1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2010 Bjoern A. Zeeb <bz@FreeBSD.org> 5 * Copyright (c) 1980, 1986, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)if.c 8.5 (Berkeley) 1/9/95 33 * $FreeBSD$ 34 */ 35 36 #include "opt_bpf.h" 37 #include "opt_inet6.h" 38 #include "opt_inet.h" 39 #include "opt_ddb.h" 40 41 #include <sys/param.h> 42 #include <sys/capsicum.h> 43 #include <sys/conf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/malloc.h> 46 #include <sys/domainset.h> 47 #include <sys/sbuf.h> 48 #include <sys/bus.h> 49 #include <sys/epoch.h> 50 #include <sys/mbuf.h> 51 #include <sys/systm.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/protosw.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/refcount.h> 60 #include <sys/module.h> 61 #include <sys/nv.h> 62 #include <sys/rwlock.h> 63 #include <sys/sockio.h> 64 #include <sys/syslog.h> 65 #include <sys/sysctl.h> 66 #include <sys/sysent.h> 67 #include <sys/taskqueue.h> 68 #include <sys/domain.h> 69 #include <sys/jail.h> 70 #include <sys/priv.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <machine/stdarg.h> 77 #include <vm/uma.h> 78 79 #include <net/bpf.h> 80 #include <net/ethernet.h> 81 #include <net/if.h> 82 #include <net/if_arp.h> 83 #include <net/if_clone.h> 84 #include <net/if_dl.h> 85 #include <net/if_types.h> 86 #include <net/if_var.h> 87 #include <net/if_media.h> 88 #include <net/if_mib.h> 89 #include <net/if_private.h> 90 #include <net/if_vlan_var.h> 91 #include <net/radix.h> 92 #include <net/route.h> 93 #include <net/route/route_ctl.h> 94 #include <net/vnet.h> 95 96 #if defined(INET) || defined(INET6) 97 #include <net/ethernet.h> 98 #include <netinet/in.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip.h> 101 #include <netinet/ip_carp.h> 102 #ifdef INET 103 #include <net/debugnet.h> 104 #include <netinet/if_ether.h> 105 #endif /* INET */ 106 #ifdef INET6 107 #include <netinet6/in6_var.h> 108 #include <netinet6/in6_ifattach.h> 109 #endif /* INET6 */ 110 #endif /* INET || INET6 */ 111 112 #include <security/mac/mac_framework.h> 113 114 /* 115 * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name 116 * and ifr_ifru when it is used in SIOCGIFCONF. 117 */ 118 _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) == 119 offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru"); 120 121 __read_mostly epoch_t net_epoch_preempt; 122 #ifdef COMPAT_FREEBSD32 123 #include <sys/mount.h> 124 #include <compat/freebsd32/freebsd32.h> 125 126 struct ifreq_buffer32 { 127 uint32_t length; /* (size_t) */ 128 uint32_t buffer; /* (void *) */ 129 }; 130 131 /* 132 * Interface request structure used for socket 133 * ioctl's. All interface ioctl's must have parameter 134 * definitions which begin with ifr_name. The 135 * remainder may be interface specific. 136 */ 137 struct ifreq32 { 138 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ 139 union { 140 struct sockaddr ifru_addr; 141 struct sockaddr ifru_dstaddr; 142 struct sockaddr ifru_broadaddr; 143 struct ifreq_buffer32 ifru_buffer; 144 short ifru_flags[2]; 145 short ifru_index; 146 int ifru_jid; 147 int ifru_metric; 148 int ifru_mtu; 149 int ifru_phys; 150 int ifru_media; 151 uint32_t ifru_data; 152 int ifru_cap[2]; 153 u_int ifru_fib; 154 u_char ifru_vlan_pcp; 155 } ifr_ifru; 156 }; 157 CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32)); 158 CTASSERT(__offsetof(struct ifreq, ifr_ifru) == 159 __offsetof(struct ifreq32, ifr_ifru)); 160 161 struct ifconf32 { 162 int32_t ifc_len; 163 union { 164 uint32_t ifcu_buf; 165 uint32_t ifcu_req; 166 } ifc_ifcu; 167 }; 168 #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) 169 170 struct ifdrv32 { 171 char ifd_name[IFNAMSIZ]; 172 uint32_t ifd_cmd; 173 uint32_t ifd_len; 174 uint32_t ifd_data; 175 }; 176 #define SIOCSDRVSPEC32 _IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32) 177 #define SIOCGDRVSPEC32 _IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32) 178 179 struct ifgroupreq32 { 180 char ifgr_name[IFNAMSIZ]; 181 u_int ifgr_len; 182 union { 183 char ifgru_group[IFNAMSIZ]; 184 uint32_t ifgru_groups; 185 } ifgr_ifgru; 186 }; 187 #define SIOCAIFGROUP32 _IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32) 188 #define SIOCGIFGROUP32 _IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32) 189 #define SIOCDIFGROUP32 _IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32) 190 #define SIOCGIFGMEMB32 _IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32) 191 192 struct ifmediareq32 { 193 char ifm_name[IFNAMSIZ]; 194 int ifm_current; 195 int ifm_mask; 196 int ifm_status; 197 int ifm_active; 198 int ifm_count; 199 uint32_t ifm_ulist; /* (int *) */ 200 }; 201 #define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32) 202 #define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32) 203 #endif /* COMPAT_FREEBSD32 */ 204 205 union ifreq_union { 206 struct ifreq ifr; 207 #ifdef COMPAT_FREEBSD32 208 struct ifreq32 ifr32; 209 #endif 210 }; 211 212 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 213 "Link layers"); 214 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 215 "Generic link-management"); 216 217 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, 218 &ifqmaxlen, 0, "max send queue size"); 219 220 /* Log link state change events */ 221 static int log_link_state_change = 1; 222 223 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, 224 &log_link_state_change, 0, 225 "log interface link state change events"); 226 227 /* Log promiscuous mode change events */ 228 static int log_promisc_mode_change = 1; 229 230 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN, 231 &log_promisc_mode_change, 1, 232 "log promiscuous mode change events"); 233 234 /* Interface description */ 235 static unsigned int ifdescr_maxlen = 1024; 236 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, 237 &ifdescr_maxlen, 0, 238 "administrative maximum length for interface description"); 239 240 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); 241 242 /* global sx for non-critical path ifdescr */ 243 static struct sx ifdescr_sx; 244 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); 245 246 void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); 247 void (*lagg_linkstate_p)(struct ifnet *ifp, int state); 248 /* These are external hooks for CARP. */ 249 void (*carp_linkstate_p)(struct ifnet *ifp); 250 void (*carp_demote_adj_p)(int, char *); 251 int (*carp_master_p)(struct ifaddr *); 252 #if defined(INET) || defined(INET6) 253 int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); 254 int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, 255 const struct sockaddr *sa); 256 int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); 257 int (*carp_attach_p)(struct ifaddr *, int); 258 void (*carp_detach_p)(struct ifaddr *, bool); 259 #endif 260 #ifdef INET 261 int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); 262 #endif 263 #ifdef INET6 264 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); 265 caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, 266 const struct in6_addr *taddr); 267 #endif 268 269 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; 270 271 /* 272 * XXX: Style; these should be sorted alphabetically, and unprototyped 273 * static functions should be prototyped. Currently they are sorted by 274 * declaration order. 275 */ 276 static void if_attachdomain(void *); 277 static void if_attachdomain1(struct ifnet *); 278 static int ifconf(u_long, caddr_t); 279 static void if_input_default(struct ifnet *, struct mbuf *); 280 static int if_requestencap_default(struct ifnet *, struct if_encap_req *); 281 static void if_route(struct ifnet *, int flag, int fam); 282 static int if_setflag(struct ifnet *, int, int, int *, int); 283 static int if_transmit_default(struct ifnet *ifp, struct mbuf *m); 284 static void if_unroute(struct ifnet *, int flag, int fam); 285 static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); 286 static void do_link_state_change(void *, int); 287 static int if_getgroup(struct ifgroupreq *, struct ifnet *); 288 static int if_getgroupmembers(struct ifgroupreq *); 289 static void if_delgroups(struct ifnet *); 290 static void if_attach_internal(struct ifnet *, bool); 291 static int if_detach_internal(struct ifnet *, bool); 292 static void if_siocaddmulti(void *, int); 293 static void if_link_ifnet(struct ifnet *); 294 static bool if_unlink_ifnet(struct ifnet *, bool); 295 #ifdef VIMAGE 296 static int if_vmove(struct ifnet *, struct vnet *); 297 #endif 298 299 #ifdef INET6 300 /* 301 * XXX: declare here to avoid to include many inet6 related files.. 302 * should be more generalized? 303 */ 304 extern void nd6_setmtu(struct ifnet *); 305 #endif 306 307 /* ipsec helper hooks */ 308 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); 309 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); 310 311 int ifqmaxlen = IFQ_MAXLEN; 312 VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ 313 VNET_DEFINE(struct ifgrouphead, ifg_head); 314 315 /* Table of ifnet by index. */ 316 static int if_index; 317 static int if_indexlim = 8; 318 static struct ifindex_entry { 319 struct ifnet *ife_ifnet; 320 uint16_t ife_gencnt; 321 } *ifindex_table; 322 323 SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system, 324 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 325 "Variables global to all interfaces"); 326 static int 327 sysctl_ifcount(SYSCTL_HANDLER_ARGS) 328 { 329 int rv = 0; 330 331 IFNET_RLOCK(); 332 for (int i = 1; i <= if_index; i++) 333 if (ifindex_table[i].ife_ifnet != NULL && 334 ifindex_table[i].ife_ifnet->if_vnet == curvnet) 335 rv = i; 336 IFNET_RUNLOCK(); 337 338 return (sysctl_handle_int(oidp, &rv, 0, req)); 339 } 340 SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount, 341 CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I", 342 "Maximum known interface index"); 343 344 /* 345 * The global network interface list (V_ifnet) and related state (such as 346 * if_index, if_indexlim, and ifindex_table) are protected by an sxlock. 347 * This may be acquired to stabilise the list, or we may rely on NET_EPOCH. 348 */ 349 struct sx ifnet_sxlock; 350 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); 351 352 struct sx ifnet_detach_sxlock; 353 SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx", 354 SX_RECURSE); 355 356 #ifdef VIMAGE 357 #define VNET_IS_SHUTTING_DOWN(_vnet) \ 358 ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE) 359 #endif 360 361 static if_com_alloc_t *if_com_alloc[256]; 362 static if_com_free_t *if_com_free[256]; 363 364 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); 365 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 366 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 367 368 struct ifnet * 369 ifnet_byindex(u_int idx) 370 { 371 struct ifnet *ifp; 372 373 NET_EPOCH_ASSERT(); 374 375 if (__predict_false(idx > if_index)) 376 return (NULL); 377 378 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 379 380 if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet) 381 ifp = NULL; 382 383 return (ifp); 384 } 385 386 struct ifnet * 387 ifnet_byindex_ref(u_int idx) 388 { 389 struct ifnet *ifp; 390 391 ifp = ifnet_byindex(idx); 392 if (ifp == NULL || (ifp->if_flags & IFF_DYING)) 393 return (NULL); 394 if (!if_try_ref(ifp)) 395 return (NULL); 396 return (ifp); 397 } 398 399 struct ifnet * 400 ifnet_byindexgen(uint16_t idx, uint16_t gen) 401 { 402 struct ifnet *ifp; 403 404 NET_EPOCH_ASSERT(); 405 406 if (__predict_false(idx > if_index)) 407 return (NULL); 408 409 ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); 410 411 if (ifindex_table[idx].ife_gencnt == gen) 412 return (ifp); 413 else 414 return (NULL); 415 } 416 417 /* 418 * Network interface utility routines. 419 * 420 * Routines with ifa_ifwith* names take sockaddr *'s as 421 * parameters. 422 */ 423 424 static void 425 if_init_idxtable(void *arg __unused) 426 { 427 428 ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table), 429 M_IFNET, M_WAITOK | M_ZERO); 430 } 431 SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init_idxtable, NULL); 432 433 static void 434 vnet_if_init(const void *unused __unused) 435 { 436 437 CK_STAILQ_INIT(&V_ifnet); 438 CK_STAILQ_INIT(&V_ifg_head); 439 vnet_if_clone_init(); 440 } 441 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, 442 NULL); 443 444 static void 445 if_link_ifnet(struct ifnet *ifp) 446 { 447 448 IFNET_WLOCK(); 449 CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); 450 #ifdef VIMAGE 451 curvnet->vnet_ifcnt++; 452 #endif 453 IFNET_WUNLOCK(); 454 } 455 456 static bool 457 if_unlink_ifnet(struct ifnet *ifp, bool vmove) 458 { 459 struct ifnet *iter; 460 int found = 0; 461 462 IFNET_WLOCK(); 463 CK_STAILQ_FOREACH(iter, &V_ifnet, if_link) 464 if (iter == ifp) { 465 CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link); 466 if (!vmove) 467 ifp->if_flags |= IFF_DYING; 468 found = 1; 469 break; 470 } 471 #ifdef VIMAGE 472 curvnet->vnet_ifcnt--; 473 #endif 474 IFNET_WUNLOCK(); 475 476 return (found); 477 } 478 479 #ifdef VIMAGE 480 static void 481 vnet_if_return(const void *unused __unused) 482 { 483 struct ifnet *ifp, *nifp; 484 struct ifnet **pending; 485 int found __diagused; 486 int i; 487 488 i = 0; 489 490 /* 491 * We need to protect our access to the V_ifnet tailq. Ordinarily we'd 492 * enter NET_EPOCH, but that's not possible, because if_vmove() calls 493 * if_detach_internal(), which waits for NET_EPOCH callbacks to 494 * complete. We can't do that from within NET_EPOCH. 495 * 496 * However, we can also use the IFNET_xLOCK, which is the V_ifnet 497 * read/write lock. We cannot hold the lock as we call if_vmove() 498 * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib 499 * ctx lock. 500 */ 501 IFNET_WLOCK(); 502 503 pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt, 504 M_IFNET, M_WAITOK | M_ZERO); 505 506 /* Return all inherited interfaces to their parent vnets. */ 507 CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { 508 if (ifp->if_home_vnet != ifp->if_vnet) { 509 found = if_unlink_ifnet(ifp, true); 510 MPASS(found); 511 512 pending[i++] = ifp; 513 } 514 } 515 IFNET_WUNLOCK(); 516 517 for (int j = 0; j < i; j++) { 518 sx_xlock(&ifnet_detach_sxlock); 519 if_vmove(pending[j], pending[j]->if_home_vnet); 520 sx_xunlock(&ifnet_detach_sxlock); 521 } 522 523 free(pending, M_IFNET); 524 } 525 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, 526 vnet_if_return, NULL); 527 #endif 528 529 /* 530 * Allocate a struct ifnet and an index for an interface. A layer 2 531 * common structure will also be allocated if an allocation routine is 532 * registered for the passed type. 533 */ 534 static struct ifnet * 535 if_alloc_domain(u_char type, int numa_domain) 536 { 537 struct ifnet *ifp; 538 u_short idx; 539 540 KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large")); 541 if (numa_domain == IF_NODOM) 542 ifp = malloc(sizeof(struct ifnet), M_IFNET, 543 M_WAITOK | M_ZERO); 544 else 545 ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET, 546 DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO); 547 ifp->if_type = type; 548 ifp->if_alloctype = type; 549 ifp->if_numa_domain = numa_domain; 550 #ifdef VIMAGE 551 ifp->if_vnet = curvnet; 552 #endif 553 if (if_com_alloc[type] != NULL) { 554 ifp->if_l2com = if_com_alloc[type](type, ifp); 555 KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__, 556 type)); 557 } 558 559 IF_ADDR_LOCK_INIT(ifp); 560 TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); 561 TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp); 562 ifp->if_afdata_initialized = 0; 563 IF_AFDATA_LOCK_INIT(ifp); 564 CK_STAILQ_INIT(&ifp->if_addrhead); 565 CK_STAILQ_INIT(&ifp->if_multiaddrs); 566 CK_STAILQ_INIT(&ifp->if_groups); 567 #ifdef MAC 568 mac_ifnet_init(ifp); 569 #endif 570 ifq_init(&ifp->if_snd, ifp); 571 572 refcount_init(&ifp->if_refcount, 1); /* Index reference. */ 573 for (int i = 0; i < IFCOUNTERS; i++) 574 ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); 575 ifp->if_get_counter = if_get_counter_default; 576 ifp->if_pcp = IFNET_PCP_NONE; 577 578 /* Allocate an ifindex array entry. */ 579 IFNET_WLOCK(); 580 /* 581 * Try to find an empty slot below if_index. If we fail, take the 582 * next slot. 583 */ 584 for (idx = 1; idx <= if_index; idx++) { 585 if (ifindex_table[idx].ife_ifnet == NULL) 586 break; 587 } 588 589 /* Catch if_index overflow. */ 590 if (idx >= if_indexlim) { 591 struct ifindex_entry *new, *old; 592 int newlim; 593 594 newlim = if_indexlim * 2; 595 new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO); 596 memcpy(new, ifindex_table, if_indexlim * sizeof(*new)); 597 old = ifindex_table; 598 ck_pr_store_ptr(&ifindex_table, new); 599 if_indexlim = newlim; 600 epoch_wait_preempt(net_epoch_preempt); 601 free(old, M_IFNET); 602 } 603 if (idx > if_index) 604 if_index = idx; 605 606 ifp->if_index = idx; 607 ifp->if_idxgen = ifindex_table[idx].ife_gencnt; 608 ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp); 609 IFNET_WUNLOCK(); 610 611 return (ifp); 612 } 613 614 struct ifnet * 615 if_alloc_dev(u_char type, device_t dev) 616 { 617 int numa_domain; 618 619 if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0) 620 return (if_alloc_domain(type, IF_NODOM)); 621 return (if_alloc_domain(type, numa_domain)); 622 } 623 624 struct ifnet * 625 if_alloc(u_char type) 626 { 627 628 return (if_alloc_domain(type, IF_NODOM)); 629 } 630 /* 631 * Do the actual work of freeing a struct ifnet, and layer 2 common 632 * structure. This call is made when the network epoch guarantees 633 * us that nobody holds a pointer to the interface. 