1 /*- 2 * Copyright (c) 2007 Seccuris Inc. 3 * All rights reserved. 4 * 5 * This software was developed by Robert N. M. Watson under contract to 6 * Seccuris Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_bpf.h" 34 35 #include <sys/param.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/mutex.h> 40 #include <sys/proc.h> 41 #include <sys/sf_buf.h> 42 #include <sys/socket.h> 43 #include <sys/uio.h> 44 45 #include <machine/atomic.h> 46 47 #include <net/if.h> 48 #include <net/bpf.h> 49 #include <net/bpf_zerocopy.h> 50 #include <net/bpfdesc.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_param.h> 54 #include <vm/pmap.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_map.h> 57 #include <vm/vm_page.h> 58 59 /* 60 * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which 61 * are mapped into the kernel address space using sf_bufs and used directly 62 * by BPF. Memory is wired since page faults cannot be tolerated in the 63 * contexts where the buffers are copied to (locks held, interrupt context, 64 * etc). Access to shared memory buffers is synchronized using a header on 65 * each buffer, allowing the number of system calls to go to zero as BPF 66 * reaches saturation (buffers filled as fast as they can be drained by the 67 * user process). Full details of the protocol for communicating between the 68 * user process and BPF may be found in bpf(4). 69 */ 70 71 /* 72 * Maximum number of pages per buffer. Since all BPF devices use two, the 73 * maximum per device is 2*BPF_MAX_PAGES. Resource limits on the number of 74 * sf_bufs may be an issue, so do not set this too high. On older systems, 75 * kernel address space limits may also be an issue. 76 */ 77 #define BPF_MAX_PAGES 512 78 79 /* 80 * struct zbuf describes a memory buffer loaned by a user process to the 81 * kernel. We represent this as a series of pages managed using an array of 82 * sf_bufs. Even though the memory is contiguous in user space, it may not 83 * be mapped contiguously in the kernel (i.e., a set of physically 84 * non-contiguous pages in the direct map region) so we must implement 85 * scatter-gather copying. One significant mitigating factor is that on 86 * systems with a direct memory map, we can avoid TLB misses. 87 * 88 * At the front of the shared memory region is a bpf_zbuf_header, which 89 * contains shared control data to allow user space and the kernel to 90 * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF 91 * knows that the space is not available. 92 */ 93 struct zbuf { 94 vm_offset_t zb_uaddr; /* User address at time of setup. */ 95 size_t zb_size; /* Size of buffer, incl. header. */ 96 u_int zb_numpages; /* Number of pages. */ 97 int zb_flags; /* Flags on zbuf. */ 98 struct sf_buf **zb_pages; /* Pages themselves. */ 99 struct bpf_zbuf_header *zb_header; /* Shared header. */ 100 }; 101 102 /* 103 * When a buffer has been assigned to userspace, flag it as such, as the 104 * buffer may remain in the store position as a result of the user process 105 * not yet having acknowledged the buffer in the hold position yet. 106 */ 107 #define ZBUF_FLAG_ASSIGNED 0x00000001 /* Set when owned by user. */ 108 109 /* 110 * Release a page we've previously wired. 111 */ 112 static void 113 zbuf_page_free(vm_page_t pp) 114 { 115 116 vm_page_lock(pp); 117 vm_page_unwire(pp, 0); 118 if (pp->wire_count == 0 && pp->object == NULL) 119 vm_page_free(pp); 120 vm_page_unlock(pp); 121 } 122 123 /* 124 * Free an sf_buf with attached page. 125 */ 126 static void 127 zbuf_sfbuf_free(struct sf_buf *sf) 128 { 129 vm_page_t pp; 130 131 pp = sf_buf_page(sf); 132 sf_buf_free(sf); 133 zbuf_page_free(pp); 134 } 135 136 /* 137 * Free a zbuf, including its page array, sbufs, and pages. Allow partially 138 * allocated zbufs to be freed so that it may be used even during a zbuf 139 * setup. 140 */ 141 static void 142 zbuf_free(struct zbuf *zb) 143 { 144 int i; 145 146 for (i = 0; i < zb->zb_numpages; i++) { 147 if (zb->zb_pages[i] != NULL) 148 zbuf_sfbuf_free(zb->zb_pages[i]); 149 } 150 free(zb->zb_pages, M_BPF); 151 free(zb, M_BPF); 152 } 153 154 /* 155 * Given a user pointer to a page of user memory, return an sf_buf for the 156 * page. Because we may be requesting quite a few sf_bufs, prefer failure to 157 * deadlock and use SFB_NOWAIT. 