1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2007 Seccuris Inc. 5 * All rights reserved. 6 * 7 * This software was developed by Robert N. M. Watson under contract to 8 * Seccuris Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_bpf.h" 36 37 #include <sys/param.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/mutex.h> 42 #include <sys/proc.h> 43 #include <sys/sf_buf.h> 44 #include <sys/socket.h> 45 #include <sys/uio.h> 46 47 #include <machine/atomic.h> 48 49 #include <net/if.h> 50 #include <net/bpf.h> 51 #include <net/bpf_zerocopy.h> 52 #include <net/bpfdesc.h> 53 54 #include <vm/vm.h> 55 #include <vm/vm_param.h> 56 #include <vm/pmap.h> 57 #include <vm/vm_extern.h> 58 #include <vm/vm_map.h> 59 #include <vm/vm_page.h> 60 61 /* 62 * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which 63 * are mapped into the kernel address space using sf_bufs and used directly 64 * by BPF. Memory is wired since page faults cannot be tolerated in the 65 * contexts where the buffers are copied to (locks held, interrupt context, 66 * etc). Access to shared memory buffers is synchronized using a header on 67 * each buffer, allowing the number of system calls to go to zero as BPF 68 * reaches saturation (buffers filled as fast as they can be drained by the 69 * user process). Full details of the protocol for communicating between the 70 * user process and BPF may be found in bpf(4). 71 */ 72 73 /* 74 * Maximum number of pages per buffer. Since all BPF devices use two, the 75 * maximum per device is 2*BPF_MAX_PAGES. Resource limits on the number of 76 * sf_bufs may be an issue, so do not set this too high. On older systems, 77 * kernel address space limits may also be an issue. 78 */ 79 #define BPF_MAX_PAGES 512 80 81 /* 82 * struct zbuf describes a memory buffer loaned by a user process to the 83 * kernel. We represent this as a series of pages managed using an array of 84 * sf_bufs. Even though the memory is contiguous in user space, it may not 85 * be mapped contiguously in the kernel (i.e., a set of physically 86 * non-contiguous pages in the direct map region) so we must implement 87 * scatter-gather copying. One significant mitigating factor is that on 88 * systems with a direct memory map, we can avoid TLB misses. 89 * 90 * At the front of the shared memory region is a bpf_zbuf_header, which 91 * contains shared control data to allow user space and the kernel to 92 * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF 93 * knows that the space is not available. 94 */ 95 struct zbuf { 96 vm_offset_t zb_uaddr; /* User address at time of setup. */ 97 size_t zb_size; /* Size of buffer, incl. header. */ 98 u_int zb_numpages; /* Number of pages. */ 99 int zb_flags; /* Flags on zbuf. */ 100 struct sf_buf **zb_pages; /* Pages themselves. */ 101 struct bpf_zbuf_header *zb_header; /* Shared header. */ 102 }; 103 104 /* 105 * When a buffer has been assigned to userspace, flag it as such, as the 106 * buffer may remain in the store position as a result of the user process 107 * not yet having acknowledged the buffer in the hold position yet. 108 */ 109 #define ZBUF_FLAG_ASSIGNED 0x00000001 /* Set when owned by user. */ 110 111 /* 112 * Release a page we've previously wired. 113 */ 114 static void 115 zbuf_page_free(vm_page_t pp) 116 { 117 118 vm_page_lock(pp); 119 if (vm_page_unwire(pp, PQ_INACTIVE) && pp->object == NULL) 120 vm_page_free(pp); 121 vm_page_unlock(pp); 122 } 123 124 /* 125 * Free an sf_buf with attached page. 126 */ 127 static void 128 zbuf_sfbuf_free(struct sf_buf *sf) 129 { 130 vm_page_t pp; 131 132 pp = sf_buf_page(sf); 133 sf_buf_free(sf); 134 zbuf_page_free(pp); 135 } 136 137 /* 138 * Free a zbuf, including its page array, sbufs, and pages. Allow partially 139 * allocated zbufs to be freed so that it may be used even during a zbuf 140 * setup. 141 */ 142 static void 143 zbuf_free(struct zbuf *zb) 144 { 145 int i; 146 147 for (i = 0; i < zb->zb_numpages; i++) { 148 if (zb->zb_pages[i] != NULL) 149 zbuf_sfbuf_free(zb->zb_pages[i]); 150 } 151 free(zb->zb_pages, M_BPF); 152 free(zb, M_BPF); 153 } 154 155 /* 156 * Given a user pointer to a page of user memory, return an sf_buf for the 157 * page. Because we may be requesting quite a few sf_bufs, prefer failure to 158 * deadlock and use SFB_NOWAIT. 