634 */ 635 static void 636 if_free_deferred(epoch_context_t ctx) 637 { 638 struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx); 639 640 KASSERT((ifp->if_flags & IFF_DYING), 641 ("%s: interface not dying", __func__)); 642 643 if (if_com_free[ifp->if_alloctype] != NULL) 644 if_com_free[ifp->if_alloctype](ifp->if_l2com, 645 ifp->if_alloctype); 646 647 #ifdef MAC 648 mac_ifnet_destroy(ifp); 649 #endif /* MAC */ 650 IF_AFDATA_DESTROY(ifp); 651 IF_ADDR_LOCK_DESTROY(ifp); 652 ifq_delete(&ifp->if_snd); 653 654 for (int i = 0; i < IFCOUNTERS; i++) 655 counter_u64_free(ifp->if_counters[i]); 656 657 if_freedescr(ifp->if_description); 658 free(ifp->if_hw_addr, M_IFADDR); 659 free(ifp, M_IFNET); 660 } 661 662 /* 663 * Deregister an interface and free the associated storage. 664 */ 665 void 666 if_free(struct ifnet *ifp) 667 { 668 669 ifp->if_flags |= IFF_DYING; /* XXX: Locking */ 670 671 /* 672 * XXXGL: An interface index is really an alias to ifp pointer. 673 * Why would we clear the alias now, and not in the deferred 674 * context? Indeed there is nothing wrong with some network 675 * thread obtaining ifp via ifnet_byindex() inside the network 676 * epoch and then dereferencing ifp while we perform if_free(), 677 * and after if_free() finished, too. 678 * 679 * This early index freeing was important back when ifindex was 680 * virtualized and interface would outlive the vnet. 681 */ 682 IFNET_WLOCK(); 683 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 684 ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL); 685 ifindex_table[ifp->if_index].ife_gencnt++; 686 while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL) 687 if_index--; 688 IFNET_WUNLOCK(); 689 690 if (refcount_release(&ifp->if_refcount)) 691 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 692 } 693 694 /* 695 * Interfaces to keep an ifnet type-stable despite the possibility of the 696 * driver calling if_free(). If there are additional references, we defer 697 * freeing the underlying data structure. 698 */ 699 void 700 if_ref(struct ifnet *ifp) 701 { 702 u_int old __diagused; 703 704 /* We don't assert the ifnet list lock here, but arguably should. */ 705 old = refcount_acquire(&ifp->if_refcount); 706 KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp)); 707 } 708 709 bool 710 if_try_ref(struct ifnet *ifp) 711 { 712 NET_EPOCH_ASSERT(); 713 return (refcount_acquire_if_not_zero(&ifp->if_refcount)); 714 } 715 716 void 717 if_rele(struct ifnet *ifp) 718 { 719 720 if (!refcount_release(&ifp->if_refcount)) 721 return; 722 NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); 723 } 724 725 void 726 ifq_init(struct ifaltq *ifq, struct ifnet *ifp) 727 { 728 729 mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); 730 731 if (ifq->ifq_maxlen == 0) 732 ifq->ifq_maxlen = ifqmaxlen; 733 734 ifq->altq_type = 0; 735 ifq->altq_disc = NULL; 736 ifq->altq_flags &= ALTQF_CANTCHANGE; 737 ifq->altq_tbr = NULL; 738 ifq->altq_ifp = ifp; 739 } 740 741 void 742 ifq_delete(struct ifaltq *ifq) 743 { 744 mtx_destroy(&ifq->ifq_mtx); 745 } 746 747 /* 748 * Perform generic interface initialization tasks and attach the interface 749 * to the list of "active" interfaces. If vmove flag is set on entry 750 * to if_attach_internal(), perform only a limited subset of initialization 751 * tasks, given that we are moving from one vnet to another an ifnet which 752 * has already been fully initialized. 753 * 754 * Note that if_detach_internal() removes group membership unconditionally 755 * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. 756 * Thus, when if_vmove() is applied to a cloned interface, group membership 757 * is lost while a cloned one always joins a group whose name is 758 * ifc->ifc_name. To recover this after if_detach_internal() and 759 * if_attach_internal(), the cloner should be specified to 760 * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() 761 * attempts to join a group whose name is ifc->ifc_name. 762 * 763 * XXX: 764 * - The decision to return void and thus require this function to 765 * succeed is questionable. 766 * - We should probably do more sanity checking. For instance we don't 767 * do anything to insure if_xname is unique or non-empty. 768 */ 769 void 770 if_attach(struct ifnet *ifp) 771 { 772 773 if_attach_internal(ifp, false); 774 } 775 776 /* 777 * Compute the least common TSO limit. 778 */ 779 void 780 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) 781 { 782 /* 783 * 1) If there is no limit currently, take the limit from 784 * the network adapter. 785 * 786 * 2) If the network adapter has a limit below the current 787 * limit, apply it. 788 */ 789 if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && 790 ifp->if_hw_tsomax < pmax->tsomaxbytes)) { 791 pmax->tsomaxbytes = ifp->if_hw_tsomax; 792 } 793 if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && 794 ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { 795 pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 796 } 797 if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && 798 ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { 799 pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 800 } 801 } 802 803 /* 804 * Update TSO limit of a network adapter. 805 * 806 * Returns zero if no change. Else non-zero. 807 */ 808 int 809 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) 810 { 811 int retval = 0; 812 if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { 813 ifp->if_hw_tsomax = pmax->tsomaxbytes; 814 retval++; 815 } 816 if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { 817 ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; 818 retval++; 819 } 820 if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { 821 ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; 822 retval++; 823 } 824 return (retval); 825 } 826 827 static void 828 if_attach_internal(struct ifnet *ifp, bool vmove) 829 { 830 unsigned socksize, ifasize; 831 int namelen, masklen; 832 struct sockaddr_dl *sdl; 833 struct ifaddr *ifa; 834 835 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 836 837 #ifdef VIMAGE 838 ifp->if_vnet = curvnet; 839 if (ifp->if_home_vnet == NULL) 840 ifp->if_home_vnet = curvnet; 841 #endif 842 843 if_addgroup(ifp, IFG_ALL); 844 845 #ifdef VIMAGE 846 /* Restore group membership for cloned interface. */ 847 if (vmove) 848 if_clone_restoregroup(ifp); 849 #endif 850 851 getmicrotime(&ifp->if_lastchange); 852 ifp->if_epoch = time_uptime; 853 854 KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || 855 (ifp->if_transmit != NULL && ifp->if_qflush != NULL), 856 ("transmit and qflush must both either be set or both be NULL")); 857 if (ifp->if_transmit == NULL) { 858 ifp->if_transmit = if_transmit_default; 859 ifp->if_qflush = if_qflush; 860 } 861 if (ifp->if_input == NULL) 862 ifp->if_input = if_input_default; 863 864 if (ifp->if_requestencap == NULL) 865 ifp->if_requestencap = if_requestencap_default; 866 867 if (!vmove) { 868 #ifdef MAC 869 mac_ifnet_create(ifp); 870 #endif 871 872 /* 873 * Create a Link Level name for this device. 874 */ 875 namelen = strlen(ifp->if_xname); 876 /* 877 * Always save enough space for any possiable name so we 878 * can do a rename in place later. 879 */ 880 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; 881 socksize = masklen + ifp->if_addrlen; 882 if (socksize < sizeof(*sdl)) 883 socksize = sizeof(*sdl); 884 socksize = roundup2(socksize, sizeof(long)); 885 ifasize = sizeof(*ifa) + 2 * socksize; 886 ifa = ifa_alloc(ifasize, M_WAITOK); 887 sdl = (struct sockaddr_dl *)(ifa + 1); 888 sdl->sdl_len = socksize; 889 sdl->sdl_family = AF_LINK; 890 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 891 sdl->sdl_nlen = namelen; 892 sdl->sdl_index = ifp->if_index; 893 sdl->sdl_type = ifp->if_type; 894 ifp->if_addr = ifa; 895 ifa->ifa_ifp = ifp; 896 ifa->ifa_addr = (struct sockaddr *)sdl; 897 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 898 ifa->ifa_netmask = (struct sockaddr *)sdl; 899 sdl->sdl_len = masklen; 900 while (namelen != 0) 901 sdl->sdl_data[--namelen] = 0xff; 902 CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); 903 /* Reliably crash if used uninitialized. */ 904 ifp->if_broadcastaddr = NULL; 905 906 if (ifp->if_type == IFT_ETHER) { 907 ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR, 908 M_WAITOK | M_ZERO); 909 } 910 911 #if defined(INET) || defined(INET6) 912 /* Use defaults for TSO, if nothing is set */ 913 if (ifp->if_hw_tsomax == 0 && 914 ifp->if_hw_tsomaxsegcount == 0 && 915 ifp->if_hw_tsomaxsegsize == 0) { 916 /* 917 * The TSO defaults needs to be such that an 918 * NFS mbuf list of 35 mbufs totalling just 919 * below 64K works and that a chain of mbufs 920 * can be defragged into at most 32 segments: 921 */ 922 ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - 923 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 924 ifp->if_hw_tsomaxsegcount = 35; 925 ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ 926 927 /* XXX some drivers set IFCAP_TSO after ethernet attach */ 928 if (ifp->if_capabilities & IFCAP_TSO) { 929 if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", 930 ifp->if_hw_tsomax, 931 ifp->if_hw_tsomaxsegcount, 932 ifp->if_hw_tsomaxsegsize); 933 } 934 } 935 #endif 936 } 937 #ifdef VIMAGE 938 else { 939 /* 940 * Update the interface index in the link layer address 941 * of the interface. 942 */ 943 for (ifa = ifp->if_addr; ifa != NULL; 944 ifa = CK_STAILQ_NEXT(ifa, ifa_link)) { 945 if (ifa->ifa_addr->sa_family == AF_LINK) { 946 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 947 sdl->sdl_index = ifp->if_index; 948 } 949 } 950 } 951 #endif 952 953 if_link_ifnet(ifp); 954 955 if (domain_init_status >= 2) 956 if_attachdomain1(ifp); 957 958 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 959 if (IS_DEFAULT_VNET(curvnet)) 960 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 961 } 962 963 static void 964 if_epochalloc(void *dummy __unused) 965 { 966 967 net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT); 968 } 969 SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL); 970 971 static void 972 if_attachdomain(void *dummy) 973 { 974 struct ifnet *ifp; 975 976 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) 977 if_attachdomain1(ifp); 978 } 979 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, 980 if_attachdomain, NULL); 981 982 static void 983 if_attachdomain1(struct ifnet *ifp) 984 { 985 struct domain *dp; 986 987 /* 988 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we 989 * cannot lock ifp->if_afdata initialization, entirely. 990 */ 991 IF_AFDATA_LOCK(ifp); 992 if (ifp->if_afdata_initialized >= domain_init_status) { 993 IF_AFDATA_UNLOCK(ifp); 994 log(LOG_WARNING, "%s called more than once on %s\n", 995 __func__, ifp->if_xname); 996 return; 997 } 998 ifp->if_afdata_initialized = domain_init_status; 999 IF_AFDATA_UNLOCK(ifp); 1000 1001 /* address family dependent data region */ 1002 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 1003 SLIST_FOREACH(dp, &domains, dom_next) { 1004 if (dp->dom_ifattach) 1005 ifp->if_afdata[dp->dom_family] = 1006 (*dp->dom_ifattach)(ifp); 1007 } 1008 } 1009 1010 /* 1011 * Remove any unicast or broadcast network addresses from an interface. 1012 */ 1013 void 1014 if_purgeaddrs(struct ifnet *ifp) 1015 { 1016 struct ifaddr *ifa; 1017 1018 #ifdef INET6 1019 /* 1020 * Need to leave multicast addresses of proxy NDP llentries 1021 * before in6_purgeifaddr() because the llentries are keys 1022 * for in6_multi objects of proxy NDP entries. 1023 * in6_purgeifaddr()s clean up llentries including proxy NDPs 1024 * then we would lose the keys if they are called earlier. 1025 */ 1026 in6_purge_proxy_ndp(ifp); 1027 #endif 1028 while (1) { 1029 struct epoch_tracker et; 1030 1031 NET_EPOCH_ENTER(et); 1032 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1033 if (ifa->ifa_addr->sa_family != AF_LINK) 1034 break; 1035 } 1036 NET_EPOCH_EXIT(et); 1037 1038 if (ifa == NULL) 1039 break; 1040 #ifdef INET 1041 /* XXX: Ugly!! ad hoc just for INET */ 1042 if (ifa->ifa_addr->sa_family == AF_INET) { 1043 struct ifaliasreq ifr; 1044 1045 bzero(&ifr, sizeof(ifr)); 1046 ifr.ifra_addr = *ifa->ifa_addr; 1047 if (ifa->ifa_dstaddr) 1048 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 1049 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 1050 NULL) == 0) 1051 continue; 1052 } 1053 #endif /* INET */ 1054 #ifdef INET6 1055 if (ifa->ifa_addr->sa_family == AF_INET6) { 1056 in6_purgeifaddr((struct in6_ifaddr *)ifa); 1057 /* ifp_addrhead is already updated */ 1058 continue; 1059 } 1060 #endif /* INET6 */ 1061 IF_ADDR_WLOCK(ifp); 1062 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1063 IF_ADDR_WUNLOCK(ifp); 1064 ifa_free(ifa); 1065 } 1066 } 1067 1068 /* 1069 * Remove any multicast network addresses from an interface when an ifnet 1070 * is going away. 1071 */ 1072 static void 1073 if_purgemaddrs(struct ifnet *ifp) 1074 { 1075 struct ifmultiaddr *ifma; 1076 1077 IF_ADDR_WLOCK(ifp); 1078 while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) { 1079 ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs); 1080 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 1081 if_delmulti_locked(ifp, ifma, 1); 1082 } 1083 IF_ADDR_WUNLOCK(ifp); 1084 } 1085 1086 /* 1087 * Detach an interface, removing it from the list of "active" interfaces. 1088 * If vmove flag is set on entry to if_detach_internal(), perform only a 1089 * limited subset of cleanup tasks, given that we are moving an ifnet from 1090 * one vnet to another, where it must be fully operational. 1091 * 1092 * XXXRW: There are some significant questions about event ordering, and 1093 * how to prevent things from starting to use the interface during detach. 1094 */ 1095 void 1096 if_detach(struct ifnet *ifp) 1097 { 1098 bool found; 1099 1100 CURVNET_SET_QUIET(ifp->if_vnet); 1101 found = if_unlink_ifnet(ifp, false); 1102 if (found) { 1103 sx_xlock(&ifnet_detach_sxlock); 1104 if_detach_internal(ifp, false); 1105 sx_xunlock(&ifnet_detach_sxlock); 1106 } 1107 CURVNET_RESTORE(); 1108 } 1109 1110 /* 1111 * The vmove flag, if set, indicates that we are called from a callpath 1112 * that is moving an interface to a different vnet instance. 1113 * 1114 * The shutdown flag, if set, indicates that we are called in the 1115 * process of shutting down a vnet instance. Currently only the 1116 * vnet_if_return SYSUNINIT function sets it. Note: we can be called 1117 * on a vnet instance shutdown without this flag being set, e.g., when 1118 * the cloned interfaces are destoyed as first thing of teardown. 1119 */ 1120 static int 1121 if_detach_internal(struct ifnet *ifp, bool vmove) 1122 { 1123 struct ifaddr *ifa; 1124 int i; 1125 struct domain *dp; 1126 #ifdef VIMAGE 1127 bool shutdown; 1128 1129 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1130 #endif 1131 1132 /* 1133 * At this point we know the interface still was on the ifnet list 1134 * and we removed it so we are in a stable state. 1135 */ 1136 epoch_wait_preempt(net_epoch_preempt); 1137 1138 /* 1139 * Ensure all pending EPOCH(9) callbacks have been executed. This 1140 * fixes issues about late destruction of multicast options 1141 * which lead to leave group calls, which in turn access the 1142 * belonging ifnet structure: 1143 */ 1144 NET_EPOCH_DRAIN_CALLBACKS(); 1145 1146 /* 1147 * In any case (destroy or vmove) detach us from the groups 1148 * and remove/wait for pending events on the taskq. 1149 * XXX-BZ in theory an interface could still enqueue a taskq change? 1150 */ 1151 if_delgroups(ifp); 1152 1153 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 1154 taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask); 1155 1156 if_down(ifp); 1157 1158 #ifdef VIMAGE 1159 /* 1160 * On VNET shutdown abort here as the stack teardown will do all 1161 * the work top-down for us. 1162 */ 1163 if (shutdown) { 1164 /* Give interface users the chance to clean up. */ 1165 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1166 1167 /* 1168 * In case of a vmove we are done here without error. 1169 * If we would signal an error it would lead to the same 1170 * abort as if we did not find the ifnet anymore. 1171 * if_detach() calls us in void context and does not care 1172 * about an early abort notification, so life is splendid :) 1173 */ 1174 goto finish_vnet_shutdown; 1175 } 1176 #endif 1177 1178 /* 1179 * At this point we are not tearing down a VNET and are either 1180 * going to destroy or vmove the interface and have to cleanup 1181 * accordingly. 1182 */ 1183 1184 /* 1185 * Remove routes and flush queues. 