158 */ 159 static struct sf_buf * 160 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr) 161 { 162 struct sf_buf *sf; 163 vm_page_t pp; 164 165 if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ | 166 VM_PROT_WRITE, &pp, 1) < 0) 167 return (NULL); 168 vm_page_lock(pp); 169 vm_page_wire(pp); 170 vm_page_unhold(pp); 171 vm_page_unlock(pp); 172 sf = sf_buf_alloc(pp, SFB_NOWAIT); 173 if (sf == NULL) { 174 zbuf_page_free(pp); 175 return (NULL); 176 } 177 return (sf); 178 } 179 180 /* 181 * Create a zbuf describing a range of user address space memory. Validate 182 * page alignment, size requirements, etc. 183 */ 184 static int 185 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len, 186 struct zbuf **zbp) 187 { 188 struct zbuf *zb; 189 struct vm_map *map; 190 int error, i; 191 192 *zbp = NULL; 193 194 /* 195 * User address must be page-aligned. 196 */ 197 if (uaddr & PAGE_MASK) 198 return (EINVAL); 199 200 /* 201 * Length must be an integer number of full pages. 202 */ 203 if (len & PAGE_MASK) 204 return (EINVAL); 205 206 /* 207 * Length must not exceed per-buffer resource limit. 208 */ 209 if ((len / PAGE_SIZE) > BPF_MAX_PAGES) 210 return (EINVAL); 211 212 /* 213 * Allocate the buffer and set up each page with is own sf_buf. 214 */ 215 error = 0; 216 zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK); 217 zb->zb_uaddr = uaddr; 218 zb->zb_size = len; 219 zb->zb_numpages = len / PAGE_SIZE; 220 zb->zb_pages = malloc(sizeof(struct sf_buf *) * 221 zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK); 222 map = &td->td_proc->p_vmspace->vm_map; 223 for (i = 0; i < zb->zb_numpages; i++) { 224 zb->zb_pages[i] = zbuf_sfbuf_get(map, 225 uaddr + (i * PAGE_SIZE)); 226 if (zb->zb_pages[i] == NULL) { 227 error = EFAULT; 228 goto error; 229 } 230 } 231 zb->zb_header = 232 (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]); 233 bzero(zb->zb_header, sizeof(*zb->zb_header)); 234 *zbp = zb; 235 return (0); 236 237 error: 238 zbuf_free(zb); 239 return (error); 240 } 241 242 /* 243 * Copy bytes from a source into the specified zbuf. The caller is 244 * responsible for performing bounds checking, etc. 245 */ 246 void 247 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, 248 void *src, u_int len) 249 { 250 u_int count, page, poffset; 251 u_char *src_bytes; 252 struct zbuf *zb; 253 254 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 255 ("bpf_zerocopy_append_bytes: not in zbuf mode")); 256 KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf")); 257 258 src_bytes = (u_char *)src; 259 zb = (struct zbuf *)buf; 260 261 KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0, 262 ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED")); 263 264 /* 265 * Scatter-gather copy to user pages mapped into kernel address space 266 * using sf_bufs: copy up to a page at a time. 267 */ 268 offset += sizeof(struct bpf_zbuf_header); 269 page = offset / PAGE_SIZE; 270 poffset = offset % PAGE_SIZE; 271 while (len > 0) { 272 KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:" 273 " page overflow (%d p %d np)\n", page, zb->zb_numpages)); 274 275 count = min(len, PAGE_SIZE - poffset); 276 bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) + 277 poffset, count); 278 poffset += count; 279 if (poffset == PAGE_SIZE) { 280 poffset = 0; 281 page++; 282 } 283 KASSERT(poffset < PAGE_SIZE, 284 ("bpf_zerocopy_append_bytes: page offset overflow (%d)", 285 poffset)); 286 len -= count; 287 src_bytes += count; 288 } 289 } 290 291 /* 292 * Copy bytes from an mbuf chain to the specified zbuf: copying will be 293 * scatter-gather both from mbufs, which may be fragmented over memory, and 294 * to pages, which may not be contiguously mapped in kernel address space. 295 * As with bpf_zerocopy_append_bytes(), the caller is responsible for 296 * checking that this will not exceed the buffer limit. 