1 /*- 2 * Copyright (c) 2007 Seccuris Inc. 3 * All rights reserved. 4 * 5 * This sofware was developed by Robert N. M. Watson under contract to 6 * Seccuris Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_bpf.h" 34 35 #include <sys/param.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/mutex.h> 40 #include <sys/proc.h> 41 #include <sys/sf_buf.h> 42 #include <sys/socket.h> 43 #include <sys/uio.h> 44 45 #include <machine/atomic.h> 46 47 #include <net/if.h> 48 #include <net/bpf.h> 49 #include <net/bpf_zerocopy.h> 50 #include <net/bpfdesc.h> 51 52 #include <vm/vm.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 #include <vm/vm_page.h> 57 58 /* 59 * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which 60 * are mapped into the kernel address space using sf_bufs and used directly 61 * by BPF. Memory is wired since page faults cannot be tolerated in the 62 * contexts where the buffers are copied to (locks held, interrupt context, 63 * etc). Access to shared memory buffers is synchronized using a header on 64 * each buffer, allowing the number of system calls to go to zero as BPF 65 * reaches saturation (buffers filled as fast as they can be drained by the 66 * user process). Full details of the protocol for communicating between the 67 * user process and BPF may be found in bpf(4). 68 */ 69 70 /* 71 * Maximum number of pages per buffer. Since all BPF devices use two, the 72 * maximum per device is 2*BPF_MAX_PAGES. Resource limits on the number of 73 * sf_bufs may be an issue, so do not set this too high. On older systems, 74 * kernel address space limits may also be an issue. 75 */ 76 #define BPF_MAX_PAGES 512 77 78 /* 79 * struct zbuf describes a memory buffer loaned by a user process to the 80 * kernel. We represent this as a series of pages managed using an array of 81 * sf_bufs. Even though the memory is contiguous in user space, it may not 82 * be mapped contiguously in the kernel (i.e., a set of physically 83 * non-contiguous pages in the direct map region) so we must implement 84 * scatter-gather copying. One significant mitigating factor is that on 85 * systems with a direct memory map, we can avoid TLB misses. 86 * 87 * At the front of the shared memory region is a bpf_zbuf_header, which 88 * contains shared control data to allow user space and the kernel to 89 * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF 90 * knows that the space is not available. 91 */ 92 struct zbuf { 93 vm_offset_t zb_uaddr; /* User address at time of setup. */ 94 size_t zb_size; /* Size of buffer, incl. header. */ 95 u_int zb_numpages; /* Number of pages. */ 96 int zb_flags; /* Flags on zbuf. */ 97 struct sf_buf **zb_pages; /* Pages themselves. */ 98 struct bpf_zbuf_header *zb_header; /* Shared header. */ 99 }; 100 101 /* 102 * When a buffer has been assigned to userspace, flag it as such, as the 103 * buffer may remain in the store position as a result of the user process 104 * not yet having acknowledged the buffer in the hold position yet. 105 */ 106 #define ZBUF_FLAG_ASSIGNED 0x00000001 /* Set when owned by user. */ 107 108 /* 109 * Release a page we've previously wired. 110 */ 111 static void 112 zbuf_page_free(vm_page_t pp) 113 { 114 115 vm_page_lock(pp); 116 vm_page_unwire(pp, 0); 117 if (pp->wire_count == 0 && pp->object == NULL) 118 vm_page_free(pp); 119 vm_page_unlock(pp); 120 } 121 122 /* 123 * Free an sf_buf with attached page. 124 */ 125 static void 126 zbuf_sfbuf_free(struct sf_buf *sf) 127 { 128 vm_page_t pp; 129 130 pp = sf_buf_page(sf); 131 sf_buf_free(sf); 132 zbuf_page_free(pp); 133 } 134 135 /* 136 * Free a zbuf, including its page array, sbufs, and pages. Allow partially 137 * allocated zbufs to be freed so that it may be used even during a zbuf 138 * setup. 139 */ 140 static void 141 zbuf_free(struct zbuf *zb) 142 { 143 int i; 144 145 for (i = 0; i < zb->zb_numpages; i++) { 146 if (zb->zb_pages[i] != NULL) 147 zbuf_sfbuf_free(zb->zb_pages[i]); 148 } 149 free(zb->zb_pages, M_BPF); 150 free(zb, M_BPF); 151 } 152 153 /* 154 * Given a user pointer to a page of user memory, return an sf_buf for the 155 * page. Because we may be requesting quite a few sf_bufs, prefer failure to 156 * deadlock and use SFB_NOWAIT. 