xref: /freebsd/sys/net/bpf_zerocopy.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 2007 Seccuris Inc.
3  * All rights reserved.
4  *
5  * This sofware was developed by Robert N. M. Watson under contract to
6  * Seccuris Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_bpf.h"
34 
35 #include <sys/param.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/sf_buf.h>
42 #include <sys/socket.h>
43 #include <sys/uio.h>
44 
45 #include <machine/atomic.h>
46 
47 #include <net/if.h>
48 #include <net/bpf.h>
49 #include <net/bpf_zerocopy.h>
50 #include <net/bpfdesc.h>
51 
52 #include <vm/vm.h>
53 #include <vm/pmap.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_page.h>
57 
58 /*
59  * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which
60  * are mapped into the kernel address space using sf_bufs and used directly
61  * by BPF.  Memory is wired since page faults cannot be tolerated in the
62  * contexts where the buffers are copied to (locks held, interrupt context,
63  * etc).  Access to shared memory buffers is synchronized using a header on
64  * each buffer, allowing the number of system calls to go to zero as BPF
65  * reaches saturation (buffers filled as fast as they can be drained by the
66  * user process).  Full details of the protocol for communicating between the
67  * user process and BPF may be found in bpf(4).
68  */
69 
70 /*
71  * Maximum number of pages per buffer.  Since all BPF devices use two, the
72  * maximum per device is 2*BPF_MAX_PAGES.  Resource limits on the number of
73  * sf_bufs may be an issue, so do not set this too high.  On older systems,
74  * kernel address space limits may also be an issue.
75  */
76 #define	BPF_MAX_PAGES	512
77 
78 /*
79  * struct zbuf describes a memory buffer loaned by a user process to the
80  * kernel.  We represent this as a series of pages managed using an array of
81  * sf_bufs.  Even though the memory is contiguous in user space, it may not
82  * be mapped contiguously in the kernel (i.e., a set of physically
83  * non-contiguous pages in the direct map region) so we must implement
84  * scatter-gather copying.  One significant mitigating factor is that on
85  * systems with a direct memory map, we can avoid TLB misses.
86  *
87  * At the front of the shared memory region is a bpf_zbuf_header, which
88  * contains shared control data to allow user space and the kernel to
89  * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF
90  * knows that the space is not available.
91  */
92 struct zbuf {
93 	vm_offset_t	 zb_uaddr;	/* User address at time of setup. */
94 	size_t		 zb_size;	/* Size of buffer, incl. header. */
95 	u_int		 zb_numpages;	/* Number of pages. */
96 	int		 zb_flags;	/* Flags on zbuf. */
97 	struct sf_buf	**zb_pages;	/* Pages themselves. */
98 	struct bpf_zbuf_header	*zb_header;	/* Shared header. */
99 };
100 
101 /*
102  * When a buffer has been assigned to userspace, flag it as such, as the
103  * buffer may remain in the store position as a result of the user process
104  * not yet having acknowledged the buffer in the hold position yet.
105  */
106 #define	ZBUF_FLAG_ASSIGNED	0x00000001	/* Set when owned by user. */
107 
108 /*
109  * Release a page we've previously wired.
110  */
111 static void
112 zbuf_page_free(vm_page_t pp)
113 {
114 
115 	vm_page_lock(pp);
116 	vm_page_unwire(pp, 0);
117 	if (pp->wire_count == 0 && pp->object == NULL)
118 		vm_page_free(pp);
119 	vm_page_unlock(pp);
120 }
121 
122 /*
123  * Free an sf_buf with attached page.
124  */
125 static void
126 zbuf_sfbuf_free(struct sf_buf *sf)
127 {
128 	vm_page_t pp;
129 
130 	pp = sf_buf_page(sf);
131 	sf_buf_free(sf);
132 	zbuf_page_free(pp);
133 }
134 
135 /*
136  * Free a zbuf, including its page array, sbufs, and pages.  Allow partially
137  * allocated zbufs to be freed so that it may be used even during a zbuf
138  * setup.
139  */
140 static void
141 zbuf_free(struct zbuf *zb)
142 {
143 	int i;
144 
145 	for (i = 0; i < zb->zb_numpages; i++) {
146 		if (zb->zb_pages[i] != NULL)
147 			zbuf_sfbuf_free(zb->zb_pages[i]);
148 	}
149 	free(zb->zb_pages, M_BPF);
150 	free(zb, M_BPF);
151 }
152 
153 /*
154  * Given a user pointer to a page of user memory, return an sf_buf for the
155  * page.  Because we may be requesting quite a few sf_bufs, prefer failure to
156  * deadlock and use SFB_NOWAIT.