1186 */ 1187 #ifdef ALTQ 1188 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1189 altq_disable(&ifp->if_snd); 1190 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1191 altq_detach(&ifp->if_snd); 1192 #endif 1193 1194 if_purgeaddrs(ifp); 1195 1196 #ifdef INET 1197 in_ifdetach(ifp); 1198 #endif 1199 1200 #ifdef INET6 1201 /* 1202 * Remove all IPv6 kernel structs related to ifp. This should be done 1203 * before removing routing entries below, since IPv6 interface direct 1204 * routes are expected to be removed by the IPv6-specific kernel API. 1205 * Otherwise, the kernel will detect some inconsistency and bark it. 1206 */ 1207 in6_ifdetach(ifp); 1208 #endif 1209 if_purgemaddrs(ifp); 1210 1211 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 1212 if (IS_DEFAULT_VNET(curvnet)) 1213 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 1214 1215 if (!vmove) { 1216 /* 1217 * Prevent further calls into the device driver via ifnet. 1218 */ 1219 if_dead(ifp); 1220 1221 /* 1222 * Clean up all addresses. 1223 */ 1224 IF_ADDR_WLOCK(ifp); 1225 if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) { 1226 ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); 1227 CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); 1228 IF_ADDR_WUNLOCK(ifp); 1229 ifa_free(ifa); 1230 } else 1231 IF_ADDR_WUNLOCK(ifp); 1232 } 1233 1234 rt_flushifroutes(ifp); 1235 1236 #ifdef VIMAGE 1237 finish_vnet_shutdown: 1238 #endif 1239 /* 1240 * We cannot hold the lock over dom_ifdetach calls as they might 1241 * sleep, for example trying to drain a callout, thus open up the 1242 * theoretical race with re-attaching. 1243 */ 1244 IF_AFDATA_LOCK(ifp); 1245 i = ifp->if_afdata_initialized; 1246 ifp->if_afdata_initialized = 0; 1247 IF_AFDATA_UNLOCK(ifp); 1248 if (i == 0) 1249 return (0); 1250 SLIST_FOREACH(dp, &domains, dom_next) { 1251 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) { 1252 (*dp->dom_ifdetach)(ifp, 1253 ifp->if_afdata[dp->dom_family]); 1254 ifp->if_afdata[dp->dom_family] = NULL; 1255 } 1256 } 1257 1258 return (0); 1259 } 1260 1261 #ifdef VIMAGE 1262 /* 1263 * if_vmove() performs a limited version of if_detach() in current 1264 * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. 1265 */ 1266 static int 1267 if_vmove(struct ifnet *ifp, struct vnet *new_vnet) 1268 { 1269 #ifdef DEV_BPF 1270 u_int bif_dlt, bif_hdrlen; 1271 #endif 1272 int rc; 1273 1274 #ifdef DEV_BPF 1275 /* 1276 * if_detach_internal() will call the eventhandler to notify 1277 * interface departure. That will detach if_bpf. We need to 1278 * safe the dlt and hdrlen so we can re-attach it later. 1279 */ 1280 bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen); 1281 #endif 1282 1283 /* 1284 * Detach from current vnet, but preserve LLADDR info, do not 1285 * mark as dead etc. so that the ifnet can be reattached later. 1286 * If we cannot find it, we lost the race to someone else. 1287 */ 1288 rc = if_detach_internal(ifp, true); 1289 if (rc != 0) 1290 return (rc); 1291 1292 /* 1293 * Perform interface-specific reassignment tasks, if provided by 1294 * the driver. 1295 */ 1296 if (ifp->if_reassign != NULL) 1297 ifp->if_reassign(ifp, new_vnet, NULL); 1298 1299 /* 1300 * Switch to the context of the target vnet. 1301 */ 1302 CURVNET_SET_QUIET(new_vnet); 1303 if_attach_internal(ifp, true); 1304 1305 #ifdef DEV_BPF 1306 if (ifp->if_bpf == NULL) 1307 bpfattach(ifp, bif_dlt, bif_hdrlen); 1308 #endif 1309 1310 CURVNET_RESTORE(); 1311 return (0); 1312 } 1313 1314 /* 1315 * Move an ifnet to or from another child prison/vnet, specified by the jail id. 1316 */ 1317 static int 1318 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) 1319 { 1320 struct prison *pr; 1321 struct ifnet *difp; 1322 int error; 1323 bool found __diagused; 1324 bool shutdown; 1325 1326 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 1327 1328 /* Try to find the prison within our visibility. */ 1329 sx_slock(&allprison_lock); 1330 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1331 sx_sunlock(&allprison_lock); 1332 if (pr == NULL) 1333 return (ENXIO); 1334 prison_hold_locked(pr); 1335 mtx_unlock(&pr->pr_mtx); 1336 1337 /* Do not try to move the iface from and to the same prison. */ 1338 if (pr->pr_vnet == ifp->if_vnet) { 1339 prison_free(pr); 1340 return (EEXIST); 1341 } 1342 1343 /* Make sure the named iface does not exists in the dst. prison/vnet. */ 1344 /* XXX Lock interfaces to avoid races. */ 1345 CURVNET_SET_QUIET(pr->pr_vnet); 1346 difp = ifunit(ifname); 1347 if (difp != NULL) { 1348 CURVNET_RESTORE(); 1349 prison_free(pr); 1350 return (EEXIST); 1351 } 1352 sx_xlock(&ifnet_detach_sxlock); 1353 1354 /* Make sure the VNET is stable. */ 1355 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1356 if (shutdown) { 1357 sx_xunlock(&ifnet_detach_sxlock); 1358 CURVNET_RESTORE(); 1359 prison_free(pr); 1360 return (EBUSY); 1361 } 1362 CURVNET_RESTORE(); 1363 1364 found = if_unlink_ifnet(ifp, true); 1365 if (! found) { 1366 sx_xunlock(&ifnet_detach_sxlock); 1367 CURVNET_RESTORE(); 1368 prison_free(pr); 1369 return (ENODEV); 1370 } 1371 1372 /* Move the interface into the child jail/vnet. */ 1373 error = if_vmove(ifp, pr->pr_vnet); 1374 1375 /* Report the new if_xname back to the userland on success. */ 1376 if (error == 0) 1377 sprintf(ifname, "%s", ifp->if_xname); 1378 1379 sx_xunlock(&ifnet_detach_sxlock); 1380 1381 prison_free(pr); 1382 return (error); 1383 } 1384 1385 static int 1386 if_vmove_reclaim(struct thread *td, char *ifname, int jid) 1387 { 1388 struct prison *pr; 1389 struct vnet *vnet_dst; 1390 struct ifnet *ifp; 1391 int error, found __diagused; 1392 bool shutdown; 1393 1394 /* Try to find the prison within our visibility. */ 1395 sx_slock(&allprison_lock); 1396 pr = prison_find_child(td->td_ucred->cr_prison, jid); 1397 sx_sunlock(&allprison_lock); 1398 if (pr == NULL) 1399 return (ENXIO); 1400 prison_hold_locked(pr); 1401 mtx_unlock(&pr->pr_mtx); 1402 1403 /* Make sure the named iface exists in the source prison/vnet. */ 1404 CURVNET_SET(pr->pr_vnet); 1405 ifp = ifunit(ifname); /* XXX Lock to avoid races. */ 1406 if (ifp == NULL) { 1407 CURVNET_RESTORE(); 1408 prison_free(pr); 1409 return (ENXIO); 1410 } 1411 1412 /* Do not try to move the iface from and to the same prison. */ 1413 vnet_dst = TD_TO_VNET(td); 1414 if (vnet_dst == ifp->if_vnet) { 1415 CURVNET_RESTORE(); 1416 prison_free(pr); 1417 return (EEXIST); 1418 } 1419 1420 /* Make sure the VNET is stable. */ 1421 shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); 1422 if (shutdown) { 1423 CURVNET_RESTORE(); 1424 prison_free(pr); 1425 return (EBUSY); 1426 } 1427 1428 /* Get interface back from child jail/vnet. */ 1429 found = if_unlink_ifnet(ifp, true); 1430 MPASS(found); 1431 sx_xlock(&ifnet_detach_sxlock); 1432 error = if_vmove(ifp, vnet_dst); 1433 sx_xunlock(&ifnet_detach_sxlock); 1434 CURVNET_RESTORE(); 1435 1436 /* Report the new if_xname back to the userland on success. */ 1437 if (error == 0) 1438 sprintf(ifname, "%s", ifp->if_xname); 1439 1440 prison_free(pr); 1441 return (error); 1442 } 1443 #endif /* VIMAGE */ 1444 1445 /* 1446 * Add a group to an interface 1447 */ 1448 int 1449 if_addgroup(struct ifnet *ifp, const char *groupname) 1450 { 1451 struct ifg_list *ifgl; 1452 struct ifg_group *ifg = NULL; 1453 struct ifg_member *ifgm; 1454 int new = 0; 1455 1456 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1457 groupname[strlen(groupname) - 1] <= '9') 1458 return (EINVAL); 1459 1460 IFNET_WLOCK(); 1461 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1462 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { 1463 IFNET_WUNLOCK(); 1464 return (EEXIST); 1465 } 1466 1467 if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) { 1468 IFNET_WUNLOCK(); 1469 return (ENOMEM); 1470 } 1471 1472 if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 1473 free(ifgl, M_TEMP); 1474 IFNET_WUNLOCK(); 1475 return (ENOMEM); 1476 } 1477 1478 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1479 if (!strcmp(ifg->ifg_group, groupname)) 1480 break; 1481 1482 if (ifg == NULL) { 1483 if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) { 1484 free(ifgl, M_TEMP); 1485 free(ifgm, M_TEMP); 1486 IFNET_WUNLOCK(); 1487 return (ENOMEM); 1488 } 1489 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1490 ifg->ifg_refcnt = 0; 1491 CK_STAILQ_INIT(&ifg->ifg_members); 1492 CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); 1493 new = 1; 1494 } 1495 1496 ifg->ifg_refcnt++; 1497 ifgl->ifgl_group = ifg; 1498 ifgm->ifgm_ifp = ifp; 1499 1500 IF_ADDR_WLOCK(ifp); 1501 CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1502 CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1503 IF_ADDR_WUNLOCK(ifp); 1504 1505 IFNET_WUNLOCK(); 1506 1507 if (new) 1508 EVENTHANDLER_INVOKE(group_attach_event, ifg); 1509 EVENTHANDLER_INVOKE(group_change_event, groupname); 1510 1511 return (0); 1512 } 1513 1514 /* 1515 * Helper function to remove a group out of an interface. Expects the global 1516 * ifnet lock to be write-locked, and drops it before returning. 1517 */ 1518 static void 1519 _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl, 1520 const char *groupname) 1521 { 1522 struct ifg_member *ifgm; 1523 bool freeifgl; 1524 1525 IFNET_WLOCK_ASSERT(); 1526 1527 IF_ADDR_WLOCK(ifp); 1528 CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next); 1529 IF_ADDR_WUNLOCK(ifp); 1530 1531 CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { 1532 if (ifgm->ifgm_ifp == ifp) { 1533 CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, 1534 ifg_member, ifgm_next); 1535 break; 1536 } 1537 } 1538 1539 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1540 CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, 1541 ifg_next); 1542 freeifgl = true; 1543 } else { 1544 freeifgl = false; 1545 } 1546 IFNET_WUNLOCK(); 1547 1548 epoch_wait_preempt(net_epoch_preempt); 1549 EVENTHANDLER_INVOKE(group_change_event, groupname); 1550 if (freeifgl) { 1551 EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); 1552 free(ifgl->ifgl_group, M_TEMP); 1553 } 1554 free(ifgm, M_TEMP); 1555 free(ifgl, M_TEMP); 1556 } 1557 1558 /* 1559 * Remove a group from an interface 1560 */ 1561 int 1562 if_delgroup(struct ifnet *ifp, const char *groupname) 1563 { 1564 struct ifg_list *ifgl; 1565 1566 IFNET_WLOCK(); 1567 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1568 if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) 1569 break; 1570 if (ifgl == NULL) { 1571 IFNET_WUNLOCK(); 1572 return (ENOENT); 1573 } 1574 1575 _if_delgroup_locked(ifp, ifgl, groupname); 1576 1577 return (0); 1578 } 1579 1580 /* 1581 * Remove an interface from all groups 1582 */ 1583 static void 1584 if_delgroups(struct ifnet *ifp) 1585 { 1586 struct ifg_list *ifgl; 1587 char groupname[IFNAMSIZ]; 1588 1589 IFNET_WLOCK(); 1590 while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) { 1591 strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); 1592 _if_delgroup_locked(ifp, ifgl, groupname); 1593 IFNET_WLOCK(); 1594 } 1595 IFNET_WUNLOCK(); 1596 } 1597 1598 /* 1599 * Stores all groups from an interface in memory pointed to by ifgr. 1600 */ 1601 static int 1602 if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp) 1603 { 1604 int len, error; 1605 struct ifg_list *ifgl; 1606 struct ifg_req ifgrq, *ifgp; 1607 1608 NET_EPOCH_ASSERT(); 1609 1610 if (ifgr->ifgr_len == 0) { 1611 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1612 ifgr->ifgr_len += sizeof(struct ifg_req); 1613 return (0); 1614 } 1615 1616 len = ifgr->ifgr_len; 1617 ifgp = ifgr->ifgr_groups; 1618 /* XXX: wire */ 1619 CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1620 if (len < sizeof(ifgrq)) 1621 return (EINVAL); 1622 bzero(&ifgrq, sizeof ifgrq); 1623 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1624 sizeof(ifgrq.ifgrq_group)); 1625 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) 1626 return (error); 1627 len -= sizeof(ifgrq); 1628 ifgp++; 1629 } 1630 1631 return (0); 1632 } 1633 1634 /* 1635 * Stores all members of a group in memory pointed to by igfr 1636 */ 1637 static int 1638 if_getgroupmembers(struct ifgroupreq *ifgr) 1639 { 1640 struct ifg_group *ifg; 1641 struct ifg_member *ifgm; 1642 struct ifg_req ifgrq, *ifgp; 1643 int len, error; 1644 1645 IFNET_RLOCK(); 1646 CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) 1647 if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) 1648 break; 1649 if (ifg == NULL) { 1650 IFNET_RUNLOCK(); 1651 return (ENOENT); 1652 } 1653 1654 if (ifgr->ifgr_len == 0) { 1655 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1656 ifgr->ifgr_len += sizeof(ifgrq); 1657 IFNET_RUNLOCK(); 1658 return (0); 1659 } 1660 1661 len = ifgr->ifgr_len; 1662 ifgp = ifgr->ifgr_groups; 1663 CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1664 if (len < sizeof(ifgrq)) { 1665 IFNET_RUNLOCK(); 1666 return (EINVAL); 1667 } 1668 bzero(&ifgrq, sizeof ifgrq); 1669 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1670 sizeof(ifgrq.ifgrq_member)); 1671 if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { 1672 IFNET_RUNLOCK(); 1673 return (error); 1674 } 1675 len -= sizeof(ifgrq); 1676 ifgp++; 1677 } 1678 IFNET_RUNLOCK(); 1679 1680 return (0); 1681 } 1682 1683 /* 1684 * Return counter values from counter(9)s stored in ifnet. 1685 */ 1686 uint64_t 1687 if_get_counter_default(struct ifnet *ifp, ift_counter cnt) 1688 { 1689 1690 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1691 1692 return (counter_u64_fetch(ifp->if_counters[cnt])); 1693 } 1694 1695 /* 1696 * Increase an ifnet counter. Usually used for counters shared 1697 * between the stack and a driver, but function supports them all. 1698 */ 1699 void 1700 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) 1701 { 1702 1703 KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); 1704 1705 counter_u64_add(ifp->if_counters[cnt], inc); 1706 } 1707 1708 /* 1709 * Copy data from ifnet to userland API structure if_data. 1710 */ 1711 void 1712 if_data_copy(struct ifnet *ifp, struct if_data *ifd) 1713 { 1714 1715 ifd->ifi_type = ifp->if_type; 1716 ifd->ifi_physical = 0; 1717 ifd->ifi_addrlen = ifp->if_addrlen; 1718 ifd->ifi_hdrlen = ifp->if_hdrlen; 1719 ifd->ifi_link_state = ifp->if_link_state; 1720 ifd->ifi_vhid = 0; 1721 ifd->ifi_datalen = sizeof(struct if_data); 1722 ifd->ifi_mtu = ifp->if_mtu; 1723 ifd->ifi_metric = ifp->if_metric; 1724 ifd->ifi_baudrate = ifp->if_baudrate; 1725 ifd->ifi_hwassist = ifp->if_hwassist; 1726 ifd->ifi_epoch = ifp->if_epoch; 1727 ifd->ifi_lastchange = ifp->if_lastchange; 1728 1729 ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); 1730 ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); 1731 ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); 1732 ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); 1733 ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); 1734 ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); 1735 ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); 1736 ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); 1737 ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); 1738 ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); 1739 ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); 1740 ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); 1741 } 1742 1743 /* 1744 * Initialization, destruction and refcounting functions for ifaddrs. 1745 */ 1746 struct ifaddr * 1747 ifa_alloc(size_t size, int flags) 1748 { 1749 struct ifaddr *ifa; 1750 1751 KASSERT(size >= sizeof(struct ifaddr), 1752 ("%s: invalid size %zu", __func__, size)); 1753 1754 ifa = malloc(size, M_IFADDR, M_ZERO | flags); 1755 if (ifa == NULL) 1756 return (NULL); 1757 1758 if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) 1759 goto fail; 1760 if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) 1761 goto fail; 1762 if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) 1763 goto fail; 1764 if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) 1765 goto fail; 1766 1767 refcount_init(&ifa->ifa_refcnt, 1); 1768 1769 return (ifa); 1770 1771 fail: 1772 /* free(NULL) is okay */ 1773 counter_u64_free(ifa->ifa_opackets); 1774 counter_u64_free(ifa->ifa_ipackets); 1775 counter_u64_free(ifa->ifa_obytes); 1776 counter_u64_free(ifa->ifa_ibytes); 1777 free(ifa, M_IFADDR); 1778 1779 return (NULL); 1780 } 1781 1782 void 1783 ifa_ref(struct ifaddr *ifa) 1784 { 1785 u_int old __diagused; 1786 1787 old = refcount_acquire(&ifa->ifa_refcnt); 1788 KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa)); 1789 } 1790 1791 int 1792 ifa_try_ref(struct ifaddr *ifa) 1793 { 1794 1795 NET_EPOCH_ASSERT(); 1796 return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt)); 1797 } 1798 1799 static void 1800 ifa_destroy(epoch_context_t ctx) 1801 { 1802 struct ifaddr *ifa; 1803 1804 ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx); 1805 counter_u64_free(ifa->ifa_opackets); 1806 counter_u64_free(ifa->ifa_ipackets); 1807 counter_u64_free(ifa->ifa_obytes); 1808 counter_u64_free(ifa->ifa_ibytes); 1809 free(ifa, M_IFADDR); 1810 } 1811 1812 void 1813 ifa_free(struct ifaddr *ifa) 1814 { 1815 1816 if (refcount_release(&ifa->ifa_refcnt)) 1817 NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx); 1818 } 1819 1820 /* 1821 * XXX: Because sockaddr_dl has deeper structure than the sockaddr 1822 * structs used to represent other address families, it is necessary 1823 * to perform a different comparison. 