1 /*- 2 * Copyright (c) 2007 Seccuris Inc. 3 * All rights reserved. 4 * 5 * This sofware was developed by Robert N. M. Watson under contract to 6 * Seccuris Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_bpf.h" 34 35 #include <sys/param.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/mutex.h> 40 #include <sys/proc.h> 41 #include <sys/sf_buf.h> 42 #include <sys/socket.h> 43 #include <sys/uio.h> 44 45 #include <machine/atomic.h> 46 47 #include <net/if.h> 48 #include <net/bpf.h> 49 #include <net/bpf_zerocopy.h> 50 #include <net/bpfdesc.h> 51 52 #include <vm/vm.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 #include <vm/vm_page.h> 57 58 /* 59 * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which 60 * are mapped into the kernel address space using sf_bufs and used directly 61 * by BPF. Memory is wired since page faults cannot be tolerated in the 62 * contexts where the buffers are copied to (locks held, interrupt context, 63 * etc). Access to shared memory buffers is synchronized using a header on 64 * each buffer, allowing the number of system calls to go to zero as BPF 65 * reaches saturation (buffers filled as fast as they can be drained by the 66 * user process). Full details of the protocol for communicating between the 67 * user process and BPF may be found in bpf(4). 68 */ 69 70 /* 71 * Maximum number of pages per buffer. Since all BPF devices use two, the 72 * maximum per device is 2*BPF_MAX_PAGES. Resource limits on the number of 73 * sf_bufs may be an issue, so do not set this too high. On older systems, 74 * kernel address space limits may also be an issue. 75 */ 76 #define BPF_MAX_PAGES 512 77 78 /* 79 * struct zbuf describes a memory buffer loaned by a user process to the 80 * kernel. We represent this as a series of pages managed using an array of 81 * sf_bufs. Even though the memory is contiguous in user space, it may not 82 * be mapped contiguously in the kernel (i.e., a set of physically 83 * non-contiguous pages in the direct map region) so we must implement 84 * scatter-gather copying. One significant mitigating factor is that on 85 * systems with a direct memory map, we can avoid TLB misses. 86 * 87 * At the front of the shared memory region is a bpf_zbuf_header, which 88 * contains shared control data to allow user space and the kernel to 89 * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF 90 * knows that the space is not available. 91 */ 92 struct zbuf { 93 vm_offset_t zb_uaddr; /* User address at time of setup. */ 94 size_t zb_size; /* Size of buffer, incl. header. */ 95 u_int zb_numpages; /* Number of pages. */ 96 int zb_flags; /* Flags on zbuf. */ 97 struct sf_buf **zb_pages; /* Pages themselves. */ 98 struct bpf_zbuf_header *zb_header; /* Shared header. */ 99 }; 100 101 /* 102 * When a buffer has been assigned to userspace, flag it as such, as the 103 * buffer may remain in the store position as a result of the user process 104 * not yet having acknowledged the buffer in the hold position yet. 105 */ 106 #define ZBUF_FLAG_ASSIGNED 0x00000001 /* Set when owned by user. */ 107 108 /* 109 * Release a page we've previously wired. 110 */ 111 static void 112 zbuf_page_free(vm_page_t pp) 113 { 114 115 vm_page_lock(pp); 116 vm_page_unwire(pp, 0); 117 if (pp->wire_count == 0 && pp->object == NULL) 118 vm_page_free(pp); 119 vm_page_unlock(pp); 120 } 121 122 /* 123 * Free an sf_buf with attached page. 124 */ 125 static void 126 zbuf_sfbuf_free(struct sf_buf *sf) 127 { 128 vm_page_t pp; 129 130 pp = sf_buf_page(sf); 131 sf_buf_free(sf); 132 zbuf_page_free(pp); 133 } 134 135 /* 136 * Free a zbuf, including its page array, sbufs, and pages. Allow partially 137 * allocated zbufs to be freed so that it may be used even during a zbuf 138 * setup. 139 */ 140 static void 141 zbuf_free(struct zbuf *zb) 142 { 143 int i; 144 145 for (i = 0; i < zb->zb_numpages; i++) { 146 if (zb->zb_pages[i] != NULL) 147 zbuf_sfbuf_free(zb->zb_pages[i]); 148 } 149 free(zb->zb_pages, M_BPF); 150 free(zb, M_BPF); 151 } 152 153 /* 154 * Given a user pointer to a page of user memory, return an sf_buf for the 155 * page. Because we may be requesting quite a few sf_bufs, prefer failure to 156 * deadlock and use SFB_NOWAIT. 