157  */
158 static struct sf_buf *
159 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr)
160 {
161 	struct sf_buf *sf;
162 	vm_page_t pp;
163 
164 	if (vm_fault_quick((caddr_t) uaddr, VM_PROT_READ | VM_PROT_WRITE) <
165 	    0)
166 		return (NULL);
167 	pp = pmap_extract_and_hold(map->pmap, uaddr, VM_PROT_READ |
168 	    VM_PROT_WRITE);
169 	if (pp == NULL)
170 		return (NULL);
171 	vm_page_lock(pp);
172 	vm_page_wire(pp);
173 	vm_page_unhold(pp);
174 	vm_page_unlock(pp);
175 	sf = sf_buf_alloc(pp, SFB_NOWAIT);
176 	if (sf == NULL) {
177 		zbuf_page_free(pp);
178 		return (NULL);
179 	}
180 	return (sf);
181 }
182 
183 /*
184  * Create a zbuf describing a range of user address space memory.  Validate
185  * page alignment, size requirements, etc.
186  */
187 static int
188 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len,
189     struct zbuf **zbp)
190 {
191 	struct zbuf *zb;
192 	struct vm_map *map;
193 	int error, i;
194 
195 	*zbp = NULL;
196 
197 	/*
198 	 * User address must be page-aligned.
199 	 */
200 	if (uaddr & PAGE_MASK)
201 		return (EINVAL);
202 
203 	/*
204 	 * Length must be an integer number of full pages.
205 	 */
206 	if (len & PAGE_MASK)
207 		return (EINVAL);
208 
209 	/*
210 	 * Length must not exceed per-buffer resource limit.
211 	 */
212 	if ((len / PAGE_SIZE) > BPF_MAX_PAGES)
213 		return (EINVAL);
214 
215 	/*
216 	 * Allocate the buffer and set up each page with is own sf_buf.
217 	 */
218 	error = 0;
219 	zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK);
220 	zb->zb_uaddr = uaddr;
221 	zb->zb_size = len;
222 	zb->zb_numpages = len / PAGE_SIZE;
223 	zb->zb_pages = malloc(sizeof(struct sf_buf *) *
224 	    zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK);
225 	map = &td->td_proc->p_vmspace->vm_map;
226 	for (i = 0; i < zb->zb_numpages; i++) {
227 		zb->zb_pages[i] = zbuf_sfbuf_get(map,
228 		    uaddr + (i * PAGE_SIZE));
229 		if (zb->zb_pages[i] == NULL) {
230 			error = EFAULT;
231 			goto error;
232 		}
233 	}
234 	zb->zb_header =
235 	    (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]);
236 	bzero(zb->zb_header, sizeof(*zb->zb_header));
237 	*zbp = zb;
238 	return (0);
239 
240 error:
241 	zbuf_free(zb);
242 	return (error);
243 }
244 
245 /*
246  * Copy bytes from a source into the specified zbuf.  The caller is
247  * responsible for performing bounds checking, etc.
248  */
249 void
250 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset,
251     void *src, u_int len)
252 {
253 	u_int count, page, poffset;
254 	u_char *src_bytes;
255 	struct zbuf *zb;
256 
257 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
258 	    ("bpf_zerocopy_append_bytes: not in zbuf mode"));
259 	KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf"));
260 
261 	src_bytes = (u_char *)src;
262 	zb = (struct zbuf *)buf;
263 
264 	KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
265 	    ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED"));
266 
267 	/*
268 	 * Scatter-gather copy to user pages mapped into kernel address space
269 	 * using sf_bufs: copy up to a page at a time.
270 	 */
271 	offset += sizeof(struct bpf_zbuf_header);
272 	page = offset / PAGE_SIZE;
273 	poffset = offset % PAGE_SIZE;
274 	while (len > 0) {
275 		KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:"
276 		   " page overflow (%d p %d np)\n", page, zb->zb_numpages));
277 
278 		count = min(len, PAGE_SIZE - poffset);
279 		bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) +
280 		    poffset, count);
281 		poffset += count;
282 		if (poffset == PAGE_SIZE) {
283 			poffset = 0;
284 			page++;
285 		}
286 		KASSERT(poffset < PAGE_SIZE,
287 		    ("bpf_zerocopy_append_bytes: page offset overflow (%d)",
288 		    poffset));
289 		len -= count;
290 		src_bytes += count;
291 	}
292 }
293 
294 /*
295  * Copy bytes from an mbuf chain to the specified zbuf: copying will be
296  * scatter-gather both from mbufs, which may be fragmented over memory, and
297  * to pages, which may not be contiguously mapped in kernel address space.
298  * As with bpf_zerocopy_append_bytes(), the caller is responsible for
299  * checking that this will not exceed the buffer limit.