1824 */ 1825 1826 #define sa_dl_equal(a1, a2) \ 1827 ((((const struct sockaddr_dl *)(a1))->sdl_len == \ 1828 ((const struct sockaddr_dl *)(a2))->sdl_len) && \ 1829 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \ 1830 CLLADDR((const struct sockaddr_dl *)(a2)), \ 1831 ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0)) 1832 1833 /* 1834 * Locate an interface based on a complete address. 1835 */ 1836 /*ARGSUSED*/ 1837 struct ifaddr * 1838 ifa_ifwithaddr(const struct sockaddr *addr) 1839 { 1840 struct ifnet *ifp; 1841 struct ifaddr *ifa; 1842 1843 NET_EPOCH_ASSERT(); 1844 1845 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1846 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1847 if (ifa->ifa_addr->sa_family != addr->sa_family) 1848 continue; 1849 if (sa_equal(addr, ifa->ifa_addr)) { 1850 goto done; 1851 } 1852 /* IP6 doesn't have broadcast */ 1853 if ((ifp->if_flags & IFF_BROADCAST) && 1854 ifa->ifa_broadaddr && 1855 ifa->ifa_broadaddr->sa_len != 0 && 1856 sa_equal(ifa->ifa_broadaddr, addr)) { 1857 goto done; 1858 } 1859 } 1860 } 1861 ifa = NULL; 1862 done: 1863 return (ifa); 1864 } 1865 1866 int 1867 ifa_ifwithaddr_check(const struct sockaddr *addr) 1868 { 1869 struct epoch_tracker et; 1870 int rc; 1871 1872 NET_EPOCH_ENTER(et); 1873 rc = (ifa_ifwithaddr(addr) != NULL); 1874 NET_EPOCH_EXIT(et); 1875 return (rc); 1876 } 1877 1878 /* 1879 * Locate an interface based on the broadcast address. 1880 */ 1881 /* ARGSUSED */ 1882 struct ifaddr * 1883 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) 1884 { 1885 struct ifnet *ifp; 1886 struct ifaddr *ifa; 1887 1888 NET_EPOCH_ASSERT(); 1889 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1890 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1891 continue; 1892 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1893 if (ifa->ifa_addr->sa_family != addr->sa_family) 1894 continue; 1895 if ((ifp->if_flags & IFF_BROADCAST) && 1896 ifa->ifa_broadaddr && 1897 ifa->ifa_broadaddr->sa_len != 0 && 1898 sa_equal(ifa->ifa_broadaddr, addr)) { 1899 goto done; 1900 } 1901 } 1902 } 1903 ifa = NULL; 1904 done: 1905 return (ifa); 1906 } 1907 1908 /* 1909 * Locate the point to point interface with a given destination address. 1910 */ 1911 /*ARGSUSED*/ 1912 struct ifaddr * 1913 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) 1914 { 1915 struct ifnet *ifp; 1916 struct ifaddr *ifa; 1917 1918 NET_EPOCH_ASSERT(); 1919 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1920 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1921 continue; 1922 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1923 continue; 1924 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1925 if (ifa->ifa_addr->sa_family != addr->sa_family) 1926 continue; 1927 if (ifa->ifa_dstaddr != NULL && 1928 sa_equal(addr, ifa->ifa_dstaddr)) { 1929 goto done; 1930 } 1931 } 1932 } 1933 ifa = NULL; 1934 done: 1935 return (ifa); 1936 } 1937 1938 /* 1939 * Find an interface on a specific network. If many, choice 1940 * is most specific found. 1941 */ 1942 struct ifaddr * 1943 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) 1944 { 1945 struct ifnet *ifp; 1946 struct ifaddr *ifa; 1947 struct ifaddr *ifa_maybe = NULL; 1948 u_int af = addr->sa_family; 1949 const char *addr_data = addr->sa_data, *cplim; 1950 1951 NET_EPOCH_ASSERT(); 1952 /* 1953 * AF_LINK addresses can be looked up directly by their index number, 1954 * so do that if we can. 1955 */ 1956 if (af == AF_LINK) { 1957 ifp = ifnet_byindex( 1958 ((const struct sockaddr_dl *)addr)->sdl_index); 1959 return (ifp ? ifp->if_addr : NULL); 1960 } 1961 1962 /* 1963 * Scan though each interface, looking for ones that have addresses 1964 * in this address family and the requested fib. 1965 */ 1966 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1967 if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) 1968 continue; 1969 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1970 const char *cp, *cp2, *cp3; 1971 1972 if (ifa->ifa_addr->sa_family != af) 1973 next: continue; 1974 if (af == AF_INET && 1975 ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { 1976 /* 1977 * This is a bit broken as it doesn't 1978 * take into account that the remote end may 1979 * be a single node in the network we are 1980 * looking for. 1981 * The trouble is that we don't know the 1982 * netmask for the remote end. 1983 */ 1984 if (ifa->ifa_dstaddr != NULL && 1985 sa_equal(addr, ifa->ifa_dstaddr)) { 1986 goto done; 1987 } 1988 } else { 1989 /* 1990 * Scan all the bits in the ifa's address. 1991 * If a bit dissagrees with what we are 1992 * looking for, mask it with the netmask 1993 * to see if it really matters. 1994 * (A byte at a time) 1995 */ 1996 if (ifa->ifa_netmask == 0) 1997 continue; 1998 cp = addr_data; 1999 cp2 = ifa->ifa_addr->sa_data; 2000 cp3 = ifa->ifa_netmask->sa_data; 2001 cplim = ifa->ifa_netmask->sa_len 2002 + (char *)ifa->ifa_netmask; 2003 while (cp3 < cplim) 2004 if ((*cp++ ^ *cp2++) & *cp3++) 2005 goto next; /* next address! */ 2006 /* 2007 * If the netmask of what we just found 2008 * is more specific than what we had before 2009 * (if we had one), or if the virtual status 2010 * of new prefix is better than of the old one, 2011 * then remember the new one before continuing 2012 * to search for an even better one. 2013 */ 2014 if (ifa_maybe == NULL || 2015 ifa_preferred(ifa_maybe, ifa) || 2016 rn_refines((caddr_t)ifa->ifa_netmask, 2017 (caddr_t)ifa_maybe->ifa_netmask)) { 2018 ifa_maybe = ifa; 2019 } 2020 } 2021 } 2022 } 2023 ifa = ifa_maybe; 2024 ifa_maybe = NULL; 2025 done: 2026 return (ifa); 2027 } 2028 2029 /* 2030 * Find an interface address specific to an interface best matching 2031 * a given address. 2032 */ 2033 struct ifaddr * 2034 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2035 { 2036 struct ifaddr *ifa; 2037 const char *cp, *cp2, *cp3; 2038 char *cplim; 2039 struct ifaddr *ifa_maybe = NULL; 2040 u_int af = addr->sa_family; 2041 2042 if (af >= AF_MAX) 2043 return (NULL); 2044 2045 NET_EPOCH_ASSERT(); 2046 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 2047 if (ifa->ifa_addr->sa_family != af) 2048 continue; 2049 if (ifa_maybe == NULL) 2050 ifa_maybe = ifa; 2051 if (ifa->ifa_netmask == 0) { 2052 if (sa_equal(addr, ifa->ifa_addr) || 2053 (ifa->ifa_dstaddr && 2054 sa_equal(addr, ifa->ifa_dstaddr))) 2055 goto done; 2056 continue; 2057 } 2058 if (ifp->if_flags & IFF_POINTOPOINT) { 2059 if (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr)) 2060 goto done; 2061 } else { 2062 cp = addr->sa_data; 2063 cp2 = ifa->ifa_addr->sa_data; 2064 cp3 = ifa->ifa_netmask->sa_data; 2065 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2066 for (; cp3 < cplim; cp3++) 2067 if ((*cp++ ^ *cp2++) & *cp3) 2068 break; 2069 if (cp3 == cplim) 2070 goto done; 2071 } 2072 } 2073 ifa = ifa_maybe; 2074 done: 2075 return (ifa); 2076 } 2077 2078 /* 2079 * See whether new ifa is better than current one: 2080 * 1) A non-virtual one is preferred over virtual. 2081 * 2) A virtual in master state preferred over any other state. 2082 * 2083 * Used in several address selecting functions. 2084 */ 2085 int 2086 ifa_preferred(struct ifaddr *cur, struct ifaddr *next) 2087 { 2088 2089 return (cur->ifa_carp && (!next->ifa_carp || 2090 ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); 2091 } 2092 2093 struct sockaddr_dl * 2094 link_alloc_sdl(size_t size, int flags) 2095 { 2096 2097 return (malloc(size, M_TEMP, flags)); 2098 } 2099 2100 void 2101 link_free_sdl(struct sockaddr *sa) 2102 { 2103 free(sa, M_TEMP); 2104 } 2105 2106 /* 2107 * Fills in given sdl with interface basic info. 2108 * Returns pointer to filled sdl. 2109 */ 2110 struct sockaddr_dl * 2111 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) 2112 { 2113 struct sockaddr_dl *sdl; 2114 2115 sdl = (struct sockaddr_dl *)paddr; 2116 memset(sdl, 0, sizeof(struct sockaddr_dl)); 2117 sdl->sdl_len = sizeof(struct sockaddr_dl); 2118 sdl->sdl_family = AF_LINK; 2119 sdl->sdl_index = ifp->if_index; 2120 sdl->sdl_type = iftype; 2121 2122 return (sdl); 2123 } 2124 2125 /* 2126 * Mark an interface down and notify protocols of 2127 * the transition. 2128 */ 2129 static void 2130 if_unroute(struct ifnet *ifp, int flag, int fam) 2131 { 2132 2133 KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); 2134 2135 ifp->if_flags &= ~flag; 2136 getmicrotime(&ifp->if_lastchange); 2137 ifp->if_qflush(ifp); 2138 2139 if (ifp->if_carp) 2140 (*carp_linkstate_p)(ifp); 2141 rt_ifmsg(ifp, IFF_UP); 2142 } 2143 2144 /* 2145 * Mark an interface up and notify protocols of 2146 * the transition. 2147 */ 2148 static void 2149 if_route(struct ifnet *ifp, int flag, int fam) 2150 { 2151 2152 KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); 2153 2154 ifp->if_flags |= flag; 2155 getmicrotime(&ifp->if_lastchange); 2156 if (ifp->if_carp) 2157 (*carp_linkstate_p)(ifp); 2158 rt_ifmsg(ifp, IFF_UP); 2159 #ifdef INET6 2160 in6_if_up(ifp); 2161 #endif 2162 } 2163 2164 void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ 2165 void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ 2166 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); 2167 struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); 2168 int (*vlan_tag_p)(struct ifnet *, uint16_t *); 2169 int (*vlan_pcp_p)(struct ifnet *, uint16_t *); 2170 int (*vlan_setcookie_p)(struct ifnet *, void *); 2171 void *(*vlan_cookie_p)(struct ifnet *); 2172 2173 /* 2174 * Handle a change in the interface link state. To avoid LORs 2175 * between driver lock and upper layer locks, as well as possible 2176 * recursions, we post event to taskqueue, and all job 2177 * is done in static do_link_state_change(). 2178 */ 2179 void 2180 if_link_state_change(struct ifnet *ifp, int link_state) 2181 { 2182 /* Return if state hasn't changed. */ 2183 if (ifp->if_link_state == link_state) 2184 return; 2185 2186 ifp->if_link_state = link_state; 2187 2188 /* XXXGL: reference ifp? */ 2189 taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); 2190 } 2191 2192 static void 2193 do_link_state_change(void *arg, int pending) 2194 { 2195 struct ifnet *ifp; 2196 int link_state; 2197 2198 ifp = arg; 2199 link_state = ifp->if_link_state; 2200 2201 CURVNET_SET(ifp->if_vnet); 2202 rt_ifmsg(ifp, 0); 2203 if (ifp->if_vlantrunk != NULL) 2204 (*vlan_link_state_p)(ifp); 2205 2206 if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && 2207 ifp->if_l2com != NULL) 2208 (*ng_ether_link_state_p)(ifp, link_state); 2209 if (ifp->if_carp) 2210 (*carp_linkstate_p)(ifp); 2211 if (ifp->if_bridge) 2212 ifp->if_bridge_linkstate(ifp); 2213 if (ifp->if_lagg) 2214 (*lagg_linkstate_p)(ifp, link_state); 2215 2216 if (IS_DEFAULT_VNET(curvnet)) 2217 devctl_notify("IFNET", ifp->if_xname, 2218 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", 2219 NULL); 2220 if (pending > 1) 2221 if_printf(ifp, "%d link states coalesced\n", pending); 2222 if (log_link_state_change) 2223 if_printf(ifp, "link state changed to %s\n", 2224 (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); 2225 EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); 2226 CURVNET_RESTORE(); 2227 } 2228 2229 /* 2230 * Mark an interface down and notify protocols of 2231 * the transition. 2232 */ 2233 void 2234 if_down(struct ifnet *ifp) 2235 { 2236 2237 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); 2238 if_unroute(ifp, IFF_UP, AF_UNSPEC); 2239 } 2240 2241 /* 2242 * Mark an interface up and notify protocols of 2243 * the transition. 2244 */ 2245 void 2246 if_up(struct ifnet *ifp) 2247 { 2248 2249 if_route(ifp, IFF_UP, AF_UNSPEC); 2250 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); 2251 } 2252 2253 /* 2254 * Flush an interface queue. 2255 */ 2256 void 2257 if_qflush(struct ifnet *ifp) 2258 { 2259 struct mbuf *m, *n; 2260 struct ifaltq *ifq; 2261 2262 ifq = &ifp->if_snd; 2263 IFQ_LOCK(ifq); 2264 #ifdef ALTQ 2265 if (ALTQ_IS_ENABLED(ifq)) 2266 ALTQ_PURGE(ifq); 2267 #endif 2268 n = ifq->ifq_head; 2269 while ((m = n) != NULL) { 2270 n = m->m_nextpkt; 2271 m_freem(m); 2272 } 2273 ifq->ifq_head = 0; 2274 ifq->ifq_tail = 0; 2275 ifq->ifq_len = 0; 2276 IFQ_UNLOCK(ifq); 2277 } 2278 2279 /* 2280 * Map interface name to interface structure pointer, with or without 2281 * returning a reference. 2282 */ 2283 struct ifnet * 2284 ifunit_ref(const char *name) 2285 { 2286 struct epoch_tracker et; 2287 struct ifnet *ifp; 2288 2289 NET_EPOCH_ENTER(et); 2290 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2291 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && 2292 !(ifp->if_flags & IFF_DYING)) 2293 break; 2294 } 2295 if (ifp != NULL) { 2296 if_ref(ifp); 2297 MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); 2298 } 2299 2300 NET_EPOCH_EXIT(et); 2301 return (ifp); 2302 } 2303 2304 struct ifnet * 2305 ifunit(const char *name) 2306 { 2307 struct epoch_tracker et; 2308 struct ifnet *ifp; 2309 2310 NET_EPOCH_ENTER(et); 2311 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2312 if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) 2313 break; 2314 } 2315 NET_EPOCH_EXIT(et); 2316 return (ifp); 2317 } 2318 2319 void * 2320 ifr_buffer_get_buffer(void *data) 2321 { 2322 union ifreq_union *ifrup; 2323 2324 ifrup = data; 2325 #ifdef COMPAT_FREEBSD32 2326 if (SV_CURPROC_FLAG(SV_ILP32)) 2327 return ((void *)(uintptr_t) 2328 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer); 2329 #endif 2330 return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer); 2331 } 2332 2333 static void 2334 ifr_buffer_set_buffer_null(void *data) 2335 { 2336 union ifreq_union *ifrup; 2337 2338 ifrup = data; 2339 #ifdef COMPAT_FREEBSD32 2340 if (SV_CURPROC_FLAG(SV_ILP32)) 2341 ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0; 2342 else 2343 #endif 2344 ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL; 2345 } 2346 2347 size_t 2348 ifr_buffer_get_length(void *data) 2349 { 2350 union ifreq_union *ifrup; 2351 2352 ifrup = data; 2353 #ifdef COMPAT_FREEBSD32 2354 if (SV_CURPROC_FLAG(SV_ILP32)) 2355 return (ifrup->ifr32.ifr_ifru.ifru_buffer.length); 2356 #endif 2357 return (ifrup->ifr.ifr_ifru.ifru_buffer.length); 2358 } 2359 2360 static void 2361 ifr_buffer_set_length(void *data, size_t len) 2362 { 2363 union ifreq_union *ifrup; 2364 2365 ifrup = data; 2366 #ifdef COMPAT_FREEBSD32 2367 if (SV_CURPROC_FLAG(SV_ILP32)) 2368 ifrup->ifr32.ifr_ifru.ifru_buffer.length = len; 2369 else 2370 #endif 2371 ifrup->ifr.ifr_ifru.ifru_buffer.length = len; 2372 } 2373 2374 void * 2375 ifr_data_get_ptr(void *ifrp) 2376 { 2377 union ifreq_union *ifrup; 2378 2379 ifrup = ifrp; 2380 #ifdef COMPAT_FREEBSD32 2381 if (SV_CURPROC_FLAG(SV_ILP32)) 2382 return ((void *)(uintptr_t) 2383 ifrup->ifr32.ifr_ifru.ifru_data); 2384 #endif 2385 return (ifrup->ifr.ifr_ifru.ifru_data); 2386 } 2387 2388 struct ifcap_nv_bit_name { 2389 uint64_t cap_bit; 2390 const char *cap_name; 2391 }; 2392 #define CAPNV(x) {.cap_bit = IFCAP_##x, \ 2393 .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) } 2394 const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = { 2395 CAPNV(RXCSUM), 2396 CAPNV(TXCSUM), 2397 CAPNV(NETCONS), 2398 CAPNV(VLAN_MTU), 2399 CAPNV(VLAN_HWTAGGING), 2400 CAPNV(JUMBO_MTU), 2401 CAPNV(POLLING), 2402 CAPNV(VLAN_HWCSUM), 2403 CAPNV(TSO4), 2404 CAPNV(TSO6), 2405 CAPNV(LRO), 2406 CAPNV(WOL_UCAST), 2407 CAPNV(WOL_MCAST), 2408 CAPNV(WOL_MAGIC), 2409 CAPNV(TOE4), 2410 CAPNV(TOE6), 2411 CAPNV(VLAN_HWFILTER), 2412 CAPNV(VLAN_HWTSO), 2413 CAPNV(LINKSTATE), 2414 CAPNV(NETMAP), 2415 CAPNV(RXCSUM_IPV6), 2416 CAPNV(TXCSUM_IPV6), 2417 CAPNV(HWSTATS), 2418 CAPNV(TXRTLMT), 2419 CAPNV(HWRXTSTMP), 2420 CAPNV(MEXTPG), 2421 CAPNV(TXTLS4), 2422 CAPNV(TXTLS6), 2423 CAPNV(VXLAN_HWCSUM), 2424 CAPNV(VXLAN_HWTSO), 2425 CAPNV(TXTLS_RTLMT), 2426 {0, NULL} 2427 }; 2428 #define CAP2NV(x) {.cap_bit = IFCAP2_BIT(IFCAP2_##x), \ 2429 .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) } 2430 const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = { 2431 CAP2NV(RXTLS4), 2432 CAP2NV(RXTLS6), 2433 {0, NULL} 2434 }; 2435 #undef CAPNV 2436 #undef CAP2NV 2437 2438 int 2439 if_capnv_to_capint(const nvlist_t *nv, int *old_cap, 2440 const struct ifcap_nv_bit_name *nn, bool all) 2441 { 2442 int i, res; 2443 2444 res = 0; 2445 for (i = 0; nn[i].cap_name != NULL; i++) { 2446 if (nvlist_exists_bool(nv, nn[i].cap_name)) { 2447 if (all || nvlist_get_bool(nv, nn[i].cap_name)) 2448 res |= nn[i].cap_bit; 2449 } else { 2450 res |= *old_cap & nn[i].cap_bit; 2451 } 2452 } 2453 return (res); 2454 } 2455 2456 void 2457 if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn, 2458 int ifr_cap, int ifr_req) 2459 { 2460 int i; 2461 2462 for (i = 0; nn[i].cap_name != NULL; i++) { 2463 if ((nn[i].cap_bit & ifr_cap) != 0) { 2464 nvlist_add_bool(nv, nn[i].cap_name, 2465 (nn[i].cap_bit & ifr_req) != 0); 2466 } 2467 } 2468 } 2469 2470 /* 2471 * Hardware specific interface ioctls. 