297 */ 298 void 299 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, 300 void *src, u_int len) 301 { 302 u_int count, moffset, page, poffset; 303 const struct mbuf *m; 304 struct zbuf *zb; 305 306 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 307 ("bpf_zerocopy_append_mbuf not in zbuf mode")); 308 KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf")); 309 310 m = (struct mbuf *)src; 311 zb = (struct zbuf *)buf; 312 313 KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0, 314 ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED")); 315 316 /* 317 * Scatter gather both from an mbuf chain and to a user page set 318 * mapped into kernel address space using sf_bufs. If we're lucky, 319 * each mbuf requires one copy operation, but if page alignment and 320 * mbuf alignment work out less well, we'll be doing two copies per 321 * mbuf. 322 */ 323 offset += sizeof(struct bpf_zbuf_header); 324 page = offset / PAGE_SIZE; 325 poffset = offset % PAGE_SIZE; 326 moffset = 0; 327 while (len > 0) { 328 KASSERT(page < zb->zb_numpages, 329 ("bpf_zerocopy_append_mbuf: page overflow (%d p %d " 330 "np)\n", page, zb->zb_numpages)); 331 KASSERT(m != NULL, 332 ("bpf_zerocopy_append_mbuf: end of mbuf chain")); 333 334 count = min(m->m_len - moffset, len); 335 count = min(count, PAGE_SIZE - poffset); 336 bcopy(mtod(m, u_char *) + moffset, 337 ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset, 338 count); 339 poffset += count; 340 if (poffset == PAGE_SIZE) { 341 poffset = 0; 342 page++; 343 } 344 KASSERT(poffset < PAGE_SIZE, 345 ("bpf_zerocopy_append_mbuf: page offset overflow (%d)", 346 poffset)); 347 moffset += count; 348 if (moffset == m->m_len) { 349 m = m->m_next; 350 moffset = 0; 351 } 352 len -= count; 353 } 354 } 355 356 /* 357 * Notification from the BPF framework that a buffer in the store position is 358 * rejecting packets and may be considered full. We mark the buffer as 359 * immutable and assign to userspace so that it is immediately available for 360 * the user process to access. 361 */ 362 void 363 bpf_zerocopy_buffull(struct bpf_d *d) 364 { 365 struct zbuf *zb; 366 367 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 368 ("bpf_zerocopy_buffull: not in zbuf mode")); 369 370 zb = (struct zbuf *)d->bd_sbuf; 371 KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL")); 372 373 if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) { 374 zb->zb_flags |= ZBUF_FLAG_ASSIGNED; 375 zb->zb_header->bzh_kernel_len = d->bd_slen; 376 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1); 377 } 378 } 379 380 /* 381 * Notification from the BPF framework that a buffer has moved into the held 382 * slot on a descriptor. Zero-copy BPF will update the shared page to let 383 * the user process know and flag the buffer as assigned if it hasn't already 384 * been marked assigned due to filling while it was in the store position. 385 * 386 * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate 387 * on bd_hbuf and bd_hlen. 388 */ 389 void 390 bpf_zerocopy_bufheld(struct bpf_d *d) 391 { 392 struct zbuf *zb; 393 394 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 395 ("bpf_zerocopy_bufheld: not in zbuf mode")); 396 397 zb = (struct zbuf *)d->bd_hbuf; 398 KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL")); 399 400 if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) { 401 zb->zb_flags |= ZBUF_FLAG_ASSIGNED; 402 zb->zb_header->bzh_kernel_len = d->bd_hlen; 403 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1); 404 } 405 } 406 407 /* 408 * Notification from the BPF framework that the free buffer has been been 409 * rotated out of the held position to the free position. This happens when 410 * the user acknowledges the held buffer. 411 */ 412 void 413 bpf_zerocopy_buf_reclaimed(struct bpf_d *d) 414 { 415 struct zbuf *zb; 416 417 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 418 ("bpf_zerocopy_reclaim_buf: not in zbuf mode")); 419 420 KASSERT(d->bd_fbuf != NULL, 421 ("bpf_zerocopy_buf_reclaimed: NULL free buf")); 422 zb = (struct zbuf *)d->bd_fbuf; 423 zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED; 424 } 425 426 /* 427 * Query from the BPF framework regarding whether the buffer currently in the 428 * held position can be moved to the free position, which can be indicated by 429 * the user process making their generation number equal to the kernel 430 * generation number. 