform deletion of network-layer and/or link-layer multicast address. 3260 * 3261 * Return 0 if the reference count was decremented. 3262 * Return 1 if the final reference was released, indicating that the 3263 * hardware hash filter should be reprogrammed. 3264 */ 3265 static int 3266 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3267 { 3268 struct ifmultiaddr *ll_ifma; 3269 3270 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3271 KASSERT(ifma->ifma_ifp == ifp, 3272 ("%s: inconsistent ifp %p", __func__, ifp)); 3273 IF_ADDR_WLOCK_ASSERT(ifp); 3274 } 3275 3276 ifp = ifma->ifma_ifp; 3277 3278 /* 3279 * If the ifnet is detaching, null out references to ifnet, 3280 * so that upper protocol layers will notice, and not attempt 3281 * to obtain locks for an ifnet which no longer exists. The 3282 * routing socket announcement must happen before the ifnet 3283 * instance is detached from the system. 3284 */ 3285 if (detaching) { 3286 #ifdef DIAGNOSTIC 3287 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3288 #endif 3289 /* 3290 * ifp may already be nulled out if we are being reentered 3291 * to delete the ll_ifma. 3292 */ 3293 if (ifp != NULL) { 3294 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3295 ifma->ifma_ifp = NULL; 3296 } 3297 } 3298 3299 if (--ifma->ifma_refcount > 0) 3300 return 0; 3301 3302 /* 3303 * If this ifma is a network-layer ifma, a link-layer ifma may 3304 * have been associated with it. Release it first if so. 3305 */ 3306 ll_ifma = ifma->ifma_llifma; 3307 if (ll_ifma != NULL) { 3308 KASSERT(ifma->ifma_lladdr != NULL, 3309 ("%s: llifma w/o lladdr", __func__)); 3310 if (detaching) 3311 ll_ifma->ifma_ifp = NULL; /* XXX */ 3312 if (--ll_ifma->ifma_refcount == 0) { 3313 if (ifp != NULL) { 3314 TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, 3315 ifma_link); 3316 } 3317 if_freemulti(ll_ifma); 3318 } 3319 } 3320 3321 if (ifp != NULL) 3322 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 3323 3324 if_freemulti(ifma); 3325 3326 /* 3327 * The last reference to this instance of struct ifmultiaddr 3328 * was released; the hardware should be notified of this change. 3329 */ 3330 return 1; 3331 } 3332 3333 /* 3334 * Set the link layer address on an interface. 3335 * 3336 * At this time we only support certain types of interfaces, 3337 * and we don't allow the length of the address to change. 3338 * 3339 * Set noinline to be dtrace-friendly 3340 */ 3341 __noinline int 3342 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3343 { 3344 struct sockaddr_dl *sdl; 3345 struct ifaddr *ifa; 3346 struct ifreq ifr; 3347 3348 IF_ADDR_RLOCK(ifp); 3349 ifa = ifp->if_addr; 3350 if (ifa == NULL) { 3351 IF_ADDR_RUNLOCK(ifp); 3352 return (EINVAL); 3353 } 3354 ifa_ref(ifa); 3355 IF_ADDR_RUNLOCK(ifp); 3356 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3357 if (sdl == NULL) { 3358 ifa_free(ifa); 3359 return (EINVAL); 3360 } 3361 if (len != sdl->sdl_alen) { /* don't allow length to change */ 3362 ifa_free(ifa); 3363 return (EINVAL); 3364 } 3365 switch (ifp->if_type) { 3366 case IFT_ETHER: 3367 case IFT_FDDI: 3368 case IFT_XETHER: 3369 case IFT_ISO88025: 3370 case IFT_L2VLAN: 3371 case IFT_BRIDGE: 3372 case IFT_ARCNET: 3373 case IFT_IEEE8023ADLAG: 3374 case IFT_IEEE80211: 3375 bcopy(lladdr, LLADDR(sdl), len); 3376 ifa_free(ifa); 3377 break; 3378 default: 3379 ifa_free(ifa); 3380 return (ENODEV); 3381 } 3382 3383 /* 3384 * If the interface is already up, we need 3385 * to re-init it in order to reprogram its 3386 * address filter. 