2472 */ 2473 int 2474 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) 2475 { 2476 struct ifreq *ifr; 2477 int error = 0, do_ifup = 0; 2478 int new_flags, temp_flags; 2479 size_t descrlen, nvbuflen; 2480 char *descrbuf; 2481 char new_name[IFNAMSIZ]; 2482 void *buf; 2483 nvlist_t *nvcap; 2484 struct siocsifcapnv_driver_data drv_ioctl_data; 2485 2486 ifr = (struct ifreq *)data; 2487 switch (cmd) { 2488 case SIOCGIFINDEX: 2489 ifr->ifr_index = ifp->if_index; 2490 break; 2491 2492 case SIOCGIFFLAGS: 2493 temp_flags = ifp->if_flags | ifp->if_drv_flags; 2494 ifr->ifr_flags = temp_flags & 0xffff; 2495 ifr->ifr_flagshigh = temp_flags >> 16; 2496 break; 2497 2498 case SIOCGIFCAP: 2499 ifr->ifr_reqcap = ifp->if_capabilities; 2500 ifr->ifr_curcap = ifp->if_capenable; 2501 break; 2502 2503 case SIOCGIFCAPNV: 2504 if ((ifp->if_capabilities & IFCAP_NV) == 0) { 2505 error = EINVAL; 2506 break; 2507 } 2508 buf = NULL; 2509 nvcap = nvlist_create(0); 2510 for (;;) { 2511 if_capint_to_capnv(nvcap, ifcap_nv_bit_names, 2512 ifp->if_capabilities, ifp->if_capenable); 2513 if_capint_to_capnv(nvcap, ifcap2_nv_bit_names, 2514 ifp->if_capabilities2, ifp->if_capenable2); 2515 error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV, 2516 __DECONST(caddr_t, nvcap)); 2517 if (error != 0) { 2518 if_printf(ifp, 2519 "SIOCGIFCAPNV driver mistake: nvlist error %d\n", 2520 error); 2521 break; 2522 } 2523 buf = nvlist_pack(nvcap, &nvbuflen); 2524 if (buf == NULL) { 2525 error = nvlist_error(nvcap); 2526 if (error == 0) 2527 error = EDOOFUS; 2528 break; 2529 } 2530 if (nvbuflen > ifr->ifr_cap_nv.buf_length) { 2531 ifr->ifr_cap_nv.length = nvbuflen; 2532 ifr->ifr_cap_nv.buffer = NULL; 2533 error = EFBIG; 2534 break; 2535 } 2536 ifr->ifr_cap_nv.length = nvbuflen; 2537 error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen); 2538 break; 2539 } 2540 free(buf, M_NVLIST); 2541 nvlist_destroy(nvcap); 2542 break; 2543 2544 case SIOCGIFDATA: 2545 { 2546 struct if_data ifd; 2547 2548 /* Ensure uninitialised padding is not leaked. */ 2549 memset(&ifd, 0, sizeof(ifd)); 2550 2551 if_data_copy(ifp, &ifd); 2552 error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd)); 2553 break; 2554 } 2555 2556 #ifdef MAC 2557 case SIOCGIFMAC: 2558 error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); 2559 break; 2560 #endif 2561 2562 case SIOCGIFMETRIC: 2563 ifr->ifr_metric = ifp->if_metric; 2564 break; 2565 2566 case SIOCGIFMTU: 2567 ifr->ifr_mtu = ifp->if_mtu; 2568 break; 2569 2570 case SIOCGIFPHYS: 2571 /* XXXGL: did this ever worked? */ 2572 ifr->ifr_phys = 0; 2573 break; 2574 2575 case SIOCGIFDESCR: 2576 error = 0; 2577 sx_slock(&ifdescr_sx); 2578 if (ifp->if_description == NULL) 2579 error = ENOMSG; 2580 else { 2581 /* space for terminating nul */ 2582 descrlen = strlen(ifp->if_description) + 1; 2583 if (ifr_buffer_get_length(ifr) < descrlen) 2584 ifr_buffer_set_buffer_null(ifr); 2585 else 2586 error = copyout(ifp->if_description, 2587 ifr_buffer_get_buffer(ifr), descrlen); 2588 ifr_buffer_set_length(ifr, descrlen); 2589 } 2590 sx_sunlock(&ifdescr_sx); 2591 break; 2592 2593 case SIOCSIFDESCR: 2594 error = priv_check(td, PRIV_NET_SETIFDESCR); 2595 if (error) 2596 return (error); 2597 2598 /* 2599 * Copy only (length-1) bytes to make sure that 2600 * if_description is always nul terminated. The 2601 * length parameter is supposed to count the 2602 * terminating nul in. 2603 */ 2604 if (ifr_buffer_get_length(ifr) > ifdescr_maxlen) 2605 return (ENAMETOOLONG); 2606 else if (ifr_buffer_get_length(ifr) == 0) 2607 descrbuf = NULL; 2608 else { 2609 descrbuf = if_allocdescr(ifr_buffer_get_length(ifr), M_WAITOK); 2610 error = copyin(ifr_buffer_get_buffer(ifr), descrbuf, 2611 ifr_buffer_get_length(ifr) - 1); 2612 if (error) { 2613 if_freedescr(descrbuf); 2614 break; 2615 } 2616 } 2617 2618 if_setdescr(ifp, descrbuf); 2619 getmicrotime(&ifp->if_lastchange); 2620 break; 2621 2622 case SIOCGIFFIB: 2623 ifr->ifr_fib = ifp->if_fib; 2624 break; 2625 2626 case SIOCSIFFIB: 2627 error = priv_check(td, PRIV_NET_SETIFFIB); 2628 if (error) 2629 return (error); 2630 if (ifr->ifr_fib >= rt_numfibs) 2631 return (EINVAL); 2632 2633 ifp->if_fib = ifr->ifr_fib; 2634 break; 2635 2636 case SIOCSIFFLAGS: 2637 error = priv_check(td, PRIV_NET_SETIFFLAGS); 2638 if (error) 2639 return (error); 2640 /* 2641 * Currently, no driver owned flags pass the IFF_CANTCHANGE 2642 * check, so we don't need special handling here yet. 2643 */ 2644 new_flags = (ifr->ifr_flags & 0xffff) | 2645 (ifr->ifr_flagshigh << 16); 2646 if (ifp->if_flags & IFF_UP && 2647 (new_flags & IFF_UP) == 0) { 2648 if_down(ifp); 2649 } else if (new_flags & IFF_UP && 2650 (ifp->if_flags & IFF_UP) == 0) { 2651 do_ifup = 1; 2652 } 2653 /* See if permanently promiscuous mode bit is about to flip */ 2654 if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { 2655 if (new_flags & IFF_PPROMISC) 2656 ifp->if_flags |= IFF_PROMISC; 2657 else if (ifp->if_pcount == 0) 2658 ifp->if_flags &= ~IFF_PROMISC; 2659 if (log_promisc_mode_change) 2660 if_printf(ifp, "permanently promiscuous mode %s\n", 2661 ((new_flags & IFF_PPROMISC) ? 2662 "enabled" : "disabled")); 2663 } 2664 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2665 (new_flags &~ IFF_CANTCHANGE); 2666 if (ifp->if_ioctl) { 2667 (void) (*ifp->if_ioctl)(ifp, cmd, data); 2668 } 2669 if (do_ifup) 2670 if_up(ifp); 2671 getmicrotime(&ifp->if_lastchange); 2672 break; 2673 2674 case SIOCSIFCAP: 2675 error = priv_check(td, PRIV_NET_SETIFCAP); 2676 if (error != 0) 2677 return (error); 2678 if (ifp->if_ioctl == NULL) 2679 return (EOPNOTSUPP); 2680 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 2681 return (EINVAL); 2682 error = (*ifp->if_ioctl)(ifp, cmd, data); 2683 if (error == 0) 2684 getmicrotime(&ifp->if_lastchange); 2685 break; 2686 2687 case SIOCSIFCAPNV: 2688 error = priv_check(td, PRIV_NET_SETIFCAP); 2689 if (error != 0) 2690 return (error); 2691 if (ifp->if_ioctl == NULL) 2692 return (EOPNOTSUPP); 2693 if ((ifp->if_capabilities & IFCAP_NV) == 0) 2694 return (EINVAL); 2695 if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE) 2696 return (EINVAL); 2697 nvcap = NULL; 2698 buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK); 2699 for (;;) { 2700 error = copyin(ifr->ifr_cap_nv.buffer, buf, 2701 ifr->ifr_cap_nv.length); 2702 if (error != 0) 2703 break; 2704 nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0); 2705 if (nvcap == NULL) { 2706 error = EINVAL; 2707 break; 2708 } 2709 drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap, 2710 &ifp->if_capenable, ifcap_nv_bit_names, false); 2711 if ((drv_ioctl_data.reqcap & 2712 ~ifp->if_capabilities) != 0) { 2713 error = EINVAL; 2714 break; 2715 } 2716 drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap, 2717 &ifp->if_capenable2, ifcap2_nv_bit_names, false); 2718 if ((drv_ioctl_data.reqcap2 & 2719 ~ifp->if_capabilities2) != 0) { 2720 error = EINVAL; 2721 break; 2722 } 2723 drv_ioctl_data.nvcap = nvcap; 2724 error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV, 2725 (caddr_t)&drv_ioctl_data); 2726 break; 2727 } 2728 nvlist_destroy(nvcap); 2729 free(buf, M_TEMP); 2730 if (error == 0) 2731 getmicrotime(&ifp->if_lastchange); 2732 break; 2733 2734 #ifdef MAC 2735 case SIOCSIFMAC: 2736 error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); 2737 break; 2738 #endif 2739 2740 case SIOCSIFNAME: 2741 error = priv_check(td, PRIV_NET_SETIFNAME); 2742 if (error) 2743 return (error); 2744 error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ, 2745 NULL); 2746 if (error != 0) 2747 return (error); 2748 error = if_rename(ifp, new_name); 2749 break; 2750 2751 #ifdef VIMAGE 2752 case SIOCSIFVNET: 2753 error = priv_check(td, PRIV_NET_SETIFVNET); 2754 if (error) 2755 return (error); 2756 error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); 2757 break; 2758 #endif 2759 2760 case SIOCSIFMETRIC: 2761 error = priv_check(td, PRIV_NET_SETIFMETRIC); 2762 if (error) 2763 return (error); 2764 ifp->if_metric = ifr->ifr_metric; 2765 getmicrotime(&ifp->if_lastchange); 2766 break; 2767 2768 case SIOCSIFPHYS: 2769 error = priv_check(td, PRIV_NET_SETIFPHYS); 2770 if (error) 2771 return (error); 2772 if (ifp->if_ioctl == NULL) 2773 return (EOPNOTSUPP); 2774 error = (*ifp->if_ioctl)(ifp, cmd, data); 2775 if (error == 0) 2776 getmicrotime(&ifp->if_lastchange); 2777 break; 2778 2779 case SIOCSIFMTU: 2780 { 2781 u_long oldmtu = ifp->if_mtu; 2782 2783 error = priv_check(td, PRIV_NET_SETIFMTU); 2784 if (error) 2785 return (error); 2786 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 2787 return (EINVAL); 2788 if (ifp->if_ioctl == NULL) 2789 return (EOPNOTSUPP); 2790 /* Disallow MTU changes on bridge member interfaces. */ 2791 if (ifp->if_bridge) 2792 return (EOPNOTSUPP); 2793 error = (*ifp->if_ioctl)(ifp, cmd, data); 2794 if (error == 0) { 2795 getmicrotime(&ifp->if_lastchange); 2796 rt_ifmsg(ifp, 0); 2797 #ifdef INET 2798 DEBUGNET_NOTIFY_MTU(ifp); 2799 #endif 2800 } 2801 /* 2802 * If the link MTU changed, do network layer specific procedure. 2803 */ 2804 if (ifp->if_mtu != oldmtu) 2805 if_notifymtu(ifp); 2806 break; 2807 } 2808 2809 case SIOCADDMULTI: 2810 case SIOCDELMULTI: 2811 if (cmd == SIOCADDMULTI) 2812 error = priv_check(td, PRIV_NET_ADDMULTI); 2813 else 2814 error = priv_check(td, PRIV_NET_DELMULTI); 2815 if (error) 2816 return (error); 2817 2818 /* Don't allow group membership on non-multicast interfaces. */ 2819 if ((ifp->if_flags & IFF_MULTICAST) == 0) 2820 return (EOPNOTSUPP); 2821 2822 /* Don't let users screw up protocols' entries. */ 2823 if (ifr->ifr_addr.sa_family != AF_LINK) 2824 return (EINVAL); 2825 2826 if (cmd == SIOCADDMULTI) { 2827 struct epoch_tracker et; 2828 struct ifmultiaddr *ifma; 2829 2830 /* 2831 * Userland is only permitted to join groups once 2832 * via the if_addmulti() KPI, because it cannot hold 2833 * struct ifmultiaddr * between calls. It may also 2834 * lose a race while we check if the membership 2835 * already exists. 2836 */ 2837 NET_EPOCH_ENTER(et); 2838 ifma = if_findmulti(ifp, &ifr->ifr_addr); 2839 NET_EPOCH_EXIT(et); 2840 if (ifma != NULL) 2841 error = EADDRINUSE; 2842 else 2843 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2844 } else { 2845 error = if_delmulti(ifp, &ifr->ifr_addr); 2846 } 2847 if (error == 0) 2848 getmicrotime(&ifp->if_lastchange); 2849 break; 2850 2851 case SIOCSIFPHYADDR: 2852 case SIOCDIFPHYADDR: 2853 #ifdef INET6 2854 case SIOCSIFPHYADDR_IN6: 2855 #endif 2856 case SIOCSIFMEDIA: 2857 case SIOCSIFGENERIC: 2858 error = priv_check(td, PRIV_NET_HWIOCTL); 2859 if (error) 2860 return (error); 2861 if (ifp->if_ioctl == NULL) 2862 return (EOPNOTSUPP); 2863 error = (*ifp->if_ioctl)(ifp, cmd, data); 2864 if (error == 0) 2865 getmicrotime(&ifp->if_lastchange); 2866 break; 2867 2868 case SIOCGIFSTATUS: 2869 case SIOCGIFPSRCADDR: 2870 case SIOCGIFPDSTADDR: 2871 case SIOCGIFMEDIA: 2872 case SIOCGIFXMEDIA: 2873 case SIOCGIFGENERIC: 2874 case SIOCGIFRSSKEY: 2875 case SIOCGIFRSSHASH: 2876 case SIOCGIFDOWNREASON: 2877 if (ifp->if_ioctl == NULL) 2878 return (EOPNOTSUPP); 2879 error = (*ifp->if_ioctl)(ifp, cmd, data); 2880 break; 2881 2882 case SIOCSIFLLADDR: 2883 error = priv_check(td, PRIV_NET_SETLLADDR); 2884 if (error) 2885 return (error); 2886 error = if_setlladdr(ifp, 2887 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 2888 break; 2889 2890 case SIOCGHWADDR: 2891 error = if_gethwaddr(ifp, ifr); 2892 break; 2893 2894 case SIOCAIFGROUP: 2895 error = priv_check(td, PRIV_NET_ADDIFGROUP); 2896 if (error) 2897 return (error); 2898 error = if_addgroup(ifp, 2899 ((struct ifgroupreq *)data)->ifgr_group); 2900 if (error != 0) 2901 return (error); 2902 break; 2903 2904 case SIOCGIFGROUP: 2905 { 2906 struct epoch_tracker et; 2907 2908 NET_EPOCH_ENTER(et); 2909 error = if_getgroup((struct ifgroupreq *)data, ifp); 2910 NET_EPOCH_EXIT(et); 2911 break; 2912 } 2913 2914 case SIOCDIFGROUP: 2915 error = priv_check(td, PRIV_NET_DELIFGROUP); 2916 if (error) 2917 return (error); 2918 error = if_delgroup(ifp, 2919 ((struct ifgroupreq *)data)->ifgr_group); 2920 if (error != 0) 2921 return (error); 2922 break; 2923 2924 default: 2925 error = ENOIOCTL; 2926 break; 2927 } 2928 return (error); 2929 } 2930 2931 /* 2932 * Interface ioctls. 2933 */ 2934 int 2935 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) 2936 { 2937 #ifdef COMPAT_FREEBSD32 2938 union { 2939 struct ifconf ifc; 2940 struct ifdrv ifd; 2941 struct ifgroupreq ifgr; 2942 struct ifmediareq ifmr; 2943 } thunk; 2944 u_long saved_cmd; 2945 struct ifconf32 *ifc32; 2946 struct ifdrv32 *ifd32; 2947 struct ifgroupreq32 *ifgr32; 2948 struct ifmediareq32 *ifmr32; 2949 #endif 2950 struct ifnet *ifp; 2951 struct ifreq *ifr; 2952 int error; 2953 int oif_flags; 2954 #ifdef VIMAGE 2955 bool shutdown; 2956 #endif 2957 2958 CURVNET_SET(so->so_vnet); 2959 #ifdef VIMAGE 2960 /* Make sure the VNET is stable. */ 2961 shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet); 2962 if (shutdown) { 2963 CURVNET_RESTORE(); 2964 return (EBUSY); 2965 } 2966 #endif 2967 2968 #ifdef COMPAT_FREEBSD32 2969 saved_cmd = cmd; 2970 switch (cmd) { 2971 case SIOCGIFCONF32: 2972 ifc32 = (struct ifconf32 *)data; 2973 thunk.ifc.ifc_len = ifc32->ifc_len; 2974 thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf); 2975 data = (caddr_t)&thunk.ifc; 2976 cmd = SIOCGIFCONF; 2977 break; 2978 case SIOCGDRVSPEC32: 2979 case SIOCSDRVSPEC32: 2980 ifd32 = (struct ifdrv32 *)data; 2981 memcpy(thunk.ifd.ifd_name, ifd32->ifd_name, 2982 sizeof(thunk.ifd.ifd_name)); 2983 thunk.ifd.ifd_cmd = ifd32->ifd_cmd; 2984 thunk.ifd.ifd_len = ifd32->ifd_len; 2985 thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data); 2986 data = (caddr_t)&thunk.ifd; 2987 cmd = _IOC_NEWTYPE(cmd, struct ifdrv); 2988 break; 2989 case SIOCAIFGROUP32: 2990 case SIOCGIFGROUP32: 2991 case SIOCDIFGROUP32: 2992 case SIOCGIFGMEMB32: 2993 ifgr32 = (struct ifgroupreq32 *)data; 2994 memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name, 2995 sizeof(thunk.ifgr.ifgr_name)); 2996 thunk.ifgr.ifgr_len = ifgr32->ifgr_len; 2997 switch (cmd) { 2998 case SIOCAIFGROUP32: 2999 case SIOCDIFGROUP32: 3000 memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group, 3001 sizeof(thunk.ifgr.ifgr_group)); 3002 break; 3003 case SIOCGIFGROUP32: 3004 case SIOCGIFGMEMB32: 3005 thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups); 3006 break; 3007 } 3008 data = (caddr_t)&thunk.ifgr; 3009 cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq); 3010 break; 3011 case SIOCGIFMEDIA32: 3012 case SIOCGIFXMEDIA32: 3013 ifmr32 = (struct ifmediareq32 *)data; 3014 memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name, 3015 sizeof(thunk.ifmr.ifm_name)); 3016 thunk.ifmr.ifm_current = ifmr32->ifm_current; 3017 thunk.ifmr.ifm_mask = ifmr32->ifm_mask; 3018 thunk.ifmr.ifm_status = ifmr32->ifm_status; 3019 thunk.ifmr.ifm_active = ifmr32->ifm_active; 3020 thunk.ifmr.ifm_count = ifmr32->ifm_count; 3021 thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist); 3022 data = (caddr_t)&thunk.ifmr; 3023 cmd = _IOC_NEWTYPE(cmd, struct ifmediareq); 3024 break; 3025 } 3026 #endif 3027 3028 switch (cmd) { 3029 case SIOCGIFCONF: 3030 error = ifconf(cmd, data); 3031 goto out_noref; 3032 } 3033 3034 ifr = (struct ifreq *)data; 3035 switch (cmd) { 3036 #ifdef VIMAGE 3037 case SIOCSIFRVNET: 3038 error = priv_check(td, PRIV_NET_SETIFVNET); 3039 if (error == 0) 3040 error = if_vmove_reclaim(td, ifr->ifr_name, 3041 ifr->ifr_jid); 3042 goto out_noref; 3043 #endif 3044 case SIOCIFCREATE: 3045 case SIOCIFCREATE2: 3046 error = priv_check(td, PRIV_NET_IFCREATE); 3047 if (error == 0) 3048 error = if_clone_create(ifr->ifr_name, 3049 sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? 3050 ifr_data_get_ptr(ifr) : NULL); 3051 goto out_noref; 3052 case SIOCIFDESTROY: 3053 error = priv_check(td, PRIV_NET_IFDESTROY); 3054 3055 if (error == 0) { 3056 sx_xlock(&ifnet_detach_sxlock); 3057 error = if_clone_destroy(ifr->ifr_name); 3058 sx_xunlock(&ifnet_detach_sxlock); 3059 } 3060 goto out_noref; 3061 3062 case SIOCIFGCLONERS: 3063 error = if_clone_list((struct if_clonereq *)data); 3064 goto out_noref; 3065 3066 case SIOCGIFGMEMB: 3067 error = if_getgroupmembers((struct ifgroupreq *)data); 3068 goto out_noref; 3069 3070 #if defined(INET) || defined(INET6) 3071 case SIOCSVH: 3072 case SIOCGVH: 3073 if (carp_ioctl_p == NULL) 3074 error = EPROTONOSUPPORT; 3075 else 3076 error = (*carp_ioctl_p)(ifr, cmd, td); 3077 goto out_noref; 3078 #endif 3079 } 3080 3081 ifp = ifunit_ref(ifr->ifr_name); 3082 if (ifp == NULL) { 3083 error = ENXIO; 3084 goto out_noref; 3085 } 3086 3087 error = ifhwioctl(cmd, ifp, data, td); 3088 if (error != ENOIOCTL) 3089 goto out_ref; 3090 3091 oif_flags = ifp->if_flags; 3092 if (so->so_proto == NULL) { 3093 error = EOPNOTSUPP; 3094 goto out_ref; 3095 } 3096 3097 /* 3098 * Pass the request on to the socket control method, and if the 3099 * latter returns EOPNOTSUPP, directly to the interface. 3100 * 3101 * Make an exception for the legacy SIOCSIF* requests. Drivers 3102 * trust SIOCSIFADDR et al to come from an already privileged 3103 * layer, and do not perform any credentials checks or input 3104 * validation. 3105 */ 3106 error = so->so_proto->pr_control(so, cmd, data, ifp, td); 3107 if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && 3108 cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && 3109 cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) 3110 error = (*ifp->if_ioctl)(ifp, cmd, data); 3111 3112 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 3113 #ifdef INET6 3114 if (ifp->if_flags & IFF_UP) 3115 in6_if_up(ifp); 3116 #endif 3117 } 3118 3119 out_ref: 3120 if_rele(ifp); 3121 out_noref: 3122 CURVNET_RESTORE(); 3123 #ifdef COMPAT_FREEBSD32 3124 if (error != 0) 3125 return (error); 3126 switch (saved_cmd) { 3127 case SIOCGIFCONF32: 3128 ifc32->ifc_len = thunk.ifc.ifc_len; 3129 break; 3130 case SIOCGDRVSPEC32: 3131 /* 3132 * SIOCGDRVSPEC is IOWR, but nothing actually touches 3133 * the struct so just assert that ifd_len (the only 3134 * field it might make sense to update) hasn't 3135 * changed. 