157 */ 158 static struct sf_buf * 159 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr) 160 { 161 struct sf_buf *sf; 162 vm_page_t pp; 163 164 if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ | 165 VM_PROT_WRITE, &pp, 1) < 0) 166 return (NULL); 167 vm_page_lock(pp); 168 vm_page_wire(pp); 169 vm_page_unhold(pp); 170 vm_page_unlock(pp); 171 sf = sf_buf_alloc(pp, SFB_NOWAIT); 172 if (sf == NULL) { 173 zbuf_page_free(pp); 174 return (NULL); 175 } 176 return (sf); 177 } 178 179 /* 180 * Create a zbuf describing a range of user address space memory. Validate 181 * page alignment, size requirements, etc. 182 */ 183 static int 184 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len, 185 struct zbuf **zbp) 186 { 187 struct zbuf *zb; 188 struct vm_map *map; 189 int error, i; 190 191 *zbp = NULL; 192 193 /* 194 * User address must be page-aligned. 195 */ 196 if (uaddr & PAGE_MASK) 197 return (EINVAL); 198 199 /* 200 * Length must be an integer number of full pages. 201 */ 202 if (len & PAGE_MASK) 203 return (EINVAL); 204 205 /* 206 * Length must not exceed per-buffer resource limit. 207 */ 208 if ((len / PAGE_SIZE) > BPF_MAX_PAGES) 209 return (EINVAL); 210 211 /* 212 * Allocate the buffer and set up each page with is own sf_buf. 213 */ 214 error = 0; 215 zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK); 216 zb->zb_uaddr = uaddr; 217 zb->zb_size = len; 218 zb->zb_numpages = len / PAGE_SIZE; 219 zb->zb_pages = malloc(sizeof(struct sf_buf *) * 220 zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK); 221 map = &td->td_proc->p_vmspace->vm_map; 222 for (i = 0; i < zb->zb_numpages; i++) { 223 zb->zb_pages[i] = zbuf_sfbuf_get(map, 224 uaddr + (i * PAGE_SIZE)); 225 if (zb->zb_pages[i] == NULL) { 226 error = EFAULT; 227 goto error; 228 } 229 } 230 zb->zb_header = 231 (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]); 232 bzero(zb->zb_header, sizeof(*zb->zb_header)); 233 *zbp = zb; 234 return (0); 235 236 error: 237 zbuf_free(zb); 238 return (error); 239 } 240 241 /* 242 * Copy bytes from a source into the specified zbuf. The caller is 243 * responsible for performing bounds checking, etc. 244 */ 245 void 246 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, 247 void *src, u_int len) 248 { 249 u_int count, page, poffset; 250 u_char *src_bytes; 251 struct zbuf *zb; 252 253 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 254 ("bpf_zerocopy_append_bytes: not in zbuf mode")); 255 KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf")); 256 257 src_bytes = (u_char *)src; 258 zb = (struct zbuf *)buf; 259 260 KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0, 261 ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED")); 262 263 /* 264 * Scatter-gather copy to user pages mapped into kernel address space 265 * using sf_bufs: copy up to a page at a time. 266 */ 267 offset += sizeof(struct bpf_zbuf_header); 268 page = offset / PAGE_SIZE; 269 poffset = offset % PAGE_SIZE; 270 while (len > 0) { 271 KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:" 272 " page overflow (%d p %d np)\n", page, zb->zb_numpages)); 273 274 count = min(len, PAGE_SIZE - poffset); 275 bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) + 276 poffset, count); 277 poffset += count; 278 if (poffset == PAGE_SIZE) { 279 poffset = 0; 280 page++; 281 } 282 KASSERT(poffset < PAGE_SIZE, 283 ("bpf_zerocopy_append_bytes: page offset overflow (%d)", 284 poffset)); 285 len -= count; 286 src_bytes += count; 287 } 288 } 289 290 /* 291 * Copy bytes from an mbuf chain to the specified zbuf: copying will be 292 * scatter-gather both from mbufs, which may be fragmented over memory, and 293 * to pages, which may not be contiguously mapped in kernel address space. 294 * As with bpf_zerocopy_append_bytes(), the caller is responsible for 295 * checking that this will not exceed the buffer limit. 