157 */ 158 static struct sf_buf * 159 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr) 160 { 161 struct sf_buf *sf; 162 vm_page_t pp; 163 164 if (vm_fault_quick((caddr_t) uaddr, VM_PROT_READ | VM_PROT_WRITE) < 165 0) 166 return (NULL); 167 pp = pmap_extract_and_hold(map->pmap, uaddr, VM_PROT_READ | 168 VM_PROT_WRITE); 169 if (pp == NULL) 170 return (NULL); 171 vm_page_lock(pp); 172 vm_page_wire(pp); 173 vm_page_unhold(pp); 174 vm_page_unlock(pp); 175 sf = sf_buf_alloc(pp, SFB_NOWAIT); 176 if (sf == NULL) { 177 zbuf_page_free(pp); 178 return (NULL); 179 } 180 return (sf); 181 } 182 183 /* 184 * Create a zbuf describing a range of user address space memory. Validate 185 * page alignment, size requirements, etc. 186 */ 187 static int 188 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len, 189 struct zbuf **zbp) 190 { 191 struct zbuf *zb; 192 struct vm_map *map; 193 int error, i; 194 195 *zbp = NULL; 196 197 /* 198 * User address must be page-aligned. 199 */ 200 if (uaddr & PAGE_MASK) 201 return (EINVAL); 202 203 /* 204 * Length must be an integer number of full pages. 205 */ 206 if (len & PAGE_MASK) 207 return (EINVAL); 208 209 /* 210 * Length must not exceed per-buffer resource limit. 211 */ 212 if ((len / PAGE_SIZE) > BPF_MAX_PAGES) 213 return (EINVAL); 214 215 /* 216 * Allocate the buffer and set up each page with is own sf_buf. 217 */ 218 error = 0; 219 zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK); 220 zb->zb_uaddr = uaddr; 221 zb->zb_size = len; 222 zb->zb_numpages = len / PAGE_SIZE; 223 zb->zb_pages = malloc(sizeof(struct sf_buf *) * 224 zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK); 225 map = &td->td_proc->p_vmspace->vm_map; 226 for (i = 0; i < zb->zb_numpages; i++) { 227 zb->zb_pages[i] = zbuf_sfbuf_get(map, 228 uaddr + (i * PAGE_SIZE)); 229 if (zb->zb_pages[i] == NULL) { 230 error = EFAULT; 231 goto error; 232 } 233 } 234 zb->zb_header = 235 (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]); 236 bzero(zb->zb_header, sizeof(*zb->zb_header)); 237 *zbp = zb; 238 return (0); 239 240 error: 241 zbuf_free(zb); 242 return (error); 243 } 244 245 /* 246 * Copy bytes from a source into the specified zbuf. The caller is 247 * responsible for performing bounds checking, etc. 248 */ 249 void 250 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, 251 void *src, u_int len) 252 { 253 u_int count, page, poffset; 254 u_char *src_bytes; 255 struct zbuf *zb; 256 257 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 258 ("bpf_zerocopy_append_bytes: not in zbuf mode")); 259 KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf")); 260 261 src_bytes = (u_char *)src; 262 zb = (struct zbuf *)buf; 263 264 KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0, 265 ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED")); 266 267 /* 268 * Scatter-gather copy to user pages mapped into kernel address space 269 * using sf_bufs: copy up to a page at a time. 270 */ 271 offset += sizeof(struct bpf_zbuf_header); 272 page = offset / PAGE_SIZE; 273 poffset = offset % PAGE_SIZE; 274 while (len > 0) { 275 KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:" 276 " page overflow (%d p %d np)\n", page, zb->zb_numpages)); 277 278 count = min(len, PAGE_SIZE - poffset); 279 bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) + 280 poffset, count); 281 poffset += count; 282 if (poffset == PAGE_SIZE) { 283 poffset = 0; 284 page++; 285 } 286 KASSERT(poffset < PAGE_SIZE, 287 ("bpf_zerocopy_append_bytes: page offset overflow (%d)", 288 poffset)); 289 len -= count; 290 src_bytes += count; 291 } 292 } 293 294 /* 295 * Copy bytes from an mbuf chain to the specified zbuf: copying will be 296 * scatter-gather both from mbufs, which may be fragmented over memory, and 297 * to pages, which may not be contiguously mapped in kernel address space. 298 * As with bpf_zerocopy_append_bytes(), the caller is responsible for 299 * checking that this will not exceed the buffer limit. 