159 */ 160 static struct sf_buf * 161 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr) 162 { 163 struct sf_buf *sf; 164 vm_page_t pp; 165 166 if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ | 167 VM_PROT_WRITE, &pp, 1) < 0) 168 return (NULL); 169 vm_page_lock(pp); 170 vm_page_wire(pp); 171 vm_page_unhold(pp); 172 vm_page_unlock(pp); 173 sf = sf_buf_alloc(pp, SFB_NOWAIT); 174 if (sf == NULL) { 175 zbuf_page_free(pp); 176 return (NULL); 177 } 178 return (sf); 179 } 180 181 /* 182 * Create a zbuf describing a range of user address space memory. Validate 183 * page alignment, size requirements, etc. 184 */ 185 static int 186 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len, 187 struct zbuf **zbp) 188 { 189 struct zbuf *zb; 190 struct vm_map *map; 191 int error, i; 192 193 *zbp = NULL; 194 195 /* 196 * User address must be page-aligned. 197 */ 198 if (uaddr & PAGE_MASK) 199 return (EINVAL); 200 201 /* 202 * Length must be an integer number of full pages. 203 */ 204 if (len & PAGE_MASK) 205 return (EINVAL); 206 207 /* 208 * Length must not exceed per-buffer resource limit. 209 */ 210 if ((len / PAGE_SIZE) > BPF_MAX_PAGES) 211 return (EINVAL); 212 213 /* 214 * Allocate the buffer and set up each page with is own sf_buf. 215 */ 216 error = 0; 217 zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK); 218 zb->zb_uaddr = uaddr; 219 zb->zb_size = len; 220 zb->zb_numpages = len / PAGE_SIZE; 221 zb->zb_pages = malloc(sizeof(struct sf_buf *) * 222 zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK); 223 map = &td->td_proc->p_vmspace->vm_map; 224 for (i = 0; i < zb->zb_numpages; i++) { 225 zb->zb_pages[i] = zbuf_sfbuf_get(map, 226 uaddr + (i * PAGE_SIZE)); 227 if (zb->zb_pages[i] == NULL) { 228 error = EFAULT; 229 goto error; 230 } 231 } 232 zb->zb_header = 233 (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]); 234 bzero(zb->zb_header, sizeof(*zb->zb_header)); 235 *zbp = zb; 236 return (0); 237 238 error: 239 zbuf_free(zb); 240 return (error); 241 } 242 243 /* 244 * Copy bytes from a source into the specified zbuf. The caller is 245 * responsible for performing bounds checking, etc. 246 */ 247 void 248 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, 249 void *src, u_int len) 250 { 251 u_int count, page, poffset; 252 u_char *src_bytes; 253 struct zbuf *zb; 254 255 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 256 ("bpf_zerocopy_append_bytes: not in zbuf mode")); 257 KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf")); 258 259 src_bytes = (u_char *)src; 260 zb = (struct zbuf *)buf; 261 262 KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0, 263 ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED")); 264 265 /* 266 * Scatter-gather copy to user pages mapped into kernel address space 267 * using sf_bufs: copy up to a page at a time. 268 */ 269 offset += sizeof(struct bpf_zbuf_header); 270 page = offset / PAGE_SIZE; 271 poffset = offset % PAGE_SIZE; 272 while (len > 0) { 273 KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:" 274 " page overflow (%d p %d np)\n", page, zb->zb_numpages)); 275 276 count = min(len, PAGE_SIZE - poffset); 277 bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) + 278 poffset, count); 279 poffset += count; 280 if (poffset == PAGE_SIZE) { 281 poffset = 0; 282 page++; 283 } 284 KASSERT(poffset < PAGE_SIZE, 285 ("bpf_zerocopy_append_bytes: page offset overflow (%d)", 286 poffset)); 287 len -= count; 288 src_bytes += count; 289 } 290 } 291 292 /* 293 * Copy bytes from an mbuf chain to the specified zbuf: copying will be 294 * scatter-gather both from mbufs, which may be fragmented over memory, and 295 * to pages, which may not be contiguously mapped in kernel address space. 296 * As with bpf_zerocopy_append_bytes(), the caller is responsible for 297 * checking that this will not exceed the buffer limit. 