296 */ 297 void 298 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, 299 void *src, u_int len) 300 { 301 u_int count, moffset, page, poffset; 302 const struct mbuf *m; 303 struct zbuf *zb; 304 305 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 306 ("bpf_zerocopy_append_mbuf not in zbuf mode")); 307 KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf")); 308 309 m = (struct mbuf *)src; 310 zb = (struct zbuf *)buf; 311 312 KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0, 313 ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED")); 314 315 /* 316 * Scatter gather both from an mbuf chain and to a user page set 317 * mapped into kernel address space using sf_bufs. If we're lucky, 318 * each mbuf requires one copy operation, but if page alignment and 319 * mbuf alignment work out less well, we'll be doing two copies per 320 * mbuf. 321 */ 322 offset += sizeof(struct bpf_zbuf_header); 323 page = offset / PAGE_SIZE; 324 poffset = offset % PAGE_SIZE; 325 moffset = 0; 326 while (len > 0) { 327 KASSERT(page < zb->zb_numpages, 328 ("bpf_zerocopy_append_mbuf: page overflow (%d p %d " 329 "np)\n", page, zb->zb_numpages)); 330 KASSERT(m != NULL, 331 ("bpf_zerocopy_append_mbuf: end of mbuf chain")); 332 333 count = min(m->m_len - moffset, len); 334 count = min(count, PAGE_SIZE - poffset); 335 bcopy(mtod(m, u_char *) + moffset, 336 ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset, 337 count); 338 poffset += count; 339 if (poffset == PAGE_SIZE) { 340 poffset = 0; 341 page++; 342 } 343 KASSERT(poffset < PAGE_SIZE, 344 ("bpf_zerocopy_append_mbuf: page offset overflow (%d)", 345 poffset)); 346 moffset += count; 347 if (moffset == m->m_len) { 348 m = m->m_next; 349 moffset = 0; 350 } 351 len -= count; 352 } 353 } 354 355 /* 356 * Notification from the BPF framework that a buffer in the store position is 357 * rejecting packets and may be considered full. We mark the buffer as 358 * immutable and assign to userspace so that it is immediately available for 359 * the user process to access. 360 */ 361 void 362 bpf_zerocopy_buffull(struct bpf_d *d) 363 { 364 struct zbuf *zb; 365 366 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 367 ("bpf_zerocopy_buffull: not in zbuf mode")); 368 369 zb = (struct zbuf *)d->bd_sbuf; 370 KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL")); 371 372 if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) { 373 zb->zb_flags |= ZBUF_FLAG_ASSIGNED; 374 zb->zb_header->bzh_kernel_len = d->bd_slen; 375 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1); 376 } 377 } 378 379 /* 380 * Notification from the BPF framework that a buffer has moved into the held 381 * slot on a descriptor. Zero-copy BPF will update the shared page to let 382 * the user process know and flag the buffer as assigned if it hasn't already 383 * been marked assigned due to filling while it was in the store position. 384 * 385 * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate 386 * on bd_hbuf and bd_hlen. 387 */ 388 void 389 bpf_zerocopy_bufheld(struct bpf_d *d) 390 { 391 struct zbuf *zb; 392 393 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 394 ("bpf_zerocopy_bufheld: not in zbuf mode")); 395 396 zb = (struct zbuf *)d->bd_hbuf; 397 KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL")); 398 399 if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) { 400 zb->zb_flags |= ZBUF_FLAG_ASSIGNED; 401 zb->zb_header->bzh_kernel_len = d->bd_hlen; 402 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1); 403 } 404 } 405 406 /* 407 * Notification from the BPF framework that the free buffer has been been 408 * rotated out of the held position to the free position. This happens when 409 * the user acknowledges the held buffer. 410 */ 411 void 412 bpf_zerocopy_buf_reclaimed(struct bpf_d *d) 413 { 414 struct zbuf *zb; 415 416 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 417 ("bpf_zerocopy_reclaim_buf: not in zbuf mode")); 418 419 KASSERT(d->bd_fbuf != NULL, 420 ("bpf_zerocopy_buf_reclaimed: NULL free buf")); 421 zb = (struct zbuf *)d->bd_fbuf; 422 zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED; 423 } 424 425 /* 426 * Query from the BPF framework regarding whether the buffer currently in the 427 * held position can be moved to the free position, which can be indicated by 428 * the user process making their generation number equal to the kernel 429 * generation number. 