300  */
301 void
302 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset,
303     void *src, u_int len)
304 {
305 	u_int count, moffset, page, poffset;
306 	const struct mbuf *m;
307 	struct zbuf *zb;
308 
309 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
310 	    ("bpf_zerocopy_append_mbuf not in zbuf mode"));
311 	KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf"));
312 
313 	m = (struct mbuf *)src;
314 	zb = (struct zbuf *)buf;
315 
316 	KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
317 	    ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED"));
318 
319 	/*
320 	 * Scatter gather both from an mbuf chain and to a user page set
321 	 * mapped into kernel address space using sf_bufs.  If we're lucky,
322 	 * each mbuf requires one copy operation, but if page alignment and
323 	 * mbuf alignment work out less well, we'll be doing two copies per
324 	 * mbuf.
325 	 */
326 	offset += sizeof(struct bpf_zbuf_header);
327 	page = offset / PAGE_SIZE;
328 	poffset = offset % PAGE_SIZE;
329 	moffset = 0;
330 	while (len > 0) {
331 		KASSERT(page < zb->zb_numpages,
332 		    ("bpf_zerocopy_append_mbuf: page overflow (%d p %d "
333 		    "np)\n", page, zb->zb_numpages));
334 		KASSERT(m != NULL,
335 		    ("bpf_zerocopy_append_mbuf: end of mbuf chain"));
336 
337 		count = min(m->m_len - moffset, len);
338 		count = min(count, PAGE_SIZE - poffset);
339 		bcopy(mtod(m, u_char *) + moffset,
340 		    ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset,
341 		    count);
342 		poffset += count;
343 		if (poffset == PAGE_SIZE) {
344 			poffset = 0;
345 			page++;
346 		}
347 		KASSERT(poffset < PAGE_SIZE,
348 		    ("bpf_zerocopy_append_mbuf: page offset overflow (%d)",
349 		    poffset));
350 		moffset += count;
351 		if (moffset == m->m_len) {
352 			m = m->m_next;
353 			moffset = 0;
354 		}
355 		len -= count;
356 	}
357 }
358 
359 /*
360  * Notification from the BPF framework that a buffer in the store position is
361  * rejecting packets and may be considered full.  We mark the buffer as
362  * immutable and assign to userspace so that it is immediately available for
363  * the user process to access.
364  */
365 void
366 bpf_zerocopy_buffull(struct bpf_d *d)
367 {
368 	struct zbuf *zb;
369 
370 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
371 	    ("bpf_zerocopy_buffull: not in zbuf mode"));
372 
373 	zb = (struct zbuf *)d->bd_sbuf;
374 	KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL"));
375 
376 	if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
377 		zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
378 		zb->zb_header->bzh_kernel_len = d->bd_slen;
379 		atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
380 	}
381 }
382 
383 /*
384  * Notification from the BPF framework that a buffer has moved into the held
385  * slot on a descriptor.  Zero-copy BPF will update the shared page to let
386  * the user process know and flag the buffer as assigned if it hasn't already
387  * been marked assigned due to filling while it was in the store position.
388  *
389  * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate
390  * on bd_hbuf and bd_hlen.
391  */
392 void
393 bpf_zerocopy_bufheld(struct bpf_d *d)
394 {
395 	struct zbuf *zb;
396 
397 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
398 	    ("bpf_zerocopy_bufheld: not in zbuf mode"));
399 
400 	zb = (struct zbuf *)d->bd_hbuf;
401 	KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL"));
402 
403 	if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
404 		zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
405 		zb->zb_header->bzh_kernel_len = d->bd_hlen;
406 		atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
407 	}
408 }
409 
410 /*
411  * Notification from the BPF framework that the free buffer has been been
412  * rotated out of the held position to the free position.  This happens when
413  * the user acknowledges the held buffer.
414  */
415 void
416 bpf_zerocopy_buf_reclaimed(struct bpf_d *d)
417 {
418 	struct zbuf *zb;
419 
420 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
421 	    ("bpf_zerocopy_reclaim_buf: not in zbuf mode"));
422 
423 	KASSERT(d->bd_fbuf != NULL,
424 	    ("bpf_zerocopy_buf_reclaimed: NULL free buf"));
425 	zb = (struct zbuf *)d->bd_fbuf;
426 	zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED;
427 }
428 
429 /*
430  * Query from the BPF framework regarding whether the buffer currently in the
431  * held position can be moved to the free position, which can be indicated by
432  * the user process making their generation number equal to the kernel
433  * generation number.