3387 */ 3388 if ((ifp->if_flags & IFF_UP) != 0) { 3389 if (ifp->if_ioctl) { 3390 ifp->if_flags &= ~IFF_UP; 3391 ifr.ifr_flags = ifp->if_flags & 0xffff; 3392 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3393 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3394 ifp->if_flags |= IFF_UP; 3395 ifr.ifr_flags = ifp->if_flags & 0xffff; 3396 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3397 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3398 } 3399 } 3400 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 3401 return (0); 3402 } 3403 3404 /* 3405 * Compat function for handling basic encapsulation requests. 3406 * Not converted stacks (FDDI, IB, ..) supports traditional 3407 * output model: ARP (and other similar L2 protocols) are handled 3408 * inside output routine, arpresolve/nd6_resolve() returns MAC 3409 * address instead of full prepend. 3410 * 3411 * This function creates calculated header==MAC for IPv4/IPv6 and 3412 * returns EAFNOSUPPORT (which is then handled in ARP code) for other 3413 * address families. 3414 */ 3415 static int 3416 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) 3417 { 3418 3419 if (req->rtype != IFENCAP_LL) 3420 return (EOPNOTSUPP); 3421 3422 if (req->bufsize < req->lladdr_len) 3423 return (ENOMEM); 3424 3425 switch (req->family) { 3426 case AF_INET: 3427 case AF_INET6: 3428 break; 3429 default: 3430 return (EAFNOSUPPORT); 3431 } 3432 3433 /* Copy lladdr to storage as is */ 3434 memmove(req->buf, req->lladdr, req->lladdr_len); 3435 req->bufsize = req->lladdr_len; 3436 req->lladdr_off = 0; 3437 3438 return (0); 3439 } 3440 3441 /* 3442 * The name argument must be a pointer to storage which will last as 3443 * long as the interface does. For physical devices, the result of 3444 * device_get_name(dev) is a good choice and for pseudo-devices a 3445 * static string works well. 3446 */ 3447 void 3448 if_initname(struct ifnet *ifp, const char *name, int unit) 3449 { 3450 ifp->if_dname = name; 3451 ifp->if_dunit = unit; 3452 if (unit != IF_DUNIT_NONE) 3453 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 3454 else 3455 strlcpy(ifp->if_xname, name, IFNAMSIZ); 3456 } 3457 3458 int 3459 if_printf(struct ifnet *ifp, const char * fmt, ...) 3460 { 3461 va_list ap; 3462 int retval; 3463 3464 retval = printf("%s: ", ifp->if_xname); 3465 va_start(ap, fmt); 3466 retval += vprintf(fmt, ap); 3467 va_end(ap); 3468 return (retval); 3469 } 3470 3471 void 3472 if_start(struct ifnet *ifp) 3473 { 3474 3475 (*(ifp)->if_start)(ifp); 3476 } 3477 3478 /* 3479 * Backwards compatibility interface for drivers 3480 * that have not implemented it 3481 */ 3482 static int 3483 if_transmit(struct ifnet *ifp, struct mbuf *m) 3484 { 3485 int error; 3486 3487 IFQ_HANDOFF(ifp, m, error); 3488 return (error); 3489 } 3490 3491 static void 3492 if_input_default(struct ifnet *ifp __unused, struct mbuf *m) 3493 { 3494 3495 m_freem(m); 3496 } 3497 3498 int 3499 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 3500 { 3501 int active = 0; 3502 3503 IF_LOCK(ifq); 3504 if (_IF_QFULL(ifq)) { 3505 IF_UNLOCK(ifq); 3506 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 3507 m_freem(m); 3508 return (0); 3509 } 3510 if (ifp != NULL) { 3511 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 3512 if (m->m_flags & (M_BCAST|M_MCAST)) 3513 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3514 