300 */ 301 void 302 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, 303 void *src, u_int len) 304 { 305 u_int count, moffset, page, poffset; 306 const struct mbuf *m; 307 struct zbuf *zb; 308 309 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 310 ("bpf_zerocopy_append_mbuf not in zbuf mode")); 311 KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf")); 312 313 m = (struct mbuf *)src; 314 zb = (struct zbuf *)buf; 315 316 KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0, 317 ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED")); 318 319 /* 320 * Scatter gather both from an mbuf chain and to a user page set 321 * mapped into kernel address space using sf_bufs. If we're lucky, 322 * each mbuf requires one copy operation, but if page alignment and 323 * mbuf alignment work out less well, we'll be doing two copies per 324 * mbuf. 325 */ 326 offset += sizeof(struct bpf_zbuf_header); 327 page = offset / PAGE_SIZE; 328 poffset = offset % PAGE_SIZE; 329 moffset = 0; 330 while (len > 0) { 331 KASSERT(page < zb->zb_numpages, 332 ("bpf_zerocopy_append_mbuf: page overflow (%d p %d " 333 "np)\n", page, zb->zb_numpages)); 334 KASSERT(m != NULL, 335 ("bpf_zerocopy_append_mbuf: end of mbuf chain")); 336 337 count = min(m->m_len - moffset, len); 338 count = min(count, PAGE_SIZE - poffset); 339 bcopy(mtod(m, u_char *) + moffset, 340 ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset, 341 count); 342 poffset += count; 343 if (poffset == PAGE_SIZE) { 344 poffset = 0; 345 page++; 346 } 347 KASSERT(poffset < PAGE_SIZE, 348 ("bpf_zerocopy_append_mbuf: page offset overflow (%d)", 349 poffset)); 350 moffset += count; 351 if (moffset == m->m_len) { 352 m = m->m_next; 353 moffset = 0; 354 } 355 len -= count; 356 } 357 } 358 359 /* 360 * Notification from the BPF framework that a buffer in the store position is 361 * rejecting packets and may be considered full. We mark the buffer as 362 * immutable and assign to userspace so that it is immediately available for 363 * the user process to access. 364 */ 365 void 366 bpf_zerocopy_buffull(struct bpf_d *d) 367 { 368 struct zbuf *zb; 369 370 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 371 ("bpf_zerocopy_buffull: not in zbuf mode")); 372 373 zb = (struct zbuf *)d->bd_sbuf; 374 KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL")); 375 376 if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) { 377 zb->zb_flags |= ZBUF_FLAG_ASSIGNED; 378 zb->zb_header->bzh_kernel_len = d->bd_slen; 379 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1); 380 } 381 } 382 383 /* 384 * Notification from the BPF framework that a buffer has moved into the held 385 * slot on a descriptor. Zero-copy BPF will update the shared page to let 386 * the user process know and flag the buffer as assigned if it hasn't already 387 * been marked assigned due to filling while it was in the store position. 388 * 389 * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate 390 * on bd_hbuf and bd_hlen. 391 */ 392 void 393 bpf_zerocopy_bufheld(struct bpf_d *d) 394 { 395 struct zbuf *zb; 396 397 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 398 ("bpf_zerocopy_bufheld: not in zbuf mode")); 399 400 zb = (struct zbuf *)d->bd_hbuf; 401 KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL")); 402 403 if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) { 404 zb->zb_flags |= ZBUF_FLAG_ASSIGNED; 405 zb->zb_header->bzh_kernel_len = d->bd_hlen; 406 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1); 407 } 408 } 409 410 /* 411 * Notification from the BPF framework that the free buffer has been been 412 * rotated out of the held position to the free position. This happens when 413 * the user acknowledges the held buffer. 414 */ 415 void 416 bpf_zerocopy_buf_reclaimed(struct bpf_d *d) 417 { 418 struct zbuf *zb; 419 420 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 421 ("bpf_zerocopy_reclaim_buf: not in zbuf mode")); 422 423 KASSERT(d->bd_fbuf != NULL, 424 ("bpf_zerocopy_buf_reclaimed: NULL free buf")); 425 zb = (struct zbuf *)d->bd_fbuf; 426 zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED; 427 } 428 429 /* 430 * Query from the BPF framework regarding whether the buffer currently in the 431 * held position can be moved to the free position, which can be indicated by 432 * the user process making their generation number equal to the kernel 433 * generation number. 