430 */ 431 int 432 bpf_zerocopy_canfreebuf(struct bpf_d *d) 433 { 434 struct zbuf *zb; 435 436 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 437 ("bpf_zerocopy_canfreebuf: not in zbuf mode")); 438 439 zb = (struct zbuf *)d->bd_hbuf; 440 if (zb == NULL) 441 return (0); 442 if (zb->zb_header->bzh_kernel_gen == 443 atomic_load_acq_int(&zb->zb_header->bzh_user_gen)) 444 return (1); 445 return (0); 446 } 447 448 /* 449 * Query from the BPF framework as to whether or not the buffer current in 450 * the store position can actually be written to. This may return false if 451 * the store buffer is assigned to userspace before the hold buffer is 452 * acknowledged. 453 */ 454 int 455 bpf_zerocopy_canwritebuf(struct bpf_d *d) 456 { 457 struct zbuf *zb; 458 459 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 460 ("bpf_zerocopy_canwritebuf: not in zbuf mode")); 461 462 zb = (struct zbuf *)d->bd_sbuf; 463 KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL")); 464 465 if (zb->zb_flags & ZBUF_FLAG_ASSIGNED) 466 return (0); 467 return (1); 468 } 469 470 /* 471 * Free zero copy buffers at request of descriptor. 472 */ 473 void 474 bpf_zerocopy_free(struct bpf_d *d) 475 { 476 struct zbuf *zb; 477 478 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 479 ("bpf_zerocopy_free: not in zbuf mode")); 480 481 zb = (struct zbuf *)d->bd_sbuf; 482 if (zb != NULL) 483 zbuf_free(zb); 484 zb = (struct zbuf *)d->bd_hbuf; 485 if (zb != NULL) 486 zbuf_free(zb); 487 zb = (struct zbuf *)d->bd_fbuf; 488 if (zb != NULL) 489 zbuf_free(zb); 490 } 491 492 /* 493 * Ioctl to return the maximum buffer size. 494 */ 495 int 496 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i) 497 { 498 499 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 500 ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode")); 501 502 *i = BPF_MAX_PAGES * PAGE_SIZE; 503 return (0); 504 } 505 506 /* 507 * Ioctl to force rotation of the two buffers, if there's any data available. 508 * This can be used by user space to implement timeouts when waiting for a 509 * buffer to fill. 510 */ 511 int 512 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, 513 struct bpf_zbuf *bz) 514 { 515 struct zbuf *bzh; 516 517 bzero(bz, sizeof(*bz)); 518 BPFD_LOCK(d); 519 if (d->bd_hbuf == NULL && d->bd_slen != 0) { 520 ROTATE_BUFFERS(d); 521 bzh = (struct zbuf *)d->bd_hbuf; 522 bz->bz_bufa = (void *)bzh->zb_uaddr; 523 bz->bz_buflen = d->bd_hlen; 524 } 525 BPFD_UNLOCK(d); 526 return (0); 527 } 528 529 /* 530 * Ioctl to configure zero-copy buffers -- may be done only once. 531 */ 532 int 533 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d, 534 struct bpf_zbuf *bz) 535 { 536 struct zbuf *zba, *zbb; 537 int error; 538 539 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 540 ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode")); 541 542 /* 543 * Must set both buffers. Cannot clear them. 544 */ 545 if (bz->bz_bufa == NULL || bz->bz_bufb == NULL) 546 return (EINVAL); 547 548 /* 549 * Buffers must have a size greater than 0. Alignment and other size 550 * validity checking is done in zbuf_setup(). 551 */ 552 if (bz->bz_buflen == 0) 553 return (EINVAL); 554 555 /* 556 * Allocate new buffers. 557 */ 558 error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen, 559 &zba); 560 if (error) 561 return (error); 562 error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen, 563 &zbb); 564 if (error) { 565 zbuf_free(zba); 566 return (error); 567 } 568 569 /* 570 * We only allow buffers to be installed once, so atomically check 571 * that no buffers are currently installed and install new buffers. 572 */ 573 BPFD_LOCK(d); 574 if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL || 575 d->bd_bif != NULL) { 576 BPFD_UNLOCK(d); 577 zbuf_free(zba); 578 zbuf_free(zbb); 579 return (EINVAL); 580 } 581 582 /* 583 * Point BPF descriptor at buffers; initialize sbuf as zba so that 584 * it is always filled first in the sequence, per bpf(4). 585 */ 586 d->bd_fbuf = (caddr_t)zbb; 587 d->bd_sbuf = (caddr_t)zba; 588 d->bd_slen = 0; 589 d->bd_hlen = 0; 590 591 /* 592 * We expose only the space left in the buffer after the size of the 593 * shared management region. 594 */ 595 d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header); 596 BPFD_UNLOCK(d); 597 return (0); 598 } 599