3136 */ 3137 KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len, 3138 ("ifd_len was updated %u -> %zu", ifd32->ifd_len, 3139 thunk.ifd.ifd_len)); 3140 break; 3141 case SIOCGIFGROUP32: 3142 case SIOCGIFGMEMB32: 3143 ifgr32->ifgr_len = thunk.ifgr.ifgr_len; 3144 break; 3145 case SIOCGIFMEDIA32: 3146 case SIOCGIFXMEDIA32: 3147 ifmr32->ifm_current = thunk.ifmr.ifm_current; 3148 ifmr32->ifm_mask = thunk.ifmr.ifm_mask; 3149 ifmr32->ifm_status = thunk.ifmr.ifm_status; 3150 ifmr32->ifm_active = thunk.ifmr.ifm_active; 3151 ifmr32->ifm_count = thunk.ifmr.ifm_count; 3152 break; 3153 } 3154 #endif 3155 return (error); 3156 } 3157 3158 int 3159 if_rename(struct ifnet *ifp, char *new_name) 3160 { 3161 struct ifaddr *ifa; 3162 struct sockaddr_dl *sdl; 3163 size_t namelen, onamelen; 3164 char old_name[IFNAMSIZ]; 3165 char strbuf[IFNAMSIZ + 8]; 3166 3167 if (new_name[0] == '\0') 3168 return (EINVAL); 3169 if (strcmp(new_name, ifp->if_xname) == 0) 3170 return (0); 3171 if (ifunit(new_name) != NULL) 3172 return (EEXIST); 3173 3174 /* 3175 * XXX: Locking. Nothing else seems to lock if_flags, 3176 * and there are numerous other races with the 3177 * ifunit() checks not being atomic with namespace 3178 * changes (renames, vmoves, if_attach, etc). 3179 */ 3180 ifp->if_flags |= IFF_RENAMING; 3181 3182 EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); 3183 3184 if_printf(ifp, "changing name to '%s'\n", new_name); 3185 3186 IF_ADDR_WLOCK(ifp); 3187 strlcpy(old_name, ifp->if_xname, sizeof(old_name)); 3188 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 3189 ifa = ifp->if_addr; 3190 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3191 namelen = strlen(new_name); 3192 onamelen = sdl->sdl_nlen; 3193 /* 3194 * Move the address if needed. This is safe because we 3195 * allocate space for a name of length IFNAMSIZ when we 3196 * create this in if_attach(). 3197 */ 3198 if (namelen != onamelen) { 3199 bcopy(sdl->sdl_data + onamelen, 3200 sdl->sdl_data + namelen, sdl->sdl_alen); 3201 } 3202 bcopy(new_name, sdl->sdl_data, namelen); 3203 sdl->sdl_nlen = namelen; 3204 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 3205 bzero(sdl->sdl_data, onamelen); 3206 while (namelen != 0) 3207 sdl->sdl_data[--namelen] = 0xff; 3208 IF_ADDR_WUNLOCK(ifp); 3209 3210 EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); 3211 3212 ifp->if_flags &= ~IFF_RENAMING; 3213 3214 snprintf(strbuf, sizeof(strbuf), "name=%s", new_name); 3215 devctl_notify("IFNET", old_name, "RENAME", strbuf); 3216 3217 return (0); 3218 } 3219 3220 /* 3221 * The code common to handling reference counted flags, 3222 * e.g., in ifpromisc() and if_allmulti(). 3223 * The "pflag" argument can specify a permanent mode flag to check, 3224 * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. 3225 * 3226 * Only to be used on stack-owned flags, not driver-owned flags. 3227 */ 3228 static int 3229 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) 3230 { 3231 struct ifreq ifr; 3232 int error; 3233 int oldflags, oldcount; 3234 3235 /* Sanity checks to catch programming errors */ 3236 KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, 3237 ("%s: setting driver-owned flag %d", __func__, flag)); 3238 3239 if (onswitch) 3240 KASSERT(*refcount >= 0, 3241 ("%s: increment negative refcount %d for flag %d", 3242 __func__, *refcount, flag)); 3243 else 3244 KASSERT(*refcount > 0, 3245 ("%s: decrement non-positive refcount %d for flag %d", 3246 __func__, *refcount, flag)); 3247 3248 /* In case this mode is permanent, just touch refcount */ 3249 if (ifp->if_flags & pflag) { 3250 *refcount += onswitch ? 1 : -1; 3251 return (0); 3252 } 3253 3254 /* Save ifnet parameters for if_ioctl() may fail */ 3255 oldcount = *refcount; 3256 oldflags = ifp->if_flags; 3257 3258 /* 3259 * See if we aren't the only and touching refcount is enough. 3260 * Actually toggle interface flag if we are the first or last. 3261 */ 3262 if (onswitch) { 3263 if ((*refcount)++) 3264 return (0); 3265 ifp->if_flags |= flag; 3266 } else { 3267 if (--(*refcount)) 3268 return (0); 3269 ifp->if_flags &= ~flag; 3270 } 3271 3272 /* Call down the driver since we've changed interface flags */ 3273 if (ifp->if_ioctl == NULL) { 3274 error = EOPNOTSUPP; 3275 goto recover; 3276 } 3277 ifr.ifr_flags = ifp->if_flags & 0xffff; 3278 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3279 error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3280 if (error) 3281 goto recover; 3282 /* Notify userland that interface flags have changed */ 3283 rt_ifmsg(ifp, flag); 3284 return (0); 3285 3286 recover: 3287 /* Recover after driver error */ 3288 *refcount = oldcount; 3289 ifp->if_flags = oldflags; 3290 return (error); 3291 } 3292 3293 /* 3294 * Set/clear promiscuous mode on interface ifp based on the truth value 3295 * of pswitch. The calls are reference counted so that only the first 3296 * "on" request actually has an effect, as does the final "off" request. 3297 * Results are undefined if the "off" and "on" requests are not matched. 3298 */ 3299 int 3300 ifpromisc(struct ifnet *ifp, int pswitch) 3301 { 3302 int error; 3303 int oldflags = ifp->if_flags; 3304 3305 error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, 3306 &ifp->if_pcount, pswitch); 3307 /* If promiscuous mode status has changed, log a message */ 3308 if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) && 3309 log_promisc_mode_change) 3310 if_printf(ifp, "promiscuous mode %s\n", 3311 (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); 3312 return (error); 3313 } 3314 3315 /* 3316 * Return interface configuration 3317 * of system. List may be used 3318 * in later ioctl's (above) to get 3319 * other information. 3320 */ 3321 /*ARGSUSED*/ 3322 static int 3323 ifconf(u_long cmd, caddr_t data) 3324 { 3325 struct ifconf *ifc = (struct ifconf *)data; 3326 struct ifnet *ifp; 3327 struct ifaddr *ifa; 3328 struct ifreq ifr; 3329 struct sbuf *sb; 3330 int error, full = 0, valid_len, max_len; 3331 3332 /* Limit initial buffer size to maxphys to avoid DoS from userspace. */ 3333 max_len = maxphys - 1; 3334 3335 /* Prevent hostile input from being able to crash the system */ 3336 if (ifc->ifc_len <= 0) 3337 return (EINVAL); 3338 3339 again: 3340 if (ifc->ifc_len <= max_len) { 3341 max_len = ifc->ifc_len; 3342 full = 1; 3343 } 3344 sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); 3345 max_len = 0; 3346 valid_len = 0; 3347 3348 IFNET_RLOCK(); 3349 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 3350 struct epoch_tracker et; 3351 int addrs; 3352 3353 /* 3354 * Zero the ifr to make sure we don't disclose the contents 3355 * of the stack. 3356 */ 3357 memset(&ifr, 0, sizeof(ifr)); 3358 3359 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 3360 >= sizeof(ifr.ifr_name)) { 3361 sbuf_delete(sb); 3362 IFNET_RUNLOCK(); 3363 return (ENAMETOOLONG); 3364 } 3365 3366 addrs = 0; 3367 NET_EPOCH_ENTER(et); 3368 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 3369 struct sockaddr *sa = ifa->ifa_addr; 3370 3371 if (prison_if(curthread->td_ucred, sa) != 0) 3372 continue; 3373 addrs++; 3374 if (sa->sa_len <= sizeof(*sa)) { 3375 if (sa->sa_len < sizeof(*sa)) { 3376 memset(&ifr.ifr_ifru.ifru_addr, 0, 3377 sizeof(ifr.ifr_ifru.ifru_addr)); 3378 memcpy(&ifr.ifr_ifru.ifru_addr, sa, 3379 sa->sa_len); 3380 } else 3381 ifr.ifr_ifru.ifru_addr = *sa; 3382 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3383 max_len += sizeof(ifr); 3384 } else { 3385 sbuf_bcat(sb, &ifr, 3386 offsetof(struct ifreq, ifr_addr)); 3387 max_len += offsetof(struct ifreq, ifr_addr); 3388 sbuf_bcat(sb, sa, sa->sa_len); 3389 max_len += sa->sa_len; 3390 } 3391 3392 if (sbuf_error(sb) == 0) 3393 valid_len = sbuf_len(sb); 3394 } 3395 NET_EPOCH_EXIT(et); 3396 if (addrs == 0) { 3397 sbuf_bcat(sb, &ifr, sizeof(ifr)); 3398 max_len += sizeof(ifr); 3399 3400 if (sbuf_error(sb) == 0) 3401 valid_len = sbuf_len(sb); 3402 } 3403 } 3404 IFNET_RUNLOCK(); 3405 3406 /* 3407 * If we didn't allocate enough space (uncommon), try again. If 3408 * we have already allocated as much space as we are allowed, 3409 * return what we've got. 3410 */ 3411 if (valid_len != max_len && !full) { 3412 sbuf_delete(sb); 3413 goto again; 3414 } 3415 3416 ifc->ifc_len = valid_len; 3417 sbuf_finish(sb); 3418 error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); 3419 sbuf_delete(sb); 3420 return (error); 3421 } 3422 3423 /* 3424 * Just like ifpromisc(), but for all-multicast-reception mode. 3425 */ 3426 int 3427 if_allmulti(struct ifnet *ifp, int onswitch) 3428 { 3429 3430 return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); 3431 } 3432 3433 struct ifmultiaddr * 3434 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) 3435 { 3436 struct ifmultiaddr *ifma; 3437 3438 IF_ADDR_LOCK_ASSERT(ifp); 3439 3440 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3441 if (sa->sa_family == AF_LINK) { 3442 if (sa_dl_equal(ifma->ifma_addr, sa)) 3443 break; 3444 } else { 3445 if (sa_equal(ifma->ifma_addr, sa)) 3446 break; 3447 } 3448 } 3449 3450 return ifma; 3451 } 3452 3453 /* 3454 * Allocate a new ifmultiaddr and initialize based on passed arguments. We 3455 * make copies of passed sockaddrs. The ifmultiaddr will not be added to 3456 * the ifnet multicast address list here, so the caller must do that and 3457 * other setup work (such as notifying the device driver). The reference 3458 * count is initialized to 1. 3459 */ 3460 static struct ifmultiaddr * 3461 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, 3462 int mflags) 3463 { 3464 struct ifmultiaddr *ifma; 3465 struct sockaddr *dupsa; 3466 3467 ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | 3468 M_ZERO); 3469 if (ifma == NULL) 3470 return (NULL); 3471 3472 dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); 3473 if (dupsa == NULL) { 3474 free(ifma, M_IFMADDR); 3475 return (NULL); 3476 } 3477 bcopy(sa, dupsa, sa->sa_len); 3478 ifma->ifma_addr = dupsa; 3479 3480 ifma->ifma_ifp = ifp; 3481 ifma->ifma_refcount = 1; 3482 ifma->ifma_protospec = NULL; 3483 3484 if (llsa == NULL) { 3485 ifma->ifma_lladdr = NULL; 3486 return (ifma); 3487 } 3488 3489 dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); 3490 if (dupsa == NULL) { 3491 free(ifma->ifma_addr, M_IFMADDR); 3492 free(ifma, M_IFMADDR); 3493 return (NULL); 3494 } 3495 bcopy(llsa, dupsa, llsa->sa_len); 3496 ifma->ifma_lladdr = dupsa; 3497 3498 return (ifma); 3499 } 3500 3501 /* 3502 * if_freemulti: free ifmultiaddr structure and possibly attached related 3503 * addresses. The caller is responsible for implementing reference 3504 * counting, notifying the driver, handling routing messages, and releasing 3505 * any dependent link layer state. 3506 */ 3507 #ifdef MCAST_VERBOSE 3508 extern void kdb_backtrace(void); 3509 #endif 3510 static void 3511 if_freemulti_internal(struct ifmultiaddr *ifma) 3512 { 3513 3514 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", 3515 ifma->ifma_refcount)); 3516 3517 if (ifma->ifma_lladdr != NULL) 3518 free(ifma->ifma_lladdr, M_IFMADDR); 3519 #ifdef MCAST_VERBOSE 3520 kdb_backtrace(); 3521 printf("%s freeing ifma: %p\n", __func__, ifma); 3522 #endif 3523 free(ifma->ifma_addr, M_IFMADDR); 3524 free(ifma, M_IFMADDR); 3525 } 3526 3527 static void 3528 if_destroymulti(epoch_context_t ctx) 3529 { 3530 struct ifmultiaddr *ifma; 3531 3532 ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx); 3533 if_freemulti_internal(ifma); 3534 } 3535 3536 void 3537 if_freemulti(struct ifmultiaddr *ifma) 3538 { 3539 KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d", 3540 ifma->ifma_refcount)); 3541 3542 NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx); 3543 } 3544 3545 /* 3546 * Register an additional multicast address with a network interface. 3547 * 3548 * - If the address is already present, bump the reference count on the 3549 * address and return. 3550 * - If the address is not link-layer, look up a link layer address. 3551 * - Allocate address structures for one or both addresses, and attach to the 3552 * multicast address list on the interface. If automatically adding a link 3553 * layer address, the protocol address will own a reference to the link 3554 * layer address, to be freed when it is freed. 3555 * - Notify the network device driver of an addition to the multicast address 3556 * list. 3557 * 3558 * 'sa' points to caller-owned memory with the desired multicast address. 3559 * 3560 * 'retifma' will be used to return a pointer to the resulting multicast 3561 * address reference, if desired. 3562 */ 3563 int 3564 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 3565 struct ifmultiaddr **retifma) 3566 { 3567 struct ifmultiaddr *ifma, *ll_ifma; 3568 struct sockaddr *llsa; 3569 struct sockaddr_dl sdl; 3570 int error; 3571 3572 #ifdef INET 3573 IN_MULTI_LIST_UNLOCK_ASSERT(); 3574 #endif 3575 #ifdef INET6 3576 IN6_MULTI_LIST_UNLOCK_ASSERT(); 3577 #endif 3578 /* 3579 * If the address is already present, return a new reference to it; 3580 * otherwise, allocate storage and set up a new address. 3581 */ 3582 IF_ADDR_WLOCK(ifp); 3583 ifma = if_findmulti(ifp, sa); 3584 if (ifma != NULL) { 3585 ifma->ifma_refcount++; 3586 if (retifma != NULL) 3587 *retifma = ifma; 3588 IF_ADDR_WUNLOCK(ifp); 3589 return (0); 3590 } 3591 3592 /* 3593 * The address isn't already present; resolve the protocol address 3594 * into a link layer address, and then look that up, bump its 3595 * refcount or allocate an ifma for that also. 3596 * Most link layer resolving functions returns address data which 3597 * fits inside default sockaddr_dl structure. However callback 3598 * can allocate another sockaddr structure, in that case we need to 3599 * free it later. 3600 */ 3601 llsa = NULL; 3602 ll_ifma = NULL; 3603 if (ifp->if_resolvemulti != NULL) { 3604 /* Provide called function with buffer size information */ 3605 sdl.sdl_len = sizeof(sdl); 3606 llsa = (struct sockaddr *)&sdl; 3607 error = ifp->if_resolvemulti(ifp, &llsa, sa); 3608 if (error) 3609 goto unlock_out; 3610 } 3611 3612 /* 3613 * Allocate the new address. Don't hook it up yet, as we may also 3614 * need to allocate a link layer multicast address. 3615 */ 3616 ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); 3617 if (ifma == NULL) { 3618 error = ENOMEM; 3619 goto free_llsa_out; 3620 } 3621 3622 /* 3623 * If a link layer address is found, we'll need to see if it's 3624 * already present in the address list, or allocate is as well. 3625 * When this block finishes, the link layer address will be on the 3626 * list. 3627 */ 3628 if (llsa != NULL) { 3629 ll_ifma = if_findmulti(ifp, llsa); 3630 if (ll_ifma == NULL) { 3631 ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); 3632 if (ll_ifma == NULL) { 3633 --ifma->ifma_refcount; 3634 if_freemulti(ifma); 3635 error = ENOMEM; 3636 goto free_llsa_out; 3637 } 3638 ll_ifma->ifma_flags |= IFMA_F_ENQUEUED; 3639 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, 3640 ifma_link); 3641 } else 3642 ll_ifma->ifma_refcount++; 3643 ifma->ifma_llifma = ll_ifma; 3644 } 3645 3646 /* 3647 * We now have a new multicast address, ifma, and possibly a new or 3648 * referenced link layer address. Add the primary address to the 3649 * ifnet address list. 3650 */ 3651 ifma->ifma_flags |= IFMA_F_ENQUEUED; 3652 CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 3653 3654 if (retifma != NULL) 3655 *retifma = ifma; 3656 3657 /* 3658 * Must generate the message while holding the lock so that 'ifma' 3659 * pointer is still valid. 3660 */ 3661 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 3662 IF_ADDR_WUNLOCK(ifp); 3663 3664 /* 3665 * We are certain we have added something, so call down to the 3666 * interface to let them know about it. 3667 */ 3668 if (ifp->if_ioctl != NULL) { 3669 if (THREAD_CAN_SLEEP()) 3670 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3671 else 3672 taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask); 3673 } 3674 3675 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3676 link_free_sdl(llsa); 3677 3678 return (0); 3679 3680 free_llsa_out: 3681 if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) 3682 link_free_sdl(llsa); 3683 3684 unlock_out: 3685 IF_ADDR_WUNLOCK(ifp); 3686 return (error); 3687 } 3688 3689 static void 3690 if_siocaddmulti(void *arg, int pending) 3691 { 3692 struct ifnet *ifp; 3693 3694 ifp = arg; 3695 #ifdef DIAGNOSTIC 3696 if (pending > 1) 3697 if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending); 3698 #endif 3699 CURVNET_SET(ifp->if_vnet); 3700 (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); 3701 CURVNET_RESTORE(); 3702 } 3703 3704 /* 3705 * Delete a multicast group membership by network-layer group address. 3706 * 3707 * Returns ENOENT if the entry could not be found. If ifp no longer 3708 * exists, results are undefined. This entry point should only be used 3709 * from subsystems which do appropriate locking to hold ifp for the 3710 * duration of the call. 3711 * Network-layer protocol domains must use if_delmulti_ifma(). 