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 3515 } 3516 _IF_ENQUEUE(ifq, m); 3517 IF_UNLOCK(ifq); 3518 if (ifp != NULL && !active) 3519 (*(ifp)->if_start)(ifp); 3520 return (1); 3521 } 3522 3523 void 3524 if_register_com_alloc(u_char type, 3525 if_com_alloc_t *a, if_com_free_t *f) 3526 { 3527 3528 KASSERT(if_com_alloc[type] == NULL, 3529 ("if_register_com_alloc: %d already registered", type)); 3530 KASSERT(if_com_free[type] == NULL, 3531 ("if_register_com_alloc: %d free already registered", type)); 3532 3533 if_com_alloc[type] = a; 3534 if_com_free[type] = f; 3535 } 3536 3537 void 3538 if_deregister_com_alloc(u_char type) 3539 { 3540 3541 KASSERT(if_com_alloc[type] != NULL, 3542 ("if_deregister_com_alloc: %d not registered", type)); 3543 KASSERT(if_com_free[type] != NULL, 3544 ("if_deregister_com_alloc: %d free not registered", type)); 3545 if_com_alloc[type] = NULL; 3546 if_com_free[type] = NULL; 3547 } 3548 3549 /* API for driver access to network stack owned ifnet.*/ 3550 uint64_t 3551 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 3552 { 3553 uint64_t oldbrate; 3554 3555 oldbrate = ifp->if_baudrate; 3556 ifp->if_baudrate = baudrate; 3557 return (oldbrate); 3558 } 3559 3560 uint64_t 3561 if_getbaudrate(if_t ifp) 3562 { 3563 3564 return (((struct ifnet *)ifp)->if_baudrate); 3565 } 3566 3567 int 3568 if_setcapabilities(if_t ifp, int capabilities) 3569 { 3570 ((struct ifnet *)ifp)->if_capabilities = capabilities; 3571 return (0); 3572 } 3573 3574 int 3575 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 3576 { 3577 ((struct ifnet *)ifp)->if_capabilities |= setbit; 3578 ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; 3579 3580 return (0); 3581 } 3582 3583 int 3584 if_getcapabilities(if_t ifp) 3585 { 3586 return ((struct ifnet *)ifp)->if_capabilities; 3587 } 3588 3589 int 3590 if_setcapenable(if_t ifp, int capabilities) 3591 { 3592 ((struct ifnet *)ifp)->if_capenable = capabilities; 3593 return (0); 3594 } 3595 3596 int 3597 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 3598 { 3599 if(setcap) 3600 ((struct ifnet *)ifp)->if_capenable |= setcap; 3601 if(clearcap) 3602 ((struct ifnet *)ifp)->if_capenable &= ~clearcap; 3603 3604 return (0); 3605 } 3606 3607 const char * 3608 if_getdname(if_t ifp) 3609 { 3610 return ((struct ifnet *)ifp)->if_dname; 3611 } 3612 3613 int 3614 if_togglecapenable(if_t ifp, int togglecap) 3615 { 3616 ((struct ifnet *)ifp)->if_capenable ^= togglecap; 3617 return (0); 3618 } 3619 3620 int 3621 if_getcapenable(if_t ifp) 3622 { 3623 return ((struct ifnet *)ifp)->if_capenable; 3624 } 3625 3626 /* 3627 * This is largely undesirable because it ties ifnet to a device, but does 3628 * provide flexiblity for an embedded product vendor. Should be used with 3629 * the understanding that it violates the interface boundaries, and should be 3630 * a last resort only. 3631 */ 3632 int 3633 if_setdev(if_t ifp, void *dev) 3634 { 3635 return (0); 3636 } 3637 3638 int 3639 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 3640 { 3641 ((struct ifnet *)ifp)->if_drv_flags |= set_flags; 3642 ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; 3643 3644 return (0); 3645 } 3646 3647 int 3648 if_getdrvflags(if_t ifp) 3649 { 3650 return ((struct ifnet *)ifp)->if_drv_flags; 3651 } 3652 3653 int 3654 if_setdrvflags(if_t ifp, int flags) 3655 { 3656 ((struct ifnet *)ifp)->if_drv_flags = flags; 3657 return (0); 