434  */
435 int
436 bpf_zerocopy_canfreebuf(struct bpf_d *d)
437 {
438 	struct zbuf *zb;
439 
440 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
441 	    ("bpf_zerocopy_canfreebuf: not in zbuf mode"));
442 
443 	zb = (struct zbuf *)d->bd_hbuf;
444 	if (zb == NULL)
445 		return (0);
446 	if (zb->zb_header->bzh_kernel_gen ==
447 	    atomic_load_acq_int(&zb->zb_header->bzh_user_gen))
448 		return (1);
449 	return (0);
450 }
451 
452 /*
453  * Query from the BPF framework as to whether or not the buffer current in
454  * the store position can actually be written to.  This may return false if
455  * the store buffer is assigned to userspace before the hold buffer is
456  * acknowledged.
457  */
458 int
459 bpf_zerocopy_canwritebuf(struct bpf_d *d)
460 {
461 	struct zbuf *zb;
462 
463 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
464 	    ("bpf_zerocopy_canwritebuf: not in zbuf mode"));
465 
466 	zb = (struct zbuf *)d->bd_sbuf;
467 	KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL"));
468 
469 	if (zb->zb_flags & ZBUF_FLAG_ASSIGNED)
470 		return (0);
471 	return (1);
472 }
473 
474 /*
475  * Free zero copy buffers at request of descriptor.
476  */
477 void
478 bpf_zerocopy_free(struct bpf_d *d)
479 {
480 	struct zbuf *zb;
481 
482 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
483 	    ("bpf_zerocopy_free: not in zbuf mode"));
484 
485 	zb = (struct zbuf *)d->bd_sbuf;
486 	if (zb != NULL)
487 		zbuf_free(zb);
488 	zb = (struct zbuf *)d->bd_hbuf;
489 	if (zb != NULL)
490 		zbuf_free(zb);
491 	zb = (struct zbuf *)d->bd_fbuf;
492 	if (zb != NULL)
493 		zbuf_free(zb);
494 }
495 
496 /*
497  * Ioctl to return the maximum buffer size.
498  */
499 int
500 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
501 {
502 
503 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
504 	    ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode"));
505 
506 	*i = BPF_MAX_PAGES * PAGE_SIZE;
507 	return (0);
508 }
509 
510 /*
511  * Ioctl to force rotation of the two buffers, if there's any data available.
512  * This can be used by user space to implement timeouts when waiting for a
513  * buffer to fill.
514  */
515 int
516 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d,
517     struct bpf_zbuf *bz)
518 {
519 	struct zbuf *bzh;
520 
521 	bzero(bz, sizeof(*bz));
522 	BPFD_LOCK(d);
523 	if (d->bd_hbuf == NULL && d->bd_slen != 0) {
524 		ROTATE_BUFFERS(d);
525 		bzh = (struct zbuf *)d->bd_hbuf;
526 		bz->bz_bufa = (void *)bzh->zb_uaddr;
527 		bz->bz_buflen = d->bd_hlen;
528 	}
529 	BPFD_UNLOCK(d);
530 	return (0);
531 }
532 
533 /*
534  * Ioctl to configure zero-copy buffers -- may be done only once.
535  */
536 int
537 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d,
538     struct bpf_zbuf *bz)
539 {
540 	struct zbuf *zba, *zbb;
541 	int error;
542 
543 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
544 	    ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode"));
545 
546 	/*
547 	 * Must set both buffers.  Cannot clear them.
548 	 */
549 	if (bz->bz_bufa == NULL || bz->bz_bufb == NULL)
550 		return (EINVAL);
551 
552 	/*
553 	 * Buffers must have a size greater than 0.  Alignment and other size
554 	 * validity checking is done in zbuf_setup().
555 	 */
556 	if (bz->bz_buflen == 0)
557 		return (EINVAL);
558 
559 	/*
560 	 * Allocate new buffers.
561 	 */
562 	error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen,
563 	    &zba);
564 	if (error)
565 		return (error);
566 	error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen,
567 	    &zbb);
568 	if (error) {
569 		zbuf_free(zba);
570 		return (error);
571 	}
572 
573 	/*
574 	 * We only allow buffers to be installed once, so atomically check
575 	 * that no buffers are currently installed and install new buffers.
576 	 */
577 	BPFD_LOCK(d);
578 	if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL ||
579 	    d->bd_bif != NULL) {
580 		BPFD_UNLOCK(d);
581 		zbuf_free(zba);
582 		zbuf_free(zbb);
583 		return (EINVAL);
584 	}
585 
586 	/*
587 	 * Point BPF descriptor at buffers; initialize sbuf as zba so that
588 	 * it is always filled first in the sequence, per bpf(4).
589 	 */
590 	d->bd_fbuf = (caddr_t)zbb;
591 	d->bd_sbuf = (caddr_t)zba;
592 	d->bd_slen = 0;
593 	d->bd_hlen = 0;
594 
595 	/*
596 	 * We expose only the space left in the buffer after the size of the
597 	 * shared management region.
598 	 */
599 	d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header);
600 	BPFD_UNLOCK(d);
601 	return (0);
602 }
603