3712 */ 3713 int 3714 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 3715 { 3716 struct ifmultiaddr *ifma; 3717 int lastref; 3718 3719 KASSERT(ifp, ("%s: NULL ifp", __func__)); 3720 3721 IF_ADDR_WLOCK(ifp); 3722 lastref = 0; 3723 ifma = if_findmulti(ifp, sa); 3724 if (ifma != NULL) 3725 lastref = if_delmulti_locked(ifp, ifma, 0); 3726 IF_ADDR_WUNLOCK(ifp); 3727 3728 if (ifma == NULL) 3729 return (ENOENT); 3730 3731 if (lastref && ifp->if_ioctl != NULL) { 3732 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3733 } 3734 3735 return (0); 3736 } 3737 3738 /* 3739 * Delete all multicast group membership for an interface. 3740 * Should be used to quickly flush all multicast filters. 3741 */ 3742 void 3743 if_delallmulti(struct ifnet *ifp) 3744 { 3745 struct ifmultiaddr *ifma; 3746 struct ifmultiaddr *next; 3747 3748 IF_ADDR_WLOCK(ifp); 3749 CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) 3750 if_delmulti_locked(ifp, ifma, 0); 3751 IF_ADDR_WUNLOCK(ifp); 3752 } 3753 3754 void 3755 if_delmulti_ifma(struct ifmultiaddr *ifma) 3756 { 3757 if_delmulti_ifma_flags(ifma, 0); 3758 } 3759 3760 /* 3761 * Delete a multicast group membership by group membership pointer. 3762 * Network-layer protocol domains must use this routine. 3763 * 3764 * It is safe to call this routine if the ifp disappeared. 3765 */ 3766 void 3767 if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags) 3768 { 3769 struct ifnet *ifp; 3770 int lastref; 3771 MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma); 3772 #ifdef INET 3773 IN_MULTI_LIST_UNLOCK_ASSERT(); 3774 #endif 3775 ifp = ifma->ifma_ifp; 3776 #ifdef DIAGNOSTIC 3777 if (ifp == NULL) { 3778 printf("%s: ifma_ifp seems to be detached\n", __func__); 3779 } else { 3780 struct epoch_tracker et; 3781 struct ifnet *oifp; 3782 3783 NET_EPOCH_ENTER(et); 3784 CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link) 3785 if (ifp == oifp) 3786 break; 3787 NET_EPOCH_EXIT(et); 3788 if (ifp != oifp) 3789 ifp = NULL; 3790 } 3791 #endif 3792 /* 3793 * If and only if the ifnet instance exists: Acquire the address lock. 3794 */ 3795 if (ifp != NULL) 3796 IF_ADDR_WLOCK(ifp); 3797 3798 lastref = if_delmulti_locked(ifp, ifma, flags); 3799 3800 if (ifp != NULL) { 3801 /* 3802 * If and only if the ifnet instance exists: 3803 * Release the address lock. 3804 * If the group was left: update the hardware hash filter. 3805 */ 3806 IF_ADDR_WUNLOCK(ifp); 3807 if (lastref && ifp->if_ioctl != NULL) { 3808 (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); 3809 } 3810 } 3811 } 3812 3813 /* 3814 * Perform deletion of network-layer and/or link-layer multicast address. 3815 * 3816 * Return 0 if the reference count was decremented. 3817 * Return 1 if the final reference was released, indicating that the 3818 * hardware hash filter should be reprogrammed. 3819 */ 3820 static int 3821 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) 3822 { 3823 struct ifmultiaddr *ll_ifma; 3824 3825 if (ifp != NULL && ifma->ifma_ifp != NULL) { 3826 KASSERT(ifma->ifma_ifp == ifp, 3827 ("%s: inconsistent ifp %p", __func__, ifp)); 3828 IF_ADDR_WLOCK_ASSERT(ifp); 3829 } 3830 3831 ifp = ifma->ifma_ifp; 3832 MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : ""); 3833 3834 /* 3835 * If the ifnet is detaching, null out references to ifnet, 3836 * so that upper protocol layers will notice, and not attempt 3837 * to obtain locks for an ifnet which no longer exists. The 3838 * routing socket announcement must happen before the ifnet 3839 * instance is detached from the system. 3840 */ 3841 if (detaching) { 3842 #ifdef DIAGNOSTIC 3843 printf("%s: detaching ifnet instance %p\n", __func__, ifp); 3844 #endif 3845 /* 3846 * ifp may already be nulled out if we are being reentered 3847 * to delete the ll_ifma. 3848 */ 3849 if (ifp != NULL) { 3850 rt_newmaddrmsg(RTM_DELMADDR, ifma); 3851 ifma->ifma_ifp = NULL; 3852 } 3853 } 3854 3855 if (--ifma->ifma_refcount > 0) 3856 return 0; 3857 3858 if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) { 3859 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); 3860 ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3861 } 3862 /* 3863 * If this ifma is a network-layer ifma, a link-layer ifma may 3864 * have been associated with it. Release it first if so. 3865 */ 3866 ll_ifma = ifma->ifma_llifma; 3867 if (ll_ifma != NULL) { 3868 KASSERT(ifma->ifma_lladdr != NULL, 3869 ("%s: llifma w/o lladdr", __func__)); 3870 if (detaching) 3871 ll_ifma->ifma_ifp = NULL; /* XXX */ 3872 if (--ll_ifma->ifma_refcount == 0) { 3873 if (ifp != NULL) { 3874 if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { 3875 CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, 3876 ifma_link); 3877 ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; 3878 } 3879 } 3880 if_freemulti(ll_ifma); 3881 } 3882 } 3883 #ifdef INVARIANTS 3884 if (ifp) { 3885 struct ifmultiaddr *ifmatmp; 3886 3887 CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link) 3888 MPASS(ifma != ifmatmp); 3889 } 3890 #endif 3891 if_freemulti(ifma); 3892 /* 3893 * The last reference to this instance of struct ifmultiaddr 3894 * was released; the hardware should be notified of this change. 3895 */ 3896 return 1; 3897 } 3898 3899 /* 3900 * Set the link layer address on an interface. 3901 * 3902 * At this time we only support certain types of interfaces, 3903 * and we don't allow the length of the address to change. 3904 * 3905 * Set noinline to be dtrace-friendly 3906 */ 3907 __noinline int 3908 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 3909 { 3910 struct sockaddr_dl *sdl; 3911 struct ifaddr *ifa; 3912 struct ifreq ifr; 3913 3914 ifa = ifp->if_addr; 3915 if (ifa == NULL) 3916 return (EINVAL); 3917 3918 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 3919 if (sdl == NULL) 3920 return (EINVAL); 3921 3922 if (len != sdl->sdl_alen) /* don't allow length to change */ 3923 return (EINVAL); 3924 3925 switch (ifp->if_type) { 3926 case IFT_ETHER: 3927 case IFT_XETHER: 3928 case IFT_L2VLAN: 3929 case IFT_BRIDGE: 3930 case IFT_IEEE8023ADLAG: 3931 bcopy(lladdr, LLADDR(sdl), len); 3932 break; 3933 default: 3934 return (ENODEV); 3935 } 3936 3937 /* 3938 * If the interface is already up, we need 3939 * to re-init it in order to reprogram its 3940 * address filter. 3941 */ 3942 if ((ifp->if_flags & IFF_UP) != 0) { 3943 if (ifp->if_ioctl) { 3944 ifp->if_flags &= ~IFF_UP; 3945 ifr.ifr_flags = ifp->if_flags & 0xffff; 3946 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3947 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3948 ifp->if_flags |= IFF_UP; 3949 ifr.ifr_flags = ifp->if_flags & 0xffff; 3950 ifr.ifr_flagshigh = ifp->if_flags >> 16; 3951 (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); 3952 } 3953 } 3954 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 3955 3956 return (0); 3957 } 3958 3959 /* 3960 * Compat function for handling basic encapsulation requests. 3961 * Not converted stacks (FDDI, IB, ..) supports traditional 3962 * output model: ARP (and other similar L2 protocols) are handled 3963 * inside output routine, arpresolve/nd6_resolve() returns MAC 3964 * address instead of full prepend. 3965 * 3966 * This function creates calculated header==MAC for IPv4/IPv6 and 3967 * returns EAFNOSUPPORT (which is then handled in ARP code) for other 3968 * address families. 3969 */ 3970 static int 3971 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) 3972 { 3973 if (req->rtype != IFENCAP_LL) 3974 return (EOPNOTSUPP); 3975 3976 if (req->bufsize < req->lladdr_len) 3977 return (ENOMEM); 3978 3979 switch (req->family) { 3980 case AF_INET: 3981 case AF_INET6: 3982 break; 3983 default: 3984 return (EAFNOSUPPORT); 3985 } 3986 3987 /* Copy lladdr to storage as is */ 3988 memmove(req->buf, req->lladdr, req->lladdr_len); 3989 req->bufsize = req->lladdr_len; 3990 req->lladdr_off = 0; 3991 3992 return (0); 3993 } 3994 3995 /* 3996 * Tunnel interfaces can nest, also they may cause infinite recursion 3997 * calls when misconfigured. We'll prevent this by detecting loops. 3998 * High nesting level may cause stack exhaustion. We'll prevent this 3999 * by introducing upper limit. 4000 * 4001 * Return 0, if tunnel nesting count is equal or less than limit. 4002 */ 4003 int 4004 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie, 4005 int limit) 4006 { 4007 struct m_tag *mtag; 4008 int count; 4009 4010 count = 1; 4011 mtag = NULL; 4012 while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) { 4013 if (*(struct ifnet **)(mtag + 1) == ifp) { 4014 log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp)); 4015 return (EIO); 4016 } 4017 count++; 4018 } 4019 if (count > limit) { 4020 log(LOG_NOTICE, 4021 "%s: if_output recursively called too many times(%d)\n", 4022 if_name(ifp), count); 4023 return (EIO); 4024 } 4025 mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT); 4026 if (mtag == NULL) 4027 return (ENOMEM); 4028 *(struct ifnet **)(mtag + 1) = ifp; 4029 m_tag_prepend(m, mtag); 4030 return (0); 4031 } 4032 4033 /* 4034 * Get the link layer address that was read from the hardware at attach. 4035 * 4036 * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type 4037 * their component interfaces as IFT_IEEE8023ADLAG. 4038 */ 4039 int 4040 if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr) 4041 { 4042 if (ifp->if_hw_addr == NULL) 4043 return (ENODEV); 4044 4045 switch (ifp->if_type) { 4046 case IFT_ETHER: 4047 case IFT_IEEE8023ADLAG: 4048 bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen); 4049 return (0); 4050 default: 4051 return (ENODEV); 4052 } 4053 } 4054 4055 /* 4056 * The name argument must be a pointer to storage which will last as 4057 * long as the interface does. For physical devices, the result of 4058 * device_get_name(dev) is a good choice and for pseudo-devices a 4059 * static string works well. 4060 */ 4061 void 4062 if_initname(struct ifnet *ifp, const char *name, int unit) 4063 { 4064 ifp->if_dname = name; 4065 ifp->if_dunit = unit; 4066 if (unit != IF_DUNIT_NONE) 4067 snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 4068 else 4069 strlcpy(ifp->if_xname, name, IFNAMSIZ); 4070 } 4071 4072 static int 4073 if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap) 4074 { 4075 char if_fmt[256]; 4076 4077 snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt); 4078 vlog(pri, if_fmt, ap); 4079 return (0); 4080 } 4081 4082 4083 int 4084 if_printf(struct ifnet *ifp, const char *fmt, ...) 4085 { 4086 va_list ap; 4087 4088 va_start(ap, fmt); 4089 if_vlog(ifp, LOG_INFO, fmt, ap); 4090 va_end(ap); 4091 return (0); 4092 } 4093 4094 int 4095 if_log(struct ifnet *ifp, int pri, const char *fmt, ...) 4096 { 4097 va_list ap; 4098 4099 va_start(ap, fmt); 4100 if_vlog(ifp, pri, fmt, ap); 4101 va_end(ap); 4102 return (0); 4103 } 4104 4105 void 4106 if_start(struct ifnet *ifp) 4107 { 4108 4109 (*(ifp)->if_start)(ifp); 4110 } 4111 4112 /* 4113 * Backwards compatibility interface for drivers 4114 * that have not implemented it 4115 */ 4116 static int 4117 if_transmit_default(struct ifnet *ifp, struct mbuf *m) 4118 { 4119 int error; 4120 4121 IFQ_HANDOFF(ifp, m, error); 4122 return (error); 4123 } 4124 4125 static void 4126 if_input_default(struct ifnet *ifp __unused, struct mbuf *m) 4127 { 4128 m_freem(m); 4129 } 4130 4131 int 4132 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) 4133 { 4134 int active = 0; 4135 4136 IF_LOCK(ifq); 4137 if (_IF_QFULL(ifq)) { 4138 IF_UNLOCK(ifq); 4139 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 4140 m_freem(m); 4141 return (0); 4142 } 4143 if (ifp != NULL) { 4144 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); 4145 if (m->m_flags & (M_BCAST|M_MCAST)) 4146 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4147 active = ifp->if_drv_flags & IFF_DRV_OACTIVE; 4148 } 4149 _IF_ENQUEUE(ifq, m); 4150 IF_UNLOCK(ifq); 4151 if (ifp != NULL && !active) 4152 (*(ifp)->if_start)(ifp); 4153 return (1); 4154 } 4155 4156 void 4157 if_register_com_alloc(u_char type, 4158 if_com_alloc_t *a, if_com_free_t *f) 4159 { 4160 4161 KASSERT(if_com_alloc[type] == NULL, 4162 ("if_register_com_alloc: %d already registered", type)); 4163 KASSERT(if_com_free[type] == NULL, 4164 ("if_register_com_alloc: %d free already registered", type)); 4165 4166 if_com_alloc[type] = a; 4167 if_com_free[type] = f; 4168 } 4169 4170 void 4171 if_deregister_com_alloc(u_char type) 4172 { 4173 4174 KASSERT(if_com_alloc[type] != NULL, 4175 ("if_deregister_com_alloc: %d not registered", type)); 4176 KASSERT(if_com_free[type] != NULL, 4177 ("if_deregister_com_alloc: %d free not registered", type)); 4178 4179 /* 4180 * Ensure all pending EPOCH(9) callbacks have been executed. This 4181 * fixes issues about late invocation of if_destroy(), which leads 4182 * to memory leak from if_com_alloc[type] allocated if_l2com. 4183 */ 4184 NET_EPOCH_DRAIN_CALLBACKS(); 4185 4186 if_com_alloc[type] = NULL; 4187 if_com_free[type] = NULL; 4188 } 4189 4190 /* API for driver access to network stack owned ifnet.*/ 4191 uint64_t 4192 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) 4193 { 4194 uint64_t oldbrate; 4195 4196 oldbrate = ifp->if_baudrate; 4197 ifp->if_baudrate = baudrate; 4198 return (oldbrate); 4199 } 4200 4201 uint64_t 4202 if_getbaudrate(const if_t ifp) 4203 { 4204 return (ifp->if_baudrate); 4205 } 4206 4207 int 4208 if_setcapabilities(if_t ifp, int capabilities) 4209 { 4210 ifp->if_capabilities = capabilities; 4211 return (0); 4212 } 4213 4214 int 4215 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) 4216 { 4217 ifp->if_capabilities &= ~clearbit; 4218 ifp->if_capabilities |= setbit; 4219 return (0); 4220 } 4221 4222 int 4223 if_getcapabilities(const if_t ifp) 4224 { 4225 return (ifp->if_capabilities); 4226 } 4227 4228 int 4229 if_setcapenable(if_t ifp, int capabilities) 4230 { 4231 ifp->if_capenable = capabilities; 4232 return (0); 4233 } 4234 4235 int 4236 if_setcapenablebit(if_t ifp, int setcap, int clearcap) 4237 { 4238 ifp->if_capenable &= ~clearcap; 4239 ifp->if_capenable |= setcap; 4240 return (0); 4241 } 4242 4243 int 4244 if_setcapabilities2(if_t ifp, int capabilities) 4245 { 4246 ifp->if_capabilities2 = capabilities; 4247 return (0); 4248 } 4249 4250 int 4251 if_setcapabilities2bit(if_t ifp, int setbit, int clearbit) 4252 { 4253 ifp->if_capabilities2 &= ~clearbit; 4254 ifp->if_capabilities2 |= setbit; 4255 return (0); 4256 } 4257 4258 int 4259 if_getcapabilities2(const if_t ifp) 4260 { 4261 return (ifp->if_capabilities2); 4262 } 4263 4264 int 4265 if_setcapenable2(if_t ifp, int capabilities2) 4266 { 4267 ifp->if_capenable2 = capabilities2; 4268 return (0); 4269 } 4270 4271 int 4272 if_setcapenable2bit(if_t ifp, int setcap, int clearcap) 4273 { 4274 ifp->if_capenable2 &= ~clearcap; 4275 ifp->if_capenable2 |= setcap; 4276 return (0); 4277 } 4278 4279 const char * 4280 if_getdname(const if_t ifp) 4281 { 4282 return (ifp->if_dname); 4283 } 4284 4285 void 4286 if_setdname(if_t ifp, const char *dname) 4287 { 4288 ifp->if_dname = dname; 4289 } 4290 4291 const char * 4292 if_name(if_t ifp) 4293 { 4294 return (ifp->if_xname); 4295 } 4296 4297 int 4298 if_setname(if_t ifp, const char *name) 4299 { 4300 if (strlen(name) > sizeof(ifp->if_xname) - 1) 4301 return (ENAMETOOLONG); 4302 strcpy(ifp->if_xname, name); 4303 4304 return (0); 4305 } 4306 4307 int 4308 if_togglecapenable(if_t ifp, int togglecap) 4309 { 4310 ifp->if_capenable ^= togglecap; 4311 return (0); 4312 } 4313 4314 int 4315 if_getcapenable(const if_t ifp) 4316 { 4317 return (ifp->if_capenable); 4318 } 4319 4320 int 4321 if_togglecapenable2(if_t ifp, int togglecap) 4322 { 4323 ifp->if_capenable2 ^= togglecap; 4324 return (0); 4325 } 4326 4327 int 4328 if_getcapenable2(const if_t ifp) 4329 { 4330 return (ifp->if_capenable2); 4331 } 4332 4333 int 4334 if_getdunit(const if_t ifp) 4335 { 4336 return (ifp->if_dunit); 4337 } 4338 4339 int 4340 if_getindex(const if_t ifp) 4341 { 4342 return (ifp->if_index); 4343 } 4344 4345 int 4346 if_getidxgen(const if_t ifp) 4347 { 4348 return (ifp->if_idxgen); 4349 } 4350 4351 void 4352 if_setdescr(if_t ifp, char *descrbuf) 4353 { 4354 sx_xlock(&ifdescr_sx); 4355 char *odescrbuf = ifp->if_description; 4356 ifp->if_description = descrbuf; 4357 sx_xunlock(&ifdescr_sx); 4358 4359 if_freedescr(odescrbuf); 4360 } 4361 4362 char * 4363 if_allocdescr(size_t sz, int malloc_flag) 4364 { 4365 malloc_flag &= (M_WAITOK | M_NOWAIT); 4366 return (malloc(sz, M_IFDESCR, M_ZERO | malloc_flag)); 4367 } 4368 4369 void 4370 if_freedescr(char *descrbuf) 4371 { 4372 free(descrbuf, M_IFDESCR); 4373 } 4374 4375 int 4376 if_getalloctype(const if_t ifp) 4377 { 4378 return (ifp->if_alloctype); 4379 } 4380 4381 /* 4382 * This is largely undesirable because it ties ifnet to a device, but does 4383 * provide flexiblity for an embedded product vendor. Should be used with 4384 * the understanding that it violates the interface boundaries, and should be 4385 * a last resort only. 4386 */ 4387 int 4388 if_setdev(if_t ifp, void *dev) 4389 { 4390 return (0); 4391 } 4392 4393 int 4394 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) 4395 { 4396 ifp->if_drv_flags &= ~clear_flags; 4397 ifp->if_drv_flags |= set_flags; 4398 4399 return (0); 4400 } 4401 4402 int 4403 if_getdrvflags(const if_t ifp) 4404 { 4405 return (ifp->if_drv_flags); 4406 } 4407 4408 int 4409 if_setdrvflags(if_t ifp, int flags) 4410 { 4411 ifp->if_drv_flags = flags; 4412 return (0); 4413 } 4414 4415 int 4416 if_setflags(if_t ifp, int flags) 4417 { 4418 ifp->if_flags = flags; 4419 return (0); 4420 } 4421 4422 int 4423 if_setflagbits(if_t ifp, int set, int clear) 4424 { 4425 ifp->if_flags &= ~clear; 4426 ifp->if_flags |= set; 4427 return (0); 4428 } 4429 4430 int 4431 if_getflags(const if_t ifp) 4432 { 4433 return (ifp->if_flags); 4434 } 4435 4436 int 4437 if_clearhwassist(if_t ifp) 4438 { 4439 ifp->if_hwassist = 0; 4440 return (0); 4441 } 4442 4443 int 4444 if_sethwassistbits(if_t ifp, int toset, int toclear) 4445 { 4446 ifp->if_hwassist &= ~toclear; 4447 ifp->if_hwassist |= toset; 4448 4449 return (0); 4450 } 4451 4452 int 4453 if_sethwassist(if_t ifp, int hwassist_bit) 4454 { 4455 ifp->if_hwassist = hwassist_bit; 4456 return (0); 4457 } 4458 4459 int 4460 if_gethwassist(const if_t ifp) 4461 { 4462 return (ifp->if_hwassist); 4463 } 4464 4465 int 4466 if_togglehwassist(if_t ifp, int toggle_bits) 4467 { 4468 ifp->if_hwassist ^= toggle_bits; 4469 return (0); 4470 } 4471 4472 int 4473 if_setmtu(if_t ifp, int mtu) 4474 { 4475 ifp->if_mtu = mtu; 4476 return (0); 4477 } 4478 4479 void 4480 if_notifymtu(if_t ifp) 4481 { 4482 #ifdef INET6 4483 nd6_setmtu(ifp); 4484 #endif 4485 rt_updatemtu(ifp); 4486 } 4487 4488 int 4489 if_getmtu(const if_t ifp) 4490 { 4491 return (ifp->if_mtu); 4492 } 4493 4494 int 4495 if_getmtu_family(const if_t ifp, int family) 4496 { 4497 struct domain *dp; 4498 4499 SLIST_FOREACH(dp, &domains, dom_next) { 4500 if (dp->dom_family == family && dp->dom_ifmtu != NULL) 4501 return (dp->dom_ifmtu(ifp)); 4502 } 4503 4504 return (ifp->if_mtu); 4505 } 4506 4507 /* 4508 * Methods for drivers to access interface unicast and multicast 4509 * link level addresses. Driver shall not know 'struct ifaddr' neither 4510 * 'struct ifmultiaddr'. 