431 */ 432 int 433 bpf_zerocopy_canfreebuf(struct bpf_d *d) 434 { 435 struct zbuf *zb; 436 437 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 438 ("bpf_zerocopy_canfreebuf: not in zbuf mode")); 439 440 zb = (struct zbuf *)d->bd_hbuf; 441 if (zb == NULL) 442 return (0); 443 if (zb->zb_header->bzh_kernel_gen == 444 atomic_load_acq_int(&zb->zb_header->bzh_user_gen)) 445 return (1); 446 return (0); 447 } 448 449 /* 450 * Query from the BPF framework as to whether or not the buffer current in 451 * the store position can actually be written to. This may return false if 452 * the store buffer is assigned to userspace before the hold buffer is 453 * acknowledged. 454 */ 455 int 456 bpf_zerocopy_canwritebuf(struct bpf_d *d) 457 { 458 struct zbuf *zb; 459 460 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 461 ("bpf_zerocopy_canwritebuf: not in zbuf mode")); 462 463 zb = (struct zbuf *)d->bd_sbuf; 464 KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL")); 465 466 if (zb->zb_flags & ZBUF_FLAG_ASSIGNED) 467 return (0); 468 return (1); 469 } 470 471 /* 472 * Free zero copy buffers at request of descriptor. 473 */ 474 void 475 bpf_zerocopy_free(struct bpf_d *d) 476 { 477 struct zbuf *zb; 478 479 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 480 ("bpf_zerocopy_free: not in zbuf mode")); 481 482 zb = (struct zbuf *)d->bd_sbuf; 483 if (zb != NULL) 484 zbuf_free(zb); 485 zb = (struct zbuf *)d->bd_hbuf; 486 if (zb != NULL) 487 zbuf_free(zb); 488 zb = (struct zbuf *)d->bd_fbuf; 489 if (zb != NULL) 490 zbuf_free(zb); 491 } 492 493 /* 494 * Ioctl to return the maximum buffer size. 495 */ 496 int 497 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i) 498 { 499 500 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 501 ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode")); 502 503 *i = BPF_MAX_PAGES * PAGE_SIZE; 504 return (0); 505 } 506 507 /* 508 * Ioctl to force rotation of the two buffers, if there's any data available. 509 * This can be used by user space to implement timeouts when waiting for a 510 * buffer to fill. 511 */ 512 int 513 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, 514 struct bpf_zbuf *bz) 515 { 516 struct zbuf *bzh; 517 518 bzero(bz, sizeof(*bz)); 519 BPFD_LOCK(d); 520 if (d->bd_hbuf == NULL && d->bd_slen != 0) { 521 ROTATE_BUFFERS(d); 522 bzh = (struct zbuf *)d->bd_hbuf; 523 bz->bz_bufa = (void *)bzh->zb_uaddr; 524 bz->bz_buflen = d->bd_hlen; 525 } 526 BPFD_UNLOCK(d); 527 return (0); 528 } 529 530 /* 531 * Ioctl to configure zero-copy buffers -- may be done only once. 532 */ 533 int 534 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d, 535 struct bpf_zbuf *bz) 536 { 537 struct zbuf *zba, *zbb; 538 int error; 539 540 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 541 ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode")); 542 543 /* 544 * Must set both buffers. Cannot clear them. 545 */ 546 if (bz->bz_bufa == NULL || bz->bz_bufb == NULL) 547 return (EINVAL); 548 549 /* 550 * Buffers must have a size greater than 0. Alignment and other size 551 * validity checking is done in zbuf_setup(). 552 */ 553 if (bz->bz_buflen == 0) 554 return (EINVAL); 555 556 /* 557 * Allocate new buffers. 558 */ 559 error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen, 560 &zba); 561 if (error) 562 return (error); 563 error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen, 564 &zbb); 565 if (error) { 566 zbuf_free(zba); 567 return (error); 568 } 569 570 /* 571 * We only allow buffers to be installed once, so atomically check 572 * that no buffers are currently installed and install new buffers. 573 */ 574 BPFD_LOCK(d); 575 if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL || 576 d->bd_bif != NULL) { 577 BPFD_UNLOCK(d); 578 zbuf_free(zba); 579 zbuf_free(zbb); 580 return (EINVAL); 581 } 582 583 /* 584 * Point BPF descriptor at buffers; initialize sbuf as zba so that 585 * it is always filled first in the sequence, per bpf(4). 586 */ 587 d->bd_fbuf = (caddr_t)zbb; 588 d->bd_sbuf = (caddr_t)zba; 589 d->bd_slen = 0; 590 d->bd_hlen = 0; 591 592 /* 593 * We expose only the space left in the buffer after the size of the 594 * shared management region. 595 */ 596 d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header); 597 BPFD_UNLOCK(d); 598 return (0); 599 } 600