3658 } 3659 3660 3661 int 3662 if_setflags(if_t ifp, int flags) 3663 { 3664 ((struct ifnet *)ifp)->if_flags = flags; 3665 return (0); 3666 } 3667 3668 int 3669 if_setflagbits(if_t ifp, int set, int clear) 3670 { 3671 ((struct ifnet *)ifp)->if_flags |= set; 3672 ((struct ifnet *)ifp)->if_flags &= ~clear; 3673 3674 return (0); 3675 } 3676 3677 int 3678 if_getflags(if_t ifp) 3679 { 3680 return ((struct ifnet *)ifp)->if_flags; 3681 } 3682 3683 int 3684 if_clearhwassist(if_t ifp) 3685 { 3686 ((struct ifnet *)ifp)->if_hwassist = 0; 3687 return (0); 3688 } 3689 3690 int 3691 if_sethwassistbits(if_t ifp, int toset, int toclear) 3692 { 3693 ((struct ifnet *)ifp)->if_hwassist |= toset; 3694 ((struct ifnet *)ifp)->if_hwassist &= ~toclear; 3695 3696 return (0); 3697 } 3698 3699 int 3700 if_sethwassist(if_t ifp, int hwassist_bit) 3701 { 3702 ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; 3703 return (0); 3704 } 3705 3706 int 3707 if_gethwassist(if_t ifp) 3708 { 3709 return ((struct ifnet *)ifp)->if_hwassist; 3710 } 3711 3712 int 3713 if_setmtu(if_t ifp, int mtu) 3714 { 3715 ((struct ifnet *)ifp)->if_mtu = mtu; 3716 return (0); 3717 } 3718 3719 int 3720 if_getmtu(if_t ifp) 3721 { 3722 return ((struct ifnet *)ifp)->if_mtu; 3723 } 3724 3725 int 3726 if_getmtu_family(if_t ifp, int family) 3727 { 3728 struct domain *dp; 3729 3730 for (dp = domains; dp; dp = dp->dom_next) { 3731 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 3732 return (dp->dom_ifmtu((struct ifnet *)ifp)); 3733 } 3734 3735 return (((struct ifnet *)ifp)->if_mtu); 3736 } 3737 3738 int 3739 if_setsoftc(if_t ifp, void *softc) 3740 { 3741 ((struct ifnet *)ifp)->if_softc = softc; 3742 return (0); 3743 } 3744 3745 void * 3746 if_getsoftc(if_t ifp) 3747 { 3748 return ((struct ifnet *)ifp)->if_softc; 3749 } 3750 3751 void 3752 if_setrcvif(struct mbuf *m, if_t ifp) 3753 { 3754 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 3755 } 3756 3757 void 3758 if_setvtag(struct mbuf *m, uint16_t tag) 3759 { 3760 m->m_pkthdr.ether_vtag = tag; 3761 } 3762 3763 uint16_t 3764 if_getvtag(struct mbuf *m) 3765 { 3766 3767 return (m->m_pkthdr.ether_vtag); 3768 } 3769 3770 int 3771 if_sendq_empty(if_t ifp) 3772 { 3773 return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); 3774 } 3775 3776 struct ifaddr * 3777 if_getifaddr(if_t ifp) 3778 { 3779 return ((struct ifnet *)ifp)->if_addr; 3780 } 3781 3782 int 3783 if_getamcount(if_t ifp) 3784 { 3785 return ((struct ifnet *)ifp)->if_amcount; 3786 } 3787 3788 3789 int 3790 if_setsendqready(if_t ifp) 3791 { 3792 IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); 3793 return (0); 3794 } 3795 3796 int 3797 if_setsendqlen(if_t ifp, int tx_desc_count) 3798 { 3799 IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); 3800 ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; 3801 3802 return (0); 3803 } 3804 3805 int 3806 if_vlantrunkinuse(if_t ifp) 3807 { 3808 return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; 3809 } 3810 3811 int 3812 if_input(if_t ifp, struct mbuf* sendmp) 3813 { 3814 (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); 3815 return (0); 3816 3817 } 3818 3819 /* XXX */ 3820 #ifndef ETH_ADDR_LEN 3821 #define ETH_ADDR_LEN 6 3822 #endif 3823 3824 int 3825 if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max) 3826 { 3827 struct ifmultiaddr *ifma; 3828 uint8_t *lmta = (uint8_t *)mta; 3829 int mcnt = 0; 3830 3831 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3832 