4511 */ 4512 u_int 4513 if_lladdr_count(if_t ifp) 4514 { 4515 struct epoch_tracker et; 4516 struct ifaddr *ifa; 4517 u_int count; 4518 4519 count = 0; 4520 NET_EPOCH_ENTER(et); 4521 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) 4522 if (ifa->ifa_addr->sa_family == AF_LINK) 4523 count++; 4524 NET_EPOCH_EXIT(et); 4525 4526 return (count); 4527 } 4528 4529 int 4530 if_foreach(if_foreach_cb_t cb, void *cb_arg) 4531 { 4532 if_t ifp; 4533 int error; 4534 4535 NET_EPOCH_ASSERT(); 4536 MPASS(cb); 4537 4538 error = 0; 4539 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 4540 error = cb(ifp, cb_arg); 4541 if (error != 0) 4542 break; 4543 } 4544 4545 return (error); 4546 } 4547 4548 /* 4549 * Iterates over the list of interfaces, permitting callback function @cb to sleep. 4550 * Stops iteration if @cb returns non-zero error code. 4551 * Returns the last error code from @cb. 4552 * @match_cb: optional match callback limiting the iteration to only matched interfaces 4553 * @match_arg: argument to pass to @match_cb 4554 * @cb: iteration callback 4555 * @cb_arg: argument to pass to @cb 4556 */ 4557 int 4558 if_foreach_sleep(if_foreach_match_t match_cb, void *match_arg, if_foreach_cb_t cb, 4559 void *cb_arg) 4560 { 4561 int match_count = 0, array_size = 16; /* 128 bytes for malloc */ 4562 struct ifnet **match_array = NULL; 4563 int error = 0; 4564 4565 MPASS(cb); 4566 4567 while (true) { 4568 struct ifnet **new_array; 4569 int new_size = array_size; 4570 struct epoch_tracker et; 4571 struct ifnet *ifp; 4572 4573 while (new_size < match_count) 4574 new_size *= 2; 4575 new_array = malloc(new_size * sizeof(void *), M_TEMP, M_WAITOK); 4576 if (match_array != NULL) 4577 memcpy(new_array, match_array, array_size * sizeof(void *)); 4578 free(match_array, M_TEMP); 4579 match_array = new_array; 4580 array_size = new_size; 4581 4582 match_count = 0; 4583 NET_EPOCH_ENTER(et); 4584 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 4585 if (match_cb != NULL && !match_cb(ifp, match_arg)) 4586 continue; 4587 if (match_count < array_size) { 4588 if (if_try_ref(ifp)) 4589 match_array[match_count++] = ifp; 4590 } else 4591 match_count++; 4592 } 4593 NET_EPOCH_EXIT(et); 4594 4595 if (match_count > array_size) { 4596 for (int i = 0; i < array_size; i++) 4597 if_rele(match_array[i]); 4598 continue; 4599 } else { 4600 for (int i = 0; i < match_count; i++) { 4601 if (error == 0) 4602 error = cb(match_array[i], cb_arg); 4603 if_rele(match_array[i]); 4604 } 4605 free(match_array, M_TEMP); 4606 break; 4607 } 4608 } 4609 4610 return (error); 4611 } 4612 4613 4614 /* 4615 * Uses just 1 pointer of the 4 available in the public struct. 4616 */ 4617 if_t 4618 if_iter_start(struct if_iter *iter) 4619 { 4620 if_t ifp; 4621 4622 NET_EPOCH_ASSERT(); 4623 4624 bzero(iter, sizeof(*iter)); 4625 ifp = CK_STAILQ_FIRST(&V_ifnet); 4626 if (ifp != NULL) 4627 iter->context[0] = CK_STAILQ_NEXT(ifp, if_link); 4628 else 4629 iter->context[0] = NULL; 4630 return (ifp); 4631 } 4632 4633 if_t 4634 if_iter_next(struct if_iter *iter) 4635 { 4636 if_t cur_ifp = iter->context[0]; 4637 4638 if (cur_ifp != NULL) 4639 iter->context[0] = CK_STAILQ_NEXT(cur_ifp, if_link); 4640 return (cur_ifp); 4641 } 4642 4643 void 4644 if_iter_finish(struct if_iter *iter) 4645 { 4646 /* Nothing to do here for now. */ 4647 } 4648 4649 u_int 4650 if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4651 { 4652 struct epoch_tracker et; 4653 struct ifaddr *ifa; 4654 u_int count; 4655 4656 MPASS(cb); 4657 4658 count = 0; 4659 NET_EPOCH_ENTER(et); 4660 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4661 if (ifa->ifa_addr->sa_family != AF_LINK) 4662 continue; 4663 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr, 4664 count); 4665 } 4666 NET_EPOCH_EXIT(et); 4667 4668 return (count); 4669 } 4670 4671 u_int 4672 if_llmaddr_count(if_t ifp) 4673 { 4674 struct epoch_tracker et; 4675 struct ifmultiaddr *ifma; 4676 int count; 4677 4678 count = 0; 4679 NET_EPOCH_ENTER(et); 4680 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 4681 if (ifma->ifma_addr->sa_family == AF_LINK) 4682 count++; 4683 NET_EPOCH_EXIT(et); 4684 4685 return (count); 4686 } 4687 4688 u_int 4689 if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) 4690 { 4691 struct epoch_tracker et; 4692 struct ifmultiaddr *ifma; 4693 u_int count; 4694 4695 MPASS(cb); 4696 4697 count = 0; 4698 NET_EPOCH_ENTER(et); 4699 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 4700 if (ifma->ifma_addr->sa_family != AF_LINK) 4701 continue; 4702 count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr, 4703 count); 4704 } 4705 NET_EPOCH_EXIT(et); 4706 4707 return (count); 4708 } 4709 4710 u_int 4711 if_foreach_addr_type(if_t ifp, int type, if_addr_cb_t cb, void *cb_arg) 4712 { 4713 struct epoch_tracker et; 4714 struct ifaddr *ifa; 4715 u_int count; 4716 4717 MPASS(cb); 4718 4719 count = 0; 4720 NET_EPOCH_ENTER(et); 4721 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 4722 if (ifa->ifa_addr->sa_family != type) 4723 continue; 4724 count += (*cb)(cb_arg, ifa, count); 4725 } 4726 NET_EPOCH_EXIT(et); 4727 4728 return (count); 4729 } 4730 4731 int 4732 if_setsoftc(if_t ifp, void *softc) 4733 { 4734 ifp->if_softc = softc; 4735 return (0); 4736 } 4737 4738 void * 4739 if_getsoftc(const if_t ifp) 4740 { 4741 return (ifp->if_softc); 4742 } 4743 4744 void 4745 if_setrcvif(struct mbuf *m, if_t ifp) 4746 { 4747 4748 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 4749 m->m_pkthdr.rcvif = (struct ifnet *)ifp; 4750 } 4751 4752 void 4753 if_setvtag(struct mbuf *m, uint16_t tag) 4754 { 4755 m->m_pkthdr.ether_vtag = tag; 4756 } 4757 4758 uint16_t 4759 if_getvtag(struct mbuf *m) 4760 { 4761 return (m->m_pkthdr.ether_vtag); 4762 } 4763 4764 int 4765 if_sendq_empty(if_t ifp) 4766 { 4767 return (IFQ_DRV_IS_EMPTY(&ifp->if_snd)); 4768 } 4769 4770 struct ifaddr * 4771 if_getifaddr(const if_t ifp) 4772 { 4773 return (ifp->if_addr); 4774 } 4775 4776 int 4777 if_getamcount(const if_t ifp) 4778 { 4779 return (ifp->if_amcount); 4780 } 4781 4782 int 4783 if_setsendqready(if_t ifp) 4784 { 4785 IFQ_SET_READY(&ifp->if_snd); 4786 return (0); 4787 } 4788 4789 int 4790 if_setsendqlen(if_t ifp, int tx_desc_count) 4791 { 4792 IFQ_SET_MAXLEN(&ifp->if_snd, tx_desc_count); 4793 ifp->if_snd.ifq_drv_maxlen = tx_desc_count; 4794 return (0); 4795 } 4796 4797 void 4798 if_setnetmapadapter(if_t ifp, struct netmap_adapter *na) 4799 { 4800 ifp->if_netmap = na; 4801 } 4802 4803 struct netmap_adapter * 4804 if_getnetmapadapter(if_t ifp) 4805 { 4806 return (ifp->if_netmap); 4807 } 4808 4809 int 4810 if_vlantrunkinuse(if_t ifp) 4811 { 4812 return (ifp->if_vlantrunk != NULL); 4813 } 4814 4815 void 4816 if_init(if_t ifp, void *ctx) 4817 { 4818 (*ifp->if_init)(ctx); 4819 } 4820 4821 void 4822 if_input(if_t ifp, struct mbuf* sendmp) 4823 { 4824 (*ifp->if_input)(ifp, sendmp); 4825 } 4826 4827 int 4828 if_transmit(if_t ifp, struct mbuf *m) 4829 { 4830 return ((*ifp->if_transmit)(ifp, m)); 4831 } 4832 4833 int 4834 if_resolvemulti(if_t ifp, struct sockaddr **srcs, struct sockaddr *dst) 4835 { 4836 if (ifp->if_resolvemulti == NULL) 4837 return (EOPNOTSUPP); 4838 4839 return (ifp->if_resolvemulti(ifp, srcs, dst)); 4840 } 4841 4842 struct mbuf * 4843 if_dequeue(if_t ifp) 4844 { 4845 struct mbuf *m; 4846 4847 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 4848 return (m); 4849 } 4850 4851 int 4852 if_sendq_prepend(if_t ifp, struct mbuf *m) 4853 { 4854 IFQ_DRV_PREPEND(&ifp->if_snd, m); 4855 return (0); 4856 } 4857 4858 int 4859 if_setifheaderlen(if_t ifp, int len) 4860 { 4861 ifp->if_hdrlen = len; 4862 return (0); 4863 } 4864 4865 caddr_t 4866 if_getlladdr(const if_t ifp) 4867 { 4868 return (IF_LLADDR(ifp)); 4869 } 4870 4871 void * 4872 if_gethandle(u_char type) 4873 { 4874 return (if_alloc(type)); 4875 } 4876 4877 void 4878 if_bpfmtap(if_t ifp, struct mbuf *m) 4879 { 4880 BPF_MTAP(ifp, m); 4881 } 4882 4883 void 4884 if_etherbpfmtap(if_t ifp, struct mbuf *m) 4885 { 4886 ETHER_BPF_MTAP(ifp, m); 4887 } 4888 4889 void 4890 if_vlancap(if_t ifp) 4891 { 4892 VLAN_CAPABILITIES(ifp); 4893 } 4894 4895 int 4896 if_sethwtsomax(if_t ifp, u_int if_hw_tsomax) 4897 { 4898 ifp->if_hw_tsomax = if_hw_tsomax; 4899 return (0); 4900 } 4901 4902 int 4903 if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount) 4904 { 4905 ifp->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount; 4906 return (0); 4907 } 4908 4909 int 4910 if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize) 4911 { 4912 ifp->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize; 4913 return (0); 4914 } 4915 4916 u_int 4917 if_gethwtsomax(const if_t ifp) 4918 { 4919 return (ifp->if_hw_tsomax); 4920 } 4921 4922 u_int 4923 if_gethwtsomaxsegcount(const if_t ifp) 4924 { 4925 return (ifp->if_hw_tsomaxsegcount); 4926 } 4927 4928 u_int 4929 if_gethwtsomaxsegsize(const if_t ifp) 4930 { 4931 return (ifp->if_hw_tsomaxsegsize); 4932 } 4933 4934 void 4935 if_setinitfn(if_t ifp, if_init_fn_t init_fn) 4936 { 4937 ifp->if_init = init_fn; 4938 } 4939 4940 void 4941 if_setinputfn(if_t ifp, if_input_fn_t input_fn) 4942 { 4943 ifp->if_input = input_fn; 4944 } 4945 4946 if_input_fn_t 4947 if_getinputfn(if_t ifp) 4948 { 4949 return (ifp->if_input); 4950 } 4951 4952 void 4953 if_setioctlfn(if_t ifp, if_ioctl_fn_t ioctl_fn) 4954 { 4955 ifp->if_ioctl = ioctl_fn; 4956 } 4957 4958 void 4959 if_setoutputfn(if_t ifp, if_output_fn_t output_fn) 4960 { 4961 ifp->if_output = output_fn; 4962 } 4963 4964 void 4965 if_setstartfn(if_t ifp, if_start_fn_t start_fn) 4966 { 4967 ifp->if_start = start_fn; 4968 } 4969 4970 if_start_fn_t 4971 if_getstartfn(if_t ifp) 4972 { 4973 return (ifp->if_start); 4974 } 4975 4976 void 4977 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) 4978 { 4979 ifp->if_transmit = start_fn; 4980 } 4981 4982 if_transmit_fn_t 4983 if_gettransmitfn(if_t ifp) 4984 { 4985 return (ifp->if_transmit); 4986 } 4987 4988 void 4989 if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) 4990 { 4991 ifp->if_qflush = flush_fn; 4992 } 4993 4994 void 4995 if_setsndtagallocfn(if_t ifp, if_snd_tag_alloc_t alloc_fn) 4996 { 4997 ifp->if_snd_tag_alloc = alloc_fn; 4998 } 4999 5000 int 5001 if_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 5002 struct m_snd_tag **mstp) 5003 { 5004 if (ifp->if_snd_tag_alloc == NULL) 5005 return (EOPNOTSUPP); 5006 return (ifp->if_snd_tag_alloc(ifp, params, mstp)); 5007 } 5008 5009 void 5010 if_setgetcounterfn(if_t ifp, if_get_counter_t fn) 5011 { 5012 ifp->if_get_counter = fn; 5013 } 5014 5015 void 5016 if_setreassignfn(if_t ifp, if_reassign_fn_t fn) 5017 { 5018 ifp->if_reassign = fn; 5019 } 5020 5021 void 5022 if_setratelimitqueryfn(if_t ifp, if_ratelimit_query_t fn) 5023 { 5024 ifp->if_ratelimit_query = fn; 5025 } 5026 5027 void 5028 if_setdebugnet_methods(if_t ifp, struct debugnet_methods *m) 5029 { 5030 ifp->if_debugnet_methods = m; 5031 } 5032 5033 struct label * 5034 if_getmaclabel(if_t ifp) 5035 { 5036 return (ifp->if_label); 5037 } 5038 5039 void 5040 if_setmaclabel(if_t ifp, struct label *label) 5041 { 5042 ifp->if_label = label; 5043 } 5044 5045 int 5046 if_gettype(if_t ifp) 5047 { 5048 return (ifp->if_type); 5049 } 5050 5051 void * 5052 if_getllsoftc(if_t ifp) 5053 { 5054 return (ifp->if_llsoftc); 5055 } 5056 5057 void 5058 if_setllsoftc(if_t ifp, void *llsoftc) 5059 { 5060 ifp->if_llsoftc = llsoftc; 5061 }; 5062 5063 int 5064 if_getlinkstate(if_t ifp) 5065 { 5066 return (ifp->if_link_state); 5067 } 5068 5069 const uint8_t * 5070 if_getbroadcastaddr(if_t ifp) 5071 { 5072 return (ifp->if_broadcastaddr); 5073 } 5074 5075 void 5076 if_setbroadcastaddr(if_t ifp, const uint8_t *addr) 5077 { 5078 ifp->if_broadcastaddr = addr; 5079 } 5080 5081 int 5082 if_getnumadomain(if_t ifp) 5083 { 5084 return (ifp->if_numa_domain); 5085 } 5086 5087 uint64_t 5088 if_getcounter(if_t ifp, ift_counter counter) 5089 { 5090 return (ifp->if_get_counter(ifp, counter)); 5091 } 5092 5093 bool 5094 if_altq_is_enabled(if_t ifp) 5095 { 5096 return (ALTQ_IS_ENABLED(&ifp->if_snd)); 5097 } 5098 5099 struct vnet * 5100 if_getvnet(if_t ifp) 5101 { 5102 return (ifp->if_vnet); 5103 } 5104 5105 void * 5106 if_getafdata(if_t ifp, int af) 5107 { 5108 return (ifp->if_afdata[af]); 5109 } 5110 5111 u_int 5112 if_getfib(if_t ifp) 5113 { 5114 return (ifp->if_fib); 5115 } 5116 5117 uint8_t 5118 if_getaddrlen(if_t ifp) 5119 { 5120 return (ifp->if_addrlen); 5121 } 5122 5123 struct bpf_if * 5124 if_getbpf(if_t ifp) 5125 { 5126 return (ifp->if_bpf); 5127 } 5128 5129 struct ifvlantrunk * 5130 if_getvlantrunk(if_t ifp) 5131 { 5132 return (ifp->if_vlantrunk); 5133 } 5134 5135 uint8_t 5136 if_getpcp(if_t ifp) 5137 { 5138 return (ifp->if_pcp); 5139 } 5140 5141 void * 5142 if_getl2com(if_t ifp) 5143 { 5144 return (ifp->if_l2com); 5145 } 5146 5147 #ifdef DDB 5148 static void 5149 if_show_ifnet(struct ifnet *ifp) 5150 { 5151 if (ifp == NULL) 5152 return; 5153 db_printf("%s:\n", ifp->if_xname); 5154 #define IF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, ifp->e); 5155 IF_DB_PRINTF("%s", if_dname); 5156 IF_DB_PRINTF("%d", if_dunit); 5157 IF_DB_PRINTF("%s", if_description); 5158 IF_DB_PRINTF("%u", if_index); 5159 IF_DB_PRINTF("%d", if_idxgen); 5160 IF_DB_PRINTF("%u", if_refcount); 5161 IF_DB_PRINTF("%p", if_softc); 5162 IF_DB_PRINTF("%p", if_l2com); 5163 IF_DB_PRINTF("%p", if_llsoftc); 5164 IF_DB_PRINTF("%d", if_amcount); 5165 IF_DB_PRINTF("%p", if_addr); 5166 IF_DB_PRINTF("%p", if_broadcastaddr); 5167 IF_DB_PRINTF("%p", if_afdata); 5168 IF_DB_PRINTF("%d", if_afdata_initialized); 5169 IF_DB_PRINTF("%u", if_fib); 5170 IF_DB_PRINTF("%p", if_vnet); 5171 IF_DB_PRINTF("%p", if_home_vnet); 5172 IF_DB_PRINTF("%p", if_vlantrunk); 5173 IF_DB_PRINTF("%p", if_bpf); 5174 IF_DB_PRINTF("%u", if_pcount); 5175 IF_DB_PRINTF("%p", if_bridge); 5176 IF_DB_PRINTF("%p", if_lagg); 5177 IF_DB_PRINTF("%p", if_pf_kif); 5178 IF_DB_PRINTF("%p", if_carp); 5179 IF_DB_PRINTF("%p", if_label); 5180 IF_DB_PRINTF("%p", if_netmap); 5181 IF_DB_PRINTF("0x%08x", if_flags); 5182 IF_DB_PRINTF("0x%08x", if_drv_flags); 5183 IF_DB_PRINTF("0x%08x", if_capabilities); 5184 IF_DB_PRINTF("0x%08x", if_capenable); 5185 IF_DB_PRINTF("%p", if_snd.ifq_head); 5186 IF_DB_PRINTF("%p", if_snd.ifq_tail); 5187 IF_DB_PRINTF("%d", if_snd.ifq_len); 5188 IF_DB_PRINTF("%d", if_snd.ifq_maxlen); 5189 IF_DB_PRINTF("%p", if_snd.ifq_drv_head); 5190 IF_DB_PRINTF("%p", if_snd.ifq_drv_tail); 5191 IF_DB_PRINTF("%d", if_snd.ifq_drv_len); 5192 IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen); 5193 IF_DB_PRINTF("%d", if_snd.altq_type); 5194 IF_DB_PRINTF("%x", if_snd.altq_flags); 5195 #undef IF_DB_PRINTF 5196 } 5197 5198 DB_SHOW_COMMAND(ifnet, db_show_ifnet) 5199 { 5200 if (!have_addr) { 5201 db_printf("usage: show ifnet <struct ifnet *>\n"); 5202 return; 5203 } 5204 5205 if_show_ifnet((struct ifnet *)addr); 5206 } 5207 5208 DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets) 5209 { 5210 struct ifnet *ifp; 5211 u_short idx; 5212 5213 for (idx = 1; idx <= if_index; idx++) { 5214 ifp = ifindex_table[idx].ife_ifnet; 5215 if (ifp == NULL) 5216 continue; 5217 db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp); 5218 if (db_pager_quit) 5219 break; 5220 } 5221 } 5222 #endif /* DDB */ 5223