298 */ 299 void 300 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, 301 void *src, u_int len) 302 { 303 u_int count, moffset, page, poffset; 304 const struct mbuf *m; 305 struct zbuf *zb; 306 307 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 308 ("bpf_zerocopy_append_mbuf not in zbuf mode")); 309 KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf")); 310 311 m = (struct mbuf *)src; 312 zb = (struct zbuf *)buf; 313 314 KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0, 315 ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED")); 316 317 /* 318 * Scatter gather both from an mbuf chain and to a user page set 319 * mapped into kernel address space using sf_bufs. If we're lucky, 320 * each mbuf requires one copy operation, but if page alignment and 321 * mbuf alignment work out less well, we'll be doing two copies per 322 * mbuf. 323 */ 324 offset += sizeof(struct bpf_zbuf_header); 325 page = offset / PAGE_SIZE; 326 poffset = offset % PAGE_SIZE; 327 moffset = 0; 328 while (len > 0) { 329 KASSERT(page < zb->zb_numpages, 330 ("bpf_zerocopy_append_mbuf: page overflow (%d p %d " 331 "np)\n", page, zb->zb_numpages)); 332 KASSERT(m != NULL, 333 ("bpf_zerocopy_append_mbuf: end of mbuf chain")); 334 335 count = min(m->m_len - moffset, len); 336 count = min(count, PAGE_SIZE - poffset); 337 bcopy(mtod(m, u_char *) + moffset, 338 ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset, 339 count); 340 poffset += count; 341 if (poffset == PAGE_SIZE) { 342 poffset = 0; 343 page++; 344 } 345 KASSERT(poffset < PAGE_SIZE, 346 ("bpf_zerocopy_append_mbuf: page offset overflow (%d)", 347 poffset)); 348 moffset += count; 349 if (moffset == m->m_len) { 350 m = m->m_next; 351 moffset = 0; 352 } 353 len -= count; 354 } 355 } 356 357 /* 358 * Notification from the BPF framework that a buffer in the store position is 359 * rejecting packets and may be considered full. We mark the buffer as 360 * immutable and assign to userspace so that it is immediately available for 361 * the user process to access. 362 */ 363 void 364 bpf_zerocopy_buffull(struct bpf_d *d) 365 { 366 struct zbuf *zb; 367 368 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 369 ("bpf_zerocopy_buffull: not in zbuf mode")); 370 371 zb = (struct zbuf *)d->bd_sbuf; 372 KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL")); 373 374 if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) { 375 zb->zb_flags |= ZBUF_FLAG_ASSIGNED; 376 zb->zb_header->bzh_kernel_len = d->bd_slen; 377 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1); 378 } 379 } 380 381 /* 382 * Notification from the BPF framework that a buffer has moved into the held 383 * slot on a descriptor. Zero-copy BPF will update the shared page to let 384 * the user process know and flag the buffer as assigned if it hasn't already 385 * been marked assigned due to filling while it was in the store position. 386 * 387 * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate 388 * on bd_hbuf and bd_hlen. 389 */ 390 void 391 bpf_zerocopy_bufheld(struct bpf_d *d) 392 { 393 struct zbuf *zb; 394 395 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 396 ("bpf_zerocopy_bufheld: not in zbuf mode")); 397 398 zb = (struct zbuf *)d->bd_hbuf; 399 KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL")); 400 401 if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) { 402 zb->zb_flags |= ZBUF_FLAG_ASSIGNED; 403 zb->zb_header->bzh_kernel_len = d->bd_hlen; 404 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1); 405 } 406 } 407 408 /* 409 * Notification from the BPF framework that the free buffer has been been 410 * rotated out of the held position to the free position. This happens when 411 * the user acknowledges the held buffer. 412 */ 413 void 414 bpf_zerocopy_buf_reclaimed(struct bpf_d *d) 415 { 416 struct zbuf *zb; 417 418 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 419 ("bpf_zerocopy_reclaim_buf: not in zbuf mode")); 420 421 KASSERT(d->bd_fbuf != NULL, 422 ("bpf_zerocopy_buf_reclaimed: NULL free buf")); 423 zb = (struct zbuf *)d->bd_fbuf; 424 zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED; 425 } 426 427 /* 428 * Query from the BPF framework regarding whether the buffer currently in the 429 * held position can be moved to the free position, which can be indicated by 430 * the user process making their generation number equal to the kernel 431 * generation number. 