if (ifma->ifma_addr->sa_family != AF_LINK) 3833 continue; 3834 3835 if (mcnt == max) 3836 break; 3837 3838 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 3839 &lmta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); 3840 mcnt++; 3841 } 3842 *cnt = mcnt; 3843 3844 return (0); 3845 } 3846 3847 int 3848 if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max) 3849 { 3850 int error; 3851 3852 if_maddr_rlock(ifp); 3853 error = if_setupmultiaddr(ifp, mta, cnt, max); 3854 if_maddr_runlock(ifp); 3855 return (error); 3856 } 3857 3858 int 3859 if_multiaddr_count(if_t ifp, int max) 3860 { 3861 struct ifmultiaddr *ifma; 3862 int count; 3863 3864 count = 0; 3865 if_maddr_rlock(ifp); 3866 TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { 3867 if (ifma->ifma_addr->sa_family != AF_LINK) 3868 continue; 3869 count++; 3870 if (count == max) 3871 break; 3872 } 3873 if_maddr_runlock(ifp); 3874 return (count); 3875 } 3876 3877 struct mbuf * 3878 if_dequeue(if_t ifp) 3879 { 3880 struct mbuf *m; 3881 IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); 3882 3883 return (m); 3884 } 3885 3886 int 3887 if_sendq_prepend(if_t ifp, struct mbuf *m) 3888 { 3889 IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); 3890 return (0); 3891 } 3892 3893 int 3894 if_setifheaderlen(if_t ifp, int len) 3895 { 3896 ((struct ifnet *)ifp)->if_hdrlen = len; 3897 return (0); 3898 } 3899 3900 caddr_t 3901 if_getlladdr(if_t ifp) 3902 { 3903 return (IF_LLADDR((struct ifnet *)ifp)); 3904 } 3905 3906 void * 3907 if_gethandle(u_char type) 3908 { 3909 return (if_alloc(type)); 3910 } 3911 3912 void 3913 if_bpfmtap(if_t ifh, struct mbuf *m) 3914 { 3915 struct ifnet *ifp = (struct ifnet *)ifh; 3916 3917 BPF_MTAP(ifp, m); 3918 } 3919 3920 void 3921 if_etherbpfmtap(if_t ifh, struct mbuf *m) 3922 { 3923 struct ifnet *ifp = (struct ifnet *)ifh; 3924 3925 ETHER_BPF_MTAP(ifp, m); 3926 } 3927 3928 void 3929 if_vlancap(if_t ifh) 3930 { 3931 struct ifnet *ifp = (struct ifnet *)ifh; 3932 VLAN_CAPABILITIES(ifp); 3933 } 3934 3935 void 3936 if_setinitfn(if_t ifp, void (*init_fn)(void *)) 3937 { 3938 ((struct ifnet *)ifp)->if_init = init_fn; 3939 } 3940 3941 void 3942 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) 3943 { 3944 ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; 3945 } 3946 3947 void 3948 if_setstartfn(if_t ifp, void (*start_fn)(if_t)) 3949 { 3950 ((struct ifnet *)ifp)->if_start = (void *)start_fn; 3951 } 3952 3953 void 3954 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 3955 { 3956 ((struct ifnet *)ifp)->if_transmit = start_fn; 3957 } 3958 3959 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 3960 { 3961 ((struct ifnet *)ifp)->if_qflush = flush_fn; 3962 3963 } 3964 3965 void 3966 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 3967 { 3968 3969 ifp->if_get_counter = fn; 3970 } 3971 3972 /* Revisit these - These are inline functions originally. */ 3973 int 3974 drbr_inuse_drv(if_t ifh, struct buf_ring *br) 3975 { 3976 return drbr_inuse(ifh, br); 3977 } 3978 3979 struct mbuf* 3980 drbr_dequeue_drv(if_t ifh, struct buf_ring *br) 3981 { 3982 return drbr_dequeue(ifh, br); 3983 } 3984 3985 int 3986 drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br) 3987 { 3988 return drbr_needs_enqueue(ifh, br); 3989 } 3990 3991 int 3992 drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m) 3993 { 3994 return drbr_enqueue(ifh, br, m); 3995 3996 } 3997