434 */ 435 int 436 bpf_zerocopy_canfreebuf(struct bpf_d *d) 437 { 438 struct zbuf *zb; 439 440 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 441 ("bpf_zerocopy_canfreebuf: not in zbuf mode")); 442 443 zb = (struct zbuf *)d->bd_hbuf; 444 if (zb == NULL) 445 return (0); 446 if (zb->zb_header->bzh_kernel_gen == 447 atomic_load_acq_int(&zb->zb_header->bzh_user_gen)) 448 return (1); 449 return (0); 450 } 451 452 /* 453 * Query from the BPF framework as to whether or not the buffer current in 454 * the store position can actually be written to. This may return false if 455 * the store buffer is assigned to userspace before the hold buffer is 456 * acknowledged. 457 */ 458 int 459 bpf_zerocopy_canwritebuf(struct bpf_d *d) 460 { 461 struct zbuf *zb; 462 463 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 464 ("bpf_zerocopy_canwritebuf: not in zbuf mode")); 465 466 zb = (struct zbuf *)d->bd_sbuf; 467 KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL")); 468 469 if (zb->zb_flags & ZBUF_FLAG_ASSIGNED) 470 return (0); 471 return (1); 472 } 473 474 /* 475 * Free zero copy buffers at request of descriptor. 476 */ 477 void 478 bpf_zerocopy_free(struct bpf_d *d) 479 { 480 struct zbuf *zb; 481 482 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 483 ("bpf_zerocopy_free: not in zbuf mode")); 484 485 zb = (struct zbuf *)d->bd_sbuf; 486 if (zb != NULL) 487 zbuf_free(zb); 488 zb = (struct zbuf *)d->bd_hbuf; 489 if (zb != NULL) 490 zbuf_free(zb); 491 zb = (struct zbuf *)d->bd_fbuf; 492 if (zb != NULL) 493 zbuf_free(zb); 494 } 495 496 /* 497 * Ioctl to return the maximum buffer size. 498 */ 499 int 500 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i) 501 { 502 503 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 504 ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode")); 505 506 *i = BPF_MAX_PAGES * PAGE_SIZE; 507 return (0); 508 } 509 510 /* 511 * Ioctl to force rotation of the two buffers, if there's any data available. 512 * This can be used by user space to implement timeouts when waiting for a 513 * buffer to fill. 514 */ 515 int 516 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, 517 struct bpf_zbuf *bz) 518 { 519 struct zbuf *bzh; 520 521 bzero(bz, sizeof(*bz)); 522 BPFD_LOCK(d); 523 if (d->bd_hbuf == NULL && d->bd_slen != 0) { 524 ROTATE_BUFFERS(d); 525 bzh = (struct zbuf *)d->bd_hbuf; 526 bz->bz_bufa = (void *)bzh->zb_uaddr; 527 bz->bz_buflen = d->bd_hlen; 528 } 529 BPFD_UNLOCK(d); 530 return (0); 531 } 532 533 /* 534 * Ioctl to configure zero-copy buffers -- may be done only once. 535 */ 536 int 537 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d, 538 struct bpf_zbuf *bz) 539 { 540 struct zbuf *zba, *zbb; 541 int error; 542 543 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 544 ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode")); 545 546 /* 547 * Must set both buffers. Cannot clear them. 548 */ 549 if (bz->bz_bufa == NULL || bz->bz_bufb == NULL) 550 return (EINVAL); 551 552 /* 553 * Buffers must have a size greater than 0. Alignment and other size 554 * validity checking is done in zbuf_setup(). 555 */ 556 if (bz->bz_buflen == 0) 557 return (EINVAL); 558 559 /* 560 * Allocate new buffers. 561 */ 562 error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen, 563 &zba); 564 if (error) 565 return (error); 566 error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen, 567 &zbb); 568 if (error) { 569 zbuf_free(zba); 570 return (error); 571 } 572 573 /* 574 * We only allow buffers to be installed once, so atomically check 575 * that no buffers are currently installed and install new buffers. 576 */ 577 BPFD_LOCK(d); 578 if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL || 579 d->bd_bif != NULL) { 580 BPFD_UNLOCK(d); 581 zbuf_free(zba); 582 zbuf_free(zbb); 583 return (EINVAL); 584 } 585 586 /* 587 * Point BPF descriptor at buffers; initialize sbuf as zba so that 588 * it is always filled first in the sequence, per bpf(4). 589 */ 590 d->bd_fbuf = (caddr_t)zbb; 591 d->bd_sbuf = (caddr_t)zba; 592 d->bd_slen = 0; 593 d->bd_hlen = 0; 594 595 /* 596 * We expose only the space left in the buffer after the size of the 597 * shared management region. 598 */ 599 d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header); 600 BPFD_UNLOCK(d); 601 return (0); 602 } 603