432 */ 433 int 434 bpf_zerocopy_canfreebuf(struct bpf_d *d) 435 { 436 struct zbuf *zb; 437 438 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 439 ("bpf_zerocopy_canfreebuf: not in zbuf mode")); 440 441 zb = (struct zbuf *)d->bd_hbuf; 442 if (zb == NULL) 443 return (0); 444 if (zb->zb_header->bzh_kernel_gen == 445 atomic_load_acq_int(&zb->zb_header->bzh_user_gen)) 446 return (1); 447 return (0); 448 } 449 450 /* 451 * Query from the BPF framework as to whether or not the buffer current in 452 * the store position can actually be written to. This may return false if 453 * the store buffer is assigned to userspace before the hold buffer is 454 * acknowledged. 455 */ 456 int 457 bpf_zerocopy_canwritebuf(struct bpf_d *d) 458 { 459 struct zbuf *zb; 460 461 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 462 ("bpf_zerocopy_canwritebuf: not in zbuf mode")); 463 464 zb = (struct zbuf *)d->bd_sbuf; 465 KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL")); 466 467 if (zb->zb_flags & ZBUF_FLAG_ASSIGNED) 468 return (0); 469 return (1); 470 } 471 472 /* 473 * Free zero copy buffers at request of descriptor. 474 */ 475 void 476 bpf_zerocopy_free(struct bpf_d *d) 477 { 478 struct zbuf *zb; 479 480 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 481 ("bpf_zerocopy_free: not in zbuf mode")); 482 483 zb = (struct zbuf *)d->bd_sbuf; 484 if (zb != NULL) 485 zbuf_free(zb); 486 zb = (struct zbuf *)d->bd_hbuf; 487 if (zb != NULL) 488 zbuf_free(zb); 489 zb = (struct zbuf *)d->bd_fbuf; 490 if (zb != NULL) 491 zbuf_free(zb); 492 } 493 494 /* 495 * Ioctl to return the maximum buffer size. 496 */ 497 int 498 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i) 499 { 500 501 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 502 ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode")); 503 504 *i = BPF_MAX_PAGES * PAGE_SIZE; 505 return (0); 506 } 507 508 /* 509 * Ioctl to force rotation of the two buffers, if there's any data available. 510 * This can be used by user space to implement timeouts when waiting for a 511 * buffer to fill. 512 */ 513 int 514 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, 515 struct bpf_zbuf *bz) 516 { 517 struct zbuf *bzh; 518 519 bzero(bz, sizeof(*bz)); 520 BPFD_LOCK(d); 521 if (d->bd_hbuf == NULL && d->bd_slen != 0) { 522 ROTATE_BUFFERS(d); 523 bzh = (struct zbuf *)d->bd_hbuf; 524 bz->bz_bufa = (void *)bzh->zb_uaddr; 525 bz->bz_buflen = d->bd_hlen; 526 } 527 BPFD_UNLOCK(d); 528 return (0); 529 } 530 531 /* 532 * Ioctl to configure zero-copy buffers -- may be done only once. 533 */ 534 int 535 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d, 536 struct bpf_zbuf *bz) 537 { 538 struct zbuf *zba, *zbb; 539 int error; 540 541 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 542 ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode")); 543 544 /* 545 * Must set both buffers. Cannot clear them. 546 */ 547 if (bz->bz_bufa == NULL || bz->bz_bufb == NULL) 548 return (EINVAL); 549 550 /* 551 * Buffers must have a size greater than 0. Alignment and other size 552 * validity checking is done in zbuf_setup(). 553 */ 554 if (bz->bz_buflen == 0) 555 return (EINVAL); 556 557 /* 558 * Allocate new buffers. 559 */ 560 error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen, 561 &zba); 562 if (error) 563 return (error); 564 error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen, 565 &zbb); 566 if (error) { 567 zbuf_free(zba); 568 return (error); 569 } 570 571 /* 572 * We only allow buffers to be installed once, so atomically check 573 * that no buffers are currently installed and install new buffers. 574 */ 575 BPFD_LOCK(d); 576 if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL || 577 d->bd_bif != NULL) { 578 BPFD_UNLOCK(d); 579 zbuf_free(zba); 580 zbuf_free(zbb); 581 return (EINVAL); 582 } 583 584 /* 585 * Point BPF descriptor at buffers; initialize sbuf as zba so that 586 * it is always filled first in the sequence, per bpf(4). 587 */ 588 d->bd_fbuf = (caddr_t)zbb; 589 d->bd_sbuf = (caddr_t)zba; 590 d->bd_slen = 0; 591 d->bd_hlen = 0; 592 593 /* 594 * We expose only the space left in the buffer after the size of the 595 * shared management region. 596 */ 597 d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header); 598 BPFD